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Abstract—Edge computing has seen tremendous advances in
recent years. This progress made it possible to develop mobile
applications with greater computational needs that will be able to
provide useful insights to users concerning both their habits and
their health, by performing computations locally on the mobile
device and thus keeping all the data and protecting their privacy.
The purpose of this work is to provide a proof-of-concept of
an image recognition and analysis app for patients that have
undergone breast cancer. The patient takes a snapshot of her
breast, and the app runs a Convolutional Neural Network (CNN)
model and outputs a classification of breast cosmetic status. We
show that it is possible to implement computationally heavy
machine learning models in edge devices and to provide real-
time status monitoring to users through image analysis done on
images taken from the camera of their smartphone, without the
photo leaving the device. The app module may enhance a larger-
scale system that uses patient-sourced image data to test the
effects of surgery or radiotherapy treatment on patients.

Index Terms—Edge Computing, Edge Analytics, On-Device
Image Recognition

I. INTRODUCTION

Recently, the term edge computing was coined for the
architectural paradigm in which computation, storage, and
control are placed at the edge of the network, namely at home
gateways, micro-servers or small cells but also on wearables,
mobile devices and IoT devices such as sensors. Although
the network edge is short of computational, bandwidth and
storage resources compared to the resourceful cloud, the
edge prioritizes agility over resources and is close to where
information is generated, and where data analytics results are
delivered. Edge computing has the potential to reduce response
times, lower bandwidth usage and improve energy efficiency,
while at the same time offering a higher Quality of Experience
(QoE) to the end-user for the classes of services mentioned
above. Chief among applications that will benefit from edge
computing is mobile health. Such applications are expected
to improve patient experience and treatment through mobile
device and IoT-assisted community, clinical data collection,
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real-time patient monitoring and direct intervention of health-
care practitioners.

In this work, we design and implement a mobile app that
performs image analysis on images taken by the patient. Our
app is focused on breast image analysis and can become an
essential step towards assessing the post-treatment effects of
cancer surgery or radiotherapy. In particular, our app analyzes
breast images submitted by the patient on the spot and assesses
the cosmetic status of the breast.

A. Motivation and Challenges

The development of a mobile app with on-device image
processing has many challenges. Finding the breast bound-
ary automatically without annotating the image is the first
challenge that needs to be resolved for the application to be
able to provide metrics. Therefore, an image analysis model is
needed that can successfully detect and annotate the breast as
well as the nipples of the patient. Using such a model creates
another associated challenge, which is, creating a dataset
on which it will be trained to identify cosmetic changes in
unknown images. The second main challenge concerns mostly
the application part, and it has to do with the deployment of the
trained model on Android devices, as well as the inference of
the model and fine-tuning of the results, for accurate metrics.

B. Contributions

Breast cancer is the most common type of cancer among
women with an estimated incidence of more than 500,000 in
2018 [1]. Despite the large percentage of incidents, there does
not exist a method for automatic breast image recognition and
analysis. The reason is that, while recognition is a relatively
simple task with modern models, when this task concerns not
only recognizing small objects but also exact spatial locations
and borders between embedded objects, the task becomes
difficult. Thus, transformations, as well as pre-processing, are
required, in order to have accurate predictions. With our work,
we aim to solve the existing challenges of Breast Analysis
Tool (BAT) [2] concerning privacy and objectivity and provide
patients with a tool that can help them monitor themselves on
a daily basis, without the need to regularly visit the hospital or
the doctor. More specifically our contributions are as follows:



• We create a dataset with 140 different female breast
images annotated with bounding boxes and masks.

• We configure and train an image recognition model
for breast recognition that achieves 98% accuracy in
detecting breasts and nipples.

• We use the breast image analysis model on edge devices
with face-cropping and by performing only on-device
computations without the use of the cloud, and therefore
we cater for users privacy.

• We design and develop a mobile application that gives
the ability to patients to monitor the cosmetic outcome
of breast cancer surgery or radiotherapy, by implement-
ing and further fine-tuning the image recognition model
results.

Our breast image recognition work is destined to be part
of a mobile or web app that would support the decision
making of physicians. The app can also provide an explainable
assessment of breast status to patients that have undergone
surgery or radiotherapy treatment. The paper is organized
as follows. In section II we present an overview of the
literature. In section III the neural network model architecture,
its implementation, and training. In section IV we describe the
app and model testing, and in section V we discuss the metrics
we used. Finally, section VI concludes the paper.

II. RELATED WORK

A. Edge Computing

Despite its importance, real-time analytics of massive IoT
data is in its infancy. Very little emphasis has been placed on
data analytics at the edge (see e.g. the surveys on data analytics
in [3], [4]). Much focus has been given in the literature toward
IoT [5]. A first attempt to prefetch training parameters at
the edge and leverage them to facilitate image recognition is
proposed in [6]. A distributed computing network architecture
for implementing a deep neural network is proposed in [7],
whereby the neural network computation task is partitioned
among network nodes and the cloud, and the goal is to reduce
communication and computation cost. The work [8] aims to
tailor deep neural networks for operation onto mobile devices.

Our work complements this literature by performing an-
alytics on the device with the help of neural networks for
a specific problem, that of breast image analysis, where on-
device analytics is of importance due to privacy concerns.

B. Related Apps

The only software currently available is the Breast Analysis
Tool (BAT) [2] which concentrates on providing objective
cosmetic metrics after breast surgery or breast radiotherapy.
Although it analyzes and generates metrics of symmetry
and aesthetics, critical issues arise. BAT is a desktop-based
software, which means that the patient needs to regularly visit
the doctor in order to analyze the progress of the surgery.
Furthermore, for the analysis to take place, an image of the
patient’s breast is needed. This creates two more issues. First,
to use the software, the doctor must annotate the image of the
breast manually, and this makes the analysis of the software

subjective to the annotation of the doctor. Therefore the result
for the same image may differ based on the annotations of
different doctors. Second and most important, the image of
the patient’s breast is captured with the doctor’s camera. This
raises privacy concerns, as the patient does not know if the
image is deleted or is used further without her consent.

C. Image Analysis

To develop an autonomous software that can detect and
analyze breast surgery progress we need not only to detect
the location of breasts and possible abnormalities but to also
identify the exact spatial locations so that we extract various
metrics concerning symmetry and aesthetics as well as to
inform the patient if an abnormal result is found. There
are multiple models that can perform general-purpose image
analysis.

Single Shot Detector (SSD) [9] is an object detection model.
It consists of multiple Convolutional Layers, and each of the
last layers proposes a bounding box. The final prediction is
the union of the bounding boxes produced for each object.

Faster R-CNN [10] is another model used for object de-
tection. It uses a Convolutional Neural Network (CNN) and
a Region Proposal Network (RPN) to suggest the location of
objects in an image. After that, the suggestions are passed
through Fully Connected Layers from which the class and the
bounding box of the image are predicted.

Mask R-CNN [11] is a state-of-the-art instance segmenta-
tion model developed by the Facebook AI Research Team. It
uses the same architecture as Faster R-CNN and extends it,
by adding two extra Convolutional Layers that run parallel to
the Fully Connected Layers in order to predict the mask. It is
a deep neural network that can detect and separate different
objects in an image or a video at the pixel level.

III. IMAGE RECOGNITION MODEL ARCHITECTURE AND
IMPLEMENTATION

A. Neural Network Model Selection

We experiment with both SSD and Faster R-CNN models
to be able to accurately detect breasts and nipples.

With SSD we achieve fast inference in Android due to
the single network used without Region Proposals, but with
medium accuracy. After obtaining the bounding boxes with the
breasts, we use the Canny Edge detector [13] and Sobel filters
in order to detect the border of breasts and abnormalities in
appearance, but the result is discontinuous or missing borders
due to shadow or color which leads us to reject this model.

With Faster R-CNN we obtain improved bounding boxes
and, as with SSD, we use edge detection on them. Regardless
of the improved localization, the results are inaccurate and the
model is rejected as well.

In our work, we use Mask R-CNN to extract from images
the exact spatial locations of the breasts and nipples so as
to subsequently calculate objective status metrics concerning
symmetry and aesthetics for these areas, which we are unable
to with the previously mentioned models. Its architecture, as
seen in Figure 1, is an extension of Faster R-CNN [12] . Apart



Fig. 1. Mask R-CNN architecture [12]. Stage 1 can be seen to the left of the red line and shows the CNN for feature extraction, the RPN for bounding box
suggestion as well as the RoI align for extracting features from the RoIs suggested from the RPN. Stage 2 can be seen to the right of the red line and shows
the FC layers for classification and bounding box regression with orange color and the FCN for mask detection with blue color.

from that, they differ in two main aspects that lead us to choose
Mask R-CNN over Faster R-CNN.

The first one is that Mask R-CNN replaces RoI pooling, of
Faster R-CNN, with RoI align. RoI pooling quantizes the RoI
and extracts feature values that are not properly aligned with
the input. This does not create large problems for classification
and bounding box detection, but it has a large negative effect
on mask detection. This problem is solved by RoI align as
proposed in [11]. It is shown that with bi-linear interpolation
the feature values extracted do not get quantized and they are
properly aligned with the input, increasing both bounding box
accuracy as well as mask detection. The second difference is
that Mask R-CNN extends the second stage of detection by
adding an FCN after RoI align for mask detection.

B. Mask R-CNN Architecture

Mask R-CNN’s architecture consists of two stages as shown
in Figure 1. In the first stage, the image is passed through a
Convolutional Neural Network (CNN) where a feature map is
extracted. The feature map is passed into a Regional Proposal
Network (RPN) which proposes possible Regions of Interest
(RoIs) and their bounding box locations in the image. In the
second stage, using RoI align as described in [11], Mask
R-CNN extracts features from the candidate RoIs. It then
passes them through Fully Connected Layers and a Fully
Convolutional Network (FCN) simultaneously in order to
perform classification and bounding-box regression as well as
mask detection. Each pixel of the RoI is mapped with a binary
value, 1 if the pixel is part of the object and with 0 otherwise.

During inference, Mask R-CNN performs the same two
stages with one difference. In the training phase of the model,
both the bounding box detection and the mask detection branch
are executed simultaneously. On the contrary, in the inference
phase, when an image is fed to the model, it first performs
the bounding box detection branch, and after that, the mask
branch is applied only to the top-k bounding boxes predicted.

The configurable parameter k tells the model to find masks
only for the top-k most confident bounding box predictions.

C. Tensorflow and Dependencies

For our implementation, we rely on Tensorflow Object
Detection API [14] from where we use the Mask R-CNN
model provided. All scripts essential for training, testing
and exporting the trained model as well as for the Android
interface for inference are found there. We use a few more
tools like Anaconda to create a virtual environment where
the dependencies are installed, Nvidia’s CUDA to train the
model with the GPU for faster training, as well as annotation
tools to create ground truth for training. All the steps for
the installation can be found in the tutorial provided for the
API [15].

D. Dataset Creation

After setting up Tensorflow, in order to use the Mask R-
CNN for breast detection and analysis, the model needs to be
retrained on breast images so that it successfully recognizes
them. We handcraft a synthetic dataset by collecting freely
distributed images of female breasts available on the internet.
Thus, the software we create stands mostly as a proof of
concept that verifies the effectiveness of our tool. The dataset
we create consists of 140 images; 120 of these are used for
training and 20 for testing the accuracy of our model. To train
the model, ground truth labels are needed to learn how to
detect the spatial location of the breast in each image. To
create ground truth, we use two different pieces of software
for annotating the dataset.

E. Labeling Procedure

1) LabelImg: This tool [16] allows us to draw bounding
boxes around the objects we want to detect. We annotate the
objects we want to detect and give them specific labels (breast
and nipple in our case). After finishing the annotation in each
image, the software exports it in a .XML format containing the



bounding box corners as well as the labels for each object in
the image.

2) Pixel Annotation Tool: Bounding boxes are not enough
for Mask R-CNN to detect the exact spatial locations. Thus
we use the Pixel Annotation Tool [17] which allows us to
draw the ground truth mask specifying the exact pixels that
are part of the breast, as seen in Figure 2. After finishing the
annotation in each image, the software exports a .PNG file that
contains the mask of each object we annotated.

With the annotations created, the last thing to do is to merge
all the information into a .RECORD file which is the format that
Tensorflow uses for input data. We achieve that with a script
that is modified [18] to combine .XML and corresponding
masks into this specific format. It is worth mentioning that, for
the training to be successful, the script must be modified and
the grayscale value of the exported masks should be added,
for the model to interpret correctly the masks and be able to
learn.

F. Model Configuration and Training

Each Tensorflow model has a configuration file containing
the hyperparameters of the model as well as the paths to the
train and test data. It also needs a .TXT file containing the
labels of the classes we want to detect. We create the labels file
with the two labels (breast and nipple) which are the classes
we want to detect. We also download and modify the Mask
R-CNN configuration file in order for it to fit our problem.
After finishing configurations, using the train and test scripts
provided, we train and evaluate the model. Due to the small
size of the dataset, we perform 10-fold cross-validation to find
the optimal number of training iterations. We plot both the
training and validation losses and accuracies and find that the
optimal number of iterations is around 200,000 as seen in
Figure 3. At that point the validation loss starts increasing
and the validation accuracy stabilizes while the training loss
keeps decreasing and the training accuracy keeps increasing;
this implies that the model starts to overfit.

G. Model Embedding for Android Environment

To be able to use the trained model, we need a single file that
contains all the parameters (weights, graphs, etc.) of the model
so that we can make predictions. Because of this, TensorFlow
provides us with a script that extracts from the trained model
all the parameters needed and integrates them into a .PB file
that can be used autonomously in any application. Although
the exported model can be used easily on desktop applications,
this is not the case in edge devices. In order to use it in
an Android application, which has much less computational
power and is not supported by Tensorflow yet, modifications
are needed to the exportation script.

Mask R-CNN passes the aligned RoI through a Fully
Convolutional Network which returns for each RoI a fixed
size mask (in our case the mask is 15 x 15 x ImageDimension
for every possible class as coded in the configuration file of the
model). This mask is resized during inference to the size of the
image. This task is easy in Python due to the computational

Fig. 2. Pixel Annotation Tool example annotation

Fig. 3. Model total loss after training. Horizontal axis is the number of
iterations and vertical axis is the loss function value.

efficiency and the libraries provided, but it is time and power-
consuming if it needs to be done on a mobile device. To solve
the problem, we export the model with the mask resized back
to the image. In order to do that though, due to the differences
in image sizes, each image needs to be resized to a specific
size (in our case 512 x 512 pixels) before for prediction.
By doing so, the mask can always be resized to the fixed-
size image, which can then be scaled back to the original
size after inference. This solution forces us to always rescale
the image on Android, but it increases our processing and
inference speed, eliminates complicated calculations, without
much compromising the accuracy of the prediction.

IV. ANDROID APP DESIGN

A. App Interaction Sequence

The developed Android application focuses on making the
task of breast status assessment convenient for the patient,
while at the same time preserving her privacy. It has only one
screen which allows the patient to take a picture of their breast.
After that, it gives her the ability to evaluate her breast status
without the need for manual annotations or corrections. During
the image capturing part, the user needs to capture an image
containing both the face and the breasts by holding the mobile
device at the height of the neck. A face detection algorithm
from Android ML Kit is then used to crop the user’s face from
the image, and after that use the rest of the image for breast
analysis. Capturing the face and removing it from the image
is crucial both to ensure that the breasts are captured properly



as well as for privacy since we can ensure that it will never
be visible. So even in the case of a data leak, the identity
of the user is protected. If the face is detected and cropped
the image is displayed and the analysis starts with the user’s
command. The app passes the image to the trained Mask R-
CNN model which analyzes it and returns the predictions with
their corresponding masks.

B. Trained Model Inference

The exported .PB graph of the model can be inserted to
Android by placing it in the assets folder together with the
LABELS.TXT containing the classes we want to predict. To
get the inference results from the model, we use the provided
Object Detection API java file [14] which we extend to
return apart from bounding boxes, the mask for each object
predicted. To get the inference results from the model, due to
the reshaping of the mask that we described above we rescale
the image to a size of 512 x 512 and feed it to the network. We
notice, however, that the results are not very good, because the
image is stretched at either height or width depending on the
capture, resulting in the model being unable to infer properly
the distorted image. The solution we resort to is to calculate
a scaling factor with which we rescale the largest dimension
of the image to 512 pixels. After that, we add to the smallest
dimension black pixels to achieve the 512 pixels size, in order
to keep the spatial properties of the image after compression.
This way, the image keeps the size and shape of the breast in
the scaled image, resulting in accurate predictions.

C. Detection Analysis

The model inference results are the spatial locations cor-
responding to the bounding box of the prediction, as well as
the mask of each one of them. After getting the results from
the model, the bounding box areas that represent the breasts
or the nipples are parsed, and information is stored about five
different metrics.

The metrics are: 1) breast contour, 2) breast mass, 3) eu-
clidean distance from the centre of the neck between the two
nipples, 4) horizontal and 5) vertical distance between the
nipples and the conceivable line from the centre of the neck,
as described in the BAT paper [2].

Then for each metric, the graphical result is presented
together with the metric results for the two breasts. It is
important to emphasize that the prediction alone is not accurate
without fine-tuning the result. Since nipples, as well as most
abnormalities, are inside the breast, the model finds it difficult
to recognize the exact border between them, leaving the area
surrounding them empty, without mask, meaning that we lose
accuracy concerning breast metrics. We solve this problem by
detecting the pixels that are on the inner side of the breast mask
border and are not part of any object detected, and by marking
them as being part of the breast mask. After the analysis is
complete, the graphical representation of the analysis, as well
as the mask of the image, are scaled back to the original size
and presented to the user as seen in Figure 4.

Fig. 4. Breast Detection results. In the left image, the detection result is
visible for a woman with small breasts. In the middle image, the detection
result is visible for a woman with medium breasts. In the right image, the
detection result is visible for a woman with large breasts.

Fig. 5. BAT software metrics

V. PERFORMANCE EVALUATION

A. Prediction Performance and Mask Accuracy

The trained model achieves very good results, detecting
a large percentage of the breast and nipples for all breast
sizes as seen in Figure 4. The training images are annotated
by ourselves and by viewing the annotations provided in the
BAT paper, meaning that the shape of prediction (horizontal
line at top of the breast mask) is connected to the way we
annotated the images. The model is tested through images
captured from the screen of another device due to the lack of
patients and by female volunteers who are willing to test our
app. Identification of breasts and nipples has 98% accuracy
with the mask prediction finding correctly about 90-95% of
the breast surface in both cases. When images are captured
from another devices’ screen, the border curves of the mask
may not always be smooth due to the visibility of pixels on the
device which adds noise to the image and reduces prediction
accuracy. Both identification and mask prediction has better
results when tested by volunteers.

The analysis metrics are calculated in pixels, and not in cm,
on the scale of 512 x 512 pixels. We use the metrics provided in
the BAT paper as seen in Figure 5 [2] except the one labeled as
f, since the points selected from the circumference of the breast



Fig. 6. Analysis metrics based on BAT metrics a and c as seen in Figure 5

are not mentioned. The values calculated are the absolute
difference between the pixels of the left and the right breast,
as shown in Figure 6. Due to the absence of a regularization
metric that would correlate the distance at which the image is
taken with the actual size of the breast, the results may vary,
based on the distance at which the picture is taken. This means
that objects captured within short or long distances from the
mobile devices’ camera occupy a larger or smaller part of the
image respectively. Thus, in our case, the breast would seem
larger or smaller than what it is and occupy a varying number
of pixels, based on the distance captured, making like this
the analysis return unstable results. The final evaluation of the
breast is an aggregate of the metrics as described in [2].

B. Inference Time

The inference time on a mobile device is around 20 seconds
for a low-end device like Huawei Y6 Prime and around 12-14
seconds on a high-end device like Huawei Mate 20 Pro. The
energy consumption of the application based on the metrics
provided by Android Studio is medium when using the camera
and the face detection algorithm to crop the image, and high
when getting the inference results of the model for recognition
and analysis.

VI. CONCLUSION

This work is the first step and a proof-of-concept validation
that a breast status assessment solution actually works on the
device, as it combines the state-of-the-art instance segmenta-
tion model Mask R-CNN with the widespread use of mobile
devices. We believe that with the appropriate enhancement,
our software can be of use both to patients and to doctors.
Our application delivers fast results to the patients, it caters
for patient privacy and above all, it enables them to monitor
the effects of their treatment and the cosmetic changes of it
without the need of visiting regularly their doctor. On the other
hand, it can turn out to be a powerful tool for doctors to
monitor their patients and the time evolution of their treatment

and to find correlations between possible treatments and results
based on the analysis results.

The next step is to turn this into a full-fledged architec-
ture, systematically collect and train datasets and perform
a more thorough performance assessment. We leave these
for future work. Our future improvements concern both the
image segmentation model as well as the Android application.
More specifically, we aim to experiment with other image
detection models to improve both accuracy and speed, and
implement our work as part of a mobile or web app system that
would help physicians in decision making concerning breast
treatment progress after surgery.
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