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Abstract—Unmanned Air Vehicles (UAVs) are currently in
use for diverse applications such as critical infrastructure
monitoring. Monitoring is based on video capture by a video
camera and subsequent use of Deep Learning (DL) techniques
to perform image recognition. In this paper we do a proof-
of-concept validation of DL and UAV-assisted monitoring for
vegetation and object detection on railways. The large diver-
sity of vegetation, terrain and railway settings increases the
challenges for object detection and classification. Moreover, the
creation of an appropriate dataset for the training of a classifier
is a nontrivial task per se. We show the related challenges in
this setting, and we create from scratch a dedicated dataset
with manual annotation for vegetation management on railways,
based on publicly available video clips and our own video
recordings at a railway. To the best of our knowledge this is
the first dedicated dataset for this application. Next, we develop
a DL pipeline on this dataset and evaluate its performance for
different classes of vegetation and obstacles on the railways.
Our approach leads to satisfactory detection accuracy, especially
given the diversity of obstacles and the fact that most objects
to be detected appear at the background of the frame image.
Also, we test our classifier models in the NVIDIA Jetson Nano
platform, which is the on-board computing system of a UAV that
we used for on-site testing. The classifier may operate on the
Jetson Nano board presenting a good and viable performance.

I. INTRODUCTION

Managing lineside vegetation trees, bushes, weeds and
obstacles (e.g. fallen trees, fallen branches, garbage, etc) on
railways is an important task accidents for passing trains,
railway staff and passengers. It is also important for train
drivers so that they have a clear view of the route ahead,
including signals and crossings, and for track workers so
that they are safe when trains and maintenance vehicles pass.
Hence the removal of vegetation within 3.5 metres of the line
is an essential preventive safety measure that is put in action
based on related regulations.

Network Rail in the UK, a major railway operator, claims
that incidents caused by vegetation cost the railway company
more than £100M a year [1], [2]. For this reason, railway
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operators do frequent inspections of railway tracks in order
to ensure that the operation of trains is safe and efficient.
On the other hand, unnecessary de-vegetation damages green
railway corridors [3]. For example, Network Rail has already
issued tree preservation orders on a group of trees. Therefore,
there is need for a systematic smart and efficient procedure
for inspection of railways.

Currently railway operators follow traditional railway track
inspection methods, based on human inspectors and ground
vehicles. Optical inspection, which involves investigation of
various types of rail components and vegetation, is the main
practice followed. This human-operated process by default
cannot be performed very often and it is time-inefficient,
costly and complex. Also, workers are faced with slopes,
barriers, unstable ground, hidden hazards and poor lighting
to carry out visual inspections. The landscape and weather
conditions in some areas pose additional challenges to human
operators.

The goal of this paper is to study and demonstrate the
application of DL techniques in computationally difficult
problems such as that of vegetation and obstacle detection
on railways, performed at the edge of a network, namely
at the on-board computing system of a UAV. The main
reasons that make the problem challenging are: (i) the vastly
heterogeneous terrains, (ii) the multiple classes of vegetation
and obstacles that need to be distinguished, (iii) the diverse
depths (in the image) of the position of objects to be detected
(i.e. the objects that we want to detect more often than not
appear in the background) and (iv) the issue of accurately
tracking the railway, so that the UAV follows the rails track.

A. Our contribution

We summarize our contributions as follows:

e We create from scratch a dedicated dataset, which
involves manual image annotation, for vegetation man-
agement on railways. The dataset is used for the training
of Convolutional Neural Networks (CNNs) in order to
analyse video frames captured by a drone’s camera and
to detect obstacles on the rails, as well as vegetation and
trees growing close to the rails. The dataset is based on
publicly available videos and videos recorded by us.

o We select two different versions of the Faster RCNN
model, the Faster RCNN Inception v2 model that is
the basic version of this algorithm, and the Faster
RCNN Inception ResNet v2 Atrous that is an optimized



version for small-scale object detection. We evaluate and
compare them in terms of detection accuracy.

e« We train a DL classifier, based on the above mentioned
models, that is able to achieve very good up to excellent
performance in the following tasks: (i) recognition and
tracking of railway lines so that they are continuously
inspected by a UAV resulting at 99% average precision
(i) detection, identification and classification of possible
obstacles on rails at about 64% to 79% average preci-
sion, and (iii) detection and classification of vegetation
on, between and out of rails with about 63% to 93%
average precision.

o We test the classifier on a real railway. This gives us
a better understanding for its performance under real
conditions on site testing.

The rest of the paper is organized as follows. Section
IT reviews previous research. The creation of the dataset
used for the training and evaluation of the classifier, the DL
classifier’s model and its performance evaluation results are
presented and discussed in Section III. Further extensions
which are related with the evaluation of a special version of
the classifier’s model and the evaluation of the classifier’s
performance at the on-board processor are presented in
Section IV. Finally, we draw conclusions in Section V and
describe our next steps.

II. RELATED WORK

Computer vision has been a critical component in rail
track inspection system development. In [4], Karakose et al.
have proposed a computer vision-based condition monitoring
method. In this study, a camera placed on top of the train,
collects images and afterwards the system applies edge
extraction, morphological processing and feature extraction
on the obtained images to determine rail failures. Computer
vision has been used in drone image process in [5]. In [6],
a system with four Charge-coupled Device (CCD) cameras
and two red laser sector lights for inspection of track gauge
based on computer vision is used. In [7], Camargo et al. have
conducted a survey, aiming to investigate the feasibility of
using machine vision technology to recognize turnout com-
ponents, cut spikes and rail anchors and show performance
measurement for the algorithms which find defects in other
track components.

Several different techniques have been used in order to
make rail track inspection more efficient. In [8], Gabor filters
are applied to images, and they transform them into direction-
ally filtered versions to distinguish various track areas such as
track turnouts. A system for detecting missing rail clips and
finding blue rail clips which have been recently replaced in
place of damaged rail clips, using automated video analysis,
is proposed in [9]. In [10], Teng et al. have presented
a learning based algorithm which detects railway regions
based on Support Vector Machine (SVM). A combination
of multiple detectors within a multi-task learning framework,
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FIG. 1: Basic processing pipeline for object detection in an image.

showed the improvement of defects’ detection on railway ties
and fasteners in [11].

Current developments in machine learning for computer
vision and the continuous improvement of the computational
power of low-weight systems that can be integrated into
a UAV with easy portability look very promising for real-
time systems implementation. Transfer learning and data
augmentation techniques have been used for training deep
learning models, focusing on identifying track defects such
as sunkinks, loose ballast and railway assets like switches
and signals [12]. In [13], a high speed 3-D laser range finder
helps towards the development of a real-time railway fastener
detection system from depth images. In [14], James et al.
have proposed a multiphase deep learning based technique
that finds the Regions of Interest (ROIs) with image segmen-
tation and feeds a classifier with the cropped image to identify
and classify the rail surface defects. An image acquisition
device equipped with LED auxiliary light source and shading
box for real-time visual detection of a rail surface, with
emphasis on target location and rail surface defects contour
extraction, is presented in [15]. Our work complements the
current literature by presenting created dedicated dataset for
railway image processing, and a proof-of-concept validation
for computer vision and image recognition techniques vege-
tation and obstacle identification in railways.

III. A DEEP LEARNING CLASSIFIER FOR VEGETATION
MANAGEMENT ON RAILWAYS

Object detection can be modelled as a classification prob-
lem. The basic processing pipeline for object detection is
depicted in Fig. 1. The main challenges of the classification
procedure are related to:

a. the different size of the window that always contains
the object, and
b. the aspect ratio of objects. Aspect ratio concerns the
relationship between width and height of an object.
An object can be presented in various aspect ratios.
Specifically in this application scenario, the image recog-
nition problem is focused on detection of specific types of
vegetation and obstacles on railways, through aerial survey
in an autonomous manner using a UAV. It is a nontrivial
problem because of the following reasons:
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FIG. 2: Pipeline for the proposed approach.

a. Various types of vegetation and obstacles on railways
based on the point of view (POV) of the UAV-mounted
camera are in the background of the captured video
frames. Thus, objects may be not well focused in an
image.

b. For the tracking of rails we have to follow an on-
line approach, through processing the video frame
by frame. This is a challenging task because of the
limited resources of the on-board processor.

c. The handling of blurred/moved images due to occa-
sional minor deviating moves of the drone is another
challenge to overcome.

d. The creation of a dedicated dataset for this application
is a difficult task per se, and there are no such datasets
publicly available.

The approach of our methodology is shown in Fig. 2.

A. Datasets and annotation

The methodology for detection and classification of vege-
tation and objects on railways is based on supervised machine
learning techniques for computer vision. This methodology
requires a dataset with annotated images of objects, similar
to those that our classifier has to detect. This dataset will
be used for the training of the classifier’s model. To the
best of our knowledge, a dedicated dataset for training
of Deep Learning (DL) models for obstacle detection and
vegetation management on railways does not exist. Therefore
we started off to create dedicated datasets from scratch by
collecting images from public videos from two countries and
by recording our own videos. For the creation of the dataset,
we took into account that we needed diversity on exogenous
conditions e.g.: (i) the landscapes themselves, (ii) vegetation
and objects on railways to be detected and recognized, and
(iii) weather conditions (cloudy or sunny landscapes).

We created two datasets, dataset DS1 that is based on
YouTube publicly available videos [16], [17], and dataset
DS2 that is based on our own recordings on an abandoned
railway in Greece. Further, in our evaluation sessions we
considered the use of a third dataset, DS3, that emerged
through merging DS1 and DS2. Table I shows some details

Classes points in DS1 points in DS2

“weed on rails” 377 894
“object on rails” 229 212
“tree on rails” 18 131

“rails” 6,415 1,107
“fence” 1,160 75

“bush” 3,500 2,675
“terrain” 2,400 33

“tree” 4,199 824

“weed between rails” 233 381

“weed out of rails” 633 1,183

“branches above rails” 13 1,011
“branches close to rails” 10 581

TABLE I: Number of examples per label and per dataset. DS1 is the
publicly available dataset collected and processed from YouTube
videos, featuring UK and Slovenia landscapes. DS2 refers to our
own created dataset captured in Tripoli (Greece).

Dataset Origin Comments
DS1 Public Based on YouTube
videos
Based on our own
DS2 Our own recordings recordings in Tripoli
(Greece)
. . Combination of DS1
DS3 Public and Private and DS?2

TABLE II: An explanation of how the datasets that we use are
created. Dataset DS1 is the publicly available dataset collected
and processed from YouTube videos, featuring UK and Slovenia
landscapes and dataset DS2 is created totally from scratch based on
our video recordings in Tripoli (Greece).

about our datasets DS1, DS2 and DS3. The datasets include
annotated images taken from the video clips as isolated
frames. The annotations on the images refer to the following
12 classes of objects and obstacles: (a) “bush”, (b) “tree”, (c)
“fence”, (d) “terrain”, (e¢) “weed between rails”, (f) “weed on
rails”, (g) “weed out of rails”, (h) “object on rails”, (i) “tree
on rails”, (j) “branches above rails”, (k) “branches close to
rails” and () “rails”. Details about the number of datapoints
per class for the datasets DS1 and DS2 are included on Table
II.

Dataset DS1 includes 2,484 annotated images taken from
publicly available recorded videos in Slovenia and UK with
resolution 1280x720 pixels. Dataset DS2 includes 1,425
annotated images from our own recordings in Greece with
resolution 1920x1080 pixels. These videos allowed for high
diversity of terrains with respect to the color tones, bright-
ness, objects and obstacles. This is prerequisite for successful
training of an object detection CNN model that acts as the
railway and vegetation classifier. The separate frames from
the videos, which were inserted into the datasets after the
annotation procedure, fulfil the following criteria: (i) high
diversity of typical examples as to the objects of each class,
(if) high clarity images of typical examples (iii) diversity in
terms of weather conditions and levels of brightness.

We annotated the video frames using frame isolation,



FIG. 3: Example image with its annotations from dataset DS1.

dataset pre-processing and subsequent cleaning. We selected
frames with typical case examples that we want to use for
the training of the DL object detection algorithm in order to
identify similar cases. Repetitive as well as problematic im-
ages (e.g. blurry, wrongly focused, distorted) were removed
because the object classes on these frames were unclear and
difficult to recognize.

The dataset consists of two subsets, the training dataset
and the testing dataset that were used for the evaluation of
the classifier after training. According to best practices for
object detection models [18], the training dataset size is 80%
of the size of total dataset and that of the test dataset is the
rest 20%. Specifically, in dataset DS1, 1,989 images are in
the training dataset and 495 annotated images are in the test
dataset. Dataset DS2 consists of 1,140 annotated images for
the training dataset and 285 annotated images for the test
dataset.

The implementation of the classifier model is based on
Tensorflow [19], Google’s open source library for numerical
computation and large scale machine and deep learning.
Therefore, the training and test datasets were transformed
to .tfrecord files, which can be processed by the Ten-
sorflow’s algorithms. The datasets are structured under the
well-known and well-used dataset format, MS COCO [20].

For the creation of dataset we followed two steps: (i) image
extraction from videos, and manual selection of suitable
images and (ii) annotation. The latter step is that of assigning
labels to objects in the images of our custom dataset that we
want the DL classifier to recognize. The labels of our dataset
are the 12 classes on Table II. For the isolation and annotation
of the video frames, two software tools were used. The first
one is ffmpeg [21], for the extraction of all frames of videos
as JPEG images, and the second one is labelme [22] that
was used for annotation. Annotation was based on polygons
that turn out to capture well complex and irregular shapes of
objects like trees, bushes and weeds.

The dataset was created under the condition that the col-
lection of videos that will be used as the main source of the
dataset will have similar or the same POV with the drone’s
camera. Some classes such as “weed on rails”, “object on
rails”, “tree on rails”, “branches above rails” and ‘“branches
close to rails” were not populated enough in natural video
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FIG. 4: Faster RCNN processing pipeline for object detection in an
image.

frames. Therefore, in order to ensure sufficient representation
of each class in the dataset, we created custom artificial
images using image processing software tools like Adobe
Photoshop [23]. With this method, our dataset is augmented
in specific classes where the natural example classes were
rare. An example of an image with its annotations from our
dataset appears in Fig. 3.

B. Object Detection Model Selection

A CNN consists of several layers such as the input layer, at
least one hidden layer, and an output layer. They are used in
object detection for recognizing patterns such as edges (ver-
tical/horizontal), shapes, colors, and textures. Hidden layers
are convolutional layers, which work like a filter that first
receives input, transforms it using a specific pattern/feature,
and sends it to the next layer. For example, in the first
convolutional layer, the filter may identify shape/color in a
region (e.g. green). The next layer may be able to conclude
what the object what is (e.g. a trunk with branches), and
the last convolutional layer may classify the object as a tree.
More sophisticated patterns can be detected as more layers
are traversed.

Faster RCNN [24] is a single, unified network for object
detection and object classification and it is composed by two
modules. The first one is a deep full convolutional network
that proposes regions - that is, the Region Proposal Network
(RPN) - and the second module is the Fast RCNN [25],[26]
detector that uses the proposed regions. The RPN, which
takes an image as input and outputs a set of rectangular
object proposals, each with an objectness score, is the module
that tells the Fast RCNN module where to look. In order to
train RPNs, we assign a binary class label (corresponding
to existence of an object or not) to each anchor. Anchors
are reference boxes for each proposed region by the RPN.
The RPN can be trained end-to-end by back-propagation and
stochastic gradient descent (SGD). The processing pipeline
of the Faster RCNN algorithm is shown on Fig. 4.
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Other object detection models are the Single Shot Detector
one (SSD) and the You Only Look Once one (YOLO). In
SSD [27], the tasks of object localization and classification
are done in a single forward pass of the network. In YOLO
[28], each image is divided into a grid and each grid predicts
N bounding boxes and includes a confidence value. The
confidence reflects the accuracy of the bounding box and
whether it actually contains an object (regardless of class).
YOLO predicts the classification score for each box for each
class in training.

Our choice for the DL model as the obstacle and vegetation
classifier is the Faster RCNN model. The main reasons are:

a. Faster RCNN enables object detection at near real-
time frame rates.

b. It provides high object detection accuracy. (Figs 5, 6)

c. It is trained faster. (Fig. 6)

C. Training

Faster RCNN is a combination of Fast RCNN that has the
role of detector, and RPN that has the role of region proposer.
The training procedure has 4 steps:

a. RPN training, which proposes the input image an-
chors, where the detected objects have high proba-

bility to be there. In this step, convolutional layers
are initialized with the Inception pre-trained model.

b. A separate detection network is trained by Fast RCNN
using the proposals generated by the first step, and the
RPN that is initialized by the Inception pre-trained
model.

c. The convolutional layer optimizes RPN that is initial-
ized by detector network in the second step.

d. The convolutional layer optimizes Fast RCNN. The
training loss, which is the prime indicator of accu-
racy of training is tracked and reduced in successive
iterations of stochastic gradient descent (SGD) [29].

The main training properties and hyper-parameters of the
Faster RCNN algorithm are the default, as follows:

a. the weighting values are normally distributed with
mean 0 and variance 0.01, thus they are initialized
with N (0,0.01%);

b. the learning rate is 0.0002 for 500,000 steps;

c. the learning update scheme is based on a momentum
update 0.9. Momentum changes the path that SGD
takes to the optimum point during training and it helps
overcome local optimum if the algorithm gets stuck;
and

d. the training steps are 500,000. This is the value for
which we had the best results.

In our training sessions we used the faster_rcnn_inception
_v2_coco model, downloaded from the Tensorflow detection
model zoo [30]. The training procedure is running on a
PC with a CPU Intel Core i7-5820K (15Mb Cache, up to
3.6GHz), RAM 16GB and a GPU NVIDIA Quadro M5000.
The average training time was approximately 42 hours for
500,000 training steps. The same PC was used for the
performance evaluation which is presented in the sequel.

D. Performance evaluation metrics

Precision for a given class c¢ in classification, is the ratio
of the number of true positives (T'P.) and the number of
predicted positives, where the definition of true positives,
false positives, true negatives and false negatives is given
in the confusion matrix in Table III. It is,

Precisi TP, 0
recision, = ————
TP.+ FP,

The recall of a given class c in classification, is defined as
the ratio of TP, and total of ground truth positives and it is
given by

TP,
Recall, = ———— 2
e = TP FFN, @)

The main performance evaluation metrics in object de-
tection are the Mean Average Precision (mAP) across all
classes (labels) and the Average Precision (AP.) per class. To
understand mAP, we have to define first the term precision-
recall curve, a commonly used to measure the performance of



TABLE III: Confusion matrix for investigation of the performance
of a classification model where the actual test values are known.

a classification model. A precision-recall curve has on y-axis
the precision and on x-axis the recall. Intuitively, the area
under the curve, namely the integral of the function denoted
by the curve shows the infinite sum of achieved accuracy
values for a continuous set of recall values. The AP, is
defined as the integral under the precision-recall curve (PR
curve).

There exists a trade-off between precision and recall. On
the one hand, we want our precision to be as high as possible,
thus we would need to decrease F'P; however by doing so,
recall will be decreased as well. Similarly, by decreasing
F'N, recall is increased and precision is decreased as well.
In object detection cases like the one we consider here, we
would like our precision to be high (namely, our predicted
positives to be close to T'P).

To get the AP values for the defined classes, we plotted
the Precision vs Recall curves for each class. Specifically
we take a discrete set of () recall values (71, ...,7¢g) and we
record the precision at these values (i.e. Precision(r;)) for
i=1,...,Q. The number @ is equal to the number of the
images where the given class is detected. Some indicative
examples of PR curves from our evaluations are presented in
Appendix I (Fig. 10). The AP for a given class c is computed
as

Q .
; P c\"i
AP, — Yo Tegszon (r )7 3)

The mAP over all classes is computed as

Yoy AP
mAP = C ,
where C' is the number of classes.

To calculate AP for object detection, we also need to define
the term IoU (Intersection of Union). IoU is an estimate
of the amount of overlap between 2 bounding boxes or
segmentation masks. The IoU is a ratio, where the numerator
shows the area of intersection of the predicted and the
ground-truth bounding boxes, and the denominator shows the
area of union of these boxes. IoU is used to determine if
a predicted bounding box (BB) is a TP, a FFP or a F'N.
The predicted BB is not evaluated if it is a 7N because we
assume that every image includes an object. The intuitive
meaning of IoU is that IoUs with values 0 < IoU < 0.5 are
mostly for background objects and IoUs with 0.5 < IoU < 1
are for foreground objects. Therefore, a challenge during the
evaluation process was to select the appropriate IoU value,
depending on the location of objects in an image in which we

“4)

Actual Test Dataset
Positive Negative Train Dataset DSl DS2 DS3
Predicted Positive True Positive (1T'P) False Positive (F'P) DS1 S(1,1) S(1,2) S(1,3)
Negative | False Negative (F'N) | True Negative (I'N) DS2 S(2,1) S(2,2) S(2,3)
DS3 S(3,1) S(3,2) S(@3,3)

TABLE IV: Evaluation scenarios. S(%, j) denotes the case where the
training dataset is from DS; and the test dataset is from D.S;, for
1,j=1,2,3.

need to detect an object. In our case, we needed to evaluate
our classifier for IoU values 0.1-0.4 because in railway
monitoring, objects to be detected (e.g. tree, bushes) tend
to be in the background. Specifically, we select JoU = 0.1
for the AP, results.

E. Performance Evaluation Results

1) Evaluation Approach: First, we evaluate the generaliz-
ability of trained models. This allows us to conclude if we
can have a trained model on a diverse dataset that can adapt to
different terrains and exogenous conditions or we would have
to create custom dataset depending on the scenario each time.
To examine the generalizability and overall performance of
our models, we evaluated 9 scenarios which are shown in
Table IV.

Our strategy is to train and test in all 9 possible pairs of
DS1, DS2, and DS3 and to measure the performance based on
the average precision (AP) per class, mean average precision
(mAP) and precision-recall curves for IoU values 0.1,0.2,0.3
and 0.4. Denote by S(i,j) the scenario where we use the
training dataset from dataset DS; and the test dataset from
dataset DS; for i,7 =1,2,3.

The training total loss per scenario, which is the prime
indicator of accuracy of training is equal to 0.08.

2) Mean Average Precision Results: The mAP results
(Table V) for the whole range of IoU shows that the classifier
has a satisfactory performance when the training dataset and
the test dataset are from the same dataset. The best results
are at scenarios S(1,1), S(2,2) and S(3,3). On the other hand,
we do not have good results when i # j, because of the
high diversity between the landscapes and types of trees,
bushes, terrains and weeds which are annotated at the images
of datasets.

Also, at the scenarios where the training dataset or the test
dataset come from the DS3, the performance of the classifier
ranges from quite good to satisfactory. This is expected
because DS3 includes datapoints from both DS1 and DS2.
Based on the results (Table V) we can conclude that a model
trained in a certain dataset cannot be used to perform testing
in another dataset.

3) Indicative Average Precision per class Results: We
present and discuss the AP results of classes “object on rails”,
“terrain” and “rails” for JoU = 0.1.

Object On Rails: The best results for class “object on
rails” are for the scenarios where the training and test datasets
are from the same dataset i.e. scenarios S(1,1), S(2,2) and



mAP @IoU=0.1
Test Dataset
Train Dataset DSl Ds2 DS3
DS1 55% 10% 32%
DS2 12% 66% 37%
DS3 53% 57% 54%
mAP @IoU=0.2
Test Dataset
Train Dataset DSl Ds2 DS3
DS1 51% 8% 29%
DS2 9% 62% 33%
DS3 48% 54% 49%
mAP @IoU=0.3
Test Dataset
Train Dataset Ds1 Ds2 DS3
DS1 46% 6% 24%
DS2 6% 60% 30%
DS3 45% 51% 45%
mAP @loU=0.4
Test Dataset
Train Dataset DSl Ds2 DS3
DS1 40% 5% 21%
DS2 4% 55% 27%
DS3 41% 48% 41%

TABLE V: Evaluation scenarios. The best mAP results are those for
which the test and training datasets are from the same dataset.

S(3.3). The results are ranging between 51%-61%. Also at
scenarios S(1,3) and S(3,1) and scenarios S(2,3) and S(3,2),
the results are also very good.

Rails: The AP results of class “rails” show that all sce-
narios achieve performance which ranges from a very good
to an excellent one. Specifically at scenarios S(1,1), S(2,2)
and S(3,3), the performance is ranging from 96% to 99% as
expected, because this class has most datapoints compared
to other classes. At scenarios S(1,3), S(3,1) and S(3,2) the
results are also very good. This can be explained by the fact
that the number of datapoints of class “rails” is higher in
datasets DS1 and DS3. On the other hand, the surrounding
environment that is close to “rails” class objects in the
annotated images of dataset DS1 significantly differs from
the surrounding environment of this class in the annotated
images of dataset DS2. Therefore, the APs at scenarios S(1,2)
and S(2,1) are lower but in a relatively satisfactory level.

Terrain: The AP results of class “terrain” range between
satisfactory and excellent. The best results are at scenarios
where the training and test datasets are from the same dataset.
In these cases, the performance ranges from 66% to 93%.
Also at scenarios that involve DS1 and DS3 (i.e. S(1,3) and
S(3,1)) and at S(3,2) the results are also very good.

The landscape and the various classes of objects we want
to trace over and around the rail are very likely to differ
greatly in each case. Therefore, training the system on a per
case basis produces the best possible results for the classifier
performance. Generalizability of classifier is achieved for
two main classes, “rails” and “terrain”. This is expected
because the main features of these classes are common in
datasets DS1 and DS2. The classifier performance ranges

from satisfactory to excellent level at all evaluation scenarios.
This implies that some time can be saved while creating the
dedicated dataset for each application case by recording only
the parts of a railway which present higher diversity in terms
of other railways (e.g. trees and weeds). Indicative examples
of evaluated images can be found in Fig. 9 in Appendix I at
the end of the paper.

IV. FURTHER EXTENSIONS TO THE MODEL

A. Faster RCNN Inception ResNet v2 Atrous vs Faster RCNN
Inception v2

Critical classes of obstacles, can appear as small scale
objects in video frames that will be processed from our
classifier (e.g. “object on rails”). Faster RCNN Inception
ResNet v2 Atrous model [31] is a dedicated version of Faster
RCNN model suitable for small scale objects that can achieve
excellent performance. Therefore we used Faster RCNN
Inception ResNet v2 Atrous and compared its performance
to that of the basic version of the Faster RCNN. Specifically,
we compared the generalizability of Faster RCNN Inception
ResNet v2 Atrous model and its performance to those of
the Faster RCNN Inception v2 model. In the sequel we use
the terms Afrous and Inception v2 to refer to the models
Faster RCNN Inception ResNet v2 Atrous and Faster RCNN
Inception v2 respectively.

In these scenarios we used only datasets DS1 and DS2.
DS3 was not used because it is the combination of DSI
and DS2. We follow the same strategy for the evaluation
scenarios as in Inception v2. We train and test in all possible
combinations of DS1 and DS2 and measure the performance
based on the AP per label and mAP for four values of
IoU i.e. 0.1,0.2,0.3 and 0.4. The classifier models utilizing
the Atrous were trained with 500,000 training steps with an
achieved average total loss 0.06. We trained the Afrous in a
PC utilizing a GPU NVIDIA Quadro M5000. Training took
almost 8 days longer than the Inception v2 model. Also its
memory footprint is much bigger than that of the Inception
v2. Specifically the trained model based on Inception v2 is
160MB and the Atrous trained model is almost 1GB. Last but
not least Atrous requires 2.2 sec more than Inception v2 on
average, to process a frame during the classification process.

1) Mean Average Precision Results Comparison: The
mAP results for the whole range of IoU in Fig. 7 shows
that Atrous presents better or similar behaviour with that of
the Inception v2 model. The best results are at the evaluation
scenarios where the train and test datasets are from the same
dataset. Therefore the generalizability of the classifier is again
low.

Compared to the corresponding results of the Inception
v2 model, this classifier has the same mAP for scenario
S(2,2), while for other scenarios (S(1,1), S(1,2) and S(2,1)),
it gives better results by about 5% on average. Therefore,
the classifier performance is improved and it is useful for
the application to utilize this model. We examine it in detail
at the following subsection, where the average precision for
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and “rails” for different dataset scenarios between Atrous and
Inception v2 results. We observe significant improvement especially
for the class “object on rails” which includes small-scale objects.
This was because of the suitability of Atrous for this type of objects.

some indicative classes will be presented for IoU = 0.1.
This value is the most appropriate one for our case because
the objects to be detected are only on the background of the
frames that we process.

2) Average Precision per Class Results Comparison: Fig.
8 shows compaative results between the AP results for the
Atrous and Inception v2 based classifiers for three indicative
main classes: “object on rails”, “terrain” and “rails” at JoU =
0.1.

Object On Rails: The AP results for class “object on
rails” show that the best results are for scenarios where the
train and test datasets are from the same dataset (i.e. S(1,1)
and S(2,2)). There is significant improvement compared to
Inception v2 model, as the results of the S(1,1) are better by
about 20%. The result of the S(2,2) is also better by about
6%.

Rails: The results for the performance of the classifier
for the class ‘“rails” are excellent as Fig. 8 shows. For
scenarios S(1,1) and S(2,2) we have the best results. There
is improvement about 3% in Atrous compared to Inception
v2 model for the “rails” class.

Terrain: The classifier has very good performance for the
class “terrain” as well. The results in Fig. 8 show that the
best performance is observed at scenarios where the training
and test datasets come from the same dataset (i.e. S(1,1) and
S(2,2)).

Similar to Inception v2 based classifier, the models are not
generalizable. This verifies the need for a dedicated dataset
for each case and landscape. Afrous has better or equal
performance to Inception v2 in almost all classes. There is
definitely improved classification performance for Atrous for
many classes and the overall improvement of performance
appears on the mAP results. This leads to the conclusion that
it would be useful to utilize Afrous for the classifier model.

B. Performance Evaluation of the DL Classifier on the UAV
using NVIDIA Jetson Nano

One of the main questions is whether it is possible for
the classifier to operate on the drone where frames are
captured and need to be processed in a streaming fashion. We
selected the NVIDIA Jetson Nano as the on-board computing
system where the DL based classifier will operate. NVIDIA
Jetson Nano is an embedded system-on-module (SoM) and
developer kit, including an integrated 128-core Maxwell
GPU, quad-core ARM A57 64-bit CPU and 4GB LPDDR4
memory. It runs on Linux and provides 472 GFLOPS com-
pute performance with 5-10W of power consumption. We
can natively install popular open source Machine Learning
(ML) frameworks such as TensorFlow and Keras, along with
frameworks for computer vision and robotics development
like OpenCV. The space it occupies is 87x58.5x35mm and
weights 136gr, therefore it can fit to the specifications of a
UAV, for being easily transported, navigated and maneuvered
within a railway field.

The UAV on-board video recording subsystem records a
video with a resolution 1920x1080 at 25 frames per second
(fps). According to our tests, the Jetson Nano takes on
average 1.14s to process a frame utilizing the Inception v2
model based classifier. The Atrous model was quite heavy in
terms of memory usage, and it was not possible to run it on
the Jetson Nano board. Hence, our DL classifier may operate
on a computing system with limited resources like the Jetson
Nano in order to execute on-board processing scenarios. In
fact, given the frame processing time above, it is possible to



use Jetson Nano for processing frames at a video of about
one frame per second. This is still good and viable for object
detection, since the object or obstacle remains in view of the
camera for a few seconds.

V. CONCLUSION AND FUTURE WORK

In this paper, we designed, implemented and evaluated
a DL based monitoring system for obstacle and vegetation
detection along railways through UAV aerial surveying. A
prime contribution of our work is the creation of the first
dedicated dataset for object detection, that can be further
used for the purpose of vegetation management and railway
safety. We also used two models of Faster RCNN algorithm,
Inception v2 and Atrous to classify objects and vegetation.
We trained and evaluated our classifiers and we deduced that
the classifier can achieve very good performance when the
training dataset is the same as the test dataset.

The main conclusions from the evaluation of the classifier
are: (i) the development of a dedicated dataset for different
railway terrain is recommended and therefore classification
knowledge in one terrain cannot be transferred to another.
This holds for both the Inception v2 and Atrous models. (ii)
The Inception v2 model gives good performance while Atrous
is even better, especially for small-scale objects.

In this work, the image recognition pipeline was executed
and evaluated on the computing system that was employed
for the training of the classifier out of the drone system. Next,
the trained classifier operated for testing at Jetson Nano on-
board the drone. There exist interesting further questions if
we assume the existence of an infrastructure, such that we
are given the option to move the processing of a frame at
different sites e.g. either on-board the drone or at a processor
at the edge of the network, e.g. at a base station. In our future
work we also plan to further improve our custom dataset. A
first option would be to define additional classes for objects
that can be confused with the 12 already defined classes.
Another option would be to specialize the dataset on very
specific cases of terrains e.g. mountainous ones.

We have considered for our next steps the examination
of three main operational scenarios. Our first step will be
to improve the on-board processing by using a computing
system such as NVIDIA Jetson Nano. Second, we will
consider the fotal offload method, where all video frames
are transferred to cloud. And the third option that will
be examined is a hybrid one, where only selected frames
are offloaded to the cloud for complex, resource-demanding
tasks. Our final goal is to design and implement an offloading
policy to reduce inference delay.
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APPENDIX I

FIG. 9: Examples of evaluated images. We observe the bounding
boxes for each detected class and corresponding prediction of
existence into this box as percentage. The bounding boxes especially
for small objects like in the class “weed on rails” or “object on rails”
are tightly and well fitted around the object.
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FIG. 10: Indicative Precision-Recall (PR) curves for classes: (A)
“rails”, (B) “terrain”, (C) “object on rails” and (D) “weed on rails”.
The PR curves of a perfect classifier shows a combination of two
curves — from the top left corner (0.0, 1.0) to the top right corner
(1.0, 1.0) and further down to the end point. The PR curve for class
“rails” is very close to a perfect curve and has the most area under
its curve than other classes. Similar trends are observed for other

classes.



