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a b s t r a c t

In on-device training of machine learning models on microcontrollers a neural network
is trained on the device. A specific approach for collaborative on-device training is feder-
ated learning. In this paper, we propose embedded federated learning on microcontroller
boards using the communication capacity of a LoRa mesh network. We apply a dual
board design: The machine learning application that contains a neural network is trained
for a keyword spotting task on the Arduino Portenta H7. For the networking of the
federated learning process, the Portenta is connected to a TTGO LORA32 board that
operates as a router within a LoRa mesh network. We experiment the federated learning
application on the LoRa mesh network and analyze the network, system, and application
level performance. The results from our experimentation suggest the feasibility of the
proposed system and exemplify an implementation of a distributed application with
re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny
edge.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Machine learning models are nowadays deployed in ever smaller computing devices including microcontrollers. In such
evices, the sensor data capture, signal processing, and machine learning tasks are performed directly on the device. The
ncreased microcontroller computing capacities and the availability of open tools such as Tensorflow Lite have generated
onsiderable interest in embedded machine learning on microcontrollers [1].
Embedded machine learning opens an opportunity for affordable smart compute nodes since microcontroller boards

re typically cheap compared to higher-end computing devices. Furthermore, the microcontroller’s material and energy
onsumption is low, which is positive from an environmental point of view. However, the computing capacity of
n embedded compute node as a single device is limited. But leveraging the interconnection of devices through the
etworking interfaces of the boards could increase their computing capacity. Interconnected machine learning training
ith networked microcontroller boards could benefit from integrating a larger dataset leveraging the local data of the
istributed nodes. Furthermore, the computing needs for machine learning model training could be shared among the
etwork of nodes. While such concepts have already been successfully exploited in machine learning on higher-end
evices, there is still a lack of understanding and experience in applying these ideas to embedded systems [2].
To equip a microcontroller with a neural network for embedded machine learning, there are two main approaches:

ff-device training and on-device training of the model. Off-device training is a very popular approach and training is
ypically done on a powerful computer, where enough computing capacity is available to store the complete dataset and
rain the model up to the required accuracy [3]. Once the model is trained off-device, it is flashed to the microcontroller
nd used for inference.
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In on-device training, the machine learning model is trained on the microcontroller itself. While this approach has
tarted receiving increasing interest from the research community, it is still a niche approach in comparison to off-device
raining [4]. On-device training has limitations due to the restricted microcontroller hardware. Typically, the flash memory
f the microcontroller is very small and does not allow the storage of the full training data set. Training with few samples,
owever, influences the accuracy of the model. Another issue is the reduced computing capacity of the microcontroller,
hich results in that the training process on the microcontroller being much slower than when performed with a GPU
r CPU of personal computers. Despite these performance limitations, on-device training on microcontrollers has the
dvantage of allowing models of machine learning applications to adapt to new data. For IoT applications that integrate
mart distributed and remote devices, where external updates with newmodels are not feasible, the capacity for on-device
raining has an interesting potential.

Federated learning has raised the interest of the research community as a technique for model training that does not
equire the sharing of a node’s local data, and thus allows training with privacy-sensitive data [5]. In federated learning,
nstead of training a single model with a centralized dataset, a machine learning model is trained at each device with its
ocal dataset and then merged into a global model. In [6] a comprehensive survey reviews the application of federated
earning in edge devices. The multiple federated learning rounds, however, can be communication intensive. In each round
andwidth is consumed for sending the machine learning model from the training nodes to a central aggregator where
he new global model is computed, and sending it back to each node. While this communication need is not an issue for
hose nodes connected to high bandwidth links, it can be an issue for distant tiny IoT nodes in which sometimes a low
andwidth communication technology such as LoRa is the only available network connectivity.
LoRa is a widely used wireless communication technology in IoT applications. It provides long range communication,

ow power consumption, and low data rates to meet the requirements of remote IoT nodes which from time to time send
mall amounts of sensor data. A LoRa link between two nodes can cover several kilometers of distance, thus making LoRa
uitable for the communication of nodes in geographically-spread IoT applications [7].
Most IoT applications that use LoRa apply the LoRaWAN architecture [8]. This architecture builds a star topology that

stablishes a single hop between an end node (sensor node) and the gateway. The gateway has Internet connectivity
nd forwards the data messages received through the LoRa packets to higher layers of the IoT application. The LoRaWAN
rchitecture, however, does not directly interconnect the end nodes between themselves. Therefore, LoRaWAN is not
uitable for building a horizontally interconnected network of IoT devices.
LoRa mesh networks have been proposed for diverse scenarios which cannot be addressed well by the LoRaWAN

rchitecture [9]. For geographically widely spread IoT nodes and low gateway density, it is not always possible for an end
ode to reach the gateway in a single hop. However, it has been shown that LoRaWAN applications can be extended by
ulti-hop LoRa, where intermediate nodes operate as repeaters that broadcast traffic to other LoRa nodes to finally reach
gateway [10]. Another reason for LoRa mesh networks is to enable IoT applications that do not use the centralized cloud-
ased LoRaWAN stack. The Meshtastic application, for instance, is a gateway-less IoT application where decentralized LoRa
odes communicate with each other over a mesh network [11].
While both embedded machine learning and LoRa-based IoT applications have made progress separately, the conflu-

nce of machine learning in microcontrollers and networked LoRa connectivity is not yet well understood. In this paper,
e propose embedded federated learning on microcontroller boards that uses the communication capacity of a LoRa mesh
etwork. We design a tiny networked distributed computing infrastructure with nodes that consist of the Arduino Portenta
7, a recent microcontroller board equipped with embedded sensors suitable for diverse machine learning tasks, and the
TGO LORA32 microcontroller board, acting as an embedded router to transmit packets over LoRa-based links. Using real
odes we show the implementation feasibility. We evaluate the system performance with regard to machine learning
ccuracy, power consumption, and bandwidth usage. Our results envision smart distributed applications deployed at the
iny edge, for which embedded federated learning provides the model adaptivity.

The novelty consists in enabling the embedded federated machine learning entirely in the IoT layer, where the tiny
ompute nodes interact over a LoRa mesh network. This involves a decentralized federated learning protocol and support
ervices to form federated learning networks. Fig. 1 illustrates the system. In the mesh network, some of these nodes host
he federated learning application for updating and retraining their machine learning model. We consider that IoT nodes
an run dynamic federated learning networks without a central server in a peer-to-peer relationship, such that any node
an operate as a server or client. The LoRa mesh network provides support services for the network and application level
nterconnection of these tiny nodes which run the federated learning application.

The main contributions are:

• We propose smart retrainable embedded compute nodes interconnected over a LoRa mesh network as a system
architecture for a new kind of distributed applications at the tiny edge.

• We analyze the performance of a distributed machine learning application when the embedded machine learning
model is trained on the microcontroller board with the federated learning technique over the LoRa mesh network.

• Our experiments are conducted with real microcontroller boards and the used software implementation has been
made publicly available, making thus the results reproducible and facilitating their practical application.

We develop the software implementation of the proposed system and build a prototype. The experimentation is done
n a real environment with three Arduino Portenta H7 boards that run a keyword spotting (KWS) application trained by
2
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Fig. 1. Federated learning in IoT nodes interconnected over a LoRaMesh network.

ederated learning, and three TTGO LORA32 which establish the LoRa mesh network for the application. The dataset of
he speech samples used for the training and the software has been made available in publicly accessible repositories.1 ,2

. Background and related work

.1. Federated learning with edge devices

Federated learning is a machine learning approach in which machine learning models are trained at edge nodes instead
f using a centralized cloud-based infrastructure. Federated learning avoids the local data having to leave the node,
llowing thus to exploit data for training which otherwise due to privacy constraints may not be available. Federated
earning, however, requires the availability of sufficient local computing capacities at the node to conduct the training,
s well as to have a network link with communication capabilities that allow transmitting machine learning models
etween the participating nodes. While powerful edge nodes such as that of 5G systems do have such computing and
ommunication capacities to support federated learning, Single-Board Computer (SBC) and tiny embedded IoT edge nodes
an face both computation and communication challenges [12].
Core challenges of federated learning include the communication efficiency, the heterogeneity of systems, the hetero-

eneity of training data at the different nodes, and the privacy of the data [13]. A recent survey presented in [14] puts
hese challenges in the light of the IoT, where the resource constraints of the devices exacerbate some of these challenges.
ithin several open research challenges highlighted, sparsification is an approach to address the heterogeneity IoT, by

electing only a subset of devices for conducting a federated learning process, where the selection criteria can be tailored to
he specific IoT needs of the application case. Another survey by Nguyen et al. [15] looks more closely into the resource
anagement and deployment aspects of federated learning in IoT devices. Both topics are part of the identified open

esearch challenges. None of both surveys, however, include works on federated learning performed over Low Power
ide Area Network (LPWAN) communication technologies such as LoRa.
Training with federated learning in SBC was proposed in several works, for instance in the Flower framework, where

ndroid phones, Raspberry Pi, and NVIDIA Jetson are used [16]. Given the computing capacity of these devices, the
ederated learning client for the Android phones was implemented in Java applying specific TensorFlow Lite Model
ersonalization support for Android Studio. The federated learning client for the Raspberry Pi and NVIDIA Jetson was
mplemented in Python. Model training was performed with federated learning using TensorFlow Lite on the boards.
hile federated learning in SBC faces resource constraints, such as shown in [17] for wireless networks, the computing

nd communication resources of such systems are still magnitudes higher than that of the embedded IoT devices which
e target in this paper.
Machine learning with embedded devices has raised the interest of a fast growing community of researchers and

ractitioners, e.g. TinyML.3 Popular machine learning (ML) frameworks such as Tensorflow have specific versions that
an be applied to embedded systems. Easy-to-use workflows that train machine learning models in an off-device training
pproach at a personal computer or with cloud-based services,4 prune and quantize the model to reduce its size [18], and

finally flash the optimized model on the microcontroller board have become available.
Many popular microcontroller boards are supported by TensorFlowLite.5 These boards are equipped with several

ensors, targeting being used for machine learning applications. In [19] two of the Arduino boards are compared, the

1 https://github.com/NilLlisterri/TTGO-LoRaMesher
2 https://github.com/NilLlisterri/FL_LoRaMesher
3 https://www.tinyml.org/
4 e.g. https://www.edgeimpulse.com/
5 https://www.tensorflow.org/lite/microcontrollers
3
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Arduino Nano 33 BLE Sense, which integrates, among other sensors, a motion detection unit and a microphone, and the
Arduino Portenta H7. While the Nano 33 BLE Sense is a versatile board for which the community has demonstrated a
large number of machine learning applications, the Portenta H7 is a dual core high-end industry grade board that can
be adapted to specific needs through extension shields. Given the potential of the Portenta H7, in this paper, we use the
Arduino Portenta H7 as compute node that hosts a machine learning application for doing federated learning over a LoRa
mesh network.

Federated transfer learning in embedded devices was proposed in the work of Kopparapu et al. [20]. In their system
alled TinyFedTL, the popular Arduino Nano 33 BLE Sense board is used for an image recognition task. Only the output
ayer of a neural network is trained with backpropagation, while the previous layers are obtained from a compressed
ersion of TensorFlow’s MobileNet. The advantage of transfer learning is that only a subset of the neural network is
rained, which saves computing resources of the resource-constraint microcontroller board. Transfer learning, however,
ddresses machine learning applications that aim to adapt a pre-trained model to a specific need. This approach does not
arget the training of a machine learning model from scratch.

To provide adaptability for trained machine learning models, Disabato and Roveri [21] proposed incremental transfer
earning for a k-nearest neighbor classifier. The authors used two types of devices, a Raspberry Pi 3B+ and an STM32F7
icrocontroller with 512 kB of RAM and 2 MB of flash memory. With image and audio benchmarks the authors showed

he feasibility of these two hardware platforms for doing on-device incremental transfer learning. The model training was
one on-device on a single node, focusing on the performance comparison of the two boards, but the work did not apply
he training with federated learning.

In TinyOL [22] incremental one-device training on streamed data is proposed. The target hardware is the Arduino
ano 33 BLE Sense where an autoencoder neural network is trained. The motivation for doing on-device training was
o obtain flexible IoT applications which can adapt to different scenarios. The work proposes generic building blocks for
n-device training. The system is evaluated with an anomaly recognition task on streaming data. The work focused on
howing on-device training as a means for a neural network on a microcontroller to adapt over time. On-device training
as performed on isolated nodes without federated learning. It was observed that the incremental training, due to the

imited capacity for storing the data set at the embedded device, improved slowly compared to off-device training, but
mproves its performance and adapts over time.

In [23] the authors argue for on-device training of deep learning models in order to facilitate that smart boards can
etect new patterns that may emerge over time. The system was evaluated for anomaly detection in DC motor operation
ith an autoencoder network. The network was first trained with normal behavior patterns of the motor and then an
nomaly was injected. The system was not trained with federated learning, but the application case provides a continuous
tream of training samples to the network, allowing a single network to be trained sufficiently well for distinguishing
etween normal and abnormal motor operations.
In our work in [24], we developed a centralized federated learning application. It was evaluated with three training

odes that used the Arduino Nano 33 BLE Sense boards. The federated learning server, which aggregates the local
odels into a new global model, was run on a PC. The boards were connected over USB to the PC. Thus, the federated

earning workers communicate with the server over serial ports. In the evaluation of the machine learning performance,
t was observed that the machine learning performance was higher when the boards are trained with federated learning,
everaging also the higher total number of training samples available at the participating nodes. Furthermore, we analyzed
he resource usage of the machine learning application run on the microcontroller board. It was shown that on-device
raining requires additional memory compared to off-device training, such as new data structures to store the gradients
rom the backpropagation algorithm.

Decentralized federated learning architectures were proposed to avoid the need for the centralized aggregation of the
ederated learning model. For instance, in BrainTorrent [25], a peer-to-peer approach is introduced in which the nodes of
he federated learning training directly communicate with each other, assuming both the role of server and client. In that
ork, the decentralized architecture of federated learning is motivated by the scenario of multiple independent medical
enters in which the component of a centralized aggregator does not exist. In the work of Savazzi et al. [26] another
ecentralized serverless federated learning approach is proposed for the IoT. The evaluation is done in an Industrial
nternet of Things (IIoT) scenario of an industrial factory plant where the devices have a dense communication network.
ther decentralized federated learning approaches often refer to the decentralized management of the federated learning
rocess [27].

.2. LoRa communication in the IoT

LoRa is a popular LPWAN communication technology for the IoT [7]. Compared to other long range IoT communication
echnologies such as NB-IoT and Sigfox, LoRa is operated in the unlicensed band and does not require any license fees
r network operator. This property eases the deployment of LoRa-based networks and enables organic growth, such as
rowd-sourced LoRa networks as in Helium.6 The fact that a LoRa network can be established by multiple parties could
lso be leveraged for building different types of distributed applications within such a network. In comparison with

6 https://www.helium.com/
4
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Sigfox, a LoRa packet has a higher payload size, which makes LoRa suitable for a larger range of IoT applications [28].
Many professional IoT applications with LoRa use the LoRaWAN standard developed by the LoRa Alliance.7 Active maker
ommunities use the community edition of cloud-based LoRaWAN stacks such as that provided by The Things Network8
or building LoRaWAN-based applications.

The LoRaWAN architecture requires a certain density of gateways to assure that any LoRa end node can reach a
oRaWAN gateway. This density of gateways, however, cannot always be guaranteed. To address this issue, multi-hop
oRa mesh networks were proposed to enable a larger geographic spread of the IoT nodes [10]. Real field deployments of
ulti-hop LoRa networks, such as in the work of Ebi et al. [29], who proposed a synchronous LoRa mesh network, have
hown the feasibility of this approach.
Some IoT applications combine embedded machine learning and LoRaWAN, e.g. the mosquito logger system proposed

n [30]. In that work, the signal processing and machine learning tasks are performed directly at the IoT device. A
ightweight machine learning model is used to fit into the resource constraints of the sensor node. Instead of sending
aw data, only the classification result is communicated to the remote gateway. The sending of the classification has the
dvantage of saving the bandwidth of the communication link.
LoRa IoT applications do not necessarily need a gateway that is connected to the Internet. In some applications,

he nodes within a LoRa mesh network communicate with each other without applying the LoRaWAN architecture. A
rominent example of such a case is Meshtastic [11], a real operational application that only communicates data within
LoRa mesh network without any gateway. Each user of Meshtastic is equipped with a smartphone (without mobile
etwork coverage) and an embedded system board with a LoRa transceiver. Bluetooth is used for communication between
oth devices. In terms of system design the smartphone hosts the user application, while the embedded system board
akes care of the networking over LoRa with the other nodes. Our system design, described in Section 3.1, applies a similar
pproach.
In LoRa mesh networks with a diameter of more than one hop, LoRa packets have to be forwarded by intermediate

odes. The forwarding of LoRa packets to the destination can be done by flooding, such as currently done in Meshtastic,9
r be based on routing. Flooding has the risk of congesting the network if no additional measures such as hop counters are
ctivated. Differently, when routing protocols are used, the forwarding of messages is determined by the routing protocol.
owever, there is also a cost in the latter approach since the routing tables must be maintained at each node. The work
n [31] presents an initial study of a LoRa mesh network based on RadioHead library. In [32] a proactive distance-vector
outing protocol was designed for a LoRa mesh network. In our work, we apply this design as described in Section 3.3.

A few works proposed LoRa networks as a complementary communication infrastructure for distributed applications.
n [33] the LoRaX system was proposed for extending through LoRa the device’s connectivity to the Internet to underserved
egions. Network access was achieved through a pervasive low data rate LoRa network. In [34] a messaging system was
mplemented as a case study in which clients connect to LoRa nodes for reaching other participants either within the
oRa network or through hubs on the Internet. The authors remarked that the presented architecture could generalize to
ther application cases.
In light of the works reviewed in Sections 2.1 and 2.2, federated learning has been brought into higher-end edge

evices, but the usage of federated learning in embedded systems is yet very little with only very few published works.
here is however a recent growth of works reporting on on-device training for embedded systems, showing the interest of
he community in moving from off-device training to approaches that enable the adaptivity of the neural network models
n smart nodes. For application cases when the number of training samples at a node is low, leading to underperforming
odels of isolated nodes, federated learning may be a technique to improve the model performance. IoT communication

echnology has recently presented LoRa mesh networks to enable the interconnection of IoT nodes. Initial applications
ave been presented by lightweight text messaging over a LoRa communication substrate. It was shown that using specific
ub nodes enables the possibility of cross-network applications with the Internet.
In this paper, we integrate embedded learning and LoRa communication. We develop and evaluate a distributed

achine learning application that conducts federated learning over a LoRa mesh network, representing an application
ith smart embedded nodes in the IoT layer that can adapt and improve their model over time. To experiment with the
pplication in real nodes, we integrate the LoRaMesher library which we have developed [35].

. System design and implementation

.1. System overview

Our goal is to create a distributed machine learning application that can be trained with a variable number of tiny
etworked embedded nodes. Each node should run an instance of the ML application and train a neural network on-
evice, using the samples it captures locally. Each node should be capable of performing Federated Learning (FL) with

7 https://lora-alliance.org/
8 https://www.thethingsnetwork.org/
9 https://meshtastic.org/docs/developers/Firmware/mesh-alg
5
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Fig. 2. UART connection between the Arduino Portenta H7 and the TTGO-LORA32.

ther nodes over a LoRa network. These nodes will not be coordinated nor monitored by any central server, and construct
decentralized architecture.
The question arises as to how the targeted computing infrastructure will be built with hardware. One option to consider

s using a single embedded system board to handle both the ML application and also the networking operations. This
mplies that one board can manage the networking while also performing the CPU-heavy operations of machine learning.
hile threading is available in most RTOS, the amount of high-priority threads which would be needed to spawn the

asks and to maintain low latencies on both the ML and networking aspects could be significant.
Another option is to apply the Separation of Concerns principle and split the networking and application tasks into two

boards, which is the approach we followed. By doing so, each board will be able to allocate all of its resources to one of the
two tasks. Specifically, for our system implementation of the networking task, we use the TTGO-LORA32 board, applying
it as an embedded router by making use of the LoRaMesher library for sending LoRa messages among the nodes [35]. All
the machine learning application logic is put into the Arduino Portenta H7 board. We mention that this separation of the
application stack into two boards also eases software updates, such that when a new version of the network or application
components is available, only one of the boards needs to be updated. For the interconnection of the two boards, UART is
used as shown in Fig. 2.

3.2. Machine learning application

We use the keyword spotting application that was initially developed in [24]. The application trains a three layer
feedforward neural network to detect three keywords. Hence the output layer consists of three neurons, the input layer
of 650 neurons for the mel-frequency cepstral coefficients (MFCCs) corresponding to a one second speech signal, and the
hidden layer size is a parameter that can be changed in the experimentation.

To organize the application on the Arduino Portenta H7 dual-core architecture, we leverage the lessons learned
from [19]. Therefore, we use the less-powerful M4 core to handle the communication with the router for the model
exchange in the federated learning process. The M7 core handles the audio recording, pre-processing, and training of the
neural network.

The size of the neural network and the data type used to store the weights directly affects the amount of data that
has to be transmitted during the federated learning process. In the context of the LoRa data transmission that we apply
in this work, the data size is especially critical, since in several regions of the world LoRa duty cycle limitations are in
place, which limits the number of bytes that a LoRa node is allowed to transmit within a certain time. Furthermore, the
maximum size of a LoRa packet is limited to 256B. While in [24] the neural network weights were represented by 4-byte
float variables, in the work we present here we also experiment with 2-byte integers and 1-byte integers.

3.3. Lora mesh network library

As introduced in Section 3.1, our scenario consists of distributed machine learning nodes interconnected over LoRa
communication. For the development of our application, we use the LoRaMesher library,10 which implements a distance-
ector routing protocol for communicating messages among LoRa nodes [35]. For the interaction with the LoRa radio chip,
he LoRaMesher library uses RadioLib, a versatile communication library that supports the SX127X LoRa series module
vailable on the TTGO-LORA32 board.

10 https://github.com/LoRaMesher/LoRaMesher
6
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The application level code that uses the LoRaMesher library, in our case the machine learning application, should
ave at least two different RTOS tasks, one for the reception of packets and one for sending of packets. The receiver packet
lgorithm for the reception task, shown in Listing 1, is designed with two different functions. There is an RTOS notification
ait, which allows the LoRaMesher library to notify when a new packet has arrived, and a function that gets the next
acket. After having received and processed a packet, this packet is deleted from the queue.

Algorithm 1 Algorithm for packet reception

loop ▷ forever
waitRecivedPacketNotification()
packet = getNextUserPacket()
processPacket(packet)
deletePacket(packet)

end loop

Listing 2 provides the send packet algorithm for the sending task. The application code needs to call a function specifying
the destination address and the payload to be sent. In our case, the address corresponds to the identifier of a node in the
LoRa mesh network with which federated learning will be performed. The payload may correspond, for instance, to a
subset of weights of the neural network model.

Algorithm 2 Algorithm for sending packets

function SendPacket(Destination, Payload)
createPacketAndSend(Destination, Payload)

end function
Besides offering the communication interface to the application code, there are some configurations of the LoRaMesher

library that the developer can modify to adapt to specific needs. For example, it is possible to configure the periodicity of
the routing table updates, the periodicity of the route timeouts and LoRa-related parameters such as the radio frequency,
bandwidth, Spreading Factor (SF), and adding the payload Cyclic Redundancy Check (CRC).

3.4. Application integration and federated learning process

The application starts once the node’s boards are turned on. The LoRaMesher library [35] installed on the TTGO-LORA32
boards, maintains and regularly updates a routing table that contains all known nodes in the LoRa mesh network. The
machine learning application can query this routing table from the LoRaMesher library. From inspecting the entries in
the routing table, the application identifies the other nodes present in the given LoRa mesh network. In the case of our
implementation, the machine learning application exploits this feature of the LoRaMesher library, which avoids the need
for a search function for the discovery of other nodes.

During the training process with federated learning, a training node pools all the nodes in the network at a certain
point to know the number of epochs each node went through in its local training. This information is used to help the node
decide whether to start a federated learning round. The criteria we implemented is the number of epochs since the last
time the nodes performed federated learning. If this amount is greater than a specified threshold, the federated learning
process between the pooling node and the selected peer begins. We note that the implemented trigger for initializing a
federated learning round in our experimentation is only one option, other more sophisticated triggers can be designed to
meet different requirements.

Fig. 3 shows the lightweight communication protocol which we have designed and implemented to send and receive
data between the application on the Arduino Portenta H7 and LoRaMesher on the TTGO-LORA32. The sending and
receiving of messages are related to the exchange of machine learning models in the federated learning process. The
routing table request is used for the discovery of other nodes in the LoRa mesh network.

3.5. Decentralized federated learning

In centralized federated learning, a server is connected with all the training nodes in the network and orchestrates
when and how the nodes should combine their models in the federated learning process. These nodes send their model
and other metadata to the central server, which aggregates them and sends the new model back to the nodes. This
centralized design implies that all the nodes have to be able to reach the central server at all times. We argue that for
remote tiny IoT nodes as targeted in our work, this centralized design can be difficult to be fulfilled in some scenarios.

We, therefore, implement a decentralized federated learning approach that works without a central server. The training
nodes are enabled to make decisions about the federated learning process. As explained in Section 3.3, through the
LoRaMesher library, the application nodes can communicate with all the nodes in the network. Thus, each node can gather
information about all the other nodes, such as the number of epochs performed in the local training and the distance (in
the number of hops between nodes). Such information and additional metrics, like the last federated learning interaction
7
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Fig. 3. Communication protocol between the Arduino Portenta H7 and the TTGO-LORA32.

ith each node, could be taken into account by a node to autonomously decide whether to start a federated learning
rocess.
Listing 3 describes one of the possible algorithms for a node to control the federated learning process. The shouldPerformF

function uses the node state and metrics of other nodes to decide whether federated learning should be performed with
a specific node. In our experimentation, the node performs federated learning if the number of new epochs of another
node is greater than a configured value, but other metrics like battery level, last federated learning time, accuracy, etc.
could also be used.

The communication between the Arduino Portenta H7’s M4 core, the M7 core, and the other nodes can be seen in
Fig. 4. The M7 core begins the federated learning process by instructing the M4 core via RPC to start communication
with the other nodes. The M4 core, which handles all outgoing and incoming traffic through the UART connection to the
TTGO-LORA32 board, will request all nodes in the network to send the number of epochs they registered. It will then
evaluate these metrics and decide which node (if any) is best to perform federated learning. Then it will request the
neural network weights of the selected node, broken into small batches that can fit in a LoRa payload. Finally, with all
the weights stored in a memory region shared by both cores, the M4 will notify the M7 core. The M7 core will use those
weights to calculate the weighted average and update its neural network model.

In order to guarantee the delivery of all the messages in the FL process, the M4 core implements a method for detecting
when a packet was not successfully transmitted and resending it, transparent to the M7 core. After forwarding the message
to the TTGO LORA32 router for transmission, it will pool the modem for a receipt confirmation packet. If the confirmation
is not received after a predefined amount of time, the original message will be sent again and the process will begin again.
8



N. Llisterri Giménez, J. Miquel Solé and F. Freitag Pervasive and Mobile Computing 93 (2023) 101819
Algorithm 3 Algorithm for decentralized federated learning
% The node_epochs map contains the epochs of the node in the last FL
for node in getNetworkNodes() do

metrics = getNodeMetrics(node)
if (shouldPerformFL(metrics)) then

weights = getNodeWeights(node)
elapsed_epochs = metrics.epochs - node_epochs[node]
new_weights = weightedAvg(weights, elapsed_epochs)
updateLocalWeights(new_weights)
node_epochs[node] = metrics.epochs

end if
end for

Fig. 4. Interaction between machine learning nodes during the FL process.

4. Evaluation

4.1. Experimental environment

We describe in the following the choices related to the experiments.
Dataset:We use a dataset of 480 samples of 3 different voiced keywords which is publicly available.11 The advantage of

using a pre-recorded dataset instead of recording each sample during the experiment is that when performing different
experiments, the samples used by the machine learning training are always the same, so the obtained results can be
compared and are reproducible. The voice samples available are not pre-processed, so they have the same format as if
they were recorded at this instant by the microphone on the board.

Application hosting: As introduced previously in Section 3.1, for hosting the machine learning application we selected
the Arduino Portenta H7 board. It contains two cores, a Cortex M7 running at 480 MHz and a Cortex M4 running at 240
MHz. This dual-core architecture allows for real parallelism in the two main application tasks, by assigning communication
to the M4 core, and the training of the neural network to the M7. The application requires having, at times, as much as
3 times the size of the weights of the neural network in memory. The first instance will be used by the M7 core only
and will be used for inference and backpropagation. The second instance will be created from the original weights when
another node starts the federated learning process. This ensures that while the communication is active, the weights will

11 https://github.com/NilLlisterri/FL_LoRaMesher/tree/main/datasets
9
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Fig. 5. Hardware used: Three Arduino Portenta H7 and three TTGO-LORA32 boards.

not be updated mid-sending. Finally, the third instance will be used to store the weights received from another device,
before merging them with the current neural network. The Arduino Portenta assigns 523 kB to the Cortex M7 core and
295 kB to the Cortex M4. The Vision Shield, which includes a microphone, is added to the Portenta board.

Networking device: To have LoRa connectivity between the application running on the Portenta boards, we chose the
TGO-LORA32 board. It is based on the ESP32 microcontroller, running two cores at 240MHz, with an SX1276 transceiver
hat provides LoRa connectivity. The board also has a small built-in OLED display. The main reason to use this board is
hat the LoRaMesher library was available for this device. The TTGO-LORA32 can also be easily interfaced with another
oard using the UART communication protocol that we used. For the experimentation the OLED display has shown to
e useful since it allows to have brief information about the state of the LoRa mesh network, avoiding thus the need to
onitor the state of the network via the device’s serial port. For the experimentation, we use six boards forming three
odes as can be seen in Fig. 5.
Experimental environment: The experiments are performed in a single location, a room where all the boards are

ocated close to each other, at a distance of about 20 cm. The SF of the LoRa messages is fixed at SF7. For the collection
f experimental data, each Arduino Portenta H7 is connected via a serial port to a PC, from where the experiments are
anaged. With this setup, the experiments can be programmed and automated, for instance, the sending of the speech

raining samples as if they were captured by the nodes themselves at determined instants. The debug information and
races are also obtained and aggregated on the connected PC.

.2. Experimentation

.2.1. Quantization impact
To be able to perform federated learning over LoRa efficiently, the amount of data to be transmitted has to be optimized.

he payload consists mainly of the weights of the neural network. Those were initially stored using 4-byte floats, which
ad a great amount of precision, but a LoRaMesher packet, limited by the size of a LoRa packet, could only contain up to
0 weights at a time.
We experiment with weights represented by three different data types (see Section 3.2) to understand the trade-off

etween the size of the neural network and the model accuracy. The size of the hidden layer is 25 neurons. The first
xperiment uses 4-byte floats, the second reduced the size of the weights to 2-byte shorts, and the third uses single
ytes. The training was done with 120 data samples. Then inference with the trained model was done for another 60 data
amples. Federated learning was not used in this experiment. After each new sample, the loss is calculated using the MSE
nd stored for inspection. Fig. 6 shows the results after all samples are sent. It can be seen that the accuracy obtained in
nference mode is practically the same for the three data types of weights.
10
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Fig. 6. Loss vs. epochs during training and testing using different data types to store the weights. From left to right and top to bottom: 4-byte
floating point numbers, 2-byte integers, and 1-byte integers.

With such little impact on the accuracy of the neural network model and the need for small payloads to be transmitted
via LoRa, we decide to use in the following experiments the tiniest datatype to store the weights, a signed 8-byte integer.

The memory cost of each neuron is given by the formula:

neuron_cost = input_layer_size · datatype_bytes · 2

Therefore, reducing the number of bytes of the data type from floats to just one byte makes the memory cost fourfold
lower.

When measuring the cost of the quantization, there is a slight, but necessary, time overhead. The computations in the
inference and backpropagation process are performed using floating point arithmetic operations, so a previous mapping
from the stored one-byte weight to the required float is performed. In our experimentation, we observed that this added
operation increased the total inference time by about 0.6 ms. This represents a 10% slowdown in the operation, from 6
ms to 6.6 ms.

4.2.2. Accuracy
We conduct an experiment to compare how decentralized federated learning can affect the model accuracy. In this

experiment, three nodes (A, B, and C) are trained with a total of 120 samples. Then, 40 new samples are used to test the
performance of the resulting model. The metric used to assess the model performance is the loss, computed for each new
sample as the MSE of the neural network before training it. In the training process, for every 30 samples, node A performs
federated learning with both other nodes, B and C, applying algorithm 3.

The total amount of transmitted data can be calculated using the following formula:

bytes_transmitted = neuron_cost ∗ hidden_layer_size ∗ fl_rounds

In this experiment, the size of the hidden layer is set to 15. Node A performs federated learning 4 times with node B
and 4 times with node C, at epochs 30, 60, 90, and 120. With this configuration, the amount of training data transmitted
within the LoRa network is 156 kB.

The resulting evolution of the model performance at the three nodes can be seen in Fig. 7. We can observe how node
A, the one that requests the weights (pictured in red) to the other nodes (B in green and C in blue) substantially reduces
11
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Fig. 7. Loss vs epochs evolution throughout the training and testing process with a network of 15 hidden neurons. Federated learning of node A at
epochs 30, 60, 90, and 120.

Fig. 8. Mean MSE vs hidden layer size for nodes A, B and C. Federated learning was done by node A at epochs 30, 60, 90, and 120.

its loss as the training process advances and achieves this reduction sooner than the other two. Analyzing the inference
done with the last 40 test samples we could observe that node A, which merged its model with the other nodes, obtained
an accuracy of 100% in the KWS task, while the other two nodes scored 62.5% (B) and 50% (C).

The same experiment was performed with different sizes of the hidden layer. The benefits of the federated learning
process were evidenced across most hidden layer sizes, obtaining node A better model performance and with fewer
epochs than the other two nodes. For hidden layer sizes over 20 neurons, however, all nodes started to report accuracies
close to or at 100% in the test samples, due to the relatively small complexity of the problem. To obtain a more detailed
understanding of each model’s performance, the mean of the loss in the test samples was analyzed. As can be seen in
Fig. 8, node A reports lower mean loss values than the other two nodes for most hidden layer sizes while being the only
node that trained its model with federated learning at rounds in epochs 30, 60, 90, and 120.

The experiment was repeated multiple times, each time changing the seed that was fed to the random function that
shuffled the data samples. Having a relatively small dataset consisting of a total of 120 training samples for each node, the
order in which the samples are sent to the devices can have a relevant effect on the training process. On a few occasions,
the training results for a specific hidden layer size were affected and led to a better or worse model performance than
expected. Such a case can be seen for example for the hidden layer size 55, where node B reports a minor loss than node A.

We also experimented with more and less frequent federated learning rounds. In the case of decentralized federated
learning, the number of rounds can be a means for a node to compensate for its lack of local training data at the cost of
bandwidth consumption. If a node has few training samples, by doing more frequent federated learning rounds a node
can seek to improve its local model by merging it more often with the models from other nodes which were trained with
a larger number of samples. Differently, if a large number of local training data was used for the local model training
12
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compared to that trained at other nodes, the potential performance gain of the model resulting from a federated learning
round may not be worth the incurring cost of communication.

4.2.3. Energy consumption
Energy consumption can play a major role in the feasibility of an IoT application. LoRa enables long-distance

ommunication between nodes, allowing the deployment of IoT devices at remote locations. In some of these scenarios,
odes can be hard to be reached for being maintained. If these nodes are battery-powered, the energy consumption must
e taken into account or even be sustained by, for example, a solar cell.
The requirements of the type of IoT applications has an influence on the importance of the device’s energy consumption

nd how the node should be powered. Smart IoT devices that perform continuous machine learning operations on sensor
nput may require the device to be active most of the time, and have rechargeable batteries, solar power or other forms
f permanent energy supply. Differently, tiny nodes that just infrequently transmit sensor data have a stricter energy
udget and the energy consumption can be optimized through a sleep mode to last for a long time. It was shown in [30]
hat even for specific learning applications, the energy consumption of the node depends on the actual sensor input since
t triggers the device’s activity. For instance, a higher number of classifications may imply a higher number of writes to
icroSD cards, and an increased number of LoRa messages, all influencing the device’s total power consumption for a
iven time frame.
Both boards of our system implementation operate at 3.3 V. In our experiments the Arduino Portenta H7 board is

owered from the computer’s USB port at 5 V. The board has a buck converter which transforms the voltage to 3.3 V. We
se the +3V3 and ground pins to power the TTGO-LORA32 board (Fig. 2).
We measure the power consumption of each board at different stages of the application lifecycle. The TTGO-LORA32

oard had 4 levels of consumption: When the device is awake, waiting to receive or send any messages, the consumption
s 52 mA. When the device is processing messages or interacting with the serial interface, the consumption rises to 76
A. While receiving a message, the board consumes 84 mA, and while sending it the maximum consumption is achieved,
41 mA. In our experiments, we used a SF of 7, the minimum of LoRa. When increasing the SF to the maximum, i.e. the
F of 12, the longer transmission time increases the energy consumption of sending a LoRa packet, but does not increase
he instantaneous current consumption.

The TTGO-LORA32 board has a sleep mode which can be exploited in some scenarios. For example, when the
ederated learning happens only at a certain time, the board could be put to sleep until that time, while the Arduino
ortenta H7 keeps capturing new samples and training the local model. In this sleep mode, activated by the command
sp_deep_sleep_start(), the current consumed by the device was 4 mA.
The Arduino Portenta H7 board has 2 cores. When both of the cores are idle, the consumption is 128 mA. When the

oard is receiving a message from the TTGO-LORA32 board via UART or trains the neural network, the consumption rises
o 165 mA. This consumption is high for a battery-powered device, but the board can put both cores to sleep until an
nterrupt occurs to save energy. To wake up the M4 core when a new message is received from the routing device, an
dditional connection between the TTGO-LORA32 and the Portenta board could be added. This connection could be used
o trigger an interrupt in the Portenta board that wakes up the M4 core to start reading the serial data.

.2.4. Federated learning over lora
The duration of the federated learning process is directly affected by many factors, being one of them the bandwidth of

he communication link. As explained in Section 2.2, LoRa communications links have low bandwidth. One of the reasons
elate to legal restrictions. In Europe for instance, LoRa transmissions must obey the 1% duty cycle limit, forcing a data
ate below the technical limitations of the LoRa technology. Another reason for reduced throughput is the possibility of
ollisions of LoRa packets, which result in packet losses.
The number of weights of the neural network to be transmitted, which depends on the number of neurons, affects

he duration of training. For the specific case of the neural network we used, each neuron in the hidden layer increases
he size of the federated learning payload by 1.3 kB. As a consequence, each additional neuron results in longer training
imes.

We conduct an experiment with the LoRa parameters configured in the LoRaMesher library shown in Table 1. We
easure the time it takes to transmit the neural network weights for different hidden layer sizes over the LoRa link
nd the number of LoRa packets, in order to gain insight into this behavior (Table 2). While the exact values of the
raining times depend on our specific configuration, the magnitudes indicate that a federated learning round over LoRa
inks can take hours to be accomplished. It can be stated that such performance is not feasible for applications that have
ast federated learning requirements. However, considering that the training process can be done on-device, this training
ime might not be a critical requirement for many applications, while the approach offers other advantages over off-device
raining such as the capacity for model adaptation.

Throughout the experiments, we experienced some collisions between LoRa messages. The percentage of collisions we
bserved in the experiments with a network consisting of 3 nodes was very low, between 0 and 1%. Nevertheless, as more
oRa packets are present in the network, more collisions are expected to happen. Because of this, applications in higher
raffic LoRa networks may require an additional algorithm that controls the delivery of messages. In the work presenting
he LoRaMesher library the reduction of the Packet Delivery Rate (PDR) caused by collisions is analyzed [36]. To handle
acket losses, LoRaMesher offers a stop-and-wait communication, which can be activated by the application developer to
btain reliable messaging over LoRa.
13
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Table 1
LoRa parameter setting in the LoRaMesher library.
Parameter Values

Spreading Factor 7
Bandwidth and band 125 kHz. EU863-870.
Preamble length 8
Transmission power +10 dBm
Coding rate 4/7
CRC checking Header & Payload
Max. packet size (bytes) 222
Max. payload size (bytes) 211
Max. packet delay (s) 48

Table 2
Hidden layer size vs. LoRaMesher transmission.
Hidden layer size Transmission time (min) Num. packets

5 25 m 31
15 75 m 93
25 124 m 155
40 198 m 247
70 346 m 432

5. Discussion

One of the concerns about the two-board design can be the time it takes to transmit the data from one board to
he other. To maximize the UART’s communication protocol speed, we conducted an experiment where the baud rate
as gradually increased. The highest stable baud rate was 74880 bps. As to our empirical findings, when it was further

ncreased, the communication was prone to errors. With the UART communication’s baud rate set to 74880 bps and a
atch of weights consisting of 200 bytes or fewer, the transmission took 21 ms. This speed showed to be suitable and fast
ompared to the low data rate that is provided by the LoRa communication.
Transmitting a neural network model in a federated learning process over LoRa can take a long time, depending on the

odel size (Table 2). Methods for model quantization are important to reduce the bandwidth usage in low-capacity links,
ut also the number of federated learning rounds influences the time of the federated learning process. In our application,
he federated learning process was designed to run a round once a certain amount of epochs on the other devices within
he LoRa network had elapsed. For other applications, different rules and trade-offs may be more suitable, for instance
re-configuring to perform federated learning daily at a fixed time or making federated learning performance dependent,
uch as based on model quality.
In on-device training, the samples for the models to be trained are obtained from the sensors on the microcontroller

oard. Depending on the specific application, data may be obtained more regularly, for instance as a stream of data, or
nfrequently. Since there is no large storage capacity on IoT boards, once the sample is used for the training of the model,
he sample is dropped. From this perspective, the amount of data for training does not affect the performance of the
evice in terms of memory used, since only that sample with which the model is currently trained is temporarily stored.
owever, as long as the model was only trained with a small amount of data, it may be less performing. Applying the
ecentralized federated learning approach which we presented in Section 3.5 can allow these nodes with few training
amples to enhance their model while taking into account the trade-off between model performance improvement and
ommunication cost, as described in Section 4.2.3.
In LoRa networks, collisions of packets can happen which lead to packet losses, as observed in Section 4.2.4. Many

actors of the LoRa configuration, such as SF and payload size, can influence packet losses. Some factors can be configured
t the proper nodes of the federated learning network, while others are external, such as the LoRa traffic that other
earby networks may produce. In order to detect collisions and the loss of packets, a CRC should be applied on the
acket, which allows to validate that the received header and payload are correct. Furthermore, reliable messaging, such
s explained in Section 3.5, either provided at the application or network level, should be used. With these means, it
an be ensured for different types of network conditions that all the data has been received correctly by the destination
ode. The transmission time of a federated learning round increases with reliable messaging and also it depends on the
etwork conditions. Congested networks lead to higher packet losses and hence re-transmissions, and larger diameters
f networks are another factor that contributes to an increased transmission time.
Different from centralized federated learning, the design of serverless decentralized federated learning, which we

pplied in this work, is not yet a well-researched topic. We observed that depending on the algorithm used, suboptimal
eights combination can happen in certain conditions. For example, when node A merges its model with node B, and
hen node C merges its model with nodes A and B, the resulting model will be more similar to that of the B node. The
lgorithm we introduced in Listing 3 does not take into account this information and could be extended to become aware
f such a situation.
14
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A larger federated learning network with a higher number of nodes will provide more opportunities for a node to
btain better performing models. The decentralized federated learning approach described in 3.5 allows each node to
hoose its participation in a federated learning round. Since each node can tailor this decision to its local conditions, a
arger number of nodes does not automatically affect the operation of a node.

The memory consumption of a node that is a peer in a federated learning network is higher than that of a node that is
nly a client or a server, as we describe in Section 4.1. For being a server, the memory of an IoT board may limit a node to
un a federated learning round with a large number of clients, where this number also depends on the size of the model
hat is exchanged. To address the memory limitations of this case, a node acting as a server could select only a subset of
lients that fit its memory availability.
IoT applications with embedded machine learning on remote nodes and LoRaWAN communication have become

eployable nowadays [37]. For these types of applications, the limit is the model update and the networking of the node
hrough LoRaWAN. Federated learning over LoRa mesh networks is a step towards overcoming both limitations, where
ollaborative training addresses obtaining more performant machine learning models, and mesh networking capabilities
o enable the communication of the nodes within the IoT network layer.

The computing capacity available in our distributed IoT application is minimalistic from the computing and communi-
ation resource usage point of view, consisting only of embedded systems boards interconnected over LoRa and without
nternet access. While with such an infrastructure, the absolute machine learning capacity will always be limited compared
o higher-end devices, the ratio between machine learning capacity and resource consumption, both in terms of energy
onsumption and material cost, might be very favorable in the proposed design and may fit well to low-energy AI designs
f future societal needs.

. Conclusions and future work

This paper proposed federated machine learning over LoRa communication, performed by embedded devices at the
oT layer. The work developed a system implementation by integrating a machine learning application with a LoRa mesh
ibrary. The code was deployed on two boards, one board taking care of the machine learning application and the other
eing used as a router within a LoRa mesh network.
The work evaluated several parameters related to model performance, bandwidth usage, and energy consumption.
e analyzed the representation of the neural network weights with different data types to determine its potential for
andwidth saving in the LoRa communication link. Decentralized federated learning over LoRa showed to be beneficial for
he accuracy of the local model at the active node but incurs a cost for the model communication and longer training times.
hile it was found that the approach is not suitable to deliver fast model training, requiring rather long training times
ue to the slow LoRa data transmission, it enables on-device training by federated learning within devices interconnected
nly by LoRa in the IoT layer.
This work has integrated diverse components in order to demonstrate the feasibility of the system implementation and

he opportunity for distributed machine learning applications on LoRa-interconnected tiny devices. It opens directions
or future work for analyzing in more detail several of the design choices. Decentralized federated learning could
ecome a relevant technique to enable remote smart IoT devices to adapt or update the node’s machine learning
odel. More research is needed about how the node can decide for updating while taking into account the trade-off
etween the expected benefit in model accuracy and the cost of the training process. Furthermore, additional machine
earning applications should be experimented with to identify the common and specific design parameters of the system
rchitecture.
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