

M.Sc. Thesis

“Analysis and Prevention of Attacks in Modern Authentication Methods”

Author: Theodorakos Iasonas

Supervisor: Dr. G. Xylomenos

MSc in Information Systems

Development & Security

Athens University of Economics and

Business

2

Abstract

As the digital landscape continues to evolve, ensuring robust security for user accounts has become a

paramount concern. This thesis presents a comprehensive investigation into the vulnerabilities of

contemporary authentication methods, along with an in-depth examination of the corresponding

countermeasures. The research specifically delves into techniques employed by attackers to bypass

Multi-Factor Authentication (MFA), critically evaluating the efficacy of various countermeasures.

The study commences with an exploration of prevalent authentication methods, ranging from

traditional username-password combinations to biometric and token-based solutions. A systematic

analysis of each method reveals inherent strengths and weaknesses, shedding light on the potential

attack vectors that threat actors may exploit. Subsequently, a focus on Multi-Factor Authentication

elucidates how its multi-layered approach aims to enhance security, but not without potential pitfalls.

To comprehensively understand the landscape of attacks, a rigorous assessment of attack techniques

targeting MFA is conducted. This includes, but is not limited to, phishing and token interception. Each

technique is deconstructed to reveal the underlying mechanisms and their potential to undermine

security. Drawing from real-world case studies and simulations, the study highlights the evolving nature

of attacks, their sophistication, and the alarming success rates achieved by determined attackers.

The core of the research centers on evaluating countermeasures that mitigate the identified

vulnerabilities. The efficacy of existing solutions such as behavioral biometrics, adaptive authentication,

and risk-based analysis is critically examined. The research culminates in an extensive exploration of the

FIDO2 authentication protocol. This protocol, built upon public-key cryptography and designed with the

goal of eliminating common attack vectors, is rigorously evaluated for its capacity to bolster account

security. Real-world implementation examples and comparative analysis against other methods

demonstrate the advantages of FIDO2.

In conclusion, the findings of this thesis underscore the evolving threat landscape and the pressing need

for robust authentication methods. The critical assessment of attack techniques emphasizes the

vulnerabilities that persist even in multi-layered security approaches. Ultimately, the research validates

FIDO2 as a potent countermeasure, offering a strong foundation for secure account authentication.

However, the study also acknowledges the necessity of continued vigilance and adaptation, as the

dynamic nature of cybersecurity demands ongoing innovation to stay ahead of malicious actors.

3

Acknowledgments

I would like to express my sincere gratitude and appreciation to all those who have contributed to the

completion of this master thesis. This journey has been a significant learning experience, and I am

deeply thankful for the support, guidance, and encouragement I have received along the way.

First of all, I would like to take this opportunity to express my profound gratitude to my dear family for

their constant support and encouragement without which study would be impossible.

I would like to express my deepest appreciation to my supervisors Dr. G. Xylomenos and Dr. Fotiou for

their exemplary guidance and encouragement throughout the research procedure.

I am also obliged to staff members and colleagues of AUEB for the valuable academic information and

resources provided to conduct my thesis.

This thesis would not have been possible without the collective efforts and support of all those

mentioned above. While I may not be able to name everyone individually, please know that your

contributions, no matter how small or significant, are deeply appreciated.

Thank you all for being a part of this academic journey and for helping me reach this milestone in my

education and research.

4

Table of Contents

Chapter 1 - Introduction .. 6

1.1 Background and Motivation ... 6

1.2 Objectives of the Thesis ... 6

1.3 Structure of the Thesis ... 6

Chapter 2 - Authentication .. 8

2.1 Definition of authentication ... 8

2.2 The rise of account takeovers (ATO) ... 9

2.3 Authentication methods .. 11

2.3.1 The OAuth scheme .. 11

2.3.2 Operation of OAuth 2.0 ... 11

2.3.3 Multi-factor authentication ... 16

2.3.4 Session-Based Authentication ... 20

2.3.5 Web Token Based Authentication ... 21

2.3.6 Push Notification ... 21

2.3.4 Passwordless authentication ... 22

Chapter 3 - Authentication Vulnerabilities ... 24

3.1 Causes and impact of vulnerabilities .. 24

3.3 Password-based Authentication Vulnerabilities .. 26

3.4 Multi-factor authentication vulnerabilities ... 29

3.4 OAuth 2.0 authentication vulnerabilities .. 30

Chapter 4 - MFA Attack Techniques ... 32

4.1 Reverse – proxy phishing with Evilginx2 ... 32

4.1.1 Evilginx Installation ... 33

4.1.2 Evilginx configuration .. 34

4.1.4 An Evilginx2-based Proof of Concept ... 35

4.1.5 Forensic Findings ... 40

4.2 Phishing with Modlishka Reverse HTTP Proxy... 42

4.3 Bypass 2FA with a brute-force attack ... 49

4.4 Reset/Forgotten Password disables MFA ... 58

4.5 Bypass 2FA with null or 000000.. 58

4.6 Bypass 2FA using “memorization” .. 59

5

4.7 Bypassing 2FA using HTTP Response Body Manipulation .. 59

Chapter 5 - Defense and Prevention of Authentication Vulnerabilities ... 61

5.1 Security Policy Recommendations .. 61

5.2 Recommendations for MFA ... 62

5.3 Passwordless Authentication ... 64

5.3.1 FIDO2 Authentication .. 64

5.3.2 Microsoft Authenticator Solution .. 68

5.4 Consumer Authentication Strength Maturity Model (CASMM) ... 70

5.5 Conclusion ... 73

References .. 74

6

Chapter 1 - Introduction

1.1 Background and Motivation

The rise in cyber threats, particularly those that target authentication techniques, has been triggered by

the growing integration of digital technologies into our daily lives. As individuals and organizations

entrust an expanding array of sensitive data to online platforms, the critical importance of robust

authentication mechanisms becomes evident. This thesis delves into this landscape by conducting a

meticulous examination of vulnerabilities inherent in authentication methods and techniques aimed at

circumventing Multi-Factor Authentication (MFA).

By comprehensively analyzing diverse attack vectors and vulnerabilities, this research not only highlights

the potential risks but also emphasizes the pressing need for effective countermeasures. Through this

exploration, the motivation lies in contributing to the advancement of secure authentication systems,

ultimately culminating in the endorsement of FIDO2, which stands as the most robust and effective

solution for enhancing account security in the face of evolving cyber threats.

1.2 Objectives of the Thesis

The primary objectives of this thesis are to systematically identify, analyze, and categorize vulnerabilities

that exist within various authentication methods, with a particular focus on the techniques used to

bypass Multi-Factor Authentication (MFA). By meticulously examining real-world cases and simulated

scenarios, this research aims to provide a comprehensive understanding of the evolving threat

landscape that surrounds authentication systems. Furthermore, this thesis aims to critically evaluate the

efficacy of different countermeasures employed to address these vulnerabilities and thwart potential

attacks.

1.3 Structure of the Thesis

The analysis maintains a predetermined framework to provide a seamless reading experience.

Chapter 2 functions as an introductory gateway into the domain of authentication methods,

encompassing a wide range of relevant information that spans from fundamental concepts to intricate

methodologies.

Building upon this foundational knowledge, Chapter 3 conducts an extensive exploration of the intricate

vulnerabilities inherent within authentication methods.

7

Progressing further, Chapter 4 delves into a comprehensive examination of the techniques involved in

exploiting these authentication methods, revealing the methodologies employed by malicious actors to

bypass security measures like Multi-Factor Authentication (MFA).

Lastly, Chapter 5 brings all the threads together, providing a conclusive synthesis of the thesis. This

chapter not only encapsulates the research findings but also presents a set of proactive measures

relevant to the subject matter, intended to preempt any attempts at exploiting authentication methods.

With an unwavering focus on bolstering user account security, this chapter underscores the

endorsement of FIDO2 implementation as a pivotal stride toward safeguarding user data within the

digital landscape.

8

Chapter 2 - Authentication

2.1 Definition of authentication

Authentication involves confirming the identity of a specified user (or a client acting on behalf of the

user), essentially ensuring that individuals (or clients) are indeed the entities they assert to be. Public

websites are intentionally made available to anyone with an internet connection, therefore reliable

authentication methods are a crucial component of web security. Authentication methods can be

divided into three categories: [1]

▪ Something you know: A password or the response to a security question that only the user

knows. These are referred to as "knowledge factors".

▪ Something you possess: A physical item like a security token or a cell phone. These are also

known as "possession factors".

▪ Something you are: Examples include biometrics or patterns of conduct. These are referred to as

"inherence factors".

To validate one or more of these characteristics, authentication systems use a variety of methods.

Difference between authentication and authorization

Authentication entails confirming that a user is who they say they are, whereas authorization requires

confirming that a person has the right to do something.

In the context of accessing a website or web application using the username John123, the process of

authentication serves to confirm the true identity of the user associated with the John123account. After

successful authentication, the ensuing step involves authorization, which is the determination of

whether John123 possesses the appropriate permissions to carry out specific actions such as deleting

another user's account or accessing personal information of other users.

9

2.2 The rise of account takeovers (ATO)

Account Takeover (ATO) attacks have increased in recent years, due to the widespread usage of

passwords and the growing sophistication of the methods and techniques used by cyber-criminals.

Hackers utilize a variety of techniques, including phishing, brute force attacks, and credential stuffing, to

access a user's account.

To trick users into disclosing their login credentials, phishing assaults, for instance, sending emails or

messages that look to be from a trustworthy source, such a bank or social media platform. On the other

side, brute force assaults employ automated software to test numerous username and password

combinations until the right one is identified. A brute force attack known as "credential stuffing"

includes utilizing stolen login information from one website to access information previously used by the

user on another website.

An ATO attack may have negative effects that are severe. Malicious actors can leverage a compromised

account not only to gain access to personal information but also to carry out various malicious activities,

including disseminating malware or initiating financial transactions. This can lead to substantial financial

losses, damage to an individual's or an organization's reputation, and potential legal ramifications for

both individuals and businesses.

The following account breach statistics are revealing of the gravity of the problem [6]:

▪ Hackers have published as many as 555 million stolen passwords on the dark web since 2017.

(Cnet, 2020)

▪ 27% have tried to guess other people’s passwords. (Google, 2019)

▪ 17% have managed correct guesses. (Google, 2019)

▪ 80% of hacking incidents are caused by stolen and reused login information. (Verizon, 2020)

▪ 81% of company data breaches are caused by poor passwords. (TraceSecurity)

▪ Hacking attacks using scripts that try to guess usernames and passwords happen every 39

seconds, globally. (WebsiteBuilder.org, 2021)

10

For security reasons, passwords should be different from one another. However, certain passwords or

password variations are so prevalent that hackers can usually exploit them [6].

▪ An investigation revealed that there are around 10 million different ways to use the year 2010

as a password.

▪ The second most-used year in passwords is the year 1987 with almost 8.4 million variations.

(Cybernews, 2021)

▪ 1991 is the third most popular year used in passwords. It has nearly 8.3 million recorded use.

(Cybernews, 2021)

▪ Of the 2.2 billion passwords analyzed, 7% contained curse words. (Cybernews, 2021)

▪ “Ass” is used in 27 million passwords, making it the most popular curse word in passwords.

(Cybernews, 2021)

▪ “Sex” only has over 5 million uses in passwords. (Cybernews, 2021)

▪ The “F” word is present in below 5 million passwords. (Cybernews, 2021)

▪ “Abu” is the most used city in passwords, with 2.3 million iterations. It most likely stands for

UAE’s Abu Dhabi. (Cybernews, 2021)

11

2.3 Authentication methods

2.3.1 The OAuth scheme

OAuth is an authorization mechanism that enables web applications to ask for a user's account on

another application and request restricted access to it. OAuth allows users to grant access to

applications without providing their login credentials to the requesting application. This allows users to

choose the data they want to share rather than giving a third-party complete control of their account.

Implementing third-party functionality that requires access to certain user account data typically

involves using the basic OAuth method. For instance, a computer might use OAuth to request

authorization to access your email contacts list so that it might recommend connections. The same

approach, though, is employed to offer third-party authentication services, enabling users to sign in

using an account they have with another website [3].

It is important to mention that, despite the fact that OAuth 2.0 is the current industry standard, several

websites continue to use version 1a. OAuth 2.0 wasn't directly derived from OAuth 1.0: instead, it was

designed from scratch, therefore the two versions are quite different. When the word "OAuth" is used

below, it refers solely to OAuth 2.0.

2.3.2 Operation of OAuth 2.0

OAuth 2.0 was initially created as a mechanism for programs to share access to certain data. The three

entities defined by OAuth are:

▪ Client application: The application requesting access to the user's information.

▪ Resource owner: The user whose data the client wants to access.

▪ OAuth service provider: The site or server that manages the user’s data.

OAuth processing can be carried out in different ways, known as "flows" or "grant types". The

"authorization code" and "implicit" grant kinds will be the main topics of this discussion, since they are

the most common. In general, both grant types entail these phases:

1. The client application seeks access to a portion of the user's data and specifies the grant type

and level of access it requires.

2. In order to grant the requested access, the user must explicitly log in to the OAuth service and

allow access.

12

3. A special access token is sent to the client application as proof that the user has given it

permission to view the desired data. Depending on the grant type, there are major differences

in how this actually happens.

4. This access token is used by the client application to make API calls and request the necessary

data from the resource server.

OAuth Scopes

The client application must declare the data it wants to access and what kinds of activities it wants to

carry out for any OAuth permission type. It accomplishes this by utilizing the scope parameter of the

OAuth service's authorization request.

For basic OAuth, each OAuth service determines the scopes for which a client application may ask for

access. Since the scope's name is merely an arbitrary text string, different providers may use quite

different formats. Some even utilize a full URI, such as a REST API endpoint, as the scope name.

Depending on the OAuth service used, the scope name could take any of the following forms when the

client application asks for read access to a user's contact list:

scope=contacts

scope=contacts.read

scope=contact-list-r

scope=https://oauth-authorization-server.com/auth/scopes/user/contacts.readonly

The “authorization code” grant type

In this grant type, the client application and OAuth service exchange a series of browser-based HTTP

requests using redirection. The user is prompted to confirm their agreement with the requested access.

If they agree, an “authorization code” is returned to the client application. After exchanging this code

with the OAuth service, the client application will be given an “access token”, which can be used to call

the appropriate APIs and retrieve the necessary user data.

From the code/token exchange onward, all communication is delivered server to server across a secure,

preconfigured back-channel and is, therefore, invisible to the end user. When the client application first

registers with the OAuth service, a secure channel is established. The client application must utilize the

client_secret generated at that moment to authenticate itself when sending these server-to-server

requests.

13

This grant type is quite secure as the sensitive information (the access token and user data) is not

transferred via the browser. If possible, server-side apps should always use this grant type [3].

Figure 2.1: Authorization code grant type workflow

The “implicit” grant type

The implicit grant type is easier to understand than the authorization code grant type. The client

application gets the access token right after the user agrees, rather than first getting an authorization

code and then trading it for an access token. This grant type is less common than the authorization code

grant type due to its reduced security; all communication is done through browser redirection rather

than secure back channels. The user's data and the access token are therefore more vulnerable to

attacks. However, as it is harder to store the client_secret on the back-end for single-page applications

and native desktop programs, in these cases the implicit grant type is preferable [3].

14

Figure 2.2: Implicit grant type workflow

15

OAuth Authentication

OAuth has become a method of user authentication, even though it was not designed for this purpose.

For instance, you may be aware of the option many websites give you to log in using an existing social

media account rather than creating a new account on the particular website. There is a good likelihood

that any time you see this choice, OAuth 2.0 is the foundation.

The OAuth flow for authentication is largely the same; the difference is in how the client application

uses the data it receives. From the viewpoint of the end user, the outcome of OAuth authentication is

similar to SAML-based single sign-on (SSO) in many ways. OAuth for authentication purposes usually

proceeds as follows:

1. The user selects a social networking account option to log in. The client application then makes

a request for access to some data that it can use to identify the user via the social media site's

OAuth service. This might be, for instance, the email address of the account.

2. The client application requests this information from the resource server, generally from a

specific user info endpoint, after getting an access token.

3. Once it obtains the information, the client application logs in the user by using this information

instead of a username. It frequently uses an access token rather than a conventional password,

which it obtained from the authorization server.

16

2.3.3 Multi-factor authentication

Multi-Factor authentication (MFA) requires the user to present more than one type of identification in

order to authenticate with a system, for example, a code received on their cellphone or a fingerprint

scan. Four types of evidence (or factors) are commonly used (note the addition of location, which is

generally not used by itself):

Factor Examples

Something you know Password, PIN, Security Question

Something you have Hardware or Software token, certification, email code, SMS code, phone call

Something you are Fingerprint, facial recognition, iris scan, handprint scan

Location Source IP range and client geolocation

While requiring multiple factors of the same type (for example, a password and a PIN) does not

constitute MFA, it may provide some security benefits over a simple password. In the following sections

we discuss the disadvantage and weaknesses of various types of MFA; however, these may only be

relevant against specific attacks. In general, some type of MFA is better than no MFA at all.

Figure 2.3: How Multi-Factor Authentication works

17

The rationale for using MFA is that user accounts get compromised most often due to weak, re-used or

stolen passwords. Technical measures can reduce but not eliminate these issues, therefore developers

and system administrators should assume that users' passwords will be compromised at some point and

design their system to defend against this. Multi-factor authentication (MFA) is by far the best defense

against most password-related attacks, including brute-force, credential stuffing and password spraying.

Analysis by Microsoft suggests that it can stop 99.9% of account compromises.

The major drawback of MFA is that it is difficult to manage for both administrators and end users. MFA

configuration and use may be challenging for many less technically savvy individuals. There are some

additional frequent problems that are encountered:

▪ Some MFA types require particular hardware from users that incur significant expenses and

administrative difficulties.

▪ If users lose or are unable to use their additional factors, they can have their accounts frozen.

▪ MFA makes applications more complex.

▪ Many MFA solutions rely on external dependencies, which can introduce security vulnerabilities

or single points of failure.

▪ MFA bypass or reset procedures may be vulnerable to attack by hackers.

▪ Some users might not be able to access the application if MFA is required.

The additional factors in MFA each have their own benefits and drawbacks:

• Something you know: The most commonly employed authentication method relies on a factor

known to the user, typically in the form of a password. Its primary advantage lies in its

simplicity, making it accessible for both developers and end users, as it does not require

specialized hardware or intricate integration with other services.

• Something you have: The user has a quality that makes up the second factor. This could be

anything tangible (like a hardware token), something digital (like a private key), or something

based on ownership (a mobile phone number or an email address for one-time verification

codes). If the system is properly constructed, a remote attacker may find it much more difficult

to hack it, but the user will have to carry the authentication factor with them whenever they

wish to use it, increasing their administrative burden. Additionally, the demand for a second

factor may restrict some users' access to a service. For instance, many types of MFA won't be

available to a user if they don't have access to a mobile phone.

18

• Something you are: The last element in the conventional conception of MFA is something you

are, which is one of the users' bodily characteristics (commonly referred to as biometrics).

Because users must have particular hardware, biometrics are rarely employed in web apps.

There are several MFA methods that are commonly used to strengthen security for online accounts and

systems. Here are some of the most popular MFA methods:

1. One-time password (OTP) authentication: This method involves generating a unique one-

time code that is sent to the user's phone or other device, and that must be entered along

with the user's password to gain access.

2. Smart card authentication: This method involves using a physical smart card that contains

the user's authentication credentials, such as a digital certificate or private key.

3. Biometric authentication: This method involves using the user's unique physical

characteristics, such as fingerprints or facial recognition, to verify their identity.

4. Push notification authentication: This method involves sending a push notification to the

user's device that asks them to verify their identity, such as by approving or denying the

login attempt.

5. SMS authentication: This method involves sending a one-time code to the user's phone via

SMS, which must be entered along with the user's password to gain access.

6. Voice recognition authentication: This method involves using the user's unique voice

patterns to verify their identity.

7. Hardware token authentication: This method involves using a physical hardware token,

such as a USB key or security token, that contains the user's authentication credentials.

8. Risk-based authentication: This method involves using machine learning algorithms and

behavioral analysis to assess the risk of a login attempt and determine whether additional

authentication factors are required.

19

The simplest case of MFA is 2FA (Two-Factor Authentication). Although it appears to be a guaranteed

technique to safeguard your account, over time, actual evidence has shown that 2FA schemes may have

a lot of weaknesses. Here are some common vulnerabilities that can affect 2FA systems:

1. Phishing: Attackers can use phishing techniques to trick users into revealing their 2FA

credentials, such as one-time codes or security tokens.

2. Social engineering: Attackers can use social engineering tactics to trick users into giving up

their 2FA credentials, such as posing as a trusted entity or manipulating users into disclosing

sensitive information.

3. SMS interception: Attackers can intercept SMS messages containing one-time codes sent to

users' mobile phones, allowing them to bypass 2FA.

4. Weak passwords: If users have weak passwords, attackers can use password cracking

techniques to gain access to their accounts, even if 2FA is in place.

5. Flaws in the 2FA implementation: If the 2FA system is not properly implemented, attackers

can find vulnerabilities that allow them to bypass or circumvent it.

6. Lost or stolen devices: If a user's device that contains 2FA credentials, such as a smartphone

or security token, is lost or stolen, attackers may be able to use it to gain access to the user's

account.

7. Malware: Attackers can use malware to steal 2FA credentials, such as keyloggers or screen

capture tools that capture users' one-time codes or security tokens.

Many websites employ the code verification method: the developers attach a code confirmation to the

capability of password recovery, confirmation of registration/subscription, additional confirmation of

financial transactions, password change, and change of personal data, among other uses. Additionally,

occasionally 2FA rather than a password or another form of confirmation can be utilized as a wall after

"timing" logout.

20

2.3.4 Session-Based Authentication

In Session-Based Authentication, after a server authenticates the user and establishes a user session, a

session id is stored on a cookie in the user's browser. While the user is logged in, the cookie is sent with

each subsequent request. The server proceeds to verify the user's identification by comparing the

session ID saved in the cookies with the session ID stored in its memory and transmits a response to the

relevant state.

Session-Based Authentication is a pivotal security mechanism in web applications, ensuring user identity

and access control. Key aspects to understand include:

a. Session Creation: After successful login, a session is initiated, creating a unique identifier

(session ID) for the user.

b. Session Management: Session data is stored on the server, maintaining user context during

interactions.

c. Cookies: Cookies hold the session ID, allowing seamless recognition of users across requests.

d. Timeouts: Sessions expire after a set period of inactivity, enhancing security.

e. Session Hijacking: Protect against unauthorized session access; implement mechanisms like

HTTPS, secure cookies, and random session IDs.

f. Session Fixation: Generate new session IDs post-login to thwart attackers fixing their own

session.

g. Logout: Invalidate sessions during logout to prevent unauthorized access.

h. Revoking Sessions: Enable administrators to terminate sessions if needed.

i. Single Sign-On (SSO): Extend sessions across multiple applications for user convenience.

j. Token-Based Alternatives: Consider modern token-based methods like JWT for stateless

authentication.

Understanding these concepts ensures effective session-based authentication implementation,

bolstering application security.

Unfortunately, Session-Based Authentication, while widely used, comes with a lot of disadvantages:

a. Server Overhead: Server-side session management requires resources to maintain session data.

b. Scalability Challenges: Handling sessions across multiple servers can be complex, affecting

scalability.

21

c. Statefulness: Server-side sessions introduce statefulness, hindering load balancing and fault

tolerance.

d. Data Storage: Storing session data can lead to increased data storage requirements.

e. User Experience: Sessions can expire during user interactions, causing inconvenience.

f. Timeout Concerns: Short session timeouts may frustrate users, while longer timeouts could

compromise security.

g. Session Fixation Attacks: Attackers can set session IDs, posing risks if not mitigated.

h. Logout Issues: Ensuring sessions are invalidated upon logout can be challenging.

i. Token-Based Trends: Token-based methods like JWT offer more flexibility and statelessness.

j. Security Risks: If not secured properly, session data may be vulnerable to theft or manipulation.

While Session-Based Authentication remains useful, these drawbacks highlight the need to consider

alternative authentication methods based on the specific requirements of your application.

2.3.5 Web Token Based Authentication

Mobile apps frequently substitute JWT (Java Web Tokens) for authentication sessions. In this case, the

server creates a JWT key and sends it to the client. The client prepends all requests with the JWT header

and stores the JWT (often locally). For each client request, a server verifies the JWT and sends a

response. The primary change from session-based authentication is that the user status is no longer

kept on the server but is now kept on the client end, inside the token. Most contemporary online

programs employ JWT for authentication for things like mobile device authentication.

2.3.6 Push Notification

Push notification works by sending a push message to a secure program on the user's computer to alert

them of an authentication attempt; a positive user response enables authentication of the user. By

often just hitting a button, users can display authentication information and approve or reject the

notification. Any number of communication channels may be used to transmit in-band or out-of-band

notifications. Push notifications authenticate the user by confirming that the user owns the

authentication mechanism registered device, typically a mobile smartphone.

As an alternative to opening and pasting a verification code, push alerts are considerably more pleasant.

Additionally, they contain information on the person trying to log in, such as the kind of device, IP

address, and geographical location. This alerts you if there are any nefarious login attempts. However, a

phone's Internet connection is necessary for push notification authentication. As a result, if none of you

22

have a data connectivity or aren't wired to Wi-Fi, you won't see a login question. Additionally, it is

possible that the data in the notification request will be disregarded and automatically authorized. If you

are not careful, this can lead you to grant access to someone who shouldn't have it.

2.3.4 Passwordless authentication

Although features like MFA are a terrific method to secure your business, consumers frequently

complain about having to handle yet another layer of security. Because the password is removed and

replaced with something you have plus something you are or something you know, passwordless

authentication solutions are more practical.

Passwordless Authentication entails the verification of a user without necessitating the input of a

conventional password or knowledge-based confidential information. This methodology hinges on the

utilization of a key pair, consisting of a personal and a public key. The issuance of the public key

transpires during registration by the authenticating service (be it a remote server, software application,

or website) and is securely stored alongside private keys. Access to this public key is contingent upon the

incorporation of non-password elements such as biometric signatures, hardware tokens, or comparable

alternatives.

In prominent implementations, users are prompted to furnish their public identifiers (e.g., Username,

phone number, email address, or other registered identifiers). Subsequently, the authentication

procedure is consummated by the substantiation of their identity via the accepted authentication

element. Such elements encompass a spectrum of considerations, often categorized into two domains.

Furthermore, select designs can encompass a blend of additional variables, encompassing geographical

location, network addresses, behavioral patterns, and movement.

23

There is a common misconception that passwordless authentication is synonymous with MFA. While

both methodologies harness diverse authentication factors, they diverge in their application. MFA

operates as an added layer of security, layered atop conventional password-based authentication. In

contrast, passwordless authentication dispenses with the requirement for a secret element and

exclusively leverages a secure factor to expedite and reinforce the authentication of

Figure 2.4: Rectangular concept figure Security - Convenient

24

Chapter 3 - Authentication Vulnerabilities

3.1 Causes and impact of vulnerabilities

The majority of weaknesses in authentication processes are caused by either inadequate protection

against brute-force attacks, or by vulnerabilities in the implementation's logic or coding. While logical

errors in a web site may just result in unusual behavior, if the authentication lofic is faulty, the website

may experience security problems [2].

Figure 3.1: Phishing high-level attack scenario

Authentication vulnerabilities may have a very severe impact on the system; if an attacker bypasses or

breaks user authentication, they have access to all the data and functionality that the compromised

account has. If the compromised account has high privileges, such as system administration, they can

gain control of the application or even the server infrastructure. Of course, even simple account

compromises may provide an attacker access to important information, such as sensitive corporate

data. Finally, even an account with no access to sensitive information, may permit the attacker to view

other pages, increasing their attack surface. Many times, specific high-severity attacks won't be viable

from pages that are open to the public, but they might be from an internal page [2].

25

Following an authentication bypass, an attacker may engage in a number of nefarious actions, including:

▪ Data breaches: If the user whose identity has been stolen has access to private, sensitive, or

restricted information, the attacker may exploit this access to exfiltrate information. Data leaks

are one of the most common and dangerous types of cyberattacks. According to IBM, a data

breach costs $4.35 million on average worldwide.

▪ Espionage: More sophisticated attackers may utilize an authentication bypass vulnerability to

carry out ongoing espionage on a target, frequently for commercial or political gain. They might

set up spyware to track consumers' online habits or even sneakily damage the company by

removing or changing files.

▪ Ransomware: An authentication bypass vulnerability could present a chance for attackers that

are primarily motivated by avarice to infect the network with ransomware. This harmful type of

malware encrypts the victim's files and demands a large ransom to unlock them.

▪ Privilege escalation: Attackers frequently employ an authentication bypass to establish a

"foothold" as a regular user inside a network. Once inside, the attacker comes with a greater

ability to attempt to take control of other workstations and administrative accounts. In one

case, in a January 2023 attack, hackers installed the Mirai botnet software on victims'

computers using an authentication bypass vulnerability in the Cacti monitoring application,

converting the victims' computers into unwitting "zombies" to carry out the attackers'

intentions.

26

3.3 Password-based Authentication Vulnerabilities

We will now take a closer look at some of the most widespread password-based login flaws.

Username enumeration

Username enumeration refers to observing the website's behavior to figure out whether a given

username is acceptable. When the system responds that a username is valid, but the password is

invalid, or when it responds on a user registration form that a username is taken, the attacker can

reduce the time and effort needed to brute-force a login by building a list of acceptable usernames.

Information about usernames can leak in various ways: the system may return a different status code or

error message for a correct username, or respond quicker for an incorrect username, thus revealing

information to the attacker.

3.3.1 Verbose Error Message

The application outputting a verbose error message that permits username enumeration is one typical

security issue.

Test Case:

▪ Submit a request with an accurate username but a wrong password.

▪ Send a request with an incorrect username.

▪ Examine the status codes, redirects, information on the screen, HTML page source, and even the

processing time of the two responses to see if there are any discrepancies.

▪ Run a brute force attack to compile a list of all of the application's valid usernames if there is a

discrepancy.

Figure 3.2: Application outputs a verbose error message

27

3.3.2 Vulnerable Transmission of Credentials

The application sends login information through an unencrypted HTTP connection.

▪ Pull out a successful login while sustaining a monitor on all communication between the client

and server in both ways.

▪ Look for situations when credentials are sent from the client to the server or supplied as a

cookie or in a URL query string.

▪ Investigate towards access the application through HTTP, then if necessary, switch to HTTPS

Figure 3.3: Application sends login information through unencrypted HTTP connection

3.3.3 Insecure Forgot Password Functionality

The forgotten password feature is typically the weakest link that can be utilized to attack the

application's overall authentication logic due to design flaws.

▪ Detect whether or not the application has a forgotten password feature.

▪ If it does, implement an account under your control to fully navigate through the forgot

password feature while intercepting the requests and responses over a proxy.

▪ Examine the features to see if they permit username enumeration or brute force attacks.

▪ If the program generates an email with a recovery URL, collect a number of these URLs and look

for any predictable patterns or sensitive information.

28

Also check if the URL is long lived and does not expire.

Figure 3.4: Long live URL

3.3.4 Defects in Multistage Login Mechanism

Insecure implementation of the MFA function.

▪ Determine whether the program has a multistage login process.

▪ If it does, execute a thorough walk-through while intercepting the requests and responses in a

proxy using an account you have control over.

▪ Examine the functionality to see if it permits brute force attacks or username enumeration.

Figure 3.5: Insecure implementation

Exploitation: The victim's username is changed in the "account" cookie during an exploit, which

compromises the victim's account.

29

3.3.5 Insecure Storage of Credentials

Uses plain text, encrypted, or weekly hashed password data stores.

Figure 3.6: Insecure storage of credentials

3.4 Multi-factor authentication vulnerabilities
Most websites cannot verify biometric factors, as it requires access to hardware devices (e.g., fingerprint

readers). It is more common to use 2FA based on something you know and something you have. Users

typically need to enter both a conventional password and a brief verification code from a physical device

they have on hand to accomplish this.

While it is occasionally conceivable for an attacker to discover one knowledge-based component, like a

password, it is much less likely that they will also discover another factor from an out-of-band source. It

can be seen that two-factor authentication is demonstrably safer than one-factor authentication for this

reason. However, just like with every security solution, its effectiveness determines how secure it is. Just

like single-factor authentication, poorly implemented two-factor authentication can be defeated or even

completely bypassed.

MFA authentication requires several different factors to be verified, not many instances of the same

factor. One such instance is 2FA using email. If a user must provide a password and a verification code

sent by email, if the email is accessed using the same credentials (username/password), we basically

confirm the same factor twice [16].

Two-factor authentication tokens

Verification codes are typically accessed from a physical device. Some high-security websites offer users

an RSA token or keypad device to access their work laptop or online bank account. Dedicated devices

have the benefit of directly generating the verification code in addition to being purpose-built for

security. Websites on the other hand rely on a specialized mobile app, like Google Authenticator.

30

On the other hand, some websites use text messages to deliver verification codes to a user's mobile

device, verifying that the user has a device. However, attacks also exist for this type of authentication,

since SMS codes can be intercepted, or SIMs can be replaced.

Vulnerabilities in other authentication mechanisms

Most websites offer supplemental functionality to let users manage their accounts in addition to the

standard login capability. Users can frequently modify their passwords or reset them if they forget them,

for instance. These approaches may also provide weaknesses that an attacker could use.

In their login pages, websites typically take countermeasures to guard against well-known

vulnerabilities. However, it is simple to forget that comparable steps must be taken to guarantee that

related functionality is just as robust.

3.4 OAuth 2.0 authentication vulnerabilities

This section outlines some of the major flaws in the OAuth 2.0 authentication technique. Because it is

both immensely popular and intrinsically prone to implementation errors, OAuth 2.0 is very intriguing to

attackers. Multiple vulnerabilities may come from this, giving attackers access to critical user

information and possibly avoiding authentication altogether [3].

OAuth authentication challenges may occur because the OAuth protocol was designed to be purposely

vague and flexible. A small number of components are required for the core functionality of each grant

type, while the vast majority of the implementation is fully optional. This provides several configuration

choices needed to protect user data. To put it another way, there are several opportunities for negative

conduct to appear.

31

One of OAuth's other main flaws is the general lack of integrated security mechanisms. The optimum

setup parameters are selected by the developers, and they then apply additional security controls, such

as robust input validation, on top. There are many factors to take into account, and if you are not

familiar with OAuth, it is quite easy to make mistakes.

Depending on the grant type, very sensitive data may also be transferred over the browser, giving an

adversary many opportunities to intercept it.

Figure 3.7: Attacker captures the Access Token of OAuth authentication

Vulnerabilities may also exist in the client implementation of OAuth as well as in the configuration of the

OAuth service. Client apps usually use an OAuth service that has been well tested and is fully protected

against known vulnerabilities. However, their own implementation may be less secure. There is a lot of

potential for error because OAuth processes have many optional parts and each grant type has a lot of

optional parameters and configuration settings. On the other hand, vulnerabilities in the service include

issues such as leaking authorization codes and access tokens, flawed scope validation and unverified

user registration.

32

Chapter 4 - MFA Attack Techniques

4.1 Reverse – proxy phishing with Evilginx2

Keeping up with potential dangers is essential in the always changing world of cybersecurity. Evilginx

2.0, the most recent iteration of the revolutionary phishing toolkit, seems to be a potent weapon for

both security specialists and ethical hackers. This tool, developed by ethical hacker Kuba Gretzky, is

designed to exploit vulnerabilities in the way web authentication works. Evilginx 2.0 provides a

comprehensive and sophisticated way for carrying out phishing simulations, allowing businesses to

strengthen their defenses by identifying vulnerabilities and increasing staff awareness.

More specifically, Evilginx2 is a reverse-proxy phishing framework (man-in-the-middle attack) that is

used for stealing session cookies and login credentials, allowing 2-factor authentication protection to be

bypassed [10]. It is an update for Evilginx, a 2017 utility that serves as a proxy between a browser and a

phishing website using a customized version of the nginx HTTP server. It is quite simple to set up and use

because the current version is entirely written in GO as a standalone application, implementing its own

HTTP and DNS servers.

Figure 4.1: Evilginx Start-up Interface

33

4.1.1 Evilginx Installation

We will illustrate the installation and execution process of Evilginx on a Debian 8 VPS [10]. To compile

Evilginx from its source code, you must initially ensure the presence of GO, git, and make on your

system. For a localized installation, the following commands are required:

sudo apt-get -y install git make

git clone https://github.com/kgretzky/evilginx2.git

cd evilginx2

Make

sudo ./bin/evilginx -p ./phishlets/

For a system-wide installation, execute the following:

sudo make install

sudo evilginx

Alternatively, you can opt for a Docker container approach:

docker build . -t evilginx2

docker run -it -p 53:53/udp -p 80:80 -p 443:443 evilginx2

Finally, precompiled binary packages exist:

tar zxvf evilginx-linux-amd64.tar.gz

cd evilginx

For a system-wide install, there is an install script:

chmod 700 ./install.sh

sudo ./install.sh

sudo evilginx

For a localized installation, root privileges are only necessary to run the program:

chmod 700 ./evilginx

sudo ./evilginx

34

4.1.2 Evilginx configuration

Your firewall must be set up with the following rules for inbound connections:

Protocol Port Description

TCP 443 Reverse proxy HTTPS traffic

TCP 22 SSH port for remote configuration (can be changed to anything)

UDP 53 DNS nameserver traffic used for hostname resolution

Make sure that you do not have already a running HTTP server (e.g. Apache, nginx) or DNS server before

you continue.

Before you can start using Evilginx, you need to register a domain. Your phishing URLs will use this

domain as the top-level domain, and all subdomains in the produced URLs will be completely

customizable. A valid registered domain is needed to use unique nameservers that refer to the IP

address of your Evilginx instance. For instance, if the IP address of the server where Evilginx was

installed was 1.2.3.4 and your registered domain was not-a-phish.com, you would configure the custom

nameservers as follows [11]:

Nameserver IP

ns1.not-a-phish.com 1.2.3.4

ns2.not-a-phish.com 1.2.3.4

For example, to set up an EC2 instance on AWS to host the domain service, you must create a new

instance on the AWS console, configure security groups and access keys, and install and configure the

necessary software for hosting the domain. DNS configuration involves the creation of a new Route 53

Hosted Zone in AWS, configuring DNS records for the domain, and pointing the domain to the EC2

instance.

The next step is the installation and configuration of the Evilginx on EC2 instance, setting up a fake login

page for the target website, and configuring the necessary settings in Evilginx.

Creating a phishing campaign involves creating and sending a phishing email to the target user, with a

link to the fake login page created in Evilginx.

When Evilginx first starts it saves its configuration to ~/.evilginx/config.json file. This file can also be

uploaded during deployment to pre-configure Evilginx, so as to automate the deployment even more.

35

The sample config.json file with pre-configured LinkedIn phishlet may look like this:

Figure 4.2: Evilginx configuration file with pre-configured LinkedIn phishlet

Once the user enters their login credentials into the fake login page (following the phishing e-mail), the

credentials will be captured by Evilginx and stored in a log file. Finally, you can use the captured login

credentials to bypass MFA and access the target user's account.

4.1.4 An Evilginx2-based Proof of Concept

We will show a proof of concept based on the proxy phishing sites technique. This is a more advanced

version of a typical phishing page. This site acts as an intermediary, intercepting authentication tokens

between the victim and the impersonated legitimate service. GitHub hosts various phishing kits

designed for red teams and penetration testers, such as Evilginx2, Modlishka, and EvilnoVNC. These kits

provide templates for popular services, allowing malicious actors to create their own proxy phishing

sites. Our PoC will use the Office 365 service.

To perform this test, we must register a domain, set up the DNS, and execute the commands to set up a

phishing site on a test server using the O365 phishlet. Once the website is up, visitors who click on a

phishing link created by Evilginx2 are redirected to a page that closely resembles the official Microsoft

login page. Evilginx2 uses a TLS certificate from the free Let's Encrypt certificate authority, allowing the

36

communication with the phishing page to display the lock icon, meaning that HTTPS is used, as pages

without the TLS lock icon are a red flag of malicious activity. Regular users are unable to distinguish this

page from a valid login page just by looking at the URL [13].

Figure 4.3: Fake login page from the Evilginx2 O365 phishlet

The phishing site verifies that the credentials given by the unaware user on the fake login page are

correct by checking them with Microsoft (hence, man in the middle). The user is then prompted with a

standard MFA challenge using whichever methods they have enabled for their O365 account after

entering the correct credentials. The account in our test instance offered phone and SMS options.

37

Figure 4.4: MFA challenge provided to victim by Evilginx2 phishing site

If MFA succeeds, the victim will think they are logged in using their credentials. When they leave the

phishing site to reach the actual office.com site, further attempts to access resources will necessitate a

new sign-in. Many people will be unaware that they were phished, despite the additional authentication

requirement or the fact that whatever the phishing email asked them to do did not happen. On the

other side, the owner of the phishing site can use their Evilginx2 instance to run the session command

and view all credentials that were stolen, as well as information about each particular session and its

related tokens.

38

Figure 4.5: Attacker view of sessions collected by Eviliginx2

The malicious actor can then use any cookie modification plugin, like Cookie-Editor or EditThisCookie, to

import the cookie provided at the bottom of the session information into a browser. The malicious actor

logs in as the phished user when they refresh the Microsoft sign-in page.

Before importing session cookies that have been acquired, make sure that you delete all of your

browser's cookies. In your browser, you must set up a special profile solely for session impersonation.

The cookie editor plugin must then be used to import collected session cookies.

Figure 4.6: Cookie Editor plugin in order to import the collected session cookies

39

Figure 4.7: Sample of Evilginx attack diagram

40

4.1.5 Forensic Findings
An investigator might depend on usage patterns to conclude that an attacker may have stolen a user's

cookies using a phishing site, even if it may be challenging to detect the use of a proxy phishing site like

Evilginx2. The signs that indicate the existence of a phishing attack include [13]:

1. Logins originating from anomalous IP addresses.

2. All attacker activity has the same SessionId.

3. Initial logins will appear as the victim’s legitimate user agent string.

Anomalous IP addresses

The IP address of the phishing server, rather than of the user's PC, will show up in the logs for the initial

login even if it appears to the user that they are logging in through Microsoft. Instead, the user's

credentials are being transferred to Microsoft through the phishing site.

Same Session ID

The IP address of the phishing server may change in the future, even though it will be visible in the first

login through the phishing site. The malicious actor will normally move the cookie to a different machine

once the login takes place on the phishing server. However, the SessionId will remain the same across

logins, even though they originate from several IP addresses and/or user agents, because the cookie is

the same. In the UAL, the SessionId is located in the "DeviceProperties" section for UserLoggedIn events.

Figure 4.8: Abbreviated export of Unified Audit Log showing threat actor logins

41

The IP address of the phishing server is displayed in red and ends in .91 in the example above, whereas

the IP address of the fictitious malicious actor is displayed in orange and ends in .94. When the fake

actor imported the cookie stolen from the phishing server into a Chrome browser and kept engaging

with the victim account, the following logins with the .94 IP address are logins that happened. Due to

the use of the same authentication cookie across all activities, the SessionId displayed in blue remains

constant.

User Agent String

The user agent string, which denotes the type of device and client used to access the account, helps the

investigator distinguish between criminal activity and lawful logins in many unauthorized email access

investigations. Typically, the user agent of the malicious user is different from that of the normal user.

Evilginx2 records the victim's authentic user agent string and sets its user agent to mimic it. So, even

though the phishing site may be using a Linux machine, if the victim opens the link while using Firefox on

a Windows 10 computer, the user agent string in the logs will be the user agent string for Firefox on

Windows 10.

The victim during our testing accessed the phishing site using Windows 10 and the Opera browser,

which is the same user agent represented in the initial logins coming from the phishing server IP

address, as can be seen in the example UAL logs above.

For investigators, this attempt to appear as a legal login in authentication logs has important

ramifications. The sole sign of compromise in the login event is the anomalous IP address in the absence

of a visibly abnormal user agent.

Once the cookies have been obtained, they can be imported into the malicious actor's browser during

the second phase of the attack. A threat actor may inspect the user agent string from the captured

session within Evilginx2 and spoof the user agent of their browser to match. As a result, when the threat

actor imports cookies into their own browser and the user agent changes while the SessionId stays the

same, there may be a chance of detection [13].

42

4.2 Phishing with Modlishka Reverse HTTP Proxy

Modlishka is a strong and adaptable HTTP reverse proxy. It uses new method of managing browser-

based HTTP traffic flow that enables multi-domain destination traffic, including TLS and non-TLS, to pass

through a single domain without installing additional certificates on the client [14].

Figure 4.9: Modlishka start-up interface

For our purposes, Modlishka can be used to:

▪ Implement global 2FA "bypass" with an automated reverse proxy component, for ethical

phishing penetration tests.

▪ Automate the procedure of poisoning HTTP 301 browser caches and permanently hijack non-TLS

URLs.

▪ Diagnose and hijack browser-based HTTP traffic using a "Client Domain Hooking" attack.

▪ Wrap TLS onto legacy websites, confuse crawlers and automated scanners, etc.

The method used by Modlishka to implement phishing attacks is shown below. Modlishka acts as a man

in the middle between the website you are impersonating as an attacker and the victim and records all

of the traffic, tokens, and passwords that pass through it [15].

Figure 4.10: Modlishka phishing attack

43

To set up Modlishka, we can build a new Digital Ocean droplet. Once logged on, we must install certbot

and download the modlishka binary:

apt install certbot

wget https://github.com/drk1wi/Modlishka/releases/download/v.1.1.0/Modlishka-linux-amd64

chmod +x Modlishka-linux-amd64 ; ls -lah

Figure 4.11: Modlishka setup

https://github.com/drk1wi/Modlishka/releases/download/v.1.1.0/Modlishka-linux-amd64

44

A sample configuration file:

Figure 4.11: Modlishka configuration json file

The next step is to generate Wildcard Certificates for our phishing domain.

Figure 4.12: Modlishka generation challenge code

45

A DNS TXT record must be added for redteam.me, which the current instance is hosted by Digital Ocean,

in the DNS management console:

Figure 4.13: DNS TXT creation

Continue with the certificate generation after the DNS TXT record has been created:

Figure 4.14: After DNS TXT record is created, we trigger the certificate generation

46

We must transform certificates once they have been created into a format that allows them to be

inserted into JSON objects:

awk '{printf "%s\\n", $0}' /etc/letsencrypt/live/redteam.me/fullchain.pem

awk '{printf "%s\\n", $0}' /etc/letsencrypt/live/redteam.me/privkey.pem

Figure 4.15: fullchain.pem certification

47

Once that is finished, we must copy the contents of the certificates into the configuration file,

fullchain.pem into the cert and privkey.pem into the certKey:

Figure 4.16: Modlishka json file

Now that modlishka has been launched and the modlishka.json configuration file has been supplied, the

test can begin. The image below demonstrates how accessing redteam.me causes the contents of

gmail.com to be shown, proving the functionality of Modlishka. It is crucial to emphasize once more that

we did not make clones or templates of the targeted website; rather, the victim is truly accessing Gmail

because it is being provided through Modlishka, which allows traffic inspection and password capture.

./Modlishka-linux-amd64 -config modlishka.json

48

Figure 4.17: Launching Modlishka

49

4.3 Bypass 2FA with a brute-force attack

When a site does implement brute-force attack protection, a malicious user is able to guess the

verification code as many times as needed. By attempting every conceivable combination, the attacker

has a chance to determine the proper code [16]. In this scenario, we assume that we have already

obtained a valid username and password, but we do not have access to the user’s verification code.

For the execution of this scenario, we will use the Burp Suite tool. We start by providing the username

and password that we already know.

Figure 4.18: Login page

To modify start guessing, we launch the burp suite to track the traffic via the web page.

Figure 4.19: Login page 4-digit security code

50

Το intrude on the traffic passing through the Burb Suite, we randomly populated the field with numbers.

Figure 4.20: Entering 4-digit security code

Then we enable Burp's interception functionality ("Intercept is on") to begin to block all incoming traffic.

The Intercept tab below shows the request for the security code in the specific case.

Figure 4.21: Burp Suite Intercept Tab shows the random attempt of security code

51

To access the relevant settings, the user should proceed to "Project options" and subsequently select

"Sessions." Within the "Session Handling Rules" panel, there is an option to click on the "Add" button.

This action triggers the opening of the dialog for the session handling rule editor.

Figure 4.22: Burp Suite setting-up the environment

To accomplish this, the user proceeds to the "Scope" tab within the dialog. Under the "URL Scope"

section, the user should opt for the "Include all URLs" choice. Upon returning to the "Details" tab, the

user is directed to focus on the "Rule Actions" section. In this context, the user is instructed to select the

"Add" option followed by "Run a macro." To further this process, the user should interact with the

"Select macro" element and initiate the addition of a macro.

This action leads to the opening of the "Macro Recorder." Within this recorder, the user is prompted to

select three specific requests.

52

Figure 4.23: Burp Suite Macro Recorder

53

We use the Intruder Tab of Burp Suite in order to set-up the attack method.

Figure 4.24: Burp Suite Sniper attack method

During this stage, the MFA-code parameter was chosen to be included in the payload position.

Figure 4.25: Payload MFA- code encoding

54

Choose the Numbers payload type from the Payloads menu. Set the step to 1 and enter the range 0 to

9999. Set the maximum fraction digits to 0 and the minimum/maximum integer digits to 4.

With this, a payload will be generated for each and every 4-digit integer.

Figure 4.26: Payload configuration

Finally, the brute-force attack is started and we are looking for one of the requests will return a 302-

status code (Found), to load it in the browser. This status code means that the URL of requested

resource has been changed temporarily.

55

Figure 4.27: Brute force attack in action

56

A 302-success status code was displayed.

Figure 4.28: 302-success status code displayed

57

We can now successfully login to the Account.

Figure 4.29: Successful login in the web page

A Python script can automate the process described above to avoid 2FA verification.

Figure 4.30: Python script

Figure 4.31: Successful execution of the above python script

58

4.4 Reset/Forgotten Password disables MFA

When changing their password or email address, it is common to disable MFA. In such cases, we have a

vulnerability known as "Password Reset Disable 2FA". Due to this flaw, hackers might access a user's

account and disable 2FA security by changing the user's email address or resetting their password [17].

The following is a fictitious scenario of how the vulnerability functions:

▪ An attacker gets hold of the email address or account details of a target user.

▪ The attacker logs into the target user's account and begins the process of changing the

password or email.

▪ The attacker modifies the target user's 2FA settings on the password reset or email change

form.

▪ Following the procedure, the user's password or email address is changed, but 2FA is turned off.

▪ Without a password or 2FA code, the attacker can now access the target user's account.

Due to this flaw, 2FA's security benefit is lost, leaving accounts open to attack. Users shouldn't have

their 2FA removed when they change their email address or password automatically.

4.5 Bypass 2FA with null or 000000

Bypassing 2FA protection using null or the code "000000" is possible with this technique, which is also

known as "Bypass 2FA with null or 000000." This technique overcomes the verification procedure and

bypasses the 2FA-required layer of protection. The following factors can contribute to this vulnerability:

Invalid Codes: Before validating the 2FA code, the system does not validate or filter any incoming

values. In this situation, the system could be able to log in without requiring a valid 2FA code if the user

enters an empty code or an incorrect value, such as "000000".

Faulty Checks: The checks made as part of the 2FA authentication procedure could be incomplete or

inaccurate. For instance, the system does not verify that numbers like "000000" or "blank" are valid

when it employs an if condition to validate the verification code. In this instance, the system logs in

when the user submits these numbers without needing a working 2FA code.

59

4.6 Bypass 2FA using “memorization”

Many websites with 2FA support provide a "remember me" feature, which is commonly used to avoid

frequent 2FA code entry. It is crucial to determine how 2FA is "remembered". This could be an IP

address associated with 2FA, a cookie, or a value in session or local storage. Each one opens up different

attack routes.

4.7 Bypassing 2FA using HTTP Response Body Manipulation

This attack relies on applications that fail to validate the response check and proceed to the next step.

Assume that an application verifies the validity of the provided 2FA code and, if so, returns

{"success":true} otherwise, {"success":false}. In order to continue, the application just verifies that the

received response is {"success":true}. An attacker can intercept the answer in this case, alter the status,

and get around 2FA.

Original Request with Invalid OTP:

Figure 4.32: Request with invalid OTP

Original Response:

Figure 4.33: Response from invalid OTP

60

Modified Response (with same wrong OTP):

Figure 4.34: Modified Response

61

Chapter 5 - Defense and Prevention of Authentication Vulnerabilities

Some of the most severe security problems for software and web applications are authentication bypass

vulnerabilities. However, authentication procedures are not always error-free. Attacks that allow

hackers to pose as legitimate users are referred to as authentication bypass attacks, and the ensuing

security issue is known as an authentication bypass vulnerability. In this section will describe how to

defend and prevent against them.

5.1 Security Policy Recommendations

A thorough security policy that incorporates both preventive measures and incident response

procedures is necessary to stop Account Takeovers (ATOs). Organizations can deploy the following

policies to reduce the impact of ATO attacks:

1. Multi-Factor Authentication (MFA)

MFA works effectively to stop ATO attacks, but it is no longer a foolproof defense against them.

Users must authenticate using several different methods, such as a fingerprint or a one-time

code that is texted to their phone. By adding another layer of security, this makes it more

difficult for hackers to access the user's account.

2. Passwordless Authentication

Passwordless authentication is a technique that minimizes the need for passwords. The user's

identity is confirmed via different authentication techniques including biometric authentication,

smart cards, or token-based authentication. This increases security and makes it more difficult

for hackers to steal or guess passwords.

3. Continuous Monitoring

Continuous monitoring should be used by organizations to spot suspicious activity, such as login

attempts coming from unknown devices or odd locations. This can aid in the early detection of

possible ATO attacks and assist stop them from doing more harm.

4. Incident Response Plans

Organizations should have incident response procedures in place to contain and reduce the

damage in the event of an ATO threat. This entails actions like changing passwords, preventing

access to accounts that have been compromised, and informing affected individuals.

62

5.2 Recommendations for MFA

The precise timing and method of implementing MFA in an application will depend on a variety of

elements, including the program's threat model, the technical proficiency of the users, and the extent of

administrative control over the users. Each of these must be taken into account [17]. The following

options, however, are generally applicable to most situations and offer a first starting point:

▪ Allow users to utilize time-based OTP (TOTP) to enable MFA on their accounts.

▪ Require MFA for high-privileged users such as administrators.

▪ Consider excluding corporate IP ranges so that MFA is not required from them.

▪ Ensure that the user is not prompted each time they log in, by allowing them to save the use of

MFA in their browser.

▪ Establish an adequate procedure for users to reset their MFA.

Users might choose to switch off MFA on the application as a result of having to log in with MFA

frequently. There are a variety of methods that can be employed to lessen the level of irritation that

MFA creates. To find an acceptable balance of security and usability for the application, these types of

procedures must be risk assessed, as they do reduce the security provided by MFA.

▪ Recalling the user's browser so that MFA won't be required every time.

➢ This could be either permanent or only last a few days.

➢ This should be accomplished using more than just a cookie, which an intruder could hijack.

For instance, a cookie that matched the prior IP address for which it was issued.

▪ Allow corporate (or known) IP ranges.

➢ This does not prevent against malicious insiders or compromised user workstations.

▪ Require MF only for sensitive actions, not the initial login.

➢ This will depend on the application's operation.

Handling users who forget or misplace their second factors is one of the main difficulties with MFA

implementation. Many things could go wrong in this situation, including:

▪ Reinstalling a workstation without initially backing up existing digital certificates.

▪ Erasing or removing OTP codes from a phone without a backup.

▪ Changing mobile numbers.

63

There must be a means for users to get back into their accounts if they are unable to utilize their current

MFA in order to avoid them from being locked out of the application; nevertheless, it is vital that this

not give an attacker a way to get through MFA and steal their account.

There is no one "best way" to do this. The ideal approach could vary greatly depending on the

application's security and amount of user control. For a publicly accessible service with thousands of

users throughout the world, it is unlikely that the same solutions as for a corporate application will be

practical. Every recovery technique has benefits and drawbacks that must be weighed against the

application in question. Some suggestions include:

▪ Supplying the user with a number of one-time recovery codes when they set up MFA for the first

session.

▪ Letting the user set up various MFA methods (such as a digital certificate, an OTP and a phone

number for SMS) so they won't all be lost at once.

▪ Providing the user, a one-time recovery code (or fresh hardware token).

▪ Requiring the user to get in touch with the support team and putting in place a strict process to

confirm their identification.

▪ Requiring another reliable user to confirm to them.

64

5.3 Passwordless Authentication

Strict authentication procedures require more work from users. Due to human nature, it is almost

certain that some users will find a way to avoid making this effort. So, in the current landscape of

escalating cyber threats, FIDO2 has emerged as a valuable solution to counteract a myriad of cyber-

attacks. Its multifaceted approach to authentication aligns perfectly with the evolving tactics of

cybercriminals. By eradicating the dependence on static passwords and introducing robust

authentication factors like biometrics and physical keys, FIDO2 disrupts the traditional attack vectors

that adversaries exploit. This includes thwarting phishing attacks by generating unique cryptographic

signatures for each service, making stolen credentials useless. FIDO2's resilience to brute-force attacks,

its ability to resist man-in-the-middle attempts, and the requirement of physical presence for

authentication further fortify its defenses against remote intrusions.

5.3.1 FIDO2 Authentication

The most promising solution to reduce the danger of dodging MFA currently seems to be hardware-

based authentication systems employing FIDO2. To authenticate a user to a website, FIDO2

authentication employs cryptographic keys that have already been registered with a provider (e.g.,

Microsoft 365). The service provides information about the request's source, such as the site's URI, in

the challenge it sends to the FIDO2 device. As a result, attempts to utilize this authentication mechanism

to log in to a malicious phishing website ought to be unsuccessful. Hardware tokens like Yubikeys and

built-in solutions like Windows Hello on a user's laptop are two examples of FIDO2 authentication [24].

With the availability of alternative authentication techniques, FIDO2 authentication is susceptible to

downgrade attacks. That is, a company might use FIDO2 authentication as their primary method but also

permit the delivery of one-time passwords (OTP) by SMS or email as a backup option; attackers could try

to attack the secondary method to avoid FIDO2. FIDO2 authentication may be challenging to establish

for logistical reasons in addition to this vulnerability. For most users, switching to FIDO2 authentication

is a significant adjustment that frequently incurs additional expenditures for enterprises.

65

Figure 5.1: FIDO2 Authentication

The FIDO2 Standard has the following main benefits:

▪ Security: By default, FIDO2 encrypts the login using a set of keys (private and public) that can

only be decrypted by the registered device. Each website has a different set of cryptographic

login credentials. Additionally, these are never saved on a server and are always kept on the

user's device.

▪ Users Convenience: Users can unlock their cryptographic credentials via USB keys, Bluetooth

wristbands, and security features integrated into their devices (facial recognition, fingerprint

sensors, etc.). Users are freed from the burden of remembering complex passwords.

▪ Strong Authentication Factors: FIDO2 leverages strong authentication factors such as biometric

data (fingerprints, facial recognition) and physical security tokens (e.g., YubiKey) which are

significantly more resilient to compromise compared to traditional passwords.

▪ Privacy: Since cryptographic keys are specific to each website, it is impossible to follow a user

from one site to another. Biometric information also never leaves the user's device. This

eliminates issues that could result from centralized user biometric fingerprint storage.

▪ Elimination of Password – Related Risks: With passwordless authentication, the risks associated

with weak passwords, password reuse, and forgotten passwords are effectively mitigated. This

reduces the avenues through which cybercriminals can gain unauthorized access.

▪ Scalability: High scalability is possible with the decentralized authentication mechanism. Most

contemporary browsers have a standardized JavaScript API that is used for authentication by

web apps.

▪ Reduced Friction: Traditional password-based authentication often leads to user frustration due

to forgotten passwords or account lockouts. Passwordless authentication eliminates such

hurdles, reducing friction in the user experience.

66

▪ Phishing Resistance: FIDO2's cryptographic authentication process mitigates the risks of

phishing attacks. Even if users are tricked into providing their credentials, the absence of static

passwords makes it nearly impossible for attackers to gain unauthorized access.

▪ Global Standard: FIDO2 has gained recognition as a global standard, backed by major tech

companies and organizations. Its widespread adoption indicates its credibility and readiness for

securing online interactions.

▪ Future-Proofing: Passwordless authentication aligns with the direction of technological

advancement. As cybersecurity threats evolve, passwordless methods like FIDO2 are better

poised to adapt and address emerging challenges.

In essence, FIDO2-based passwordless authentication not only strengthens security but also

enhances user experience, reduces risks, and aligns with the demands of modern online

interactions. Its multifaceted benefits position it as a powerful solution for combating the intricate

landscape of digital threats.

Figure 5.2: FIDO2 enhances user experience

67

By addressing vulnerabilities at multiple levels, FIDO2 significantly bolsters cybersecurity defenses,

rendering traditional attack vectors ineffective. Its multifaceted approach and focus on privacy,

cryptography, and user-centric design make it an indispensable weapon against cyber threats.

By using cryptography keys and challenges to confirm the legitimacy of the server request (such as a

request to login or to authenticate), the FIDO2 authentication protocol helps against phishing attacks.

According to FIDO2, the website or service (such as an e-banking website) is linked to certain keys. The

user must authenticate their identity using device or biometrics to login or complete a transaction. After

that, the user has their own private key, which they can use with a FIDO2 account on any website. The

website's private key is used to encrypt and decrypt messages transmitted to and received from it [23].

Figure 5.3: FIDO2 authentication protocol

The authentication process will fail if the private keys do not match the allocated service. The technique

avoids phishing attacks because FIDO2 forbids user authentication on malicious services or websites.

The above demonstrates how the user and service can communicate using FIDO2 private keys. Since the

FIDO2 keys are inaccessible to the attacker, authentication is prevented.

68

5.3.2 Microsoft Authenticator Solution

In passwordless authentication, you can permit an employees/user’s phone to be used. The most

common scenario is that users already have enabled multithe-factor authentication option using the

Microsoft Authenticator application.

Any iOS or Android phone can become a reliable, passwordless credential with the help of the

Authenticator App. By receiving a notice on their phone, comparing a number displayed on the screen to

the one on their phone, and then confirming with their biometric (touch or face) or PIN, users can sign in

to any platform or browser.

The Authenticator app's passwordless authentication follows the same fundamental principles as

Windows Hello for Business.

Figure 5.3: Microsoft Authenticator identification steps

69

Microsoft Passwordless authentication follows these steps:

1. The user enters a username.

2. Azure AD detects that the user has a strong credential and starts the Strong Credential flow.

3. A notification is sent to the app via Apple Push Notification Service (APNS) on iOS devices, or via

Firebase Cloud Messaging (FCM) on Android devices.

4. The user receives the push notification and opens the app.

5. The app calls Azure AD and receives a proof-of-presence challenge and nonce.

6. The user completes the challenge by entering their biometric or PIN to unlock private key.

7. The nonce is signed with the private key and sent back to Azure AD.

8. Azure AD performs public/private key validation and returns a token.

The following process is used when a user signs in with a FIDO2 security key:

Figure 5.4: FIDO2 security key

1. The user plugs the FIDO2 security key into their computer.

2. Windows detects the FIDO2 security key.

3. Windows sends an authentication request.

4. Azure AD sends back nonce.

70

5. The user completes their gesture to unlock the private key stored in the FIDO2 security key's

secure enclave.

6. The FIDO2 security key signs the nonce with the private key.

7. The primary refresh token (PRT) token request with signed nonce is sent to Azure AD.

8. Azure AD verifies the signed nonce using the FIDO2 public key.

9. Azure AD returns PRT to enable access to on-premises resources.

5.4 Consumer Authentication Strength Maturity Model (CASMM)

The acronym CASMM corresponds to the Consumer Authentication Strength Maturity Model. This

model serves as a framework designed to enhance online security through the utilization of advanced

password practices and authentication methodologies. The CASMM encompasses a hierarchical

structure comprising eight distinct tiers, ranging from Level 1, which denotes the lowest level of security,

to Level 8, which signifies the zenith of security. Each successive level embodies a unique approach to

the creation and management of passwords and authentication modalities. Notably, as the model

ascends in levels, it accommodates progressive enhancements in security [20].

One particularly robust facet encapsulated within higher CASMM levels is the inclusion of Passwordless

Authentication, exemplified by a FIDO2 implementation. The integration of Passwordless Authentication

at elevated levels amplifies the security posture of online accounts, effectively fortifying their resistance

to unauthorized access and potential breaches.

The primary objective of CASMM is to facilitate an upward progression across its hierarchy, thereby

enhancing password security for individuals. This advancement is achieved by adhering to the

prescribed procedures and optimal practices delineated within the model. To illustrate, the utilization of

a reputable password manager, such as 1Password or LastPass, to contrive and securely store potent

and distinct passwords for individual accounts (as found in Level 4) represents a constructive measure.

Furthermore, augmenting security can be accomplished by embracing the incorporation of an additional

layer of authentication MFA in one's account access mechanisms. The application of MFA encompasses

diverse options, such as receiving a code on a mobile device or via email, or employing dedicated apps

like Google Authenticator or Authy (situated at Level 5 or 6). Moreover, individuals seeking to heighten

their security stance can opt for more advanced MFA alternatives, including the utilization of tangible

security tokens like YubiKey or Titan Security Key, or the integration of biometric factors like fingerprints

or facial recognition (evident at Levels 7 or 8). By adopting these measures in accordance with CASMM's

71

guidelines, individuals can systematically fortify their security posture and engender heightened

resilience against unauthorized access and potential breaches.

CASMM is a valuable resource that can help us stay safe and secure in the digital world. You can also

check out this graphic art that illustrates the CASMM levels and steps.

Figure 5.6: CASMM model

72

In CASMM, the prioritization of passwordless authentication as the foundational level underscores its

critical role in strengthening security. This emphasis is grounded in the inherent vulnerabilities of

traditional password-based systems. As the first step, CASMM recognizes that eliminating passwords

reduces exposure to common attack vectors like phishing, credential theft, and password reuse.

Passwordless authentication also aligns with the shift towards user-friendly, frictionless experiences,

enhancing user adoption and satisfaction. By laying this strong foundation, CASMM positions

passwordless authentication as the gateway to more robust security practices, reinforcing its pivotal

significance in modern authentication methods.

CASMM serves as an invaluable tool in our pursuit of bolstering online security, offering a user-friendly

framework for the formulation and administration of passwords and authentication methodologies.

Through the utilization of CASMM, we can accomplish the following objectives:

▪ Evaluate the current level of our password security, pinpointing areas necessitating

enhancement.

▪ Gain insights into the foremost practices and contemporary trends concerning password

security, and subsequently apply them to our online accounts.

▪ Mitigate the probability of falling victim to hacking or compromise orchestrated by

cybercriminals, who employ multifarious techniques to subvert or purloin our passwords.

▪ Amplify our online privacy, thereby safeguarding our personal and financial data from

unauthorized access or unscrupulous usage.

By harnessing the capabilities of CASMM, individuals can systematically chart a course toward a more

robust and impregnable online security posture, effectively shielding themselves against a dynamic

landscape of digital threats.

73

5.5 Conclusion

In conclusion, the adoption of passwordless authentication, specifically through the FIDO2 standard,

emerges as the most optimal and compelling solution within the realm of authentication methods. This

conclusion is grounded in a comprehensive analysis of the contemporary security landscape, user

experience, and the pressing need to address the vulnerabilities associated with conventional password-

based systems [21].

The FIDO2 standard embodies a paradigm shift that addresses the inherent shortcomings of traditional

authentication methods. By substituting static passwords with cryptographic key pairs and robust

authentication factors such as biometrics or physical tokens, FIDO2 fundamentally transforms the

authentication paradigm. This shift is not merely incremental; it represents a quantum leap in security,

making unauthorized access through stolen or compromised credentials an obsolete threat.

Furthermore, the user experience with FIDO2 passwordless authentication is elevated to an

unprecedented level of convenience. Users are liberated from the arduous task of managing passwords,

reset processes, and the risks of password-related attacks. With FIDO2, the process of authentication

becomes seamless, swift, and inherently secure.

The resounding superiority of FIDO2 passwordless authentication also resonates with its alignment with

modern technological trends. As the digital landscape advances, security risks diversify, and user

expectations evolve, the robustness of FIDO2 becomes increasingly relevant.

74

References

[1] Authentication vulnerabilities (no date) Web Security Academy. Available at:

https://portswigger.net/web-security/authentication (Accessed: 23 September 2023).

[2] Authentication vulnerabilities (no date a) Web Security Academy. Available at:

https://portswigger.net/web-security/authentication#what-is-the-difference-between-

authentication-and-authorization (Accessed: 23 September 2023).

[3] OAUTH 2.0 authentication vulnerabilities (no date) Web Security Academy. Available at:

https://portswigger.net/web-security/oauth (Accessed: 23 September 2023).

[4] Protecting against account takeover attacks: Best practices for cisos (no date)

https://www.futurae.com. Available at: https://www.futurae.com/it/blog/prevent-account-

takeovers-with-passwordless-authentication/ (Accessed: 23 September 2023).

[5] How FIDO2 fights phishing attacks and keeps users happy: Futurae (no date)

https://www.futurae.com. Available at: https://www.futurae.com/it/blog/fido2-passwordless-avoid-

fraud-phishing-attacks/ (Accessed: 23 September 2023).

[6] Chang, J. (2023) 55 important password statistics you should know: 2023 breaches & reuse data,

Financesonline.com. Available at: https://financesonline.com/password-statistics/ (Accessed: 23

September 2023).

[7] Danish (2022) Attacking 2FA in modern web apps, Snapsec Blog. Available at:

https://snapsec.co/blog/Attacking-2FA-in-Modern-Apps/ (Accessed: 23 September 2023).

[8] Aydın, B. (2023) Bug bounty hunting - let’s simulate 2FA bypass techniques, Medium. Available

at: https://medium.com/@batuhanaydinn/bug-bounty-hunting-lets-simulate-2fa-bypass-

techniques-ea9a1cc4a2e6 (Accessed: 23 September 2023).

[9] 2FA bypass techniques. (no date) GitHub. Available at: https://github.com/Batuhanaydnn/365Days-

Bug-Bounty/blob/master/day1/day1.md (Accessed: 23 September 2023).

[10] Kgretzky, K. (2018) KGRETZKY/Evilginx2: Standalone man-in-the-middle attack framework used

for phishing login credentials along with session cookies, allowing for the bypass of 2-factor

authentication, GitHub. Available at: https://github.com/kgretzky/evilginx2 (Accessed: 23

September 2023).

[11] Gretzky, K. (2020) EVILGINX 2.4 - gone phishing, BREAKDEV. Available at:

https://breakdev.org/evilginx-2-4-gone-phishing/ (Accessed: 23 September 2023).

75

[12] Bakker, J. (2023) How to set up Evilginx to Phish Office 365 credentials, JanBakker.tech. Available

at: https://janbakker.tech/how-to-set-up-evilginx-to-phish-office-365-credentials/ (Accessed: 23

September 2023).

[13] Bypassing MFA: A forensic look at Evilginx2 phishing kit (no date) Aon. Available at:

https://www.aon.com/cyber-solutions/aon_cyber_labs/bypassing-mfa-a-forensic-look-at-evilginx2-

phishing-kit/ (Accessed: 23 September 2023).

[14] drk1wi (no date) Drk1wi/modlishka: Modlishka. reverse proxy., GitHub. Available at:

https://github.com/drk1wi/Modlishka (Accessed: 23 September 2023).

[15] Phishing with Modlishka reverse HTTP proxy (no date) Phishing with Modlishka Reverse HTTP

Proxy - Red Team Notes. Available at: https://www.ired.team/offensive-security/red-team-

infrastructure/how-to-setup-modliska-reverse-http-proxy-for-phishing (Accessed: 24 September

2023).

[16] Lab: 2fa bypass using a brute-force attack (no date) Web Security Academy. Available at:

https://portswigger.net/web-security/authentication/multi-factor/lab-2fa-bypass-using-a-brute-

force-attack (Accessed: 26 September 2023).

[17] Protecting against account takeover attacks: Best practices for cisos (no date)

https://www.futurae.com. Available at: https://www.futurae.com/it/blog/prevent-account-

takeovers-with-passwordless-authentication/ (Accessed: 23 September 2023).

[18] Multi-factor authentication cheat sheet (no date) Multifactor Authentication - OWASP Cheat

Sheet Series. Available at:

https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html

(Accessed: 23 September 2023).

[19] The Modlishka Phishing Tool and MFA: What you need to know (no date) Identity Security for the

Digital Enterprise. Available at: https://www.pingidentity.com/en/resources/blog/post/modlishka-

phishing-tool-mfa-need-to-know.html (Accessed: 26 September 2023).

[20] The consumer authentication strength maturity model (CASMM) V6, Unsupervised Learning.

Available at: https://danielmiessler.com/p/casmm-consumer-authentication-security-maturity-

model/ (Accessed: 23 September 2023).

[21] Parmar, V. et al. (no date) A comprehensive study on Passwordless Authentication | IEEE

conference, A Comprehensive Study on Passwordless Authentication. Available at:

https://ieeexplore.ieee.org/abstract/document/9760934/ (Accessed: 23 September 2023).

76

[22] Google introduces first quantum resilient FIDO2 security key implementation (2023) The Hacker

News. Available at: https://thehackernews.com/2023/08/google-introduces-first-quantum.html

(Accessed: 23 September 2023).

[23] How FIDO2 fights phishing attacks and keeps users happy: Futurae (no date)

https://www.futurae.com. Available at: https://www.futurae.com/blog/fido2-passwordless-avoid-

fraud-phishing-attacks/ (Accessed: 26 September 2023).

[24] FIDO2: Web authentication (WebAuthn) (2022) FIDO Alliance. Available at:

https://fidoalliance.org/fido2-2/fido2-web-authentication-webauthn/ (Accessed: 26 September

2023).

77

Disclaimer

This master thesis, explores various cyber-attack techniques, including but not limited to Evilginx,

Modlishka, brute force attacks, and phishing, with the primary aim of examining vulnerabilities within

digital systems and understanding their potential impact on the community. This research is conducted

solely for academic purposes and to contribute to the field of cybersecurity knowledge

The author wishes to clarify that the information and techniques described within this document are

intended strictly for educational and research purposes. The author does not condone, endorse, or

encourage the use of these techniques for any malicious or illegal activities. Any attempt to use the

information presented herein for unauthorized or unethical purposes is strongly discouraged and may

be subject to legal consequences.

Furthermore, it is essential to acknowledge that the rapidly evolving nature of technology and

cybersecurity may render some of the information in this thesis outdated or less relevant over time.

Readers are encouraged to verify the information and techniques presented here with up-to-date

sources and consult with experts in the field before applying any of the concepts discussed.

The author and the academic institution associated with this thesis hold no responsibility for any misuse

of the information provided in this document. Individuals who choose to utilize this information do so at

their own risk and are solely responsible for their actions.

By accessing and reading this thesis, the reader acknowledges and agrees to the terms and conditions

outlined in this disclaimer. The author and the academic institution assume no liability for any

consequences resulting from the use or misuse of the information contained herein.

