
TWIST: Thin-Waist Wireless Testbed for
Measuring Interfering Traffic Stream Throughputs

Y. Thomas and S. Toumpis
MMlab, Department of Informatics, Athens University of Economics and Business (AUEB), Greece

E-mail: {thomasi, toumpis}@aueb.gr

Abstract—Due to the unpredictable nature of the wireless
channel and its complicated interaction with the various parts of
the protocol stack, evaluating accurately the effects of interfer-
ence on the throughputs of competing traffic streams of wireless
networks is typically impractical using analysis or simulations.
However, knowing such throughputs is crucial to the performance
evaluation of any wireless network designed to carry high-
volume, such as multimedia, traffic and, on a more fundamental
level, to the estimation of the network’s Capacity Region (CR).

In this context, we have developed the Thin-waist Wireless In-
terfering traffic Streams Testbed (TWIST), a small-scale testbed
designed specifically for addressing the unique challenges of mea-
suring efficiently the throughputs of competing traffic streams
and estimating the CR. Central to TWIST is a monitoring
and management function that orchestrates the conduction of
measurements and the configuration of the nodes. The testbed is
remotely controlled by a web application interface (API) through
which remote processes, such as high-level language programs,
can consume the testbed as a service, conducting sequences of
measurements determined beforehand or online.

I. INTRODUCTION

A fundamental problem in wireless networks, and a wa-
tershed that sets them apart from wired ones, is the fact
that transmissions interfere with each other; the effects on
the network’s performance are very hard to estimate through
analysis or even simulations, due to the complexity of the
interaction between the wireless channel and the various
elements of the protocol stack.

However, determining accurately the throughputs of com-
peting traffic streams is very important in the performance
evaluation of wireless networks supporting high-volume, such
as multimedia, traffic. On a more fundamental level, it is also
important for assessing the theoretical throughput limitations
of the network; in the related literature, these limitations
are described in terms of the set of all combinations of
data rates with which the links in the network can operate
simultaneously, referred to as the Capacity Region (CR) [1].

With the purpose of supporting analysis and models with
real-life implementations, numerous experimental testbeds for
wireless networking research have been introduced. Neverthe-
less, the nature of estimating the throughputs of competing
traffic streams presents individual challenges that typically
wireless testbeds do not place on high priority; indeed, besides
delivering an accurate and consistent measurement of traffic
stream throughputs, the testbed must minimize the temporal
overhead of each measurement, in order to enhance scalability,
and must provide a low-latency centralized coordination plane

in order to direct complex experiments precisely. To the best of
our knowledge, there is no testbed specifically built to address
these issues yet.

In this work, we introduce and describe the architecture
of the Thin-waist Wireless Interfering traffic Streams
Testbed (TWIST), a small-scale, easy-to-use wireless testbed
specifically built for calculating the throughputs of competing
wireless traffic streams and supporting research on CRs and
related topics. Currently, TWIST includes 20 Raspberry Pi
nodes and covers an area of approximately 750 m2 (per floor)
in three different floors. The design and implementation of
TWIST addresses the aforementioned challenges and delivers
an evaluation tool that estimates with low temporal over-
head and accurately the measured throughputs in the face
of complex interference patterns. In order to do so, TWIST
introduces a novel monitoring and management plane for
detecting the network state, configuring node operation and
deploying complex experiments. In its current configuration,
TWIST uses the internal IEEE 802.11 cards of the nodes
for forming the wireless network; however, other MAC/PHY
hardware can be used as well with minimum modifications.

Regarding its usage, TWIST offers a generic web appli-
cation interface (API) through which remote processes can
consume the testbed as a service, thus allowing researchers
to remotely specify and conduct network measurements as
needed. This API is conceptually the thin waist of the testbed;
below it, there is a significant amount of mechanisms for en-
suring the smooth operation of the network and the execution
of the API, that the API’s user need not be concerned with;
above it, the user of the API can emulate a wide variety of
protocols, also of significant complexity, using the API only in
order to retrieve the throughputs of competing traffic streams.
The testbed is available for use by the wider community,
through accessing the API, or indirectly, through an extensive
set of measurements that have been made available. The
testbed has already been used in estimating the CR of a 16-
node network [2].

The rest of the paper is organized as follows. In Section II
we discuss related work on wireless testbeds and also the
estimation of Capacity Regions (which was a prime motivation
in developing the testbed). In Section III we introduce the
TWIST testbed, in Section IV we present some important
findings from its operation, and in Section V we elaborate
on the challenges of building it. Finally, we deliver our
conclusions and comment on our future work in Section VI.

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II. RELATED WORK

A. Wireless testbed research

As a preliminary comment, TWIST is a small-scale testbed
that is similar to many of the already available testbeds in
certain aspects, such as separating the control and data planes,
supporting custom protocol installation, adopting centralized
management, and offering online result reporting and use by
the wider community. However, to the best of our knowledge,
no other testbed focuses on online interfering traffic stream
measurements in a timely and accurate manner or adopts its
thin-waist architecture.

Historically, earlier testbeds were also relatively small-scale
affairs; more recently, platforms have been introduced for
operating larger-scale, interoperable testbeds that are available
for use by the wider community. Notable examples along this
thread are the recently completed EU-based Fed4FIRE and
Fed4Fire+1 projects and the ongoing US-based Platforms for
Advanced Wireless Research Program (PAWR)2. The inter-
ested reader is referred to [3] where the current state of the
art is reviewed in detail.

Regarding earlier small-scale testbeds, CorNet [4] is a
collection of 48 software-defined radio nodes deployed within
a four-floor building. The testbed promotes research on radio
interference focusing on dynamic channel selection policies.

Also, the Carmen testbed [5] is a mesh network of Android-
based devices. The devices are configurable with enough
computational resources to support the tools and means to
make wireless network performance measurements. Although
the nodes have resource limitations associated with Android
devices, Carmen excels at exploring mobility.

The W-iLab.t testbed [6] includes 200 sensor and IEEE
802.11-enabled nodes. W-iLab.t puts the focus on sensor
networks and assists the interoperability of different wireless
technologies, but could also be used for performing interfering
traffic stream measurements if the control plane logic of
TWIST is installed.

The OfficeLab testbed [7] consists of 40 nodes supporting
IEEE 802.11 and sensor technologies. OfficeLab is recom-
mended for development and testing of smart services based
on IoT sensors and actuators in a real-life experimental envi-
ronment.

Finally, perhaps the testbed most related to TWIST is intro-
duced in [8], where the authors perform online optimization
of 802.11 mesh networks. In particular, they first estimate
online the CR of the network under the strong assumption that
interference between links is binary (i.e., two links either do
not interfere at all or cannot access the medium concurrently),
and then use this CR estimate to perform end-to-end rate
control. Our work here is complementary to that work, as we
can use our measurements to provide a more accurate CR
estimate, even when interference is not binary (which is, in
fact, the case in our testbed, as we discuss later on).

1https://www.fed4fire.eu/
2https://advancedwireless.org/

Moving on more recent, larger-scale testbeds, CityLab al-
lows researchers to experiment in scenarios where a variety
of wireless technologies are used in parallel within an urban
environment; one outcome of this testbed is that future inter-
ference can be predicted using a neural network model [9].

The large-scale Cloud Enhanced Open Software Defined
Mobile Wireless Testbed for City-Scale Deployment (COS-
MOS) testbed [10], a PAWR testbed, covers a square mile of
dense urban environment with software-defined radios and is
supported by cloud/optical infrastructure.

The Platform for Open Wireless Data-driven Experimental
Research (POWDER) testbed, part of PAWR, offers experi-
mentation on a variety of environments (which include mobile
environments through the use of shuttles) using software-
programmable radios, with research covering a wide range
from massive MIMO to low-power WANs [11].

The Aerial Experimentation and Research Platform for Ad-
vanced Wireless (AERPAW) testbed, part of PAWR, uses sig-
nificant UAV resources, integrating UAV and 5G research [12].

Finally, the Road-, Air- and Water- based Future Internet
Experimentation (RAWFIE) project offers a variety of testbeds
that allow experimentation with autonomous land, air, and,
unusually, sea vehicles [13].

B. Capacity region research

Various definitions for the CR exist in the literature. In this
work, the CR of a network with a total of L links is the
set of all L-dimensional vectors that describe combinations
of link throughputs that are achievable either concurrently or
using time division. Therefore, the CR completely captures the
effects of interference between wireless links.

In principle, estimating the CR presents poor scalability
due to the cost of measuring the performance of all 2L link
combinations, which we call Transmission Modes (TMs).
However, preliminary results in our prior, pre-TWIST work [1]
suggest that novel pruning solutions based (i) on greedy
algorithms as well as (ii) online Machine Learning (ML) can
achieve an accurate approximation of CR by exploring only
a small subset of TMs. Specifically, a greedy algorithm can
be used for pruning the set of TMs that should be explored,
e.g., exclude a TM where an individual node participates in
multiple links or where a subset of the TM has been found
to be inefficient. Moreover, ML techniques can be used to
predict the performance of TMs: using the already available
measurements as a training set, regression can be used in order
to estimate the performance of a yet unmeasured TM and
decide if it is worth measuring; if the decision is positive,
then the TM is measured and it is added to the training set;
otherwise, it is skipped, thus accelerating the CR-estimation
process. Observe that the two pruning solutions are stateful
(since the previous measurements define which TMs should
(not) be measured next) and complementary (hence can be
combined ad hoc in order to maximize the gains).

Our preliminary work in [1] provided the motivation for
building TWIST. In this work, we focus on presenting the

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

testbed itself and its potential application by the wider com-
munity. In our parallel work [2] we develop the theory of
estimating the CR and apply it using the measurements derived
using the testbed.

III. THIN-WAIST WIRELESS INTERFERING TRAFFIC
STREAMS TESTBED (TWIST)

A. Testbed goal and requirements

The primary aim of the testbed is to measure the throughputs
achieved by concurrently active, multihop traffic streams,
which will be cross-interfering as well as self-interfering. We
will refer to all these combinations of streams as Stream
Modes (SMs), which complements the definition of Trans-
mission Modes (TMs), which are combinations of transmitting
links. Observe that each TM is a SM, comprised of single-link
traffic streams, but not the opposite.

This primary aim presents some unique requirements, be-
sides delivering an accurate measurement of each stream
throughput, that typically wireless testbeds do not consider:

a) Minimum temporal overhead: In the case the testbed
is used for CR estimation, 2N TMs exist in a topology of
N links. While the number of TMs that must be measured
can be substantially reduced by exploiting the aforementioned
pruning solutions, minimizing the duration of the necessary
measurements is important for accelerating the estimation and
making the method practical for real-life wireless networks.

b) Simultaneous link activation: In order to capture inter-
ference accurately, the interfering streams must be activated in
parallel, measuring each link’s performance in the exact time
frame. The measuring time frame of a SM is typically too
short to amortize any performance advantages gained by the
links that are activated first, thus rendering the (as much as
possible) simultaneous activation of all involved links critical.
The activation of tens of streams with the required millisecond-
level precision, in a real testbed, is a challenging process from
both a networking and systems perspective.

c) Timely result reporting: When the testbed is used for
CR estimation, and because pruning solutions are stateful, it
is necessary to report the result of each measurement, so that
the next measurement may be decided upon. The same need
is expected to exist when the testbed is used in many other
settings, as discussed later on. Therefore, aggregated reports
are not recommended and the requirement for reporting results
with the least possible delay is highlighted.

B. The waist: Testbed as a service

The testbed offers a simple, yet versatile, API through
which remote applications can explicitly request arbitrary SM
measurements. This API is exploited in the study of [2] (where
a ML-based pruning module is remotely implemented in order
to create a CR estimate) and in potentially other settings, as
discussed in Section III-F.

In order to assist the real-time interaction with the testbed
as well as to avoid sending requests to the testbed when
a previous experiment is still running, the API is blocking,
hence the results are returned to the calling process when

Figure 1. Testbed overview. 20 Pis scattered in a 2-sector campus building
in 3 floors.

the requested experiment ends and, also, there is a check for
pending requests performed before the execution of a new
request. The communication with the API is carried over
SSH,3 i.e., the following command (via a Debian-like shell
application) requests a TM measurement:

$ ssh ACC@IP “API.sh DUR SM”
where ACC and IP are the account name and the IP address
of the machine that hosts the API, respectively, API.sh is the
name of the script that handles the request, DUR is the duration
of the experiment, in seconds, and SM is the Stream Mode to
be explored. SM is a list of streams separated by white spaces
(e.g., “STREAM1 STREAM2 STREAM3”), each stream being
a pair of node IDs, denoting the source and the destination
of the stream, separated by a comma (i.e., “srcID,dstID”). For
example, “50,51 52,53” encodes a SM of two streams, from
nodes 50 and 52 to nodes 51 and 53 respectively. The returned
result is either N transmission rates (in Kbps) corresponding
to the N streams of the SM or, in case of failure, an error
code indicating the cause of failure.

C. Below the waist: Infrastructure / Hardware

The testbed is located at a five-floor two-sector building
of AUEB in Athens, Greece. As shown in Fig. 1, 20 nodes
are placed in labs, offices and open spaces at Floors 3, 4,
5 in two sectors covering an area of approximately 750 m2

at each floor, however ad hoc extensions and modifications
within reason are expected to take place as needed.

The wireless network nodes are Raspberry Pis 4 B+4,
which are commodity single-board computers with enough
computing resources to run open-source implementations of
network protocols, such as OLSR,5 Babel6 and TCP (with
various congestion control algorithms). Regarding hardware,
the only extension to the stock Pis is the addition of an external
USB-powered dual-band IEEE 802.11 interface; the additional
external interface allows the parallel connection of the Pis
to two individual networks, namely, the data network, where
measurements take place, and the control network, where the
communication between Pis and the experimenter takes place.

3https://linux.die.net/man/1/ssh
4https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
5https://manpages.org/olsrd/8
6https://linux.die.net/man/1/babel

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The use of a different channel for controlling the network and
transferring secondary information, such as network statistics
and measurement, separates the control plane from the data
plane, thus enhancing the isolation of the data network and,
in turn, the integrity of the measurements.

Regarding software, the Pis run the Raspbian OS with the
5.4.72-v7l+ kernel and applications, drivers and services that
are pulled via the stock Raspbian software repositories. The
only third-party driver, that was downloaded from a private
software repository due to the lack of native support, concerns
the external IEEE 802.11 interface that is used in the control
network (and thus has no bearing on the measurements).

D. Below the waist: Logic / Software

The testbed follows a centralized scheme which consists
of the network nodes and a single controller node. The
controller node interprets instructions received through the API
and directs the network nodes to make SM measurements.
Therefore, the cumbersome testbed logic is implemented at the
controller, allowing the nodes to operate in a stateless and low-
complexity fashion. Accordingly, the core testbed operation
is encoded in two scripts, the controller script that runs at
the controller node and the listener script that runs at each
testbed node. The first is a sophisticated script that specifies the
testbed operation, while the latter is a simple stateless script
that receives and responds directly to incoming requests, such
as activating a link and reporting measurements or statistics.

The script logic is implemented through Debian-compatible
BASH scripts. While the implementation cost of BASH
programming can be higher compared to more advanced
programming languages, BASH scripts are very efficient in
controlling real hardware devices due to their inherent support
of system calls, thus delivering faster operation and more
direct implementation of tools that manage hardware, such as
network interfaces and the file system.

Moreover, using BASH scripts, we exploit native libraries
of the controller node as well as the testbed nodes for
accomplishing the most critical functionalities of the testbed.
In the following, we summarize the basic libraries that we
exploit:

a) brcmfmac: All network nodes exploit the same wire-
less device, which is controlled by the brcmfamc driver7, al-
lowing for a uniform testbed configuration. The setup supports
IEEE 802.11ac, however the device managing tool (iw) reports
simply that all nodes are using the IEEE 802.11 protocol.

b) ping: The connectivity of the network is discovered
by sending ICMP packets via the Ping tool8. Using the control
plane, the controller directs every node to “ping” every other
node through the data plane, thus discovering the reachable
unidirectional single-hop links.

c) iperf: The achievable throughput of a stream is de-
tected via the iperf tool.9 iperf deploys a typical TCP con-
nection between two IP-enabled nodes sending the maximum

7https://openwrt.org/docs/techref/driver.wlan/brcmfmac
8https://linux.die.net/man/8/ping
9https://iperf.fr/

achievable amount of “dummy” data for a predefined time
interval and, at the connection’s end (and optionally periodi-
cally), reports the overall throughput. Using the control plane,
the controller directs the destination node to run iperf in server
mode, that is to wait for incoming TCP connections. Then, it
directs the source node to run iperf in client mode towards the
destination node through the data plane.

d) routing: The testbed supports the BABEL and OLSR
ad hoc routing protocols through their available implementa-
tions at the Raspbian repositories. The implementations are
deployed as autonomous background system processes, hence
the operation of routing protocols is transparent and orthogonal
to the operation of the testbed. When deployed, the protocols
silently update the routing table of the nodes, thus allowing
the establishment of (iperf) connections to nodes that are
also indirectly reachable; without a routing protocol, iperf
connections to such nodes are rejected.

e) traceroute: When assessing the performance of multi-
hop streams, it is insightful to detect the format of the dissem-
ination paths. To this effect, the testbed exploits traceroute,10 a
tool which reports the intermediate hops in the dissemination
path, allowing for a refined assessment of the performance,
e.g., studying the performance versus the path length, or
exploring the stability and responsiveness of routing protocols
during network load oscillations.

f) ssh and netcat: The controller remotely executes local
commands at the testbed nodes via the SSH and netcat11 tools.
While SSH natively supports remote command execution, it
also induces performance overhead due to the requirement
to secure the communication, hence is preferable when the
performance requirements are loose, such as configuring nodes
before the measurement. Netcat is a minimalistic networking
tool, in the sense that it merely opens a TCP or UDP socket
that can carry text, and it is light and fast but also costlier
to implement; in order to remotely execute a command, the
controller must explicitly implement the opening (and closing)
of sockets, the translation of the received “text” to local
commands, as well as port-multiplexing and process forking
techniques to support non-blocking communication. Netcat is
exploited in functions that are time-critical, such as taking
measurements.

E. Below the waist: Operation

Having specified the hardware and software aspects of the
testbed, we next describe the operation of two core functions.

a) SM measurement: A SM measurement is carried out
in three consequent steps. First, the controller parses the SM
to be measured and kills any pending or stalled iperf processes
at the involved nodes in order to ensure the atomicity of each
measurement. Then, the controller deploys the iperf servers,
then it deploys the iperf clients and the associated transport
of data, and finally waits until the connections end. At the
third phase, the controller pulls the results, that are temporarily

10https://linux.die.net/man/8/traceroute
11https://linux.die.net/man/1/nc

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

stored at the receiver nodes, and updates the appropriate local
log files. In order to ensure the simultaneous activation of
all involved iperf clients, the controller spawns a parallel
background process per client node; each process deploys the
appropriate connection from the client node to the sender node.
We measured the deployment latency between the 1st and the
20th links in 20-links TMs through monitoring the packets
at the controller NIC, and the result over 100 deployments
of different TMs was 46 ms on average. To further mitigate
any impact of the deployment latency, we randomly shuffle
the deployment order of the links at each measurement, thus
distributing the impact of the latency uniformly to all links.

b) Topology discovery: As part of the network monitor-
ing, a mechanism is in place for tracking the network topology
on demand, independently of the operation of the routing
protocol. Discovering the existing links in large topologies can
be hard, since the number of candidate links is N(N−1) for N
network nodes. As a rule of thumb, for each node pair, 5 ICMP
messages are sent consecutively with 0.2 s inter-transmission
rate and a 0.5 s waiting period for the last ICMP message; 0, 1-
3, and 3-5 responses indicate no connective, poor connectivity
and good connectivity, respectively. We accelerate the process
by simultaneously pinging all other nodes from one node at a
time.

F. Above the waist: Emulation

Operators of the testbed can use the API, as described in
Section III-B, in order to initiative successive SMs specified
by the experiment they have designed, measuring the actual
throughputs of the SMs but emulating those parts of their
setup that exist above the transport layer. The emulation allows
the fast and accurate performance evaluation of protocols,
as it allows the execution in the testbed of that aspect of
the experiment that cannot be emulated accurately, i.e., the
transport of data under interference conditions.

As a first, implemented, example of this mixed testbed
architecture, in [2] we have used the API to calculate the
CR of a 16-node network by running off-site the Sequential
Expansion Algorithm, described in detail in [2].

As a second, also implemented, example, in [2] we have also
developed the Network-Wide Time Division Protocol, which
accepts as input the calculated CR and executes a network-
wide time division, in which time is divided in frames, and
each frame is divided in slots during which a specific TM is
activated. The testbed was used for evaluating the performance
of the proposed scheme, by measuring the throughputs of each
TM using the API, but the transport of data was emulated
centrally by a high-level programming language, as opposed
to being executed in the testbed.

As other potential examples of using the architecture, the
testbed can be used to provide accurate throughput mea-
surements needed in the design and analysis of blockchain
networks [14] or networks performing federated learning [15].

One potential optimization of this approach is to maintain,
above the waist, a data bank of past measurements and recycle
them, when this does not affect the integrity of the results. For

example, an experiment can run multiple times, for different
sets of protocol parameters, and for each experiment measure-
ments taken in past experiments may be reused, at most once,
provided conditions in the network have not changed.

IV. EVALUATION

In this section we examine the efficiency of the testbed in
making SM measurements timely, accurately, and consistently
and then we discuss our findings from conducting a few sets of
measurements in conditions of interest. If not stated otherwise,
the default configuration parameters are that the RTS/CTS
handshake is not activated, the CUBIC variant of TCP is
selected, the duration of TCP flows is 3 s, and a channel in
the 2.4 GHz frequency band is used.

A. Measurement latency

We first examine the latency that is introduced by the testbed
when measuring the throughputs of a SM. This latency com-
prises two parts, the setup latency and the assessment latency.
As we are especially interested with the latency associated
with computing CRs, in this section we limit ourselves to
single-link streams, and therefore TMs instead of SMs.

a) Setup latency: This quantity captures the latency due
to the orchestration of a single measurement. We detect two
time-consuming functions: waiting for the deployment of iperf
servers before launching the iperf clients and waiting for the
termination of iperf flows before fetching the results.

First, server deployment should precede client deployment
in order to avoid connections being rejected. Adding a deploy-
ment delay is preferred from the alternative solution, which is
to keep servers persistently active, since the latter penalizes the
atomicity of the measurements and, in turn, their credibility;
in practice, a 0.5 s delay is found to be effective for 20-link
TMs.

Second, pulling the results from the nodes can be time-
consuming. The controller must instantly pull data from all
the clients over the wireless control plane network in order to
minimize the latency in the response of the API. This can
lead to packet bursts and, in turn, connection failures that
the controller overcomes through redundancy (redundant data
pull requests and responses) and a timer-based retransmission
mechanism with a 0.3 s time frame. An additional issue
arises when the iperf connections terminate past the specified
measurement duration, thus slightly delaying the report of the
overall transmission rate. To address this issue, the controller
enables iperf’s periodic transmission rate reporting (1 s period)
and, without any additional delay, pulls the latest reported
measurement in case iperf has not finished in time.

We evaluate the set-up latency by deploying 100 TMs of 1 s
duration consecutively, excluding any processing in between.
We measure the overall completion time, subtract the duration
of the actual measurements, that is 100 s, and then divide it
by the number of TMs, that is 100. We repeat the experiment
for TMs with 1, 10 and 20 links and present the results in
Table. I. Again, the overhead increases with TM size, verifying
that organizing efficiently the measurement of larger TMs is

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

TM size (links) 1 10 20
Setup latency (s) 1.03 1.98 3.03

Table I
SETUP LATENCY FOR TMS OF DIFFERENT SIZES.

indeed a hard task. The orchestration of 20 streams over a
wireless best-effort network is challenging, and this fact must
be taken into account by the users of the testbed.

b) Assessment latency: This quantity captures the latency
needed for the method that estimates stream throughputs (in
our case using iperf and TCP) to arrive at accurate measure-
ments. Assessing the throughput at “steady state”, or when
performance have been stabilized, is critical for the soundness
of any measurement, hence it is important to discover the
shortest TCP connection that delivers results consistently.
Thereupon, we measure a set of 50 TMs by deploying TCP
flows for different time periods, namely, 1, 2, 5, 10, 15 and
30 s, and search for the point that overall throughput stabilizes.
We repeat the experiment for 4 different sizes of TMs and
plot the results in Fig 2. The results reveal that throughput
converges after a 3 s measurement time frame regardless of
the TM size, thus suggesting that 3 s is the shortest connection
to measure transmission rate consistently.

To further investigate the consistency of measurements,
we explore the Relative Standard Deviation (RSD), i.e., the
standard deviation divided by the mean, of link and TM
throughputs; a TM throughput is the sum of the throughputs
of the links in the TM. We generate 20 random TMs of three
different sizes, namely, 1, 5 and 10 links, and we repeat
the measurement 10 times. Fig. 3 presents the results for
measurements of different time periods, namely, 1, 2, 5, 10,
15 and 30 s. First, we observe that the link RSD increases
as TM size increases regardless of connection duration, while
the TM RSD is not significantly affected, thus revealing that
the overall TM performance can be consistently estimated but
the resources allocated to the individual TCP flows are more
random. Second, for single-link TMs, a longer connection
duration delivers more consistent performance reports, and
indeed the RSD of 1 s connections present far greater RSD
than longer connections. Third, a striking outcome of this
experiment is that the link RSD is remarkably large, and does
not decrease at all with the duration of the experiment, for
larger-sizeds TMs. This suggests that the link throughputs
are not ergodic, in the sense that time averages over long
measurements are not equal to ensemble averages taken over
multiple measurements. Similarly to the previous finding, we
consider 3 s the “sweet spot” between consistent and fast
measurements.

B. Effect of wireless channel

We investigate the impact of the used frequency band
on data plane performance of the testbed. The selection
of the channel in the testbed is direct, through the net-
work configuration file of the Raspberry Pis, namely, file
/etc/network/interfaces. We compare channels 10 and 40 at

Figure 2. Mean link throughput of TMs for connections with different
duration, namely, 1, 2, 5, 10, 15 and 30 s.

Figure 3. Mean link and TM RSD for connections with different duration,
namely, 1, 2, 5, 10, 15 and 30 s.

2.4 and 5.2 GHz, respectively, since they are the least-used
channels near our testbed. In Fig. 4, we plot the connected
pairs of nodes for the two cases. As expected, the connectivity
of the network is penalized by using a higher transmission
frequency, due to the larger associated signal attenuation, thus
resulting in a less dense topology.

We also explore how frequency selection can affect the
mean and RSD of link throughputs. We generate 100 random
TMs for three TM sizes (1, 5 and 10 links) and we repeat the
measurement of each TM 10 times, using 3 s TCP flows at
2.4 and and 5.2 GHz. Fig. 5 presents the results normalized to
the maximum measured value, which is 43 Mbps and 66% for
throughput mean and RSD, respectively. The figure suggests
that the 5.2 GHz band offers a significantly higher throughput
with substantially less variability. The RSD reduction observed
at the 5.2 GHz band becomes less apparent as the TM size

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Figure 4. Network connectivity using different Wi-Fi channels, namely, 10
at 2.4 GHz and 40 at 5.2 GHz (subfigures a and b, respectively). Spheres
and lines denote nodes and reachable pairs, respectively.

Figure 5. Mean and RSD of link throughput for TMs of different sizes at
2.4 GHz and 5.2 GHz. Results are normalized to the maximum measured
value (43 Mbps and 66%, respectively).

grows, albeit still significant for TMs of 10 links (roughly 17%
reduction of RSD). Finally, RSD increases with TM size re-
gardless of the channel, unveiling again that flow competition
challenges the convergence of individual link throughputs.

C. Binarity of interference

Interference between links is often taken to be binary,
i.e., two links either do not interfere at all, or interfere so
much that only one of them can be active at any time. This
assumption has often been adopted in network models, as it
allows interference to be modeled in terms of a graph [8].

An interesting question, therefore, is whether interference
is really binary in our testbed. To that effect, we have per-
formed the following experiment in a network comprised of
16 nodes communicating over a 2.4 GHz channel with the
RTS/CTS mechanism activated. We found all links capable of
transmitting with a rate of at least 3 Mbps when not interfered
with, and, for each pair of such links, we plotted a point in
the scatter plot of Fig. 6, at the location(

Ri,j

Ri
,
Rj,i

Rj

)
,

Figure 6. Interference between pairs of links.

where Ri and Rj are the throughputs of links i and j respec-
tively, when they are the only active ones, and Ri,j and Rj,i

are the throughputs of the links of i and j respectively when
both are active, and no other link is active. All transmissions
were for 15 s. In order to keep the number of points on a
manageable level, we only considered links that do not share
nodes, and for each receiver its own transmitter is closer than
the interfering transmitter. The scatter plot contains 864 points,
of which 30 are outside the plotted area [0, 1.5]× [0, 1.5].

A number of comments are in order. First, note that many
of the points lie outside the Cartesian product [0, 1] × [0, 1],
due to variability of the measurements, consistent with the
findings of Section IV-A. Second, note that if IEEE 802.11
was capable of performing perfect time division, there would
have been no points below the line connecting points (0, 1)
and (1, 0). However, numerous points are, in fact, below that
line, suggesting a very poor time division; in fact, there is
a concentration around the point (0, 0), suggesting that in
numerous instances IEEE 802.11 failed altogether. Third, there
are numerous points concentrated around the points (1, 0) and
(0, 1) corresponding to cases where a strong link completely
dominates a weaker one. Fourth, there is also a concentration
of points around the point (1, 1), corresponding to non-
interfering links. Finally, there are quite a few points uniformly
spread in the triangle between the points (1, 0), (0, 1), and
(1, 1); all these correspond to links that interfere partially.
Therefore, we can state that, in this setup, and contrary to
the common assumption, interference is not binary.

D. Effect of RTS/CTS

The Request To Send / Clear To Send (RTS/CTS) mech-
anism of IEEE 802.11 can influence network performance

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Figure 7. Mean link throughput of TMs of different sizes using RTS/CTS
with different thresholds.

especially in dense wireless networks, since it can reduce
frame collisions in case of hidden terminals, but also cause
some performance degradation, in the opposite case, due to
the exchange of additional control packets. By default, the
mechanism is disabled in the network nodes of our testbed,
but its activation is straightforward using the iwconfig config-
uration tool.12 Fig. 7 depicts the mean link throughput of TMs
of different sizes for different packet size thresholds on which
the RTS/CTS mechanism is activated. The results show that
the mechanism can be detrimental for performance when flow
competition is weak (TM size 1, 5) but starts offering gains
when many links are simultaneously active (TM size 10, 20).

We also investigate the impact of the mechanism on mea-
surement consistency by taking 20 consecutive throughput
measurements of randomly generated TMs of different sizes
with and without RTS/CTS and measuring the RSD and
average of the link throughputs; the results offer similar
conclusions with results from previous experiments, hence
we refrain from discussing all data, and instead focus on
the most affected (by RTS/CTS) TM size, single-link TMs.
Table II presents the results of 104 TM measurements. TMs
are categorized in four groups: all TMs, TMs with RSD less
than 10%, 10-20% and greater than 20%. We can, therefore,
explore separately the performance of the most, the moderately
and the least consistent TMs, respectively. First, the results
indicate that RTS/CTS reduces RSD by roughly 10% in all
measurements, and thus can significantly enhance the consis-
tency of measurements. Second, the greatest improvement is
presented at the least consistent TMs where RSD is reduced to
38% from 55%. It is worth indicating that the least consistent
TMs constitute roughly the 33% of the TMs in this experiment
and present the lowest transmission rate, achieving roughly
the 68% of the mean performance measured of all TMs, thus
revealing a correlation between low throughput and high RSD.

E. Effect of TCP flavors

The throughput of any TCP connection depends on the
congestion control algorithm that is used. Currently, CUBIC
TCP [16] is the default algorithm for Linux-based nodes,
however algorithms that are specifically tailored for wireless

12https://linux.die.net/man/8/iwconfig

RTS/ RSD RSD RSD RSD
CTS 0− 100% < 10% 10− 20% > 20%

TM ON 100 48.9 19 31.9
number (%) OFF 100 38.4 22.6 38.8
Average ON 16.4 4 11.3 38.3
RSD (%) OFF 26.1 4.7 11.9 55.4
Norm. (%) ON 100 124.9 80.1 67.8
Throughput OFF 100 129.5 90.4 69.1

Table II
RSD AND THROUGHPUT WITH/WITHOUT RTS/CTS.

Figure 8. Mean link throughput of TMs of different sizes using CUBIC and
Westwood congestion control algorithms.

mediums, such as Westwood [17], can have a measurable
impact on the network performance of the testbed. Thereafter,
we compare the CUBIC and WestWood algorithms in our
testbed by measuring the same TMs and present the result in
Fig. 8. The figure does not reveal a significantly performance
advantage of any algorithm regardless of TM size.

F. Testbed isolation

Placed at an AUEB building where uncontrolled IEEE
802.11 networks are available to students and personnel, the
data plane network of the testbed may potentially suffer from
interference by those networks that operate in overlapping
frequency bands. A constant interference is not considered
concerning since it implicitly shapes the testbed characteristics
but, being static, it does not invalidate the measurements. On
the other hand, a temporarily dynamic interference can lead
to inconsistent measurements and, in turn, invalid conclusions.
Therefore, we study the performance of all network links
throughout a week, focusing on three different time zones:
working days and hours (Monday to Friday 9:00-21:00),
when the building is open for students, off-hours (Monday to
Friday 22:00-8:00), when the building is empty, and weekends,
when the building is very thinly populated. During a 7-days
period, we periodically discover active links and measure their
throughput (every 75 minutes). The results are presented in
Fig. 9, where we plot the standard deviation and the mean
throughput of the 230 links with the highest availability; the
links are plotted in ascending order based on their performance
to make the results easier to read. Although we observe
that the throughput and resilience during the weekends is
slightly better, the differences are considered too small to

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Figure 9. Standard deviation of link throughput during campus working hours
(9:00-21:00), off hours (22:00-8:00) and the weekend.

make a difference, thus indicating that the testbed performs
consistently in time.

V. CHALLENGES

In this section, we discuss some important challenges that
have affected the design and operation of the testbed, and
have been addressed in varying degrees; more thoroughly
addressing these challenges, in order to expand the capabilities
of the testbed, is part of future work.

A. Isolating the data network

The results of our preliminary evaluation (Section IV-F)
show that the performance of the testbed is relatively con-
sistent between different days or different parts of the day,
hence the impact of potentially interfering transmissions is not
apparent. Therefore, the conduction of the same experiment
is expected to produce the same result regardless of the
operation time frame. Nevertheless, given that the surrounding
environment is uncontrolled, a periodic automated check of the
surrounding conditions is needed.

B. Synchronizing link activation

As discussed in Section III-A, achieving instant deployment
of multiple links in different parts of the network is a very hard
problem. Indeed, the centralized nature of the controller is
susceptible to an inherent bias present on the control network
locations of nodes; even if commands are emitted instantly
from the controller, the nodes that receive information from
the controller faster (in the control network) will also start their

transmissions faster. We have explored this bias by sending
ICMP packets from the controller to the nodes and found
that the least and maximum round trip latency are 3.2 and
8.2 ms, respectively, and so the resulting maximum one-way
deployment advantage can be roughly (8.2−3.2)/2 = 2.5 ms.
Although this value can be devastating when operating in the
order of microseconds, it is far less significant when measuring
link performance in the order of seconds.

To improve synchronization, we could resort to a distributed
design wherein the schedule of link activations is delivered,
through the control channel, to the network nodes (who would
have to be equipped with accurate synchronized clocks) that
then perform independently the actions prescribed for them by
the schedule.

This distributed approach fits better with deployments in
which transmission durations are on the order of microseconds
and the communication latency of the network should be
below that level. Indeed, related work suggests that TDMA
can be enabled with commodity hardware [18], [19]. In a
purely centralized design of TDMA, where the controller
directs the nodes in real-time by sending explicit commands,
the process seems impractical considering current hardware.
However, in a hybrid design, where the controller directs the
nodes pro-actively, that is, sends a bundle of time slots along
with their execution times and rests its confidence on nodes
to distributively get synchronized and execute the received
commands in the scheduled time, the process is very likely
to deliver better results.

C. Adding passive measurements

In this paper, we consider active measurements where
traffic stream throughputs are measured by deploying dedi-
cated streams through a central controller, instead of passive
measurements where the throughputs of traffic streams created
not by the controller, but by other applications, are measured
opportunistically. Expanding the testbed in this direction is
feasible, but would require the development of a centralized
monitoring tool akin to our controller. While the passive
approach presents no temporal overhead, the active approach
offers a direct and more controlled assessment of link charac-
teristics, which might be a prime requirement for the operator.
Nevertheless, we expect that a hybrid measurement pattern that
exploits both techniques is expected to offer the most gains,
therefore is considered an important area for future work.

D. Handling errors

When experimenting with real software on real, inexpensive
devices, it is inherently expected to face failures, due, e.g., to
bugs and malfunctioning. In particular, during the development
of the testbed, erroneous TCP connections were frequent.
Four different errors were documented, each arising from
a different cause: when the server node is not reachable,
iperf would return “No route to host” message; when iperf
failed to establish a connection, iperf would report “Operation
now in progress” message; when one iperf application did
not start due to control-plane failure, the iperf log would

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

be empty; finally, under unknown conditions, iperf would
report spurious results (exceeding 70 Mbps). All these issues
are automatically addressed by the controller who rejects the
measurement and repeated it.

E. Wired control plane

Connecting the controller and the nodes through wired
connections is an obvious measure to reduce setup latency
(Section IV-A). Nevertheless, the use of wired connections
severely penalizes the portability of the testbed, complicating
topology changes and challenging the testbed’s support of
node mobility.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced TWIST, a testbed specifically built for
supporting research on the interference experienced by com-
peting wireless streams and, as a special case, the estimation
of capacity regions in wireless networks.

In our evaluation of the testbed we assess thoroughly the
temporal overhead of taking measurements. Notably, TWIST
requires only 5.4 s for an accurate 10-link TM measurement
(2.4 s overhead and 3 s measurement period to get credible
transmission rate assessment), which correspond to around
90 minutes to exhaustively measure every TM in a 10-
link topology. However, repeated measurements of the same
TM display significant variability, especially when the TM
involves multiple competing links, the RTS/CTS mechanism
is deactivated, and the channel used is in the 2.4 GHz band,
even when the measurement lasts much longer (see Fig. 3);
this variability is not due to how we take measurements, but
a feature of the PHY/MAC layer used in the testbed, which
should be taken into account when designing protocols. Other
important findings are that the interference in the testbed is not
binary, in many cases IEEE 802.11 fails to prevent collisions,
even in the case of two links with the RTS/CTS mechanism
activated, and that the CUBIC and Westwood flavors of TCP
perform very similarly.

The thin-waist architecture of TWIST allows its straightfor-
ward usage in addressing a variety of research problems. Other
researchers can use the testbed remotely, or can make use of
the extended data sets that have been created by the testbed,
or can adopt its thin-waist architecture in their testbeds.

Various avenues for future work are open, some already
discussed. Most importantly, first, it is clear that passive mea-
surements can accelerate the measurement process, however
their accuracy and their use together with active measurements
needs to be further investigated. Second, the hybrid operation
where the controller pro-actively sends a TM deployment
schedule and the clock-synchronized nodes materialize it
distributively is expected to reduce the setup latency of the
testbed, however it remains to be answered whether such a
scheme can enable a microsecond-level TDMA traffic sched-
ule. Finally, alternative protocols may be implemented in the
MAC/PHY layer, notably IEEE 802.11ax; in this case, a
particular topic to investigate is the extend to which it achieves
its main goal of enhancing the throughput-per-area [20].

ACKNOWLEDGMENT

The research project was supported by the Hellenic Founda-
tion for Research and Innovation (H.F.R.I.) under the “1st Call
for H.F.R.I. Research Projects to support Faculty Members
& Researchers and the Procurement of high-cost research
equipment grant” (Project Number: HFRI-FM17-352, Project
Title: Wireless Mobile Delay-Tolerant Network Analysis and
Experimentation, Project acronym: LEMONADE).

REFERENCES

[1] Y. Thomas, N. Smyrnioudis, and S. Toumpis, “Experimental measure-
ment of the capacity region of wireless networks,” in Proc. WiOpt, 2021,
pp. 1–8.

[2] Y. Thomas, S. Toumpis, and N. Smyrnioudis, “Estimating and utilizing
wireless network capacity regions,” 2022, submitted for publication,
https://mm.aueb.gr/lemonade/papers/2022CRsubmission.pdf.

[3] S. Sharma, S. Urumkar, G. Fontanesi, B. Ramamurthy, and A. Nag,
“Future wireless networking experiments escaping simulations,” Future
Internet, vol. 14, no. 4, p. 120, 2022.

[4] T. R. Newman, A. He, J. Gaeddert, B. Hilburn, T. Bose, and J. H. Reed,
“Virginia tech cognitive radio network testbed and open source cognitive
radio framework,” in PRoc. TRIDENTCOM, 2009, pp. 1–3.

[5] M. Danieletto, G. Quer, R. R. Rao, and M. Zorzi, “CARMEN: a cogni-
tive networking testbed on android os devices,” IEEE Communications
Magazine, vol. 52, no. 9, pp. 98–107, 2014.

[6] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and P. De-
meester, “The w-iLab.t testbed,” in Proc. Tridentcom, 2010, pp. 145–154.

[7] P. Bonte, F. Ongenae, J. Nelis, T. Vanhove, and F. De Turck, “User-
friendly and scalable platform for the design of intelligent IoT services:
a smart office use case,” in Proc. ISWC, 2016, pp. 1–4.

[8] T. Salonidis, G. Sotiropoulos, R. Guerin, and R. Govindan, “Online
optimization of 802.11 mesh networks,” in Proc. CoNEXT, 2009, pp.
61–72.

[9] J. Struye, B. Braem, S. Latré, and J. Marquez-Barja, “The citylab
testbed—large-scale multi-technology wireless experimentation in a city
environment: Neural network-based interference prediction in a smart
city,” in Proc. IEEE INFOCOM (WKSHPS), 2018, pp. 529–534.

[10] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu et al., “Challenge:
COSMOS: A city-scale programmable testbed for experimentation with
advanced wireless,” in Proc. MOBICOM, 2020, pp. 1–13.

[11] Z. Zhang, “ZCNET: Achieving high capacity in low power wide area
networks,” in Proc. MASS, 2020, pp. 702–710.

[12] U. Bhattacherjee, E. Ozturk, O. Ozdemir, I. Guvenc, M. L. Sichitiu, and
H. Dai, “Experimental study of outdoor UAV localization and tracking
using passive RF sensing,” in Proc. WINTECH, 2022, pp. 31–38.

[13] E. Aliaj, G. Dimaki, P. Getsopoulos, Y. Thomas, N. Fotiou, S. Toumpis,
I. Koutsopoulos, V. Siris, and G. C. Polyzos, “A platform for wireless
maritime networking experimentation,” in Proc. GIIS, 2018, pp. 1–6.

[14] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas, “Stochastic
models and wide-area network measurements for blockchain design and
analysis,” in Proc. IEEE INFOCOM. IEEE, 2018, pp. 2546–2554.

[15] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE Journal on Select. Areas Commun., vol. 37,
no. 6, pp. 1205–1221, 2019.

[16] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64–74, 2008.

[17] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Mas-
colo, “TCP westwood: Congestion window control using bandwidth
estimation,” in Proc. IEEE GLOBECOM, vol. 3, 2001, pp. 1698–1702.

[18] Z. Yang, J. Zhang, K. Tan, Q. Zhang, and Y. Zhang, “Enabling TDMA
for today’s wireless LANs,” in Proc. INFOCOM, 2015, pp. 1436–1444.

[19] S. Zehl, A. Zubow, and A. Wolisz, “hmac: Enabling hybrid TDMA/
CSMA on IEEE 802.11 hardware,” arXiv preprint 1611.05376, 2016.

[20] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on
IEEE 802.11ax high efficiency WLANs,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 197–216, 2019.

ACCEPTED IN WOWMOM 2023
© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

	Introduction
	Related Work
	Wireless testbed research
	Capacity region research

	Thin-waist Wireless Interfering traffic Streams Testbed (TWIST)
	Testbed goal and requirements
	The waist: Testbed as a service
	Below the waist: Infrastructure / Hardware
	Below the waist: Logic / Software
	Below the waist: Operation
	Above the waist: Emulation

	Evaluation
	Measurement latency
	Effect of wireless channel
	Binarity of interference
	Effect of RTS/CTS
	Effect of TCP flavors
	Testbed isolation

	Challenges
	Isolating the data network
	Synchronizing link activation
	Adding passive measurements
	Handling errors
	Wired control plane

	Conclusions and future work
	References

