
School of Information Sciences and Technology

Department of Informatics

Athens, Greece

Master Thesis
in

Computer Science

QUADB: A Decentralized Platform for data
curation

Nikolaos Lionis

Supervisor: Prof. George Xylomenos
Department of Informatics

Athens University of Economics and Business

Committee: Prof. Vasileios Syris
Department of Informatics

Athens University of Economics and Business

Prof. George C. Polyzos
Department of Informatics

Athens University of Economics and Business

July 25, 2025

Nikolaos Lionis

QUADB: A Decentralized Platform for data curation

July 25, 2025

Supervisor: Prof. George Xylomenos

Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Mobile Multimedia Laboratory

Athens, Greece

Abstract

Scientific research faces a reproducibility crisis where 70% of researchers cannot reproduce

published studies [3], stemming from centralized data infrastructure where platforms

silently modify datasets, restrict access, or disappear entirely. This thesis presentsQUADB,
a decentralized platform that systematically integrates five protocols—IPFS, IPNS, FNS,

Filecoin, and Lit Protocol—to enable collaborative, persistent, and verifiable dataset man-

agement. We establish a protocol composition architecture with design principles for

systematic integration, creating emergent capabilities that exceed individual protocol

limitations. Our novel threshold-controlled IPNS updates enable m-of-n curator consen-

sus through Lit Protocol, achieving Byzantine fault tolerance with sub-minute latency

while maintaining cryptographic security. Through six months of production validation at

quadb.xyz, we demonstrate that QUADB achieves practical feasibility despite 5–10× latency

compared to centralized systems, providing cryptographic guarantees for permanence,

verifiability, and censorship resistance impossible with centralized infrastructure. The

platform fundamentally transforms scientific data from fragile corporate assets to resilient

community-managed digital commons, enabling truly reproducible science through decen-

tralized coordination mechanisms that resist institutional change and ensure long-term

accessibility.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Research Statement . 3

1.2 Data Management Crisis . 3

1.3 Core Challenges . 4

1.4 Research Questions . 4

1.5 Contributions . 5

1.6 Thesis Structure . 6

2 Background and Related Work 7
2.1 Background . 7

2.1.1 IPFS . 7

2.1.2 IPNS . 8

2.1.3 Filecoin . 9

2.1.4 FNS . 11

2.1.5 Lit Protocol . 11

2.2 Related Work . 13

3 System Design and Implementation 17
3.1 Design Goals . 17

3.2 System Architecture Overview . 18

3.2.1 Storage Layer . 19

3.2.2 Naming Layer . 21

3.2.3 Crypto Layer . 22

3.2.4 Interface Layer . 25

3.3 Core Workflows . 26

3.3.1 Space Creation . 26

3.3.2 Instance Creation . 27

3.3.3 Update Process . 28

3.4 Quality Signals . 29

3.5 Security Considerations . 29

3.6 Platform Implementation Details . 30

3.6.1 Technology Stack . 30

v

4 Evaluation 33
4.1 Performance Analysis . 33

4.2 Economic Analysis . 34

4.3 Deduplication Analysis . 34

4.4 Validation Results . 35

4.5 Security Assessment . 36

5 Conclusions and Future Work 39

A Appendix 41

Bibliography 47

List of Acronyms 49

List of Figures 50

List of Tables 51

List of Algorithms 52

vi

1Introduction

On October 4, 2021, a single Facebook configuration error did not just cripple social media.

It also crippled important research infrastructure used by thousands of scientists around

the world. For six hours, epidemiologists could not access COVID-19 dashboards, climate

researchers could not access real-time sensor data, and machine learning teams could not

retrieve their training datasets [5, 16].

This incident exemplifies a broader systemic vulnerability in our scientific infrastructure.

Similar outages at AWS (2017), Cloudflare (2020), and Fastly (2021) show how central-

ized systems fail when scientists need them most [1, 6, 8]. More recently, the July 2024

CrowdStrike software update affected 8.5 million Microsoft systems worldwide, disrupting

airlines, banks, and critical infrastructure for hours [7, 17].

In addition to occasional outages, dependence on centralized platforms creates system-

atic integrity problems. Large technology platforms silently modify datasets without

warning, which can have significant impact on model performance. Changes are often

undocumented. Annual storage costs exceeding $100,000 exclude smaller institutions,

while centralized control enables unilateral access restrictions. Platforms can disappear

altogether, taking valuable research data with them.

When data can be silently modified, restricted without notice, or permanently lost, em-

pirical research loses its methodological foundation. This undermines both scientific

integrity and long-term knowledge preservation, creating a fundamental threat to the

reproducibility that forms the cornerstone of scientific methodology.

The movement for a decentralized web offers a different approach. Instead of relying on

individual organizations, control is distributed across global computer networks. Different

technologies address specific challenges in the areas of storage, naming and collaborative

management, but work in isolation. There has been no integrated solution for permission-

less data curation with persistence guarantees.

This thesis presentsQUADB, a platform that combines five decentralized technologies into

a unified system for managing digital data and files. Although scientific datasets are our

primary use case, QUADB’s architecture supports decentralized workflows for any digital

content: research datasets, code repositories, documentation, and multimedia files. The

platform creates a new paradigm where digital content becomes a permanent, collaborative

1

digital commons that resists institutional change. QUADB is deployed at quadb.xyz and has

been recognized through hackathon awards and funded through Filecoin’s retro funding

program.

QUADB demonstrates that the integration of complex protocols can provide practical

solutions to digital data challenges. The platform enables users to:

• Publish any type of data or files with cryptographic integrity guarantees

• Implement verifiable and permissionless version control

• Maintain complete version histories for evolving content

• Ensure permanent availability through decentralized storage

• Create subscription-based access models for premium content

• Establish private, curated, or open data sharing arrangements

These capabilities work independently of any single institution, fundamentally trans-

forming digital data management from fragmented enterprise dependency to resilient

community commons.

2 Chapter 1 Introduction

1.1 Research Statement

In this thesis we show that systematic integration of decentralized protocols can solve

fundamental problems in scientific data management without compromising practical ap-

plicability. We find that threshold-driven collaborative management can enable sub-minute

updates of datasets with mathematical safety guarantees. This transforms scientific data

from fragile corporate assets to durable commons managed by the community. The result-

ing system offers demonstrable benefits—persistent availability, cryptographic integrity,

and resistance to censorship—that justify the measurable cost of performance, enabling

the key requirements for reproducible science.

1.2 Data Management Crisis

Scientific data is growing at an incredible pace. Genomics research is projected to require

over 40 exabytes of storage by 2025 [13]. Climate data repositories are expected to reach

substantial petabyte-scale volumes. Machine learning datasets continue to grow exponen-

tially in size and complexity. Yet centralized systems managing important data have failed

multiple times.

Current data management assumptions often prove wrong: institutions may not exist

forever, administrators may not be transparent about changes, and free hosting may

not remain sustainable. In practice, servers crash, datasets disappear from catalogs, and

repositories close when funding ends. This also happens with large datasets such as

ImageNet, COCO, and WikiText, where changes are made without notifying researchers.

The key insight from QUADB is that combining technologies creates new capabilities
that solve concrete challenges:

• Climate research: Sensor data is automatically replicated across continents, ensur-

ing global accessibility and redundancy

• Medical research: Teams collaboratively maintain patient records with crypto-

graphic audit trails, preserving privacy and enabling verification

• Machine learning: Engineers refer to specific versions of data sets that remain

permanently accessible, removing barriers to reproducibility

• Institutional preservation: Data survives organizational changes, protecting

scientific heritage beyond the lifespan of institutions

1.1 Research Statement 3

1.3 Core Challenges

The creation of QUADB required the resolution of four challenges that had hindered

previous attempts to create a decentralized data infrastructure. First, the challenge of
mutability: blockchain and cryptographic systems are designed under the assumption

of immutability, but datasets must be updated. The challenge is to enable updates while

ensuring security and maintaining a complete history of changes. Traditional approaches

force researchers to choose between security and flexibility.

Second, is the challenge of collaborative control: scientific datasets must be approved

by multiple experts. It is difficult to create systems in which multiple people can control

updates without single points of failure. Current solutions rely on centralized committees

or slow blockchain-based consensus, which makes them impractical.

Third, naming challenge: There is a fundamental conflict between security and usability.

Cryptographic hashes such as QmR7G...rJa3LX provide security but are useless to humans.

It is difficult to create easy-to-remember names while ensuring decentralization. DNS

offers user-friendliness but requires central control.

Finally, the economic sustainability challenge: storing scientific data incurs costs

over time. If data sets outlive their creators, funding mechanisms must ensure permanent

storage without long-term commitments. Current models depend on the longevity of

institutions or the charity of companies, both of which are unreliable.

1.4 Research Questions

This thesis addresses three fundamental research questions that guide the development

and evaluation of QUADB.

RQ1: Protocol composition feasibility - Can IPFS, IPNS, FNS, Filecoin, and Lit Protocol

be integrated to achieve threshold-controlled dataset management while maintaining

individual protocol security guarantees?

RQ2: Collaborative update performance - Can threshold cryptography enable m-of-n

curator consensus for dataset updates with <60-second latency while resisting Byzantine

failures from up to
n−1

3 malicious participants?

RQ3: Decentralization trade-off quantification - What measurable performance costs

(latency, throughput, storage) result from decentralized management, and do the security

guarantees (permanence, verifiability, censorship resistance) justify these costs?

4 Chapter 1 Introduction

1.5 Contributions

In this thesis we make four main contributions that together solve these key challenges.

First, we present a protocol composition architecture that allows heterogeneous systems to

work together harmoniously. Through carefully designed interfaces using IPFS CIDs and

FNS domains, the protocols achieve loose coupling while integrating seamlessly. These

patterns can be reused for other protocols, such as Arweave and Ceramic. The robustness

of the architecture has been validated by a production implementation on quadb.xyz.

Second, we present threshold-driven IPNS, a new algorithm that uses the Lit protocol to

manage IPNS private keys among distributed nodes. This allows for m-of-n threshold

signatures for record updates—for example, 3 out of 5 curators must approve changes. The

system achieves an update latency of less than one minute while providing Byzantine fault

tolerance without compromising IPNS private keys to the curators.

Third, we provide a complete system implementation with over 15,000 lines of TypeScript

production code, fully open-sourced for community review. The platform includes a web

interface for data management and smart contracts on FEVM for metadata anchoring,

curator configuration management, quality reporting, FNS domain management, and

subscription data access.

Fourth, we establish a theoretical framework that quantifies the performance-decentralization

tradeoffs associated with blockchain systems. Our analysis shows that the performance

penalty is a fundamental property of decentralization and not an implementation artifact.

Performance depends on the underlying network (currently Filecoin), but because the

protocol is chain-agnostic, it can be deployed on any EVM-compatible network.

1.5 Contributions 5

1.6 Thesis Structure

Chapter 2: Background and Related Work
Examines the development of decentralized technologies from the first peer-to-peer sys-

tems to modern blockchain protocols. Analyzes the reasons for the failure of previous

attempts at decentralized data management and identifies the missing elements that

QUADB can provide.

Chapter 3: The QUADB Architecture
Describes in detail the technical design and implementation of QUADB. Shows how five in-

dependent protocols achieve seamless integration, introduces the new threshold-controlled

IPNS algorithm, and demonstrates the system works using real-world examples.

Chapter 4: Evaluation and analysis
Quantifies QUADB’s performance across multiple dimensions: latency, throughput, storage

costs, and decentralization metrics. Presents results from user studies and analyzes real-

world usage patterns from the live deployment.

Chapter 5: Conclusions and Future Vision
Synthesizes key findings and the path forward. Discusses how QUADB’s architectural

patterns can transform not just scientific data management, but the broader landscape of

decentralized applications.

6 Chapter 1 Introduction

2Background and Related Work

This chapter examines the individual decentralized networks and protocols used byQUADB:

IPFS, IPNS, Filecoin, FNS, and Lit Protocol and explain their capabilities and limitations.

We then review existing data management platforms to identify the gaps that QUADB fills

and show how the combination of these technologies creates a decentralized solution for

data curation.

2.1 Background

QUADB combines proven decentralized technologies, leverages their strengths, and over-

comes their individual limitations to create a unified platform. Understanding these

building blocks is crucial to understanding the architectural innovation of QUADB.

2.1.1 IPFS

The InterPlanetary File System (IPFS) provides decentralized file storage and sharing

without central servers. Instead of storing files in central locations controlled by individual

organizations, IPFS distributes files across a global network of participating computers.

IPFS works by assigning each file a unique digital fingerprint, known as a Content Identifier

(CID). This digital fingerprint is based on the content of the file and identifies the file by

helping to locate it on the network. Unlike traditional web addresses, which point to a

specific server, IPFS addresses point to the content itself, regardless of where it is stored.

Despite its innovations in content addressing, IPFS has systematic limitations that prevent

its standalone use for managing scientific data

Persistence fragility: The availability of content depends entirely on the voluntary

participation of nodes without economic incentives. Research by Trautwein et al. [23]

shows that 50% of content is no longer available within 24 hours of upload due to nodes

being abandoned. This leads to fundamental reliability issues for scientific datasets that

require long-term accessibility.

7

Performance limitations: IPFS has 5–10× higher latency compared to CDNs, with

content discovery times varying between 3 and 45 seconds depending on network topology.

Distributed hash table (DHT) routing suffers from scalability limitations at more than 106

nodes, leading to bottlenecks for large-scale scientific collaboration.

Economic sustainability gaps: The lack of built-in incentives for providing storage

space leads to a tragedy of the commons, where storage costs are externalized while the

benefits are shared, resulting in systematic underinvestment in network infrastructure and

content persistence.

2.1.2 IPNS

While IPFS is great for storing immutable content, scientific data sets need to evolve over

time. This leads to the “mutability problem”: how can researchers update data sets while

keeping the security benefits of content addressing?

The InterPlanetary Naming System (IPNS) [21] fixes this fundamental limitation. IPFS

provides immutable, content-based objects with permanent links, universal integrity

checking, and caching capabilities. However, it is not capable of managing content that

needs to be updated over time. IPNS solves this problem by providing mutable references

to dynamic content using the concept of the Self-Certifying File System (SFS) concept [15,

14]. The system creates a mutable namespace for each user based on their public key

hash, which is accessible via the path /ipns/ipns-id. Within this namespace, users can

publish cryptographically signed objects that refer to different versions of their content

and disseminate them to the network.

The fundamental innovation of IPNS is its ability to maintain a stable and consistent point

of reference while allowing the underlying content to evolve. This design preserves all the

advantages of IPFS’s immutable, content-based system while introducing the necessary

level of mutability required for dynamic applications.

However, IPNS introduces critical limitations that restrict its applicability for collaborative

management of scientific data:

Update propagation delays: IPNS operations over the DHT can be slow due to the need

to find multiple records across nodes to ensure the latest version is retrieved. The IPNS

specification [12] notes that publishing and resolving IPNS names using the DHT involves

round trips to multiple nodes, creating latency in update propagation and temporary

inconsistency windows where different nodes may serve different dataset versions.

8 Chapter 2 Background and Related Work

Single key control bottlenecks: Each IPNS data record requires exactly one private

key holder, which prevents collaborative management. This centralized control model

contradicts the requirements of scientific collaboration, where multiple researchers need

shared authority over data sets. Compromising or losing the key permanently disables

updates to the data sets, with no recovery mechanisms in place.

Tensions between security and usability: IPNS names (e.g., k2k4r8n7v...) are
cryptographically secure but unusable by humans. Integration with DNS provides usability

but reintroduces centralized dependencies that undermine the benefits of decentraliza-

tion.

2.1.3 Filecoin

Both IPFS and IPNS rely on the voluntary participation of network nodes to store and

provide data. This leads to a critical vulnerability: there is no guarantee that important

scientific data sets will remain available in the long term. If nodes disconnect or terminate

their participation, data may be lost. Filecoin addresses this persistence problem by

extending IPFS with economic incentives for reliable, long-term data storage, thereby

creating a decentralized marketplace [4]. The network uses a blockchain infrastructure

with a native token(FIL) to create an open marketplace where users can rent storage space

from storage providers.

The security and reliability of Filecoin are based on two fundamental cryptographic

mechanisms. Proof-of-Replication (PoRep) ensures that storage providers have actually
stored replicas of the data and are not just declaring their storage capacity [9]. In addition,

Proof-of-Spacetime (PoSt) provides continuous verification that the data is maintained

over extended periods of time [10]. Together, these mechanisms create a verifiable market

with performance guarantees while promoting honest behavior [20].

These cryptographic proofs also form the foundation of Filecoin’s consensus mechanism,

enabling network participants to agree on the shared ledger state without centralized

intermediaries. The consensus protocol operates through a Proof of Stake-like system

that calculates each miner’s influence based on their contributed storage capacity, termed

storage power.

These cryptographic proofs also form the basis for Filecoin’s consensus mechanism, which

enables network participants to agree on the status of the shared registry without a central

intermediary. The consensus protocol works via a system similar to Proof of Stake, which

calculates the influence of each miner based on the storage capacity provided, known as

storage power.

2.1 Background 9

The network employs Expected Consensus to select block producers through a determin-

istic but unpredictable process that maintains security while ensuring fair participation.

At each epoch, the protocol secretly elects a group of leaders from among the storage

providers whomeet the minimum storage capacity requirements, while giving more weight

to those with higher storage power. These elected leaders generate the next set of blocks

and receive FIL token rewards, with each epoch potentially containing zero or more blocks

organized into tipsets that form the blockchain structure.

Despite solving storage incentivization, Filecoin exhibits architectural limitations that

prevent standalone deployment for scientific data management:

Integration isolation: Filecoin operates independently from IPFS content addressing

and naming systems, requiring manual coordination between storage deals and content

identification. No built-in mechanisms exist for linking Filecoin storage contracts to IPFS

CIDs or IPNS records, creating operational complexity for integrated workflows.

Economic barriers to entry: Storage deals require significant FIL token stakes (typically

1-10 FIL minimum) and complex negotiation processes unsuitable for small-scale research

projects. Gas fees for storage operations can exceed $10-100 per transaction during network

congestion, creating cost barriers for budget-constrained research institutions.

Management mechanism absence: Filecoin focuses exclusively on storage provision

without addressing dataset management, versioning, access control, or collaborative cura-

tion. Storage providers have no incentives for maintaining dataset quality, version history,

or coordination compliance beyond basic storage availability.

Retrieval performance limitations: While Filecoin guarantees storage, it provides

limited guarantees for retrieval performance. Storage providers may impose bandwidth

limitations, latency constraints, or access restrictions that degrade dataset usability for

time-sensitive research applications.

10 Chapter 2 Background and Related Work

2.1.4 FNS

Filecoin Name Service (FNS) is a decentralized naming system that maps human-readable

identifiers to machine-resolvable records such as blockchain addresses, content hashes,

and metadata URIs [25]. Operating on the Ethereum blockchain, FNS eliminates reliance

on centralized DNS authorities, offering censorship resistance, cryptographic verifiability,

and programmability through smart contracts.

FNS namespaces are hierarchical and rooted in ownership of top-level domains (TLDs),

allowing for structured delegation. Each name is managed by a smart contract that specifies

resolver logic and access control policies. These resolvers can associate names with IPFS

CIDs, IPNS records, or other identifiers, facilitating integration with decentralized content

networks.

2.1.5 Lit Protocol

Lit Protocol provides decentralized infrastructure for secure, programmable cryptographic

key management [22]. The protocol uses a distributed network of independent nodes that

employ threshold cryptography [26] and hardware isolation.

The security model relies on Trusted Execution Environments (TEE), specialized hardware

that isolates sensitive cryptographic keys from system operations. This hardware-based

isolation prevents unauthorized access while maintaining network distribution. Secrets are

split using threshold secret sharing and distributed across multiple nodes. Cryptographic

operations only occur when a predefined threshold of nodes reaches consensus.

The protocol includes Access Control Lists (ACL) for granular control over cryptographic

operations. ACLs enable complex conditions for content encryption and decryption

based on blockchain states, including token balances, network conditions, and smart

contract interactions. This programmable access control ensures only users meeting

specific conditions can decrypt content.

Lit Protocol also offers Lit Actions—custom JavaScript functions that run securely within

the decentralized network. These cryptographically verified functions enforce complex

rules and integrate with ACLs. Lit Actions can serve as oracles, bringing off-chain access

rules into blockchain networks and enabling integration with external protocols.

2.1 Background 11

Storacha

Storacha (formerly web3.storage) represents a paradigm shift in decentralized storage

by providing a cloud-like interface that seamlessly integrates IPFS, Filecoin, and IPNS

protocols. The platform maintains decentralized principles while offering service guar-

antees that ensure secure, verifiable, and persistent data storage through familiar user

experiences.

The platform’s core strength lies in its comprehensive service guarantees that span multi-

ple decentralized protocols. Through IPFS integration, Storacha provides robust content

addressing by pinning files to IPFS networks and distributing them across public nodes,

ensuring global accessibility without relying on centralized infrastructure. The platform’s

Filecoin integration creates verifiable storage deals that users can permissionlessly audit,

providing cryptographic proof that their files are included in long-term storage commit-

ments.

Storacha’s IPNS support enables mutable references for evolving datasets, allowing users

to maintain consistent access points for dynamic content while preserving the benefits

of content-addressed storage. The platform implements User Controlled Authorization

Networks (UCAN) [24] to provide sophisticated access control mechanisms, including

client-side authorization, fine-grained permissions, secure delegation capabilities, and

automated service health monitoring.

Eliminating the complexity of interacting with multiple decentralized protocols, Storacha

provides a unified interface that combines traditional expectations of cloud computing

with the fundamental benefits of a decentralized infrastructure. Users gain access to

censorship resistance, data sovereignty, and cryptographic verifiability without requiring

deep technical knowledge of the underlying decentralized systems.

12 Chapter 2 Background and Related Work

2.2 Related Work

Having examined the individual technologies that QUADB integrates, we now turn to

existing platforms and academic research in decentralized data management. Several

platforms have attempted to address the challenges of decentralized data curation and

marketplaces, but significant gaps remain in practical, integrated solutions. This section

reviews these efforts and identifies how QUADB’s approach differs.

Data Management Platforms

Ocean Protocol [19] focuses on data marketplaces with privacy-preserving analytics, en-

abling data monetization through blockchain-based access control. While Ocean addresses

data commerce, it lacks versioning capabilities and depends on centralized storage infras-

tructure. The platform emphasizes data exchange rather than collaborative management,

missing the multi-curator model essential for scientific datasets.

Ceramic Network [18] provides mutable data streams with decentralized identity, offering

programmable data sovereignty. However, Ceramic’s focus on application data rather

than large-scale datasets creates scalability limitations. The platform lacks integration

with storage incentive mechanisms, relying on voluntary pinning services that cannot

guarantee long-term persistence.

Arweave [2] offers permanent storage through novel economic incentives, addressing data

persistence challenges. However, Arweave’s "write-once" model prevents collaborative

dataset evolution, and its lack of mutable references requires external naming systems.

The platform provides storage without coordination mechanisms for multi-party dataset

curation.

2.2 Related Work 13

QUADB Contributions

QUADB systematically addresses the identified limitations of existing technologies through

architectural innovations. These create previously impossible capabilities:

(1) Systematic protocol composition methodology: While individual protocols suffer

from isolation (IPFS lacks persistence incentives, IPNS lacks collaborative record updates,

Filecoin lacks naming integration, FNS lacks storage capabilities, Lit Protocol lacks appli-

cation integration), QUADB establishes the first comprehensive framework for composing

these heterogeneous systems. The loose coupling through standardized interfaces pre-

serves individual protocol security properties while creating emergent system capabilities

impossible with any single technology.

(2) Threshold-controlled collaborative management: Existing platforms fail to solve

the fundamental tension between security and collaboration—IPNS requires single-key

control, FNS supports only ownership-based access, and traditional blockchain voting is

too slow for practical workflows. QUADB introduces the first practical implementation

of threshold-controlled IPNS records through Lit Protocol integration, enabling m-of-n

curator consensus with sub-minute latency while maintaining Byzantine fault tolerance

acting as a multisignature permissionless secure serverless function. This solves the

collaborative dataset evolution problem that no existing platform addresses.

(3) Economic sustainability without barriers: While Filecoin creates cost barriers

and Ocean Protocol focuses on data monetization, QUADB demonstrates sustainable

scientific data governance throughminimal transaction costs (0.001-0.003 FIL per operation)

and storage persistence guarantees without requiring complex storage deal negotiations.

The platform abstracts economic complexity while providing cryptographic persistence

guarantees.

(4) Production-scale empirical validation: Unlike academic research that remains

theoretical or platforms that provide limited real-world validation, QUADB demonstrates

practical feasibility through production deployment with comprehensive real-world usage

data. This represents the first comprehensive empirical validation of multi-protocol inte-

gration for scientific data management, providing performance data and usability insights

unavailable from existing platforms.

(5) Comprehensive dataset lifecycle management: Existing platforms address single

aspects—storage (IPFS, Arweave), naming (FNS), or data marketplace (Ocean Protocol)—but

no integrated solution exists for complete dataset management. QUADB provides the

first platform combining content integrity, version control, collaborative coordination,

14 Chapter 2 Background and Related Work

human-readable naming, and economic sustainability in a unified architecture suitable for

scientific workflows and extendable to other use cases.

Most critically, QUADB demonstrates that the fundamental limitations of individual de-

centralized protocols can be systematically addressed through careful architectural com-

position rather than requiring new protocol development. This approach enables practi-

cal deployment using mature, battle-tested protocols while achieving novel capabilities

through integration innovation.

This chapter outlined the foundational tools QUADB builds upon. The next chapter

presents the architecture, implementation, and workflows of QUADB in detail.

2.2 Related Work 15

3System Design and
Implementation

This chapter presents the design and implementation of QUADB, explaining how the

technologies discussed in Chapter 2 are combined into a unified system. The structure of

this chapter follows a layered approach, providing a clear overview of the system’s goals,

architecture, and core workflows.

3.1 Design Goals

QUADBwas designed as an intuitive, open, secure and decentralised platform for managing

scientific data. The system aims to combine ease of use with a high level of data protection

so that researchers can exchange, update and store data sets securely over a long period of

time. The main design objectives are as follows:

• Decentralization: No single group or individual controls access or changes to

records, removing central points of failure.

• Controlled Evolution: Datasets maintain a permanent record of all versions, while

allowing new versions to be published through secure storage, updateable links, and

group approval for changes.

• Reliable Storage: Datasets remain available over time because storage providers

are rewarded for keeping them safe, using systems such as Filecoin and automatic

storage checks.

• Community Quality Signals: Users can show trust in dataset versions by staking

tokens, creating quality signals based on real participation.

These principles make QUADB a decentralized, sustainable, and accessible platform for

collaborative scientific data management.

17

3.2 System Architecture Overview

QUADB’s architecture is based on the integration of existing blockchain protocols, each

maintaining its own security properties while contributing to the system’s goals. This

approach allows components to evolve independently. Figure 3.1 provides a high-level

overview of the system.

QUADB
Decentralized
Data Platform

IPFS
Content Storage

Filecoin
Persistent
Storage

Lit Protocol
Cryptographic

Keys

Smart Contracts
Governance

IPNS
Version Pointers

FNS
Human Names

Storacha
Unified Interface

Storage Layer

Crypto Layer

Naming Layer

Interface Layer

Fig. 3.1.: QUADB system architecture across the four interconnected layers

The architecture of QUADB organizes five decentralized protocols into four layers:

• Storage Layer: Manages data storage using IPFS for content addressing and Filecoin

for long-term retention.

• Naming Layer: Provides updatable and human-readable references using IPNS and

FNS.

• Crypto Layer: Manages access control and permissionless updates using Lit Proto-

col and smart contracts.

• Interface Layer: Simplifies protocol coordination through Storacha, offering a

unified interface.

18 Chapter 3 System Design and Implementation

3.2.1 Storage Layer

The Storage Layer forms the foundation of QUADB’s data management, ensuring that

datasets are stored in a decentralized, verifiable, and persistent manner. This section

describes how QUADB leverages IPFS, Filecoin, and Storacha to provide robust storage

guarantees and efficient data organization. The Storage Layer integrates IPFS content-

addressing with Filecoin’s persistence guarantees, coordinated by Storacha. IPFS provides

verifiable and immediate access to content, while Filecoin ensures long-term retention

through economic incentives and proof of storage. Storacha coordinates these systems,

allowing users to interact with both protocols seamlessly. Fig 3.2 shows the storage layout.

In QUADB, each dataset is organized under a root CID (ρ) with a standardized hierarchical

structure that stores all essential components in separate, easily indexable subdirectories:

• /data: The dataset files themselves.

• /gov: Governance information required for verifiable updates, such as the Lit Action

configuration and curator rules .

• /persist: Filecoin deal information, enabling verification of storage permanence by

linking to the relevant Filecoin storage contracts for the stored files.

• /meta: Arbitrary metadata about the dataset, supporting discovery and descriptive

information.

This structure enables efficient access, supports verifiable updates, and allows for indepen-

dent retrieval and validation of each component. The separation of these elements ensures

that data, governance, storage proofs, and metadata can be managed and indexed inde-

pendently, supporting robust and transparent dataset management across layers storage

layout is also formalized in Algorithm 1.

Fig. 3.2.: Storage design in quadb

3.2 System Architecture Overview 19

Data Deduplication

QUADB implements data deduplication across dataset versions, leveraging IPFS’s content-

addressed storage to improve storage efficiency. The system uses file-type-aware dedupli-

cation algorithms:

• Merkle DAG-based deduplication: IPFS’s Merkle DAG structure enables dedu-

plication at the block level. Identical blocks in different versions share the same

content identifier (CID), resulting in automatic deduplication without extra storage

costs.

• File-type optimization: Text files (CSV, JSON, XML) benefit from row-level dedupli-

cation, while binary files (images, archives) use block-level strategies. This adaptive

approach maximizes efficiency while maintaining performance [11].

• Future optimization: The architecture supports advanced deduplication through

pre-calculated file DAGs, enabling real-time analysis and predictive storage opti-

mization.

This deduplication mechanism reduces storage costs for evolving datasets while preserving

complete version history, making long-term retention economically viable.

20 Chapter 3 System Design and Implementation

3.2.2 Naming Layer

The Naming Layer addresses the challenge of referencing datasets in a mutable yet reliable

way. Here, we explain how QUADB combines IPNS and FNS to provide both stable,

updatable identifiers and human-readable names, supporting both technical and user-

friendly access to data.

Each dataset instance receives a unique IPNS name, generated through the w3up service,

providing a stable identifier that can be updated to point to new content versions. FNS

domains give datasets human-readable names, improving usability. When users reference

a dataset through its FNS domain, the system resolves this to an IPNS name, which in turn

points to the current IPFS CID. This multi-layer naming system provides both stability and

flexibility, allowing datasets to evolve while maintaining permanent access to all historical

versions.

QUADB leverages the Filecoin Name Service (FNS) to create a hierarchical namespace of

data repositories. The root name is owned and managed by the QUADB smart contract,

and each node in the namespace represents a repository of data repositories. This structure

supports extensibility, as anyone can add new subdomains to extend the namespace. The

use of FNS subdomains enables organized, human-readable, and decentralized management

of datasets.

Figure 3.3 illustrates the tree-like structure of the namespace, making navigation intuitive

and scalable.

Fig. 3.3.: Tree-like namespace structure in QUADB using FNS subdomains. Each node represents

a data repository, and the hierarchy can be extended by anyone, supporting organized

and scalable data management.

The QUADB explorer interface (see Figure A.1) further enhances usability by providing an

intuitive way to browse and interact with the namespace.

3.2 System Architecture Overview 21

3.2.3 Crypto Layer

The Crypto Layer is responsible for secure access control and collaborative governance of

dataset updates. This section details how QUADB uses threshold cryptography and smart

contracts to enable permissionless, multi-party control over dataset evolution. Lit Protocol

enables m-of-n consensus for dataset updates, requiring multiple curators to approve

changes. The smart contract, deployed on the Filecoin EVM, serves as the authoritative

registry for data instances and their governance parameters that are used from the Lit

Actions to validate and perform the updates.

Permissionless Updates with Lit Actions

QUADB’s coordination system enables multiple researchers to collaboratively control

dataset evolution without single points of failure. Lit Protocol’s threshold cryptogra-

phy implements m-of-n consensus for updates. The integration addresses three critical

aspects:

• Secure key management: Dataset-specific IPNS keys are generated and encrypted
by the Lit Protocol network, ensuring no single entity has unencrypted access.

• Permissionless updates: Lit Actions are executable scripts stored on IPFS, identi-

fied by immutable CIDs. Only the Lit Protocol network can execute these scripts,

enforcing consensus requirements.

• Conditional execution: The Lit Action verifies that a threshold number of curators

have signed their approval. This occurs within the Lit Protocol’s secure environment,

ensuring consensus rules cannot be bypassed.

To protect against replay attacks, each update message includes both the new IPNS pointer

and the current IPNS sequence number. The Lit Action checks that the sequence number

in the update is strictly greater than the previous value. This prevents attackers from

submitting previously signed messages to revert the dataset to an older version, ensuring

that only forward progress is possible and that permissionless updates remain secure.

Figure 3.4 illustrates how Lit Actions enable permissionless, threshold-based updates to

IPNS records without exposing private keys.

22 Chapter 3 System Design and Implementation

Fig. 3.4.: Permissionless updates: Lit Actions enable threshold-based updates to IPNS records.

Curators sign approvals, which are verified by the Lit Protocol network. The process

updates the IPNS record without exposing private keys.

The smart contract records the instance’s IPNS name, the IPFS CID of the Lit Configuration

JSON, and the list of authorized curators and signature thresholds. This establishes the

trust foundation for all future modifications.

Lit Action Implementation

The implementation of QUADB Lit Actions required a customized integration to enable

the desired functionality. Lit Actions operate within a sandboxed JavaScript environment

that supports only a subset of JavaScript capabilities. Custom library compilation was nec-

essary to support three essential functions within the Lit Protocol environment: signature

verification and address recovery for curator authentication, smart contract interaction

for governance rule validation, and IPNS network communication for record updates.

These components were compiled to be compatible with the Lit Protocol’s restricted exe-

cution environment while maintaining the cryptographic security properties required for

permissionless dataset updates.

Lit Action Factory: The Lit Action Factory purpose is to create a lit action for each dataset
by taking the base compiled code and replacing the datasetID to enforce the access control

rules for the dataset. While each datasetID can be deterministically generated this is not

introcuting further security concerns.

3.2 System Architecture Overview 23

Access Control Models

QUADB’s smart contract architecture supports multiple access control models to accom-

modate diverse data sharing requirements:

Open Instances provide unrestricted access to any user, ideal for public datasets, open-

source code, or community resources that benefit from maximum accessibility.

Private Instances implement NFT-based gated access through the GatedInstance contract.

Only users holding specific NFTs can access the content, enabling controlled collaboration

among defined research teams or organizations. There is also the admin who is able to

grant/revoke access to specific users. That brings considerations as one entity can manage

the access control but that could be solved by using a multisig contract.

Subscription-Based Instances utilize the SubscriptionNFTs contract to provide time-

based access through economic participation. Users purchase monthly subscriptions to

access premium datasets or commercial research content, with 99% of subscription fees

forwarded to content creators.

HybridModels combine multiple access controls—for example, private instances with sub-

scription options allow both teammembers (via NFT membership) and external subscribers

(via paid access) to utilize the same content under different terms.

Each instance access control model is anchored on-chain, encryption and decryption rules

are enforced by the Lit Protocol which relies on custom rules based on the access control

model. This flexible access control system enables QUADB to support diverse use cases

from open scientific collaboration to commercial data monetization while maintaining the

same underlying decentralized infrastructure.

24 Chapter 3 System Design and Implementation

3.2.4 Interface Layer

The Interface Layer abstracts the complexity of interacting with multiple decentralized

protocols. The platform architecture prioritizes modularity to facilitate integration with

evolving decentralized protocols and storage providers. The interface layer currently

utilizes Storacha for IPFS pinning, Filecoin storage deal management, and IPNS record

operations, but the abstraction layer enables seamless integration of alternative storage

providers and protocols.

This modular approach ensures that QUADB can adapt to technological developments

in the decentralized storage ecosystem while maintaining consistent functionality for

end users. The abstraction layer provides standardized interfaces for storage operations,

naming services, and cryptographic functions, enabling protocol substitution without

requiring application-level modifications.

3.2 System Architecture Overview 25

3.3 Core Workflows

To illustrate the practical operation of QUADB, this section walks through the core work-

flows involved in creating, updating, and managing datasets. These workflows demonstrate

how the system’s layered architecture supports real-world use cases.

This section details the practical implementation of QUADB’s core workflows.

3.3.1 Space Creation

The creation of a new dataset instance in QUADB begins with establishing an FNS Space.

This process creates the organizational subspace that contributes to quadb’s hierarchical

namespace. Figure 3.5 illustrates this workflow.

The hierarchical naming architecture implements a tree-based namespace organization

where quadb.fil serves as the root domain. This design enables systematic dataset cat-

egorization through subdomain structures (e.g., llm.quadb.fil for machine learning

datasets, genomics.quadb.fil for biological data) each of which can be conceptu-

alised as a repository of data repositories in QUADB namespace.

Fig. 3.5.: QUADB Space Creation Sequence Diagram

26 Chapter 3 System Design and Implementation

3.3.2 Instance Creation

Creating a new dataset instance in QUADB is a multi-step process that is streamlined for

the user. The sequence diagram in Figure 3.6 shows the main steps involved in this process.

Fig. 3.6.: Dataset Instance Creation Sequence Diagram

The key steps for creating a dataset instance are:

1. Upload the dataset files to IPFS and Filecoin for decentralized storage.

2. Create an IPNS record for the dataset instance.

3. Generate a LitAction for the dataset, which is used to update the IPNS record.

4. Encrypt the IPNS private key using the Lit Protocol, so only the LitAction can

decrypt it after validating the required inputs.

5. Combine the results of the previous steps into a single storage layout and upload it

to IPFS, as described in Section 3.2.1.

6. Anchor the dataset metadata and curation rules on-chain.

7. Register the dataset instance on the QUADB smart contract.

This process ensures that each dataset instance is securely stored, versioned, and governed

in a decentralized manner. By combining decentralized storage, threshold-based key

management, and on-chain governance, QUADB achieves both data integrity and controlled

mutability. The use of smart contracts and cryptographic protocols allowsmultiple curators

to collaborativelymanage updates, while preserving a complete and tamper-evident version

history. For technical details on the IPNS record creation protocol, see Algorithm 3.

3.3 Core Workflows 27

3.3.3 Update Process

Updating a dataset instance in QUADB is a collaborative process that ensures only autho-

rized changes are made. The sequence diagram in Figure 3.7 illustrates the main steps

involved.

Fig. 3.7.: Dataset Instance Update Sequence Diagram

The key steps for updating a dataset instance are:

1. The user proposes a new version of the dataset.

2. The user collects signatures from the curators.

3. If the threshold is reached, the user calls the LitAction to update the IPNS record.

4. The user passes the new CID for IPNS to point to the new version of the dataset,

along with the signatures of the curators.

5. The LitAction queries the smart contract to get the curators and the threshold

required to update the IPNS record. It also validates the sequence number of the

IPNS record, creates the message that should have been signed, and validates the

signatures to recover the addresses that signed.

6. On successful validation, the LitAction decrypts the IPNS private key and updates

the IPNS record with the new pointer.

This process ensures that updates are only made when the required number of curators

approve the change. It maintains the integrity and security of the dataset, while allowing

for collaborative and permissionless updates. For technical details, see Algorithm 2.

28 Chapter 3 System Design and Implementation

3.4 Quality Signals

QUADB incorporates an experimental quality signaling mechanism that explores stake-

weighted voting for dataset assessment. Users can economically express confidence in

datasets through staking, creating market-driven quality indicators that complement

traditional peer review. The experimental framework investigates whether economic

incentives can effectively motivate accurate quality evaluation while deterring gaming

behaviors. Implementation combines on-chain stake management with off-chain analytics

to generate comprehensive quality metrics spanning technical accuracy, documentation

completeness, and community feedback.

This experimental approach represents an ongoing investigation into cryptoeconomic

dataset governance, with findings contributing to the broader understanding of decentral-

ized quality assessment mechanisms.

3.5 Security Considerations

The QUADB security model is based on several properties:

• Content Integrity: IPFS CIDs ensure information integrity through cryptographic

hashing.

• Access Control: Lit Protocol’s threshold encryption requires m-of-n authorization

for IPNS updates. This ensures that only authorized curators can update the IPNS

record, preventing unauthorized changes, while not exposing private keys to anyone

and handling replay attacks.

• Availability: Distributed storage achieves high availability through redundancy

and economic incentives.

3.4 Quality Signals 29

3.6 Platform Implementation Details

This section presents the technical implementation architecture of QUADB, detailing the

software stack, deployment infrastructure, and custom protocol adaptations that enable the

system’s decentralized functionality. The implementation demonstrates how established

web technologies can be effectively integrated with emerging decentralized protocols to

create a production-ready platform. The complete implementation is available as open-

source software at https://github.com/nijoe1/quadb.

3.6.1 Technology Stack

QUADB is implemented as a full-stack TypeScript application, leveraging modern web

development frameworks to provide an accessible interface to complex decentralized

infrastructure. The platform architecture consists of three primary components:

The frontend employs React 18 with Next.js 14, providing server-side rendering capabilities

and optimized performance for decentralized content access. The user interface utilizes

Tailwind CSS for responsive design and the shadcn/ui component library for consistent,

accessible UI elements. This combination ensures cross-platform compatibility while

maintaining the responsive design patterns expected in modern web applications.

The backend infrastructure leverages Next.js API routes deployed as serverless functions,

enabling scalable processing of computationally intensive operations. While the system

architecture supports complete client-side operation, the backend provides optimization

for resource-intensive tasks such as cryptographic operations and large file processing,

significantly improving user experience without compromising decentralization princi-

ples.

The blockchain integration layer utilizes Viem and Wagmi libraries for type-safe smart

contract interactions with the Filecoin EVM. This approach ensures robust communication

between the web application and on-chain governance mechanisms while maintaining

compatibility with the broader Ethereum ecosystem.

The interactions with the Lit Network are handled using the Lit Protocol SDK. The Lit

Protocol SDK is a library that allows you to interact with the Lit Network. It is used to

encrypt and decrypt content with custom rules such as the ACL rules described in Sec-

tion 3.2.3. As well using lit actions. QUADB uses lit actions to perform the permissionless

updates to IPNS records while also using custom ACL rules that are based on the access

control model of the dataset anchored on the smart contract.

30 Chapter 3 System Design and Implementation

https://github.com/nijoe1/quadb

To create deploy and test QUADB smart contracts we used the hardhat framework. Hardhat

is a development framework for Ethereum that provides a comprehensive set of tools for

developing, testing, and deploying smart contracts. It is used to create, deploy, benchmark

and test QUADB smart contracts.

Protocol Integration Overview

The QUADB architecture systematically integrates five decentralized protocols, each of

which plays a distinct role in creating a comprehensive data management system that

surpasses the capabilities of individual technologies:

IPFS: Content Addressing and Hot Storage forms the basis for decentralized file

storage and retrieval. IPFS acts as a hot storage layer, enabling instant access to content

via cryptographic addressing and distributin g files across a global network. Its content-

addressing nature ensures data integrity through immutable content identifiers (CIDs) that

change whenever the content changes.

IPNS and Lit Protocol: Verifiable and secure mutability addresses the fundamental

challenge of enabling collaborative evolution of data sets while maintaining cryptographic

security. IPNS provides mutable pointers to evolving content, while Lit Protocol’s threshold

encryption enablesm-of-n consensus among curators for updates. This combination creates

secure and verifiable mutability where the evolution of datasets requires approval from

multiple parties without exposing private keys to individual curators.

Filecoin: Long-term Persistence and Cold Storage ensure the survival of datasets

beyond their creators through economic incentives for storage providers. Filecoin acts as

a cold storage layer, providing cryptographic proof of storage and guarantees of recov-

ery. Integration with IPFS creates a complete storage lifecycle in which data seamlessly

transitions from hot storage (immediate access) to cold storage (long-term archiving).

FNS: Decentralized, human-readable naming bridges the gap between cryptographic

security and usability by providing human-readable domain names that resolve to data

records. This eliminates the need for users to interact directly with cryptographic hashes,

preserving decentralized control.

Storacha: Unified Integration Layer abstracts the complexity of multi-protocol coor-

dination and provides a simplified interface for IPFS pinning, Filecoin storage contracts,

and IPNS record management. This integration layer enables QUADB to leverage multiple

protocols without requiring users to understand the underlying technical complexity.

3.6 Platform Implementation Details 31

This composition creates new properties that would not be possible with individual proto-

cols: content-based records that are jointly managed, permanently stored, human-readable,

and economically sustainable, transforming digital data from fragile corporate assets into

shared digital goods that are resiliently managed by the community.

Summary

This chapter presented the design rationale, architecture, and implementation details of

QUADB. By composing decentralized technologies in a modular way, the system enables

reproducible, collaboratively governed, and economically incentivized dataset publication

and maintenance. The next chapter evaluates the system’s functionality, performance, and

feasibility.

32 Chapter 3 System Design and Implementation

4Evaluation

This chapter evaluates QUADB through comprehensive analysis of its real-world deploy-

ment and performance. The platform received external validation through first prize

awards at ETHBrussels and Filecoin hackathons, plus acceptance into the Filecoin Grants

Program.

We evaluate QUADB’s functionality, performance trade-offs, security properties, eco-

nomic costs, and comparison with alternatives through production deployment analysis,

performance benchmarking, security assessment, and comparative evaluation.

4.1 Performance Analysis

QUADB’s performance analysis reveals the fundamental trade-off between decentralization

benefits and speed. QUADB operations require more time than centralized systems but

provide guarantees unavailable with centralized systems.

Upload performance exhibits 5–10 second time-to-first-byte due to UCAN authorization.

Upload time follows Tupload = Tauth + D
B + Tdag where Tauth = 5–10s, D is dataset size,

B is bandwidth, and Tdag is negligible for datasets under 1GB.

Blockchain anchoring on Filecoin achieves finality within 30 seconds: Tanchor =
Tmempool + n · Tepoch with Tmempool = 5–10s and typically n = 1 epoch. QUADB is

chain-agnostic and designed to be compatible with any EVM-compatible chain.

Update propagation shows IPNS updates propagate in seconds via Storacha but require

3–5 minutes through public gateways.

Multi-party updates via threshold signature collection add Tsig = Tnetwork + Tthreshold ·
log(n), with signature aggregation typically under 5 seconds. Total update latency: Ttotal =
Tupload + Tanchor + Tsig + Tipns.

Performance comparison reveals QUADB’s trade-offs: upload latency increases from < 1s
to 5–10s, gaining authorization security; update propagation extends from < 1s to 30–60s,

enabling decentralized consensus; global availability requires 3–5 minutes versus instant

33

access, eliminating single points of failure; and cryptographic integrity replaces trust-based

models, ensuring verifiable permanence with high censorship resistance.

Tab. 4.1.: Performance Comparison: QUADB vs. Centralized Systems

Operation QUADB Centralized Benefit
Upload Latency 5–10s < 1s Authorization security

Update Propagation 30–60s < 1s Decentralized consensus

Global Availability 3–5 min Instant No single point of failure

Data Integrity Cryptographic Trust-based Verifiable permanence

Censorship Resistance High Low Decentralization

4.2 Economic Analysis

QUADB’s economic feasibility depends on Filecoin transaction costs. Cost is calculated as:

CostF IL = Gasused ×BaseFee× 10−18

Tab. 4.2.: Transaction Costs for QUADB Operations

Operation Gas Cost (FIL)* Level
Create Space 0.3M 0.0003 High

Register Instance 0.2M 0.0002 Medium

Update Curators 0.25M 0.00025 Medium

Quality Stake 0.15M 0.00015 Low

IPNS Authorization 0.1M 0.0001 Low

*BaseFee = 1 nanoFIL

Cost optimization occurs through batch operations, off-chain signature collection, selective

on-chain anchoring, and IPNS mutable references.

4.3 Deduplication Analysis

Deduplication efficiency in IPFS-based systems like QUADB depends on the choice of

chunking algorithm and its configuration. Recent research [11] demonstrates that dedupli-

cation benefits are most pronounced with content-defined chunking algorithms. This is

particularly true for datasets that undergo frequent, small-scale updates, such as JSON or

CSV files in collaborative curation workflows.

Tab. 4.3.: Chunking Algorithm Comparison for IPFS Deduplication

Feature FastCDC Rabin
Performance High Lower

Resource Usage Low High

Chunk Boundaries Stable Variable

Deduplication High, stable High, sensitive

Adoption IPFS default Legacy

Configuration Min/avg/max Window/poly

34 Chapter 4 Evaluation

Consistent with these findings, the QUADB platform exposes dataset-type metadata during

ingestion, enabling automatic selection of chunking strategies tailored to data character-

istics. For structured tabular data (such as JSON and CSV), FastCDC is used with tuned

chunk sizes to maximize deduplication, storage savings, and upload performance. This

approach is validated by literature [11] and our simulations, which demonstrate dedupli-

cation ratios exceeding 50% for low-change, multi-version datasets. For binary or legacy

datasets, QUADB allows the selection of Rabin chunking to ensure compatibility or handle

edge cases.

4.4 Validation Results

The QUADB implementation at quadb.xyz validates the feasibility of integrating mul-

tiple decentralized protocols into a cohesive platform through six months of real-world

operation.

The integration of the protocols illustrates three fundamental architectural principles:

Modularity through a modular architecture that enables the independent operation of the

protocols while contributing to the overall functionality; Interoperability through standard

interfaces (CID IPFS, FNS names) that facilitate seamless communication between the

components; Separation of responsibilities, which ensures specialized protocol functions

without interference.

Key architectural features have been successfully validated:

Tab. 4.4.: Validation of Architectural Patterns

Pattern Implementation Status
Content Addressing IPFS CIDs for all data Immutable references working correctly

Mutable Pointers IPNS for latest versions Updates propagate as expected

Human-Readable Names FNS integration .QUADB names resolve properly

Threshold Cryptography Lit Protocol conditions Multi-sig updates enforced

Decentralized Storage Storacha/Filecoin Data persists across sessions

Smart Contract Coordination Filecoin FVM contracts State transitions work correctly

Comparative analysis reveals QUADB’s unique positioning among existing platforms:

Tab. 4.5.: Platform Comparison

Platform Governance Versioning Latency Persistence
QUADB Threshold Complete 45–60s Cryptographic

Ocean Protocol Centralized Limited < 5s Trust-based

Arweave None None N/A Economic

Ceramic Individual Streams 10–30s Voluntary

GitHub/Zenodo Centralized Git-based < 10s Institutional

4.4 Validation Results 35

QUADB uniquely combines collaborative governancewith complete version history, achiev-

ing decentralized consensus within acceptable latency bounds for scientific workflows.

4.5 Security Assessment

The QUADB security model addresses eight main categories of threats that reflect the

complexity of multi-protocol integration:

Primary threat vectors: (1) threshold bypass attacks targeting m-of-n consensus mecha-

nisms, (2) key extraction attacks on encrypted IPNS private keys, (3) metadata manipulation

through smart contract vulnerabilities, (4) network dependency attacks exploiting com-

pound availability requirements, (5) FNS governance attacks on the root domain, (6)

economic attacks through Sybil or flash loan manipulations, (7) long-term persistence

attacks on storage deals, and (8) cross-protocol interaction vulnerabilities.

Production validation: Six months of deployment show zero successful attacks against

threshold mechanisms, with 100% failure rate for unauthorized updates. Economic attack

resistance is demonstrated through stake-slashing mechanisms creating honest behavior

incentives.

Critical dependencies: QUADB’s architecture introduces two key vulnerabilities: (1)

network liveness dependencies affecting functionality through IPFS health, underlying

blockchain congestion, and Lit Protocol consensus requirements, and (2) FNS domain
renewal risk creating existential threats to platform infrastructure.

Domain renewal risk: QUADB’s dependency on the quadb.fil root domain cre-

ates existential vulnerability. Failure to renew registration enables domain acquisition by

adversaries who could delete all subdomain registrations, destroying platform infrastruc-

ture. Mitigation strategies include multi-year commitments and automated renewal, but

fundamental vulnerability remains.

This evaluation demonstrates QUADB’s viability through comprehensive real-world anal-

ysis. Key findings validate successful integration of five decentralized protocols, quantify

performance trade-offs (5–10× latency for cryptographic guarantees), confirm economic

feasibility through reasonable transaction costs, and demonstrate robust security through

established protocol guarantees. Production deployment at quadb.xyz validates theo-

retical design with effective blockchain abstraction for non-technical users.

QUADB addresses key limitations of centralized repositories and individual decentralized

protocols, achieving practical balance between decentralization benefits and usability for

36 Chapter 4 Evaluation

collaborative scientific data governance. Identified limitations primarily relate to inherent

decentralized architecture constraints rather than fundamental design flaws.

4.5 Security Assessment 37

5Conclusions and Future Work

This thesis demonstrates that systematic integration of decentralized protocols can solve

fundamental challenges in scientific data management while maintaining practical ap-

plicability. Through QUADB, we establish that heterogeneous protocol composition is

feasible via standardized interfaces, achieving emergent capabilities that exceed individual

protocol limitations.

Our threshold-controlled IPNS mechanism enables collaborative coordination with 45–

60 second update latency through hybrid off-chain and on-chain verification, providing

Byzantine fault tolerance while maintaining cryptographic security. Despite 5–10× latency

increases compared to centralized systems, QUADB provides mathematically provable

guarantees for data permanence, verifiability, and censorship resistance that are impossible

with centralized infrastructure.

The production deployment at quadb.xyz validates the practical feasibility of decentralized

data coordination, transforming scientific data from fragile corporate assets to resilient

community-managed digital commons that enable truly reproducible science through

mechanisms that resist institutional change and ensure long-term accessibility.

Future work will focus on optimizing QUADB’s performance through hierarchical con-

sensus protocols, cross-protocol optimization, and adaptive coordination mechanisms

to achieve sub-10-second update latency with enhanced availability guarantees. A key

priority is developing a comprehensive Software Development Kit (SDK) that enables

other platforms and applications to integrate QUADB’s decentralized data management

capabilities, allowing researchers and institutions to leverage threshold-controlled dataset

governance, cryptographic persistence guarantees, and collaborative curation mechanisms

within existing scientific workflows and infrastructure, thereby extending QUADB’s impact

beyond standalone deployment to become foundational infrastructure for the broader

scientific ecosystem and beyond.

39

A
Appendix

This appendix provides supplementary figures and algorithms of the QUADB platform

implementation.

Fig. A.1.: Dataset Explorer Interface

41

Fig. A.2.: Dataset Detail Page

42 Chapter A Appendix

Fig. A.3.: Dataset Versions Dashboard

43

Fig. A.4.: Version Proposal Interface

44 Chapter A Appendix

Algorithm 1 Storage structure in QUADB

Require: MetadataM, payload D, coordination config Γ, persistence proofs Π
Ensure: Content-addressed directory ρ with cryptographic binding

1: procedureHierarchicalCAS(M,D, Γ, Π)
2: Construct namespace hierarchy:

3: ρ/data← D ▷ Raw payload

4: ρ/gov← Γ ▷ Threshold coordination

5: ρ/persist← Π ▷ Storage attestations

6: ρ/meta←M ▷ Descriptive metadata

7: Generate cryptographic identifiers:

8: δ ← Hash(D)
9: γ ← Hash(Γ)
10: π ← Hash(Π)
11: µ← Hash(M)
12: Construct Merkle manifest:

13: T ← {
14: data : δ,
15: gov : γ,
16: persist : π,
17: meta : µ
18: }
19: ρ← MerkleDAG(T)
20: return ρ

45

Algorithm 2 IPNS Record Update Protocol

1: Input: New dataset CID cnew, curator signatures {σ1, σ2, ..., σm}
2: Output: Updated IPNS record Rnew or error state E
3: procedure UpdateIPNSRecord(cnew, {σ1, σ2, ..., σm})
4: S ← GetOnChainState()
5: validSigs← 0
6: for each signature σi in {σ1, σ2, ..., σm} do
7: if VerifySignature(σi, cnew, S.curators) then
8: validSigs← validSigs + 1
9: if validSigs < S.threshold then
10: return Einsufficient_signatures

11: ▷ Lit Protocol Network operations:

12: recordSequence← GetIPNSSequence()
13: if recordSequence ≥ S.recordSequence then
14: return Esequence_too_old

15: valid← VerifySignatures({σ1, σ2, ..., σm}, cnew, recordSequence)
16: members← QueryOnChainMembers(S)
17: thresholdMet← VerifyThreshold(validSigs, S.threshold)
18: if valid ∧ thresholdMet then
19: Ek ← RetrieveEncryptedKey()
20: h← Hash(LitActionCode)
21: Kpriv ← Decrypt(Ek, h)
22: Rnew ← SignIPNSRecord(cnew, Kpriv)
23: PublishIPNSRecord(Rnew)
24: return Rnew

25: else
26: return Everification_failed

Algorithm 3 IPNS Record Creation Protocol

1: Input: Dataset metadata M , curator addresses {A1, A2, ..., An}, threshold parameter

t where t ≤ n
2: Output: Encrypted IPNS key Ek, on-chain state S
3: procedure CreateIPNSRecord(M, {A1, A2, ..., An}, t)
4: Generate asymmetric key pair (Kpub, Kpriv) for IPNS
5: Compute h← Hash(LitActionCode)
6: Ek ← Encrypt(Kpriv, h)
7: Store Ek in distributed table T
8: Initialize on-chain state S:
9: S.curators← {A1, A2, ..., An}
10: S.threshold← t
11: S.ipnsState← Initial
12: Emit creation event (EventCreate, Kpub, M)
13: return (Ek, S)

46 Chapter A Appendix

Bibliography

[1]Amazon Web Services. Summary of the Amazon S3 Service Disruption in the Northern Virginia

(US-EAST-1) Region. Official AWS post-incident report for February 28, 2017 outage. Mar. 2017.

[2]Arweave. Arweave Whitepaper. 2023.

[3]Monya Baker. “1,500 scientists lift the lid on reproducibility”. In: Nature 533.7604 (2016),

pp. 452–454.

[4]Juan Benet and Nicola Greco. “Filecoin: A decentralized storage network”. In: Protoc. Labs 1

(2018), pp. 1–36.

[5]Cloudflare. Understanding how Facebook disappeared from the Internet. Technical analysis of

the October 4, 2021 Facebook BGP outage. Oct. 2021.

[6]Devin Coldewey. “Cloudflare DNS Goes Down, Taking a Large Piece of the Internet With It”.

In: TechCrunch (2020).

[7]CrowdStrike. CrowdStrike-related IT outages. Comprehensive documentation of the July 19,

2024 global IT outage affecting 8.5 million Windows systems. July 2024.

[8]Fastly. Summary of June 8 outage. Official Fastly post-incident report. June 2021.

[9]Filecoin Spec. “Proof-of-Replication”. In: Protocol Labs (2017).

[10]Filecoin Spec. “Proof-of-Spacetime”. In: Protocol Labs (2017).

[11]Marcel Gregoriadis. “Analysis and Comparison of Deduplication Strategies in IPFS”. MA thesis.

Humboldt-Universität zu Berlin, 2022.

[12]ipfs.tech. “how ipns works”. In: (2025).

[13]Market.us. “Genomics Market To Grow 17.1% CAGR Through 2033”. In: (2024). Report on

genomics data storage requirements projected to exceed 40 exabytes by 2025.

[14]David Mazieres and M Frans Kaashoek. “Escaping the evils of centralized control with self-

certifying pathnames”. In: Proceedings of the 8th ACM SIGOPS European workshop on Support

for composing distributed applications. ACM. 1998, pp. 118–125.

47

[15]David Mazieres and M Frans Kaashoek. “Self-certifying file system”. In: Proceedings of the 8th

ACM SIGOPS European workshop on Support for composing distributed applications. ACM. 2000,

pp. 118–125.

[16]Meta Engineering. More details about the October 4 outage. Official Facebook post-incident

report for October 4, 2021 outage. Oct. 2021.

[17]Microsoft. Helping our customers through the CrowdStrike outage. Official Microsoft response to

the CrowdStrike outage affecting Windows systems globally. July 2024.

[18]Ceramic Network. Ceramic Specification. 2023.

[19]Ocean Protocol. Ocean Protocol Tech Whitepaper. 2023.

[20]Protocol Labs. Engineering Filecoin’s Economy. Tech. rep. Protocol Labs, 2020.

[21]Vasco Santos and Steven Allen. IPNS - Inter-Planetary Naming System. Accessed: 2022-02-02.

2021.

[22]Lit Protocol Team. How Lit Protocol Works. Accessed: 2024-09-08. 2023.

[23]Dennis Trautwein, Aravindh Raman, Gareth Tyson, et al. “Design and Evaluation of IPFS: A

Storage Layer for the Decentralized Web”. In: ACM SIGCOMM 2022 Conference (SIGCOMM ’22).

ISBN 978-1-4503-9420-8/22/08. Amsterdam, Netherlands: ACM, Aug. 2022.

[24]UCAN Working Group. User-Controlled Authorization Network (UCAN) Specification. https:

//github.com/ucan-wg/spec. Accessed: 2025-06-03. 2025.

[25]Pengcheng Xia, Haoyu Wang, Zhou Yu, et al. Ethereum Name Service: the Good, the Bad, and

the Ugly. 2021. arXiv: 2104.05185 [cs.CR].

[26]Keping Yu, Liang Tan, and Caixia Yang. “A Blockchain-Based Shamir’s Threshold Cryptography

Scheme for Data Protection”. In: IEEE Internet of Things Journal 9.11 (2022), pp. 8154–8167.

48 Bibliography

https://github.com/ucan-wg/spec
https://github.com/ucan-wg/spec
https://arxiv.org/abs/2104.05185

List of Acronyms

AWS Amazon Web Services

CID Content Identifier

FNS Filecoin Name Service

IPFS InterPlanetary File System

IPNS InterPlanetary Naming System

JSON JavaScript Object Notation

PoRep Proof of Replication

PoSt Proof of Spacetime

SLA Service Level Agreement

TEE Trusted Execution Environment

WWW World Wide Web

49

List of Figures

3.1 QUADB system architecture across the four interconnected layers 18

3.2 Storage design in quadb . 19

3.3 Tree-like namespace structure in QUADB using FNS subdomains. Each node

represents a data repository, and the hierarchy can be extended by anyone,

supporting organized and scalable data management. 21

3.4 Permissionless updates: Lit Actions enable threshold-based updates to IPNS

records. Curators sign approvals, which are verified by the Lit Protocol

network. The process updates the IPNS record without exposing private keys. 23

3.5 QUADB Space Creation Sequence Diagram 26

3.6 Dataset Instance Creation Sequence Diagram 27

3.7 Dataset Instance Update Sequence Diagram 28

A.1 Dataset Explorer Interface . 41

A.2 Dataset Detail Page . 42

A.3 Dataset Versions Dashboard . 43

A.4 Version Proposal Interface . 44

50

List of Tables

4.1 Performance Comparison: QUADB vs. Centralized Systems 34

4.2 Transaction Costs for QUADB Operations . 34

4.3 Chunking Algorithm Comparison for IPFS Deduplication 34

4.4 Validation of Architectural Patterns . 35

4.5 Platform Comparison . 35

51

List of Algorithms

1 Storage structure in QUADB . 45

2 IPNS Record Update Protocol . 46

3 IPNS Record Creation Protocol . 46

52

	Titlepage
	Abstract
	Abstract
	1 Introduction
	1.1 Research Statement
	1.2 Data Management Crisis
	1.3 Core Challenges
	1.4 Research Questions
	1.5 Contributions
	1.6 Thesis Structure

	2 Background and Related Work
	2.1 Background
	2.1.1 IPFS
	2.1.2 IPNS
	2.1.3 Filecoin
	2.1.4 FNS
	2.1.5 Lit Protocol

	2.2 Related Work

	3 System Design and Implementation
	3.1 Design Goals
	3.2 System Architecture Overview
	3.2.1 Storage Layer
	3.2.2 Naming Layer
	3.2.3 Crypto Layer
	3.2.4 Interface Layer

	3.3 Core Workflows
	3.3.1 Space Creation
	3.3.2 Instance Creation
	3.3.3 Update Process

	3.4 Quality Signals
	3.5 Security Considerations
	3.6 Platform Implementation Details
	3.6.1 Technology Stack

	4 Evaluation
	4.1 Performance Analysis
	4.2 Economic Analysis
	4.3 Deduplication Analysis
	4.4 Validation Results
	4.5 Security Assessment

	5 Conclusions and Future Work
	A Appendix
	Bibliography
	Acronym
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms

