

MASTER THESIS

“Security Analysis of Software-Defined Networks”

«Ανάλυση Ασφάλειας Δικτύων Οριζόμενων από Λογισμικό»

KONSTANTINOS KARACHALIS

F3312307

Supervisor: Prof. George Xylomenos

ATHENS, OCTOBER 2024

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΕΙΔΙΚΕΥΣΗΣ

(MSc)

στην ΑΝΑΠΤΥΞΗ & ΑΣΦΑΛΕΙΑ

ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Abstract

There has been a rapid development on the communication and information

technologies field (e.g. big data, artificial intelligence, cloud networking) introducing

various new obstacles that the internet has to overcome such as omni-present

accessibility, high availability, bandwidth, security threats. Deprecated methods in

networking concerning manual configuration and management of multiple devices are

incommodious and liable to errors, therefore making them unable to harness the

potential of the physical network infrastructure. One of the solutions to the

aforementioned issue rests within the Software-Defined Network (SDN).

Network devices have three planes, the management plane (responsible for the

management, configuration, supervision of the network), the data plane (involves all

the activities regarding the packets sent forth by the users from end-devices that

comprise this plane) and the control plane (responsible for the performance of the data

plane activities, excluding the activities of the end-users). However, as we will see in

the second section of the thesis, the focus of the layers according to SDN differs from

the traditional network models. The two most interesting features of the SDN are the

abstraction of the control plane from the data plane and the provided service of

programmable network applications.

This paper will dwell on the capabilities of SDN, latest developments, potential

benefits, and disadvantages as well as its security implementations on other devices

based on practical examples.

Περίληψη

Υπάρχει ραγδαία εξέλιξη όσον αφορά τους τομείς τεχνολογιών επικοινωνιών και

πληροφορίας (λόγου χάριν μεγάλα δεδομένα, τεχνητή νοημοσύνη, δικτύωση νέφους)

παρουσιάζοντας πληθώρα νέων δοκιμασιών, που καλείται το διαδίκτυο να ξεπεράσει

όπως πανταχού προσβασιμότητα, διαθεσιμότητα, high bandwidth, απειλές στο

κομμάτι της ασφάλειας δικτύων. Παρωχημένες μέθοδοι όσον αφορά την διαχείριση

των δικτύων, όπως χειροκίνητη παραμετροποίηση και διαχείριση πολλών συσκευών

δεν είναι πρακτικές και επιρρεπής σε σφάλματα. Συνεπώς, καθιστώντας τις μεθόδους

που προηγήθηκαν ακατάλληλες να φτάσουν πλήρως τις δυνατότητες της φυσικής

υποδομής δικτύων. Μία από τις λύσεις για αυτό το ζήτημα αποτελεί το Software-

Defined Network (SDN).

Oι συσκευές δικτύου έχουν τρία πλάνα, το πλάνο διαχείρισης (υπεύθυνο για την

διαχείριση, παραμετροποίηση, επίβλεψη κομματιών των συσκευών δικτύου), το

πλάνο δεδομένων (περιλαμβάνει όλες τις δραστηριότητες όσον αφορά τα πακέτα, που

αποστέλλονται από τους χρήστες από τις τελικές συσκευές που αποτελούν αυτό το

επίπεδο) και το επίπεδο ελέγχου (υπεύθυνο για την εκτέλεση των δραστηριοτήτων

του επιπέδου δεδομένων, εξαιρουμένων των δραστηριοτήτων των τελικών χρηστών).

Ωστόσο, όπως θα δούμε στη δεύτερη ενότητα της διπλωματικής, η εστίαση των

επιπέδων σύμφωνα με το SDN διαφέρει από τα παραδοσιακά μοντέλα δικτύου. Τα

δύο πιο ενδιαφέροντα χαρακτηριστικά του SDN είναι η αφαίρεση του επιπέδου

ελέγχου από το επίπεδο δεδομένων και η παρεχόμενη υπηρεσία προγραμματιζόμενων

εφαρμογών δικτύου. Αυτό το άρθρο θα ασχοληθεί με τις δυνατότητες του SDN, τις

τελευταίες εξελίξεις, τα πιθανά οφέλη και τα μειονεκτήματα καθώς και τις εφαρμογές

του στο πεδίο της κυβερνοασφάλειας σε άλλες συσκευές με βάση πρακτικά

παραδείγματα.

 Table of Contents

INTRODUCTION .. 1

A. WHAT IS SOFTWARE DEFINED NETWORK (SDN)? .. 2

A.1. Definition – Software Defined Networks .. 2
A.2. Benefits & Obstacles of SDN ... 3

A.2.1. Benefits - SDN... 3
A.2.2. Obstacles – SDN ... 6

A.3 Architecture Model of SDN ... 8

B. SDN – LAYERS .. 11

B.1. Infrastructure Layer .. 11
B.1.1. Switches - SDN .. 11
B.1.2. Media of Transmission – Software Defined Networks .. 16

B.2. Control Layer .. 19
B.2.1. SDN Controller Schematics .. 20
B.2.2. Validation of rules & Policy tables .. 22
B.2.3. Measurement of performance ... 24

B.3. Application Layer .. 25
B.3.1. Cloud Computing – SDN .. 26
B.3.2. Security in Application Layer ... 26
B.3.3. Management of Network Applications ... 28

C. NETWORK SECURITY - SDN... 29

C.1. Vulnerabilities of SDN Architecture ... 29
C.1.1. - Susceptibility – Software-Defined Network Controllers .. 29
C.1.2. - Susceptibility – Open Nature of Application Programmable Interface (API)...................... 30
C.1.3. - Susceptibility – Software-Defined Network Switching Devices .. 31

C.2. Security Threats - Software-Defined Networks ... 32
C.2.1. - Threats – Software-Defined Networks – Infrastructure Layer .. 33

C.2.1.1 - Denial-of-Service (DoS) Attack – Flow Table & Buffer Saturation 33
C.2.1.2 – Man-In-The-Middle (MITM) Attack – Controller & Switching Device 35

C.2.2. - Threats – Software-Defined Network - Control Layer ... 36
C.2.2.1 – Distributed Denial-of-Service (DDoS) & Denial-of-Service (DoS) Attack – SDN

Controller ... 36
C.2.2.2 – Model with Various SDN Controllers .. 37

C.2.3. - Threats – Software-Defined Networks - Application Layer ... 38
C.2.3.1 – Conflicting Issues – Rules – Security Policies – Misconfiguration 38
C.2.3.2 – Unauthorized Access ... 39
C.2.3.3 – Spoofing ... 39

C.3. Countermeasures – Prevention Methods for attacks towards Software-Defined Networks ... 40
C.3.1. - Countermeasure – Software-Defined Networks – Infrastructure Layer 40

C.3.1.1 - Denial-of-Service (DoS) Attack – Flow Table & Buffer Saturation – Countermeasure . 40
C.3.1.2 – Man-In-The-Middle (MITM) Attack – Controller & Switching Device –

Countermeasure ... 42
C.3.2. - Countermeasure – Software-Defined Networks – Control Layer .. 43

C.3.2.1 – Distributed Denial-of-Service (DDoS) Attack & Denial-of-Service (DoS) Attack – SDN

Controller – Countermeasure .. 43
C.3.2.2 – Model with Various SDN Controllers – Countermeasure ... 44

C.3.3. - Countermeasure – Software-Defined Networks – Application Layer 45

C.3.3.1 – Conflicting Issues – Rules – Security Policies – Misconfiguration – Countermeasure .. 45
C.3.3.2 – Unauthorized Access – Countermeasure ... 45
C.3.3.3 – Spoofing – Countermeasure .. 46

C.4. Use-Case: Distributed Denial-Of-Service Attack ... 46

CONCLUSION ... 59

REFERENCES – BIBLIOGRAPHY ... 1

~ 1 ~

Introduction

In the present day, the emergence of new trends in the network field has been most

expected with the rapid development brought by cutting-edge technology. As a result

of the demographic increase, the demand for performing big data analytics on various

sources of data together with high-quality of multimedia content is growing with the

network speeds increasing as well. For instance, high-definition televisions and GPS

applications bring forth massive client-server traffic to data centers and big data

analysis methods in turn trigger the same amounts of traffic to data centers for data

partitioning and a combination of the results. Nevertheless, with the development of

the network potential security threats arise with the growing demand for the

implementation of protection mechanisms that ensure confidentiality, availability and

integrity of the data circulating around the network. The master’s thesis will aim at

presenting and defining the meaning of Software Defined Network and the

architectural structure while offering an insight into its capabilities and the

opportunities that arise with its implementation in various systems, as well as the

obstacles that need to be overcome. These will be covered in the first section and as

for the rest of this paper, it will be organized as follows.

The second section will focus on the layers of the SDN architecture, mainly the

application layer, infrastructure layer and control layer. More specifically, in the B.1

section, there will be a discussion with an approach to build routing and switching

SDN devices and the obstacles surrounding them when interacting with varying

transmission media. The B.2 section introduces the potential issues in performance

and operations surrounding the control layer. As for the B.3 section, there will be a

discussion of problems surrounding the application layer.

Finally, the third section entails details on the security threats for the network and the

implementation of protection mechanisms that address each problem. Moreover, a

more practical approach will try to cover the capabilities of the most prominent open-

source tools in a compromise event through a use case.

~ 2 ~

A. What is Software Defined Network (SDN)?

A.1. Definition – Software Defined Networks

GeeksforGeeks (GFG) is an Indian company, which is dedicated to computer science,

its various fields, such as the new developments in the networking field and provides

coding challenges for aspiring programmers and technology enthusiasts, as well as

material for educational purposes. GFG has defined explicitly the Software-Defined

Networks as follows:

“Software-defined networking (SDN) is an approach to network management that

enables dynamic, programmatically efficient network configuration to improve

network performance and monitoring. This is done by separating the control plane

(which decides where traffic is sent) from the data plane (which actually moves

packets to the selected destination).”

According to this definition, the two distinctive characteristics of SDN are namely the

abstraction of the control plane from the data plane and the programmability of the

control plane. Nonetheless, these are not recently developed in the field of

networking. Several attempts have been made in order to promote programmability in

the network field. For instance, ANTS (Active Network Transport System) is an

active solution which allows programming at the packet level as well as the

modification of network behavior during runtime. Moreover, it is possible to construct

routers (software) by enabling network devices to be programmable, such example is

FRRouting and their behavior can be adjusted by loading new or changing existing

routing software. This allows for dynamic customization of the device's functionality

to meet specific network requirements.

As for the abstraction amidst the control plane and the data plane, it has been

established in the recent years. Many frameworks like ForCES (Forwarding and

Control Element Separation), which was released by Internet Engineering Task Force

during 2004 (RFC 3746) in an attempt to create a framework that could decouple the

control and the data planes. Another concept of the abstraction between control and

data plane is Routing Control Protocol, which was introduced in 2004, and it involves

a project in which the OSPF and BGP protocols are replaced by centralized routing

decisions so as to improve flexibility and network management.

~ 3 ~

In the case of Software Defined Networks, the factor which differentiates it from the

other approaches is due to the fact that through the abstraction of the control from the

data plane, programmability is achieved. SDN is capable of providing programmable

network devices instead of turning existing networking devices more complex, like

the traditional networking methods dictate. In addition, SDN includes the decoupling

of the data plane from the control plane in its architectural structure, without altering

the flows of data, therefore making the separation between the two aforementioned

planes very effective.

A.2. Benefits & Obstacles of SDN

SDN as previously mentioned is a unique network model that sets it apart from the

traditional models and acts as a solution to various problems. Nevertheless, like all the

network models it has its benefits and its challenges. A potential characteristic of the

Software Defined Network resides on the fact, that it provides an experimentation

platform for conducting surveys and testing new network concepts, attributed to its

network programmability and the capability of isolating virtual networks through the

control plane. This subsection focuses on the benefits SDN provides and the

challenges it has to overcome.

A.2.1. Benefits - SDN

Improved Scalability

A characteristic of virtualized and software-defined networks which represents a

significant advantage is its scalability. Specifically, scaling virtualized processes and

network components is more effective in comparison to traditional networking

methods, on the grounds that it eliminates the need for additional hardware

attainment. There is no necessity to enhance machines with additional RAM or

processing power, or even to purchase new equipment, especially when virtual

functions are hosted on cloud servers.

Moreover, automated scaling capabilities can be arranged through cloud service

providers. If that demands better security, then these providers are able to perform

dynamic allocation of new instances in order to address the additional resource

requirements.

~ 4 ~

As a result, with expanding organizations and with the growth of their infrastructures,

their demands for better security will also increase. Therefore, the deployment of

security tools will be executed with remarkable ease, facilitating the evolution of

various operations.

Enhanced Performance

Many organizations in the field of networks aim to increase the utilization of the

network infrastructure as much as possible. On the grounds that various technologies

and stakeholders exist within a single network, attempting to accomplish maximum

performance for the entire network has proven to be burdensome. Existing methods

frequently concentrate on enhancing the performance of specific network segments or

improving the user experience for certain services. It is clear that these methods,

which rely on localized data without considering cross-layer interactions, can result in

suboptimal outcomes or even conflicting network operations. Due to the

centralization feature of SDN, they allow for centralized control within a global

network and control feedback with exchanged information amidst various layers

within its architecture.

Therefore, numerous complex performance optimization challenges could be

addressed more effectively through the implementation of well-designed centralized

algorithms. As a result, new tactics and measures can be implemented and deployed in

order to address and solve conventional problems, simplifying the evaluation process

of their impact on the improvement of the network performance.

Enhanced Network Security

The rapid development of virtualization has introduced great obstacles in the

management of the networking field. Due to the dynamic creation of virtual machines

and their removal amidst physical systems, it becomes arduous to consistently revise

firewall rules and content filtering policies. In response to these challenges, the

Software-Defined Networking (SDN) Controller offers a centralized mechanism for

the management and distribution of diverse security policies throughout the network.

By abstracting the control plane from the data plane, the tasks of the SDN Controller

are simplified and thus becoming more efficient in applying security protocols

throughout the enterprise.

~ 5 ~

However, the centralization of security around a central point, for instance, the SDN

Controller, introduces a single point of failure, which can create opportunities for

attackers to manipulate the data flow and consequently result in a potential

compromise event of the controller, having a tremendous impact on the network's

security. Even so, if the SDN architecture is fortified with robust security measures, it

could serve as an efficient tool for managing and enforcing security policies

throughout complex and diverse network environments.

Facilitation of Configuration

Configuration is one of the most vital functions in the networking field. Every time

new systems/devices or even functions are introduced to existing networks, then to

achieve united operation of the network as a whole, it is necessary to include proper

configurations. Be that as it may, due to the diversity of network device manufacturers

and configuration interfaces, current network configuration generally requires a

certain degree of manual intervention. The manual configuration process is both time-

consuming and prone to errors. Additionally, troubleshooting a network with

configuration mistakes requires considerable effort. The problem is that with

contemporary networking architectures, trying to accomplish automatic and dynamic

reconfiguration remains a significant obstacle that needs to be overcome. Even so,

Software-Defined Networking (SDN) offers a solution. More specifically, via the

implementation of SDN, the control plane is unified across various network devices.

This unification enables the configuration of these devices from a single, centralized

point, allowing for automated control via software. Consequently, the entire network

can be programmatically configured and dynamically optimized in response to real-

time network conditions.

Traditional Networking & Software Defined Networking

As the evolution in the networking industry is endless and ongoing, future network

infrastructure should encourage change instead of trying to meet with detailed

precision the requirements for future applications. The primary challenge stems from

the prevalent use of proprietary hardware in traditional network components, which

hinders modifications necessary for experimentation. Furthermore, when

experimentation is possible, it is frequently carried out in isolated, simplified test

environments. Such experiments do not provide adequate assurance for the industrial

adoption of new concepts or network designs. The differences and changes that SDN

brings forth compared to the conventional networking methods are shown in the

following table.

~ 6 ~

Figures Α.2.1.1 & A.2.1.2: Differences amidst SDN & Traditional Networks

Software-Defined Networking (SDN), contrasted to the conventional networking

methods encourages evolution via the offer of a programmable networking platform

that eases the implementation, experimentation, and deployment of new concepts,

applications, and revenue-generating services conveniently and flexibly. The high

configurability of SDN allows for a clear distinction between virtual networks,

enabling experimentation within a real-world environment. Furthermore, the gradual

deployment of new ideas can be achieved through a seamless transition from the

experimental phase to the operational phase.

A.2.2. Obstacles – SDN

Despite the possibility of accommodating configuration, enhanced performance,

enhanced network security and encouraging evolution, SDN is still in its early stages

of development. Various conventional challenges have yet to be fully addressed, with

standardization and widespread adoption being the most pressing issues. Due to the

aforementioned problems, we will present next the challenges SDN has to overcome.

 Software-Defined Networking Traditional Networking

Characteristics Abstraction of control plane from data

plane, programmability of control plane

Introduction of new protocols per every

potential issue, network control

complexity

Performance Dynamic Global Control – Cross Layer

Information

Limited Information & Relatively Static

Configuration

Configuration Centralized control which enables facilitated

configuration via automation mechanisms

Manual Configuration with great liability

for errors

~ 7 ~

Issues with Interoperability

Networks that were newly introduced, share a common trait regarding the fact that

implementing SDN is relatively straightforward, as all network devices are usually

compatible with SDN. Alternatively, the transition process to an existing legacy

network to SDN presents more obstacles, on the grounds that the legacy infrastructure

often supports critical business and networking systems. Organizations and most

networking environments must undergo a phased transition to SDN, necessitating a

period of coexistence between legacy and SDN technologies.

Legacy network nodes and SDN components can work together through the use of

suitable protocols that facilitate SDN communication while maintaining backward

compatibility with existing IP and MPLS control plane technologies. This approach

minimizes the cost, risk, and service disruptions associated with the transition to

SDN.

Deployment Complexity

The deployment of Software-Defined Networking is presented with significant

obstacles, especially when it has to be implemented into legacy systems.

Conventional network operations are used with distributed control planes, while SDN

attempts to centralize the management of networks, therefore making the existence of

a substantial configuration of network devices necessary so as to facilitate this shift.

Diverse older systems exist that are not compatible with existing SDN technologies,

like OpenFlow and as such often require expensive hardware upgrades to ensure

greater compatibility. The previously mentioned shift involves restructuring the

network architecture, including revising policies, and traffic management systems,

and adopting new interfaces for network operations.

Consequently, the demand for integrating security policies and rules for the

fortification of the centralized control plane increases, adds to the complexity of

deploying SDN systems. Organized integration, planning and testing will be needed

in order to avoid having consistent downtime and potential disruption during the

network operations so as to retain the maximum possible performance.

Adoption Costs Regarding Software-Defined Networks

Adoption of Software-Defined Networks can be quite costly because it entails direct

and indirect expenses, making necessary the need for investment in newly introduced

hardware and software, which will have to be compatible with SDN. Moreover,

organizations must upgrade their network infrastructure and implement robust

security mechanisms so as to ensure the protection of the centralized control plane.

This transition will also need a concrete training program for the staff responsible for

~ 8 ~

the management and operation of the introduced SDN structure, which will further

increase the expenses needed. Implementation of the SDN usually has as requirements

for minimizing downtime, consistent testing and phased deployments, therefore

making the adaptation process more costly. While the aforementioned measures

represent a substantial upfront cost, they are indeed utilized so as to deliver long-term

benefits regarding flexibility, scalability and automation in the network infrastructure

of many organizations.

Control & Stability of Performance

In SDN architecture, due to its distinct characteristic involving the abstraction of the

control plane from the data plane, performance issues are being introduced constantly.

Compared to SDN, in conventional networks, the devices are primarily responsible

for the decision-making process. However, in the case of Software-Defined Networks

a centralized SDN controller is solely capable of making decisions, therefore causing

processing delays. Every time new traffic patterns are being observed, the controller

has to process and instruct the network devices accordingly and consequently creating

latency, especially in case that the controller is dealing with a high volume of traffic.

Furthermore, the stability of the performance will be affected when there are many

requests towards the controller and therefore causing it to become a bottleneck

resulting in slower response time.

The SDN is capable of offering a platform with the aim of developing and introducing

networking methods. However, the shift from traditional networking architecture to

SDN architecture is rather complex and challenging. This is why phased

configurations, robust security strategies, training of the staff involved, and redesign

of the network infrastructure are measures that are needed to address the main

concerns of the aforesaid transition. Implementations in Software-Defined Networks

are usually restricted to test sites used solely for research prototypes, which are not

adequate enough to encourage its application in large-scale, real-world deployments.

A.3 Architecture Model of SDN

Figure A.3.1 shows a Software-Defined Network reference model from the academic

paper [5]. According to this model, the SDN entails three layers, the infrastructure

layer, the control layer and the application layer.

~ 9 ~

Figure A.3.1: SDN Reference Model

As for the first layer, it consists of mainly switching and routing devices in the data

plane. The responsibilities of the systems are limited to status collection of the

network and to storing them temporarily into local devices. Afterwards, the systems

send them to the SDN controllers of the control layer. The status of the network

usually holds additional information regarding the volume of the traffic and the

percentages of network usage. Moreover, these systems must process data packets

according to the rules provided by the SDN controller.

Secondly, the next layer, the control layer handles bridging the other two layers

through its two interfaces. Mainly, for downward interaction with interface layer

(from application to interface layer), the control layer instructs the accordingly the

controllers in order to utilize only certain functions provided by the devices from the

1st layer. Sometimes, these functions might be involved with the report of the network

status. As for the upward interaction with the 3rd layer (from interface layer to

application layer), the control layer offers access points with specific services in

diverse forms, such as an API.

~ 10 ~

Applications of Software-Defined Networking are able to access information

regarding network status reported from the switching systems through the aforesaid

API, making decisions about system tuning according to the access information and

carrying out these decisions via the setting process of the forwarding rules of the data

packets to the switching devices using the API. Considering that the various SDN

controllers are going to exist for large-scale administration domains in the network a

new communication interface will be required in order to share the network

information and for the coordination of the process for making decisions.

Finally, the last layer is the SDN applications that are created with the aim of

completing the requirements of the network users. SDN applications can have access

to and are capable of controlling switching and routing devices that belong to the 1st

layer. The aforementioned fact is only possible through the usage of the

programmable platform offered by the previous layer. The following figure shows the

architecture of Software-Defined Networks at the infrastructure level.

The next section will focus on the three layers mentioned in the SDN reference model

and their relationships within the network as seen in the figure A.3.1.

Figure A.3.2: SDN Reference Model in an Infrastructure, with a mesh topology

(created by the connection of switching devices, through diverse transmission media)

~ 11 ~

B. SDN – Layers

B.1. Infrastructure Layer

This is the 1st layer of the SDN architecture, which entails transmission media, such as

copper wires, optical fibers, wireless radio and switching devices, like routers, which

are connected with each other in order to construct an exclusive network. It is

noteworthy to mention that these connections amidst switching devices are only

formed via the various transmission media. In subsections B.1.1 and B.1.2 the main

focus will be the various operations that can be utilized via the switching devices as

well as through the support of the transmission media.

B.1.1. Switches - SDN

The switching devices in SDN consist of the memory and the switching fabric, which

are important elements for the two planes: control and data plane. For the data plane,

the switch demonstrates the forwarding of data packets via the processor unit, based

on the forwarding rules indicated by the 2nd layer.

Figure B.1.1: SDN Switching Device Model with a dual-layer logical framework

comprising a processor responsible for data transmission and integrated memory

dedicated to managing control information.

SDN Controller Memory Unit

SDN Fabric

Control Plane

Data Plane

~ 12 ~

The previously shown figure attempts to illustrate the design of a switching device in

the SDN environment, referring to the aforementioned elements of the switches. As

for the control plane, the switching device initiates the communication with the SDN

controllers in order to receive the forwarding rules at a switching level, link the tuning

rules at a data-link level and finally store them in its local memory.

The previously mentioned upcoming architectural principle offers significant benefits

to Software-Defined Networking (SDN), which renders it competitive. Compared to

traditional switching devices, which are not only able to handle packet forwarding but

moreover being able to execute routing protocols, SDN separates the decision-making

process between routing and switching devices. As a result, these devices have as

their sole task to report network status and then gather it, as well as process packets

according to predefined forwarding rules. Therefore, the design of SDN switching

devices is eased due to the separation, making them easier to produce. The reduced

complexity leads to a more cost-effective solution.

Nonetheless, this new approach necessitates the development of specialized hardware

for SDN-enabled switches. In this section, we are going to review recent advances in

switching hardware design, thus covering both the two planes, data and control.

Furthermore, we will categorize the most widely used switching platforms and

explore methods for testing and educational purposes.

Data Plane

The main task that the data plane has in the SDN switching device is the forwarding

of data packets. When a packet is received, the device is capable of identifying the

matching forwarding rule and sending the packet to the next destination. Unlike

traditional networks, where forwarding is based on IP or MAC addresses, SDN allows

packet forwarding to be decided by various parameters, for instance, TCP or UDP

ports, VLAN tags, and the switch port where the packet is entered. Nevertheless,

using a wide range of criteria for forwarding increases the complexity of processing,

therefore creating a trade-off between cost and efficiency in SDN packet handling.

Numerous attempts have been made to formulate and commit various methods with

the aim of enhancing packet processing efficiently, with the two key solutions being

shown as follows.

Firstly, in PC-based switches, trying to rely greatly on software for packet processing

can negatively affect performance. In order to improve the aforesaid situation, the

recommended hardware-based method is to boost processing throughput. According

to that design, incoming packets that were directed to an onboard Network Interface

Controller (NIC), which handles the flow classification in hardware, are now allowing

the CPU to bypass the lookup process.

~ 13 ~

Secondly, the diverse characteristics of great and diminutive flows can now be

utilized. Compared to the great data flows, the diminutive ones, are numerous but

each one entails only a few packets, for instance, those involved in web page retrieval.

These small flows generate the majority of frequent network events, and recognizing

this difference can help optimize packet processing strategies.

Control Plane

In the control plane of SDN switching devices, the efficient management of onboard

memory is one of the biggest obstacles to overcome in this design. The memory

requirements of an SDN switching device are directly influenced by the size of the

network. In the case of greater-sized networks, having more memory needs to be one

of the main requirements, otherwise, often hardware upgrades will be needed to

prevent memory overload. If the memory space is insufficient, then data packets

might either be dropped or forwarded to SDN controllers for additional processing,

which can negatively impact network performance.

In order to address the aforementioned issue, alternative methods are required to be

formulated and applied. To that end, traditional networking techniques used for

memory management with the aim of optimization of SDN switches can be

potentially adapted. Especially when there are storing rules and minimizing memory

usage included. Conventional routing devices utilize methods like route aggregation,

along with proper cache replacement policies. Route aggregation consolidates

multiple routing records with a shared prefix into one, effectively reducing memory

usage. Moreover, a cache replacement policy that is well-built improves the hit rate of

packet forwarding rules, and as a result, allows limited memory to be utilized more

efficiently. These techniques have many applications on the enhancement of SDN

switch designs.

Another consideration that is vital in enhancing SDN switching devices is the careful

combination of diverse storage technologies used to balance memory capacity,

processing speed, and flexibility at a reasonable cost and complexity.

Different types of storage hardware have varying characteristics. Static Random

Access Memory (SRAM) is scalable and flexible, whereas Ternary Content

Addressable Memory (TCAM) provides faster search speeds for packet classification.

By using both SRAM and TCAM, a balance can be achieved between packet

classification performance and flexibility.

Categories of Switching Devices

Switches usually fall into the following categories in SDN as demonstrated in Figure

B.1.1.2, under the requirements in hardware (software-based SDN switches (general

purpose hardware), bare-metal SDN switches (open network) and vendor-specific)).

~ 14 ~

Figure B.1.1.2: SDN Switching Device Categories – Hardware Specs Table

Software-Based SDN Switches (Application in General-Purpose Hardware)

The SDN switching devices that fall into this category are often applied as software

applications, running on Hosting Operating Systems, such as Linux. Hardware PC

x64 or x86 is not the only piece of hardware that is highly compatible with the

running host operating system, said example includes the OpenFlowClick, which is

based on Click Modular Router and is designed to support general PC hardware,

running as an extension of the Linux Kernel. Software-based switching devices are

usually characterized by low port density, on the grounds that it is constrained by the

limited number of network interface cards that are currently present on the device and

show slow data packet processing speeds due to their reliance on software processing.

Moreover, it is noteworthy to mention that another benefit of SDN software-based

switches is their capability of easing virtual switching for virtual machines among the

well-known frameworks of server virtualization and cloud computing. Software-

Based SDN switches, for instance, Open Virtual Switch (OVS) offer improved

network visibility and control in a user-friendly way. Amidst the virtual machines

residing on the same physical server being kept on a local server. Alternatively, in

hairpin switching all the traffic is routed to the physical switch that is connected with

the server and then subsequently bounced back. A detailed demonstration of the

architecture behind the OVS is as follows.

Types of SDN Switches

(Based on Hardware

Implementation)

Software-Based

SDN switches –

Application in

General- Purpose

Hardware

Bare-Metal SDN

switches – Application in

Open Networks

Application in Vendor-

Specific Switch

SDN Switching Devices Open vSwitch (OVS)
Open Network Install

Environment (ONIE) Indigo

Flexibility

High, offers a wide

range of features and

APIs, its

characteristics are

software-based

High Low

Processing Speed low Medium, usually 1 – 10

Gbps

High, >= 1Gbps

Density of Port
Low, Limited often

due to the scarce

number of NICs

Medium, usually 48 ports High, > 48 ports

~ 15 ~

Figure B.1.1.3: Exemplary Illustration of the Open Virtual Switch Architecture

Bare-Metal SDN Switches (Application in Open Networks)

As for bare-metal SDN switches’ applications in Open Network Hardware, they are

provided with an autonomous vendor and a network development programmable

platform used for educational and research purposes. Open Network Hardware

Platforms are more industrialized compared to the previously mentioned category and

as a result, they have received more support.

Well-known examples of these devices are ORAN and ONIE. Switching devices that

are Open Network hardware based are the most often utilized in order to construct

SDN prototypes in laboratory settings, on the grounds that they offer higher flexibility

and throughput than the other two categories.

Application in Vendor’s Specific Switch

Recently, there has been a rapidly increasing number of networking hardware vendors

detected, which have been introducing their strategies and solutions for Software

Defined Networking (SDN), accompanied by a wide range of SDN-enabled switches,

such as the Juniper QFX5100, NEC PF5240, MikroTik Cloud Router Switch and

Pica8 3920. In addition to that, there are initiatives, such as the Indigo project, with

the aim of enabling SDN functionalities via the application of firmware upgrades on

vendor-specific switches which were not primarily designed so as to support SDN

features.

~ 16 ~

In order to make certain that the spirit of evolution will be present in the environment

of SDN switching devices, it is of vital importance to include performance evaluation

standards. Appropriate functional operations and the enhancement of performance are

able to materialize, for instance via continuous testing of the SDN switches. The

simplification of performance evaluation standards can be achieved through the

utilization of OpenFlow OPS (Operations Per Second), which is a framework that is

capable of data packet capture, and timestamping and has great compatibility with

diverse packet generation. Moreover, the measurement of performance mechanisms is

entailed in the aforementioned framework with control plane operational activities,

such as traffic statistics of delayed queries. Since the previously mentioned feature

can be applied to each of the two, namely hardware and software implementations in

SDN switches, the OpenFlow OPS vital can also be utilized as a tool capable of

performing more accurate performance measurements of the SDN switches.

B.1.2. Media of Transmission – Software Defined Networks

Media of transmission such as optical media, wired or wireless ought to be

encompassed by the environment of the Software-Defined Network, so as to achieve

an omni-present scope of inclusion, as it is demonstrated in the Figure A.3.2.

However, it is of great importance to bear in mind that diversity in the transmission

media equals a great variety in unique configurations and specific administration

technologies. Therefore, Software-Defined Networks ought to be incorporated with

the aforementioned technologies in the environments of wireless and optical

networking, such as Software-Defined Radios, which facilitates the economic

advancement of radio devices. Through this implementation SDN is given the

capability to achieve extensive behavioral control over networks, which consists of

wireless channels, optical frequencies and data packet forwarding. As a result,

Software-Defined Networks are able to achieve better control over the network

infrastructure and utilize the resources needed within that infrastructure with greater

efficiency. Various technologies on the wireless transmission have been constructed in

order to ensure the most enhanced utilization in the said networks. In this subsection

there will be a demonstration focused on the most prominent types of transmission

media, namely optical fibers and wireless radios.

~ 17 ~

Figure B.1.2.1: Exemplary Illustration of Reconfigurable Optical Add and Drop

Multiplexer

Optical Networks (Fibers) - SDN

This type of transmission media is often used as the core network for consolidated

traffic, as they provide ways to lower the rate of power consumption and greater

capacity as well. The rearrangement of software as a concept, commonly applied in

wireless networks, can similarly be employed in optical networks through the use of

Reconfigurable Optical Add and Drop Multiplexers. Incorporating these technologies

into the SDN control plane enables more accurate and efficient management of the

data plane. Unified strategies utilizing a single SDN control plane across both packet-

switching and circuit-switching domains are initially considered. As illustrated in the

second figure of section A.3, Controller B (figure A.3.2) oversees an optical circuit-

switching domain as well as Packet Switching Domain A (figure A.3.2). In light of

that, a proposal expanding the parameters used for forwarding rule matching has been

made, extending beyond layer 2, 3, and 4 headers of packets to include layer 1

switching technologies, such as timeslot, wavelength, and fiber switching. As a result,

the unification of the control plane for both packet and optical networks is achieved. It

is noteworthy to bear in mind that the even though the proposed model simplifies

control, an enhancement of the optical switches for the circuit is needed in order to

support these additional functions.

The use of a virtual switch on each optical switching node to achieve a unified control

plane could be applied. In this method, each physical interface of an optical switching

node is mapped to a corresponding virtual interface. The messages between the

controller and the virtual switch are translated into commands that can be understood

~ 18 ~

by optical switching devices. A similar approach is proposed for integrating legacy

equipment with SDN switching devices. During deployment, an added layer is

introduced to bridge controllers and legacy switches. Although these methods allow

for the reuse of existing network equipment, they introduce more communication

latency due to message proxying. On the grounds that, long-distance transmission is

inherent in optical networks, it is necessary for an end-to-end data path from source to

destination to be managed by various entities, with each one being responsible for

diverse segments of the path. In this case, the incorporation of a single control plane

throughout the entire data path may not be possible. Split-control approaches, as

illustrated in the SDN infrastructure architecture illustration, where Controller B

(figure A.3.2) governs an optical circuit switching domain and Controller C (figure

A.3.2) manages Packet Switching Domain B (figure A.3.2), might be a more practical

solution. These approaches can leverage advanced techniques in optical circuit

switching, such as using a Generalized Multiprotocol Label Switching control plane,

which is a networking technology that enables fast and reliable network switching of

data flows on any type of network infrastructure, for instance, the management of the

optical network.

Figure B.1.2.2: Architectural Illustration of Software Defined Optical Networking

~ 19 ~

SDN Wireless Radios

Enhanced networking technologies have been developed and later incorporated into

wireless networking environments so as to improve the utilization of the

electromagnetic frequencies concerning network communications. Software-Defined

Radio is among the most prominent technologies on the grounds that it enables

wireless transmission control through the use of software. Since Software-Defined

Radio has various common traits with the SDN, its implementation to the Software-

Defined Networks should not pose a challenge. The fact that numerous processing

blocks, which have a great computational complexity and are dominant at the physical

layer might only have a few differences purely restricted to their configurations.

For instance, the majority of wireless devices utilize the algorithm known as the Fast

Fourier Transform varying in lengths. According to the previously mentioned trait, an

approach that could be taken is the implementation of an Open Radio Access Network

to perform the abstraction of the wireless from the hardware trait and therefore

construct an assertive wireless programmable interface for various protocols. As far as

the access points and the clients are concerned, they need to keep on passing

information to the central SDR controller on the measurement of the performance, the

total size of data packets and their count. Afterward, tasks such as the administration

of the choice of channels, rate of transmission and the traffic of both the access points

and clients that pass through the application programmable interface (with filters:

previous and current recordings concerning measurement information) are the

responsibility of the central controller. Mainly, Open Radio is able to control physical

layer operations via specialized software, therefore rendering it very similar to the

Software-Defined Radio frameworks.

As for the issue of the configuration management of software it can be addressed

through the incorporation of a Software-Defined Radio system that would allow its

controllers to have an interface aiming to improve the central control and the

ubiquitous interpretation of Software-Defined Networks. As a result, the central

controller of an SDN could enhance its control over the existing SDR devices which

could extend to all the network systems existing within its scope.

B.2. Control Layer

As was seen previously in the first illustrations (A.2.1.1, A.3.1) presenting the

architecture of the Software-Defined Networks, the 2nd layer, namely the control

layer, acts as the link between the other two layers (infrastructure and application).

The demonstration of the schematics of the SDN controller, which entails a control

operation specialized for the data plane, virtualization factor, agent, administrator and

the three interfaces of the controller layer (northbound, southbound, east/westbound

used for interaction with infrastructure and application layers and availability

purposes) will be the primary focus of this section. Moreover, there will be a brief

~ 20 ~

explanation concerning the problems of the control layer, namely policy and rule

validation, and measurement of performance. The characteristics of the control layer

will be addressed afterward in the security section.

Figure B.2.1.1: Architectural Illustration of the Control Layer

B.2.1. SDN Controller Schematics

SDN Controllers are essentially one of the most vital elements of this architecture,

which affects even the level of complexity depending on its structure. Furthermore, it

is noteworthy to bear in mind that the SDN controllers’ boundaries are not

straightforward. The administrator element is solely responsible for the management

of the client/server domains. Management of the client and server is important due to

the fact that amidst all factors of data, control and application models, require

coordination for their functions. Afterward, the next more prominent component of

SDN controllers is the control function for the data plane, as it can efficiently use the

available resources and redistribute them according to the directives received from

either the administrator or the virtualizer that has control over them. The resources

usually are processed as information instances with their only access point being the

agent. Because the range of the SDN controller spans across various virtual

networking environments, the control function for the data plane is needed to consist

of operations that work as an aggregation.

In the architectural model of Software-Defined Networking, the virtualization factor

has been developed to allocate resources to diverse applications. The Software-

Defined Network Controller provides operating services to various applications via

~ 21 ~

the usage of the available resources, policies and supporting functions. More

specifically, the functional avatar that provides support to the informational structure

instance of an application controller plane interface is the virtualizer. It is manifested

by the administrator for every application or client in the SDN scope. Afterwards, the

allocated resources are utilized by the virtualizer for the application-controller plane

interface which exposes its view to the application clients and sets up the installed

policies therefore causing the development of the agent to take place for each of the

clients that participated in the aforesaid process. In addition to that, the virtualizer is

also responsible for the management of the client requests throughout the application

controller plane interface, while ensuring the validity of the requests according to the

enforced policies and finally translating them into the form of underlying resources

and sending the results to the data plane controller functions and data controller plane

interfaces. As a result, in order to achieve enhanced resource management, provided

services and integrity of the managed data coordination among the virtualizer, data

plane controller functions and SDN controller is required. Every protocol is needed to

conclude at a functional entity. The element that is most proper for the relationship

amidst the controlled entity and its counterpart is the controller agent model, on the

grounds that it can be applied recursively to the SDN architecture. The agent is the

aforementioned controlled entity, which represents the client's resources and

capabilities within the server's environment.

As mentioned before, the controller of the SDN environment is made up of three

application programmable interfaces, which are vital for communication and

interaction with the other layers. Following there will be an explanation of each one

of these interfaces.

Northbound Interface

The Northbound programmable interface handles the connection link amidst the

application and control layers. It is capable of implementing the programmability

factor of the SDN controllers into the controllers that are utilized by applications for

the 3rd layer through the exposure of the circulating data and the operations that exist

inside the utilized SDN controllers. Unfortunately, since the northbound

programmable interface is for the most part software, the development of a common

version of this interface is not yet feasible.

Southbound Interface

The Southbound programmable interface is primarily responsible for the interaction

and communication amidst the Software-Defined Networking Controller and the

forwarded in the 1st layer as well as for the communication with SDN Controller and

the network systems that are manifested via interfaces. It is noteworthy to mention

~ 22 ~

that usually, the connection that is instantiated amidst the network systems follows the

TLS protocol. It is implemented in the aforementioned link with the aim of providing

security and authentication factors in the connection. The administration of the virtual

and/or physical systems in the SDN by the Controller is only possible provided that it

entails the appropriate drivers. Therefore, making the Southbound interface one of the

most prominent elements for clarifying the differentiation of the roles between the

control and the data planes.

Westbound/East Interface

As for the Westbound/East programmable interface, its primary role is to provide a

specific communication interface that enables the synchronization of the state for

allocated Software-Defined Networking Controllers within the Control Layer in order

to achieve higher availability. In addition to that, it is capable of performing data

importation and exportation amidst the SDN Controllers as well as performing state

monitoring aiming to ensure whether the SDN Controller is in UP state or sends a

notification for a takeover for the appropriate set of forwarded components.

B.2.2. Validation of rules & Policy tables

Rendering policies and rules as appropriate or dysfunctional is a very important

process that could affect the stability of the decision-making process for selecting the

best routing paths in the Software-Defined Networks and by extension the

performance and the functionality of the control layer. SDN networks are made up of

various applications and devices that could potentially connect to the same SDN

Controller, therefore affecting the overall performance of the Controller.

Consequently, this could give rise to the creation of conflicts amidst the existing

configurations, which might have negative effects on the coordination process

throughout multiple participation units.

Nevertheless, there are various strategies that have been created such as CORA, and

role-based source authentication with priority which are able to prevent potential

conflicts. Subsection B.2.2 will focus on ways to analyze stability in policies that

dwell in intra-switches, the security field and in network domains of SDN.

In order to identify and ensure that the rules and policies for network systems in

finite-state examination models are usually the most prominent method for achieving

the aforementioned statement. Since then, various strategies and tools have been

developed with the aim of addressing this issue for intra-switches. For instance, there

are ways (FlowChecker, PreChecker) to perform network configuration encoding for

examining overall the behavior of a networking environment in a system which is in a

single-state. Moreover, FlowChecker is capable of ensuring validity and security via

writing security parameters in the form of a computational tree, while utilizing a

~ 23 ~

Binary Decision Diagram-based model examination. It is noteworthy to mention that

a weakness of the Binary Decision Diagrams is that they can be used to test for intra-

switch misconfigurations within a single flow table. Therefore, the FlowChecker is

able to take advantage of the FlowVisor, which is able to perform network resource

partitioning and effectively isolate this part from the rest of the network. In addition to

that, verification of flow policies can be ensured through the implementation of

modulo and assertion sets, while VeriFlow studies the verification of invariants in

real-time. An added layer, which sits between the SDN controller and the network

devices, intercepts flow rules before they reach the network. Although VeriFlow

boasts low latency in the checking process, it cannot handle multiple SDN controllers.

Through the use of a security-based language to enable flow-based policy

enforcement along with network isolation, the aforementioned problem could be

resolved. It is incorporated as a NOX application and allows the integration of

external authentication sources so as to offer access control. Veriflow is also capable

of succeeding in examining in real-time with low latency through the introduction of a

proxy amidst a controller and switches aiming to check network-wide invariant

violations dynamically as each forwarding rule is updated. Firstly, it performs rule

division into equivalence classes based on prefix overlapping and afterward uses the

data structure of the prefix tree in order to quickly find overlapping rules. Then, the

proxy generates individual forwarding graphs for all the equivalent classes. Last but

not least, the OpenFlow Testing Environment is capable of performing black-box

testing in physical switches with state synchronization with the aim of validating and

cross-checking the integrity of the rules and policies in these switches and the devices

in a Software-Defined Networking environment. The next subsection will show a

detailed explanation of the ways in which performance is measured in Software-

Defined Networks.

~ 24 ~

Figure B.2.2.1: Rule & Policies Interception and Examination for SDN Applications

(VeriFlow)

B.2.3. Measurement of performance

Depending on how the control layer functions, the performance of Software-Defined

Networks could be greatly affected and, in turn, the scalability factor of the SDN

Controllers constrains it. All of the transactions that take place in the control plane are

associated with the SDN controllers. For the first packet of each flow that arrives,

switches are needed to request the controller for packet forwarding reactive rules. As

for the update of rules and the collection of the overall network status communication

amidst controllers and switching devices becomes more often. Consequently, the rate

of consumption for the bandwidth and the latency of frequent communication could

affect the scalability of the control layer greatly. The aforementioned problem must be

addressed as it has a negative impact on the SDN performance. Following there will

be a demonstration of the ways that various techniques could be used so as to prevent

the issue with scalability and by extension that of the overall SDN performance.

SDN Controller Performance - Benchmarks

A common issue in SDN controllers when it comes to the stability of the performance

is processing power and the bottlenecks that might be formed causing the situation to

become more complex. Therefore, the implementation of benchmarking could be of

use to address the issue of scalability on the grounds that it is capable of performance

bottleneck identification and at the same time it is needed for the enhancement of the

~ 25 ~

processing speed. There are frameworks such as OpenFlow Controller Benchmark

that could perform performance benchmarking for SDN controllers, as they provide

statistics of various response metrics (time, percentage, count of packets dropped) for

every switch individually. Additionally, there are other frameworks that are able to

offer these features and more like Cbench, Iperf with the only exception being that

these are better suited for multithreading experimentation. The first framework is

capable of conducting tests for the performance of the SDN controllers through

request generation for packet forwarding rules, while watching for SDN controller

response and offers aggregated statistics of controller throughput and response time

for all the switching devices.

SDN Controllers - Dropping Frequency Rate of Ongoing Requests

Since the performance of the SDN environment is affected by the scalability of the

control layer, it is needed to stabilize and manage the offset of the request load and its

burden on the SDN controllers. The technique that is going to be analyzed for the

final subsection of this layer is the restructuring of the way the switches are organized

in the SDN. Well-defined divination of the workload and precise role assignments are

able to enhance the performance of the control layer. Tools like ONIX and Kandoo are

capable of achieving the previously mentioned feats. More specifically, ONIX is a

distributed control platform, which can run various instances of the SDN controller

throughout multiple locations, working together to manage a network. Allowing

ONIX to perform load balancing of the requests effectively preventing the creation of

potential bottlenecks via an individual SDN controller. Furthermore, it is capable of

sharing instantly the information of the current state of the overall network enabling a

constant view of the SDN environment. As for Kandoo due to its two layers (top and

bottom layer), it can offload the heavy burden of the requests on the SDN controller

through replication of the SDN Controllers at the 2nd layer while the 1st layer is

responsible for management of the network view and decision-making process like

forwarding.

B.3. Application Layer

The final layer of the SDN architecture resides above the control layer as showed in

the illustration A.3.1. Through the previous layer, applications in the environment of

Software-Defined Networks are able to effortlessly gain access to a global network

view with instantaneous status via the utilization of the northbound programmable

interface of SDN controllers. Furthermore, the application layer entails various

network programs and applications that are capable of communicating with their

desired network behavior and informing the SDN control layer of their requirements.

During the past, when the traditional networking methods were prominent dedicated

firewalls would be used for load balancing. Nonetheless in the domain of SDN, the

management of the data plane is handled by the application layer. Section B.3. will

~ 26 ~

focus on what approaches there are regarding the applications of SDN as a service

platform.

B.3.1. Cloud Computing – SDN

In recent years, the cloud field has been advancing rapidly influencing many network

environments, businesses and therefore SDN as well. It is capable of providing

on-demand services like storage resources, programming infrastructure and even

instant updates in software applications and charges always with server usage and

virtualization of networks. On the other hand, Software-Defined Networks are able to

provide the services required to move beyond the resources needed for computational

operations and storage to include more extended services to achieve efficient cloud

computing by broadening the horizons of the model of the Infrastructure as a Service.

Another vital element of Cloud networking is the data center which in order to

function properly is needed to entail high scalability for large-scale projects, dynamic

resource provisioning, quality of service for different platforms and wide network

availability and visibility. These conditions can be met through the implementation of

the SDN. More specifically, SDN can provide the foundation for the enhancement of

the IaaS model and by extension for cloud computing by addressing an issue of cloud

computing, namely virtualization of switches. Virtualization of switches is used

mainly for achieving a communication channel amidst virtual machines that share the

same host. Following the traditional networking methods virtualization of switching

devices was offered with hypervisors, programs that allow multiple operating systems

to share resources of the same physical hosting machine. Nonetheless, it does not

provide a satisfactory level of clarity and management. Aiming to address this

problem, it is possible to have an edge in virtual switching in virtual machines via the

implementation of a previously mentioned SDN framework, Open Virtual Switch

(Open vSwitch/OVS). OVS as stated before can monitor and report the overall

network status as well as manage data packet rules from SDN controllers.

Nevertheless, due to the fact that it does not provide an abundant amount of storage

unlike the physical switching devices, it is necessary to incorporate another

component with the aim of resolving this issue. What is needed is a system that would

enable the proper management of rules that are both virtual and applicable to the

cloud environment. Such an example is vCRIB according to the paper presented in

USENIX “Scalable Rule Management for Data Centers”, which can find and

enforce the most appropriate rule amidst virtual and physical switching devices, while

offloading the increasing traffic and adapting to dynamic changes in the cloud field,

like those in the traffic.

B.3.2. Security in Application Layer

In this subsection, the primary focus will be the security implementation in the

applications in SDN. Security in networking is a founding part of the cyber security

field. Deprecated methods and practices in networking security dictate the

~ 27 ~

implementation of firewalls and proxies in order to ensure the safety of physical

infrastructure. On the grounds that there are many differences and unique traits in

various applications in the network, the complexity level of enforcing large-scale

policies and configuring the aforementioned devices becomes higher. In order to

mitigate the repercussions of this issue, Software-Defined Networks can be applied

since they provide centralization and merging platforms that examine thoroughly

policies, rules and configurations to ensure that the implementation meets the security

conditions needed to prevent potential events of security breaches. The SDN is able to

collect the status of the overall network rendering it capable of monitoring and

analyzing various patterns in traffic to notify instantly and examine security threats.

For instance, distributed denial of service (DDoS), replay attacks can be identified in

an instant through the previously mentioned feature of the SDN. Also, due to its

programmability factor, it offers more centralized control of flows of packet traffic

and as a result, the reports of SDN can be applied/transferred directly to systems such

as intrusion detection systems (IDS) and intrusion prevention systems (IPS). In case

there is an attack detection, then the SDN could install packet forwarding rules to

switches with the aim of blocking the attack traffic from entering and propagating in a

network. The feature of centralized control that the SDN has, enables the dynamic

quarantine of compromised hosts and authentication of legitimate hosts according to

the information obtained via the request of end hosts, requesting a Remote

Authentication Dial-In User Service (RADIUS) server for users’ authentication

information tainting traffic or system scanning during registration. Therefore, through

the previously mentioned strategies, it is possible to ensure a high level of network

security for applications in the SDN.

Figure B.2.3.1: Statistics on the behavior of the implemented strategies of the SDN in

network security

~ 28 ~

B.3.3. Management of Network Applications

The most common issue that network applications face is the configuration errors that

afterward cause various types of failures. Most of the time, the downtime in network

infrastructures is the result of human mistakes during the configuration process.

Unfortunately, well-known networking tools such as ping, traceroute, tcpdump cannot

offer automated solutions for maintaining the network. In comparison to these

conventional methods, SDN is capable of providing centralized and automated

revisioning and enforcement of rules, policies and thus effectively preventing

configuration errors, while achieving the delivery of automated maintenance and

reports regarding the state of the overall network. Fortunately, the development of

tools such as network debugger has already taken place, aiming to identify and detect

the reason behind networking errors. With Network Debugger each time that a

switching device comes into contact with a data packet the SDN controller is notified

via a specific way, “postcards” and afterward the SDN controller constructs a

backtrace aiming to perform network debugging. To conclude, these tools together

with the capabilities of the SDN are able to act as a solid way of performing

automated maintenance of the network, alleviating the burden of the tedious manual

work that is required to achieve the aforementioned.

~ 29 ~

C. Network Security - SDN

From the earlier sections, the principles behind the Software-Defined Networking

concept have been elucidated and it is understood that it can serve as a breakthrough

point with the aim of further extending the capabilities of the existing network

facilities. Nevertheless, in many software applications, and networks no matter the

traits they possess and the functions they have, there is not a single one that is not

susceptible to cyber security attacks as the following sections will demonstrate. More

specifically, there will be a detailed explanation regarding the cyber security

vulnerabilities found in the architecture of the Software-Defined Networks, the

security threat that various attacks pose to the aforementioned network concept,

strategies and methods that are able to act as countermeasures and some use cases that

demonstrate in a more practical way how attacks can be performed in a virtual SDN

environment.

C.1. Vulnerabilities of SDN Architecture

Even though the conventional networking architectural structure was not able to offer

the flexibility that the SDN architecture provides, and its components were more

dispersed, the latter has its core elements more concentrated and therefore its threats

in cyber security are focused on certain aspects of the SDN architecture. Following

the susceptible traits of the SDN architectural nature will be shown.

C.1.1. - Susceptibility – Software-Defined Network Controllers

Various operations and decision-making processes like routing, packet forwarding

rules, monitoring, gathering of information, and configuration of the networking

environment revolve around the SDN controllers. The fact that the Software-Defined

Networks have been designed in a way that a single entity (controller) handles most of

its functions and daily operations further limits the target scope of potential malicious

actors and simplifies the attack performance. In addition to that, the fact that the SDN

is compatible with cloud computing due to its programmable nature, so, provides the

attacker with many ways to maneuver around the network and implement attacks with

greater efficiency. As a result, in the event that the SDN controller is compromised

and there is only one controller, then the malicious user will be able to negatively

affect the entirety of the SDN domain. Moreover, in case there is only a single SDN

controller in the aforementioned environment, since there can be more than one

controller, if the targeted controller is flooded with malformed data packets with

attacks such as UDP flooding and DNS poisoning then the controller becomes swiftly

a single-point-of-failure (SPOF), thus causing the performance of the Software-

Defined Network to drop rapidly and all of its functions will cease to work.

~ 30 ~

Additionally, it is noteworthy to mention that in the event that the SDN environment

has multiple controllers, without proper implementation of security protocols, like

TLS/SSL, due to the requirement of communication amidst the controllers for the

maintenance of the stability of the entire network, the data packets that are circulating

the SDN are susceptible to interception techniques such as packet sniffing rendering

them a potential source of information for the malicious actors that aim to target the

network.

C.1.2. - Susceptibility – Open Nature of Application Programmable Interface (API)

The architecture of SDN is defined by open application programmable interfaces and

as such the aforementioned trait causes the Software-Defined Networks to be more

vulnerable to cyber security attacks. Open programmable interfaces due to their nature

tend to unintentionally expose vulnerabilities that software in SDN tend to have. For

instance, conflicting interactions and rules can be caused by the presence of various

software applications that have different goals, therefore causing rules with disturbed

flow to be integrated into switching devices creating an inconsistent and chaotic

behavior of the devices belonging to the SDN domain. Another example of

vulnerability of the software application lies in the fact that the SDN applications

might be due to the workload and the cost-efficiency goals handled by cloud-service

providers and since there are many software applications that must be developed and

controlled by various entities (cloud), sometimes there is an issue of unauthorized

activities performed by the said SDN applications without being able to view what is

causing this. On the grounds that, applications handled by the cloud are the

responsibility of third parties, the programmers are unable to discern the main reason

that causes the aforementioned issue and by extension do not have any authority on

the matter of security. The susceptible elements that are known due to the open nature

of the APIs give the opportunity for malicious actors to analyze different patterns and

orchestrate an attack plan. Additionally, due to the trait of SDN controllers to offer

many open programmable interfaces to the attackers, potential backdoors upon which

they are able to perform malicious software embedding, for example, trojan viruses.

As a result, it is noteworthy to implement robust security policies and incorporate

mechanisms that thoroughly evaluate the open programmable interface provided by

the SDN controller. Bear in mind that the software applications that have been

previously mentioned, are developed on a controller in the SDN architecture and it is

stationed at the same hosting physical hardware device with the controller itself. In

case the said software calls functions of the controllers via the link of the control and

application layers, northbound application programmable interface then, if an attacker

succeeded in compromising the controller, then the malicious script that is embedded

on the controller will be executed, causing all sorts of undesirable activities.

Consequently, making the application layer as another susceptible element of the SDN

architecture that the malicious actors can exploit.

~ 31 ~

C.1.3. - Susceptibility – Software-Defined Network Switching Devices

Another basic part of the SDN architecture is the switching device. The basic trait of

the SDN switching devices is the fact that compared to the conventional switches

when data packets are received, they are not required to enter a flow for matching and

exiting, but they will attempt to communicate with the SDN controller which will

perform decision-making process, directing the switching devices exactly what their

tasks will be regarding the data packets. For example, a well-known directive the

switches receive from the SDN controllers is the forwarding rules for the data packets.

Nonetheless, as previously mentioned in case the attacker performs packet

eavesdropping in the event the communication is not secure, the malicious actor will

be able to take advantage of the susceptibility of the link amidst controllers and

switches, which consequently will result in rule tampering and malformed packet

insertions. Therefore, the malicious actor has the opportunity to provide fraudulent

rules to the said switching devices, effectively manipulating a part of the SDN

environment. The case of a vulnerable connection is not limited solely to the link

between SDN switching devices and SDN controllers, since it can be further extended

to the communication amidst the switches themselves. Inside the Software-Defined

Network, many of the data packets circulated and transmitted amidst the switching

devices are in unencrypted form, containing vital information regarding the users of

the network, resulting in susceptibility to intercepting mechanisms which are easily

performed in the communication of switches, since their links are essentially wireless

media.

As said previously, the SDN architecture is comprised of three layers, mainly the

infrastructure, control and application layers. Even though each one of them is located

in a different place in the Software-Defined Network, their frequent communication is

required in order to maintain the stability and the high performance of the SDN

environment. Thus, as seen from subsection C.1.1. the SDN provides more patterns

for malicious entities to perform various attacks, in comparison to the conventional

networks. Following there will be an illustration, which will demonstrate the basic

points an attacker could take advantage of to seize control of the Software-Defined

Network architecture.

~ 32 ~

Figure C.1.1.1: Susceptible spots of the SDN architecture that the malicious actors are

able to take advantage of

C.2. Security Threats - Software-Defined Networks

The evolution of the Software-Defined Networks is rapid due to the extended research

being conducted on this networking concept in recent years. However, the more SDN

advances the more eminent the need for the implementation of robust security

measures becomes. The main focus of this section is C.2. will be a thorough and

detailed explanation of the various security threats to SDN. According to the

illustrations C.1.1.1 & A.3.1, the threats can fall under the following categories, about

their target, either one of the three layers (infrastructure, control, application).

~ 33 ~

C.2.1. - Threats – Software-Defined Networks – Infrastructure Layer

As has been stated previously, this is the 1st layer of the SDN architecture, which

consists of various interconnected switching devices, whose main responsibility is to

perform data packet forwarding. In case a compromise event takes place, the data

packets will not follow the proper flow as the forwarding rules would have been

changed. Furthermore, it is noteworthy to bear in mind that switching devices

represent the central entrance of network access for the end users, so the attackers

could embed a malicious link to a port service of the said switch. To conclude, it is

vital that security threats are identified swiftly via the incorporation of mechanisms

that detect and correlate adverse events. For this section, the structure of the SDN

switches will adhere strictly to the concept of the OpenFlow protocol. It entails the

following basic elements, mainly the flow buffer, table and the client of the

OpenFlow. In case a data packet is received from the proper input port, then the

aforesaid data packet will be placed in the buffer flow and afterward a search will be

conducted in order to locate a matching rule to the message fields of the

corresponding packet, like transmission control protocol port. When the ideal rule is

found, then the previously mentioned data packet is going to be removed from the

buffer flow, and it will be routed to the corresponding output port. However, in the

event that the appropriate rule is not found, the SDN switching device is required to

send a packet in a message to the SDN controller with the aim of receiving directives.

When the decision-making process is completed the SDN controller will perform

routing and the insertion of an ideal rule into the table flow. The threats that are

prominent in this case are Denial-of-Service attack in order to paralyze the table and

buffer flow and a Man-In-The-Middle attack in which a malicious actor could

intercept the data packets between the switch and the controller and therefore perform

rule modification without either one (switching device, controller) being none the

wiser.

C.2.1.1 - Denial-of-Service (DoS) Attack – Flow Table & Buffer Saturation

The OpenFlow protocols bear a trait in their structure which involves changing the

existing rules in a data packet in case it does not have a known address. This design

creates a potential way for any malicious actor to easily perform Denial-of-Service

attacks or even distributed DoS attacks, since all it would take is for the attacker to

keep on sending a tremendous amount of data packets with destinations that do not

have known addresses during a short time frame via the utilization of a script aiming

to generate a high volume of traffic that would cause the table flow to malfunction

and stop performing the appropriate forwarding of the legal data packets, due to the

fact that there will be no more available resources used for the creation and

attachment of the new ideal rules, therefore preventing the overwriting of the rules.

~ 34 ~

On the other hand, it is important not to forget that another potential target of the

previously mentioned attack is also the buffer flow. Previously, it was mentioned that

it is needed for the data packet to be buffered in the buffer flow in order to wait for the

result of the ideal rule search or the insertion of a new ideal rule, and afterward

perform the data packet forwarding. On the grounds that the buffer flow has a

limitation regarding its storage, it always marks the data packets that are to be deleted

according to the principle of First In First Out (FIFO) with the aim of releasing

unnecessarily used storage space. The concept behind the attack strategy is similar to

the one mentioned before. The malicious actor can perform DoS/DDoS attacks such

as tcp flooding by sending tcp packets that are a part of another data flow, different

from the one that is currently on the switching device causing the device to perform a

buffer of the data packets that are currently flowing on to the switch, which

consequently is forcing the buffer flow to mark the new data packets as deleted in

order to free storage space and store the current non-fraudulent data packets to be

stored. This causes the buffer flow to malfunction as well, with its performance

dropping rapidly.

Figure C.2.1.1.1: Attack Vectors in Software-Defined Networks towards OpenFlow

Switch affecting the table and buffer flow

~ 35 ~

C.2.1.2 – Man-In-The-Middle (MITM) Attack – Controller & Switching Device

The concept behind the Man-In-The-Middle attack is to take control over a node in

the communication amidst a source and a destination node that acts as an intermediary

for the other two, with the aim of intercepting the data packets sent back and forth by

each one of them without being detected by either one of them, mainly source or the

destination node. It is considered a network intrusion attack, and it could be applied in

the Software-Defined Networking environment as well. Since the controllers and the

switching devices are frequently communicating with each other, it is the ideal

situation for performing this attack. Malicious actors could intercept the data packet,

and change the existing forwarding rules which are attached to the switching device in

order to take advantage of the data packet forwarding process. This gives the

opportunity to the attackers to perform ARP poisoning attacks as will be demonstrated

in the following use cases. Moreover, it is vital to remember that it is not necessary

for the controller and the switching device to have a physical connection, they might

be connected in a virtual environment or even have data packets travel via multiple

different switches in order to reach their destination (amidst switch and controller).

Resulting, in the susceptibility of all the switching devices and controllers to the

MITM attack in the SDN domain. Following we will have an illustration

demonstrating in a simple way how the MITM attack works.

Figure C.2.1.2.1: Man-In-The-Middle Attack Representation in SDN (OpenFlow)

~ 36 ~

C.2.2. - Threats – Software-Defined Network - Control Layer

According to the SDN architecture the 2nd layer, Control Layer is connected to both

the 1st and 3rd layer and in case of a security compromise event both layers can be

affected (infrastructure, application) since this affects adversely the data from the

infrastructure layer as well as the data packets that are circulated from the link amidst

the controllers and the software application in SDN (application layer). The controller

in Software-Defined Networks is a core element for ensuring the stability and high

performance of the SDN, since it is primarily responsible for decision-making

processes that affect many of its components from switching devices to software

applications. Therefore, if a malicious actor were to take control of a controller, it

would have everlasting consequences on the entire SDN. The SDN switches receive

ideal forwarding rules from the controller so as to forward data packets correctly,

otherwise the process cannot be carried out properly. On the grounds that the

controller is a figure of great importance, it is one of the primary targets for a

potential attacker. Following there will be a detailed explanation of the main threats of

the control layer, which involve DDoS attacks on the SDN controller and the concept

around the multiple SDN controllers’ structure.

C.2.2.1 – Distributed Denial-of-Service (DDoS) & Denial-of-Service (DoS) Attack – SDN

Controller

The main target of the Distribute Denial of Service attacks is to force the SDN

controller to enter a paralysis state, making its functionality completely non-existent

and therefore making the controller’s services unavailable to all the users of the

network. The approach that is taken in the DoS attack is very similar to the approach

discussed in subsection C.2.1.1. The aforementioned state is achieved through the

exhaustion of the available resources. The attacker is able to create high-volume

traffic through the generation of a huge amount of UDP, TCP packets through the

utilization of distributed compromised computers also known as zombie computers or

bots or via utilizing their own hosting device. Since the packets produced are

malformed it means that they cannot be easily discerned from the non-fraudulent

packets existing in the current traffic. As explained before, according to the principles

of the OpenFlow protocol the switching devices do not handle well new data packets

and as a result, it will first store the current packet in its buffer flow and send

afterward a packet in the message so as to ask for directives from the SDN controller.

As a result, in case of the Distributed-Denial-of-Service attack (as seen in the figure

C.2.2.1.1), the controller is forced to manage the high-volume traffic generated by the

creation of multiple packets in a short time frame, which ensures available resource

depletion. The controller will not be able to process the current traffic, the bandwidth

will be occupied by the fraudulent traffic, and this will drop the levels of performance

and functionality of the SDN network rapidly.

~ 37 ~

Figure C.2.2.1.1: Distributed Denial-of-Service Attack in Software-Defined Networks

towards OpenFlow Switch (& SDN Controller)

C.2.2.2 – Model with Various SDN Controllers

Software-Defined Networks had been designed at first with the concept of having one

SDN controller, however with the aim of avoiding the loss of scalability and the

creation of a Single-Point-Of-Failure (SPOF), various solutions were proposed by

many researchers in the field among which was the integration of multiple distributed

SDN controllers. Every one of them will be individually capable of specific switching

devices and then afterwards these controllers would cooperate with each other,

achieving total management of the whole network. Nevertheless, even though there

are many controllers responsible for the maintenance of the SDN environment it is

still transparent to the infrastructure layer, which means that on the surface it is

needed for the controllers to appear as a single one. In the aforementioned scenario,

the software application which is spread across various network control environments

is required to handle several cyber security issues, like authentication, privacy during

the circulation of information, and authorization. Moreover, with the cooperation of

the distributed SDN controllers, the existence of many controllers at once and the

switching amidst the controllers for the role of the master controller might cause the

potential creation of conflicting configurations. Thus, in the previously mentioned

architecture, it is of the essence to identify constantly changeable configurations, on

the grounds that they could pose a potential security threat.

~ 38 ~

C.2.3. - Threats – Software-Defined Networks - Application Layer

This is the final layer of the Software-Defined Networks where software applications

are set up for executing various operations within the scope of this environment. In

order for these applications to complete their tasks, it is of the essence to call

functions. Malevolent actors could take advantage of the aforementioned need for the

software applications and attempt to inject malicious code through the insertion of

malware such as spyware (which is capable of gathering information regarding the

activities of the targeted user, in a stealthy way) into the said application. Additionally,

since it is not uncommon for the management of the SDN software applications to be

handled by third-party service providers, like the cloud, it would prove to be less

difficult for an attacker to pretend to be the third-party application and gain

unauthorized access. Therefore, making the applications and the controllers

themselves prime subjects to attacks, while effectively interfering with their everyday

operational activities and negatively affecting the availability and reliability of the

SDN domain.

Another issue that arises within the application layer is whether the management and

incorporation of security rules, policies and configurations are handled appropriately.

Even though the OpenFlow protocol exists and is capable of executing specific

functions that provide security identification and detection services for a multitude of

software applications, the management of multiple applications is challenging, due to

their differences in their programming language, structure and configuration settings.

Consequently, this results in misconfigurations and conflicts amidst the various

security policies and rules that need to be implemented to ensure protection from

potential threats. Following, there is going to be a detailed explanation that aims to

prove how the conflicting problems that arise represent a threat and why unauthorized

access and spoofing can adversely affect the 3rd layer of the SDN architecture.

C.2.3.1 – Conflicting Issues – Rules – Security Policies – Misconfiguration

As stated before, the application layer is made up of security software applications

that are necessary for gaining access to the programmable interfaces of the SDN

controllers with the aim of offering a variety of high-quality network services.

However, when the number of applications which are set up on the network scope of

SDN is high, the complexity of the management process increases on the grounds that

more rules need to be incorporated and applied, leading to mass disarray and

confusion of the tasks that every service has to complete, arising conflicts between

countless configurations. Furthermore, amidst the tediousness of the handling process,

security policies cannot effectively cover the security needs of the applications

connected to the controllers and their functions, which cannot suffice as a prevention

method for attacks.

~ 39 ~

C.2.3.2 – Unauthorized Access

Most of the Software-Defined Network applications which are being executed on the

controllers in accordance with the OpenFlow protocol, are given the appropriate

privileges that allow them to gain access to various resources regarding the entirety of

the network and even participate in the process of decision-making for the molding of

the network’s behavior as well as for the directives that will be given.

Notwithstanding, it is not the case that all of the network applications that are running

on the controllers are developed by the controller vendors. Actually, the task of their

development falls under third-party entities, causing a major issue. Anything that is

being handled by a third-party actor does not provide visibility for security matters,

leading to the inability to create robust, stable and reliable security methods that aim

to thwart potential threats. This enables malicious actors to easily gain unauthorized

access to the inner workings of the applications (via the injection of malware that

could later be executed remotely such as trojan virus) that run on the SDN controllers

and effectively have control of a significant portion of the network. Additionally, most

of the security applications are optional, this condition does not ensure a trustworthy

connection link amidst the software application and the controller. There are of course

methods that have been developed for security purposes, such as certification,

monitoring, and logging. Nonetheless, a method that is globally accepted for the task

of testing the validity of network applications does not exist.

C.2.3.3 – Spoofing

The SDN controllers and the software applications that are running on them require

authentication protocols, such as TLS (v1.3), and Kerberos in order to succeed in

creating a secure communication. Otherwise, the malicious actor will be able to

perform altering information attacks like spoofing. Spoofing is not only limited to

changing the source IP address of the data packet, since by masquerading as a non-

fraudulent Software-Defined Network controller altering further information,

regarding the statistics (for instance the number of packets that are being received) so

as to confuse the application that there is a high volume of traffic and causing the

application to perform inappropriate decision-making process, becomes possible.

Additionally, the attacker could take a different approach and use the spoofing attack

to obtain vital information regarding the statistics of various functions gathered from

other switching devices to which the controller is connected, therefore achieving

illegal access to service level agreement and utilizing it in their potential future attack.

All in all, without strong authentication the attacker will be able to gain control of an

SDN controller (since there can be more than one) and by extension obtain intel

regarding the connected switching devices and applications’ daily operational

activities and take advantage of them to gain a foothold and launch further attacks on

the application layer.

~ 40 ~

C.3. Countermeasures – Prevention Methods for attacks towards

Software-Defined Networks

From the earlier subsections, it could be deduced that many threats are lingering

around the SDN architecture for each of the three layers with the majority of them

targeting not only the SDN controllers, even though they bear the responsibility of

decision-making processes that affect all the layers. Also, prime targets are the errors

and issues that exist due to human mistakes or the complexity of handling multiple

entities in the same network such as potential misconfigurations. All in all, the need

for introducing and implementing countermeasures that contribute to the creation of a

robust security network system is becoming urgent. The following sub-sections are

going to provide insight about the ways that the aforementioned threats could be

prevented.

C.3.1. - Countermeasure – Software-Defined Networks – Infrastructure Layer

C.3.1.1 - Denial-of-Service (DoS) Attack – Flow Table & Buffer Saturation – Countermeasure

OpenFlow protocol is able to interact with other frameworks/technologies that have

been developed so as to mitigate events in which the quality of availability is being

endangered. The virtual source address validation edge is a platform that entails

protection schematics against Denial-of-Service attacks with the architectural design

of NOX, which is the original controller of the OpenFlow protocol, and it is capable

of serving as a platform responsible for maintaining the control of the network and

also offers a wide range of programmable interfaces that are utilized for developing

network applications. For instance, in the event of a DoS attack launched towards the

SDN controller the data packets that will be sent without having any legitimate rules

or rules that match those of the Flow table will be sent to another controller whose

role is to perform validation of the source IP address, and in case it is fraudulent, (like

spoofing) then a new rule will be created and sent back to the Flow table in order to

halt the flow that these packets follow by adding the rule that drops packets from the

specified source IP address. Additionally, the incorporation of intrusion detection and

intrusion prevention systems could provide great support in finding abnormal

behavioral patterns in the traffic and finding the sources of the machines that Denial-

of-Service (even distributed) are launched. Implementation of the said systems in

switching devices that are connected to the SDN controllers could render the dynamic

behavioral access control possible, since with their support security rules and policies

could be applied according to the real-time data packet analysis and flow-level

information. Therefore, the access control policies are strengthened, and the impacts

of the potential DoS attacks could be greatly mitigated. Another measure that can be

taken into consideration about the prevention of DoS attacks against SDN controllers

and OpenFlow switches is the implementation of a framework known as SFlow.

~ 41 ~

It is capable of performing real-time based traffic and according to the hardware

equipment and network bandwidth its detection speed can reach even higher levels.

It is made up of three main elements as stated by the research paper [40]:

➢ SFlow-RT Agent: It is usually found and implemented in a switching device

and its main role is to gather information about data packet samples that

circulate on the network and send them in datagram format to the SDN

collector.

➢ SFlow-RT Analyzer: As its name suggests, the responsibility of this element

is to perform extensive analysis on the received datagrams and offer real-time

based information about the data parameters in order to discern abnormal

behavioral patterns and identify swiftly attacks like DoS/DDoS.

➢ SFlow-RT Collector: This is the server in which the aforementioned

datagrams are being gathered and afterward stored.

This will be further tested on a use-case with Mininet, which is an SDN virtual

framework, together with the open-source SDN controller Ryu and the Open Virtual

Switches (OpenFlow protocol).

Figure C.3.1.1.1: SFlow Architecture

~ 42 ~

C.3.1.2 – Man-In-The-Middle (MITM) Attack – Controller & Switching Device –

Countermeasure

This kind of attack has targeted many organizations over the years, and it has become

well-known in the cyber security industry, and because of that extensive studying has

been done behind its principles and its inner workings. The platform NOX and more

specifically the NOX OpenFlow controller, which was mentioned previously, entails

an extension, which is capable of performing authentication and source authorization

in accordance with a role-based model. Through the functional operations it is made

up of, rule collision detection is viable. The extension is named FortNOX and due to

its ability to perform validation of the alteration mechanisms through the use of digital

signatures, prior to the execution of the software applications that utilize them on

forwarding rules, it provides a robust security measure against potential

eavesdroppers or fraudulent intermediaries. Together with FortNOX another

technology similar to sflow that could be incorporated as an intermediary amidst the

controller and the switching device is VeriFlow, which is able to perform instant

validation on the packets sent between two targets on the network. Apart from the

support of existing technologies that have been developed for compromise events, it is

noteworthy to bear in mind that another key to achieving the limitation of the adverse

effects of a potential MITM attack is to the application of recovery strategies. The

OpenFlow protocol entails algorithms that can examine the effectiveness of the

stability of the controller’s performance by having SDN switching devices keep on

pinging or sending messages to the controller and check out its response. In the case

that there is an error message or failure response then it uses the backup controllers

via its switches (they connect to a backup controller). This also happens in case the

switch does not receive a response for a specific amount of time.

Figure C.3.1.2.1: FortNOX Architecture

~ 43 ~

C.3.2. - Countermeasure – Software-Defined Networks – Control Layer

C.3.2.1 – Distributed Denial-of-Service (DDoS) Attack & Denial-of-Service (DoS) Attack – SDN

Controller – Countermeasure

Similar to the approach that was taken in subsection C.3.1.1, where we took

advantage of the analysis of the flow of traffic midst the controllers and the OpenFlow

switching devices, a specific framework could be utilized to identify irregular patterns

swiftly and detect the DoS-related events. According to the research conducted on

ways to mitigate Denial of Service attacks in the paper [41], there is a framework that

been developed specifically for DoS related situations. The name of the

aforementioned technology is FloodGuard, and it is a security framework that is

SDN-aligned and entails two basic elements Analyzer of Active Flow and Packet

Migration. The respective roles of the two software modules are as follows, for the

former the aim is to perform dynamically a thorough analysis of the data packets in

the traffic flow, that is real-time based on the view of the SDN controller, so as to

identify which of the flows in the traffic are the result of a DoS attacks. As for the

latter, the main task is to perform buffering on the received data packets and afterward

sending them to the corresponding controller in order to process them via the

utilization of an algorithm that works on a rolling schedule and thus effectively limits

the rate in which resources are being consumed by the controller. If the identification

of the said attack has been detected, the migration of packets software component will

keep on monitoring the abnormal flow traffic aiming to discern the appropriate

variables, which are going to support the controller with the task of forwarding flow

rules generation and their afterward insertion to the switching devices.

Nonetheless, the aforesaid solution could not have the same effect on the case of the

Distributed version of the DoS attack, since it is more potent on the grounds that it is

not launched from one machine but multiple compromised devices at the same time

that are being controlled by the bot herder machine, which causes high-volume attack

traffic towards targets, like the controller. A promising solution to the prevention of

DDoS attacks is discussed in the paper [42], which is the Content-Oriented

Networking Architecture (CONA). It is a node (proxy) that is situated between the

client and the server. CONA is able to communicate with the SDN controller.

Furthermore, since all the request messages, data packets that originate from the

clients are being examined, intercepted and analyzed by the previously mentioned

technology in case the rate of the received data packets, messages (received from the

server) surpass the intended value, that flow traffic will be marked as a potential

DDoS related event.

Afterwards, with the aim of thwarting this attack scenario the controller will send a

proper message to all related CONA agents and redirect the non-fraudulent data

packets and messages to another server, effectively mitigating the adverse effects of

the DDoS attack. All in all, from the aforementioned it is eminent that these

technologies with the support of the SDN characteristics are utilized in order to

prevent DDoS and DoS attacks and they might be used as the foundation for further

~ 44 ~

research so that more advanced strategies and methods are formulated for the

enhancement of the Software-Defined Network structure.

C.3.2.2 – Model with Various SDN Controllers – Countermeasure

In order to defend against attacks that take advantage of the flaws of the multi-

controller architectural design of the Software-Defined Networks it is not enough to

implement technologies and frameworks that are limited to a single entity such as the

controller, but those that can be applied for the entire control layer. One existing

method, which could be incorporated into the SDN 2nd layer, is the load balancing

technique, due to its ability to improve scalability and stabilize the functionality of the

controllers. Load balancing in SDN can be utilized to gather information from both

the application and the infrastructure layers together with the state of the network and

apply it to support the controllers in the decision-making process, and therefore

effectively limiting the workload of the controllers and elucidating the configuration

process of the applications and the controllers alike, preventing the creation of further

conflicting issues that could be used by malicious actors for launching various attacks.

Moreover, it supports the correct placement (logical) of the SDN controllers

improving the security of the controllers and enhancing their scalability.

Figure C.3.2.2.1: Load-Balancing in multi-controller SDN architecture

Even though the load balancing technique is efficient, it is not potent enough on its

own so as to address the issue of the raising complexity that comes with the

management of multiple controllers in the environment of the Software-Defined

Network. Hyperflow [43], which is a distributed event-driven controller framework

developed for the OpenFlow protocol. In the environment of the HyperFlow, various

controllers are running their functional operations at the same time, with every one of

the controllers performing decision-making processes at a local level. As a result, the

new forwarding and flow rules are being created and issued at a faster rate, enhancing

the overall performance of the controllers in the 2nd layer.

~ 45 ~

Another approach that could be taken for this scenario is the allocation of the SDN

controllers with the implementation of resilient controller placement. In the research

paper [44] it is discussed that the development of a framework that forwards the

suggestion that a controller is ought to fulfill certain conditions in its everyday

operations, such as the impediment of the communication amidst the controllers and

the switching devices in SDN, aiming to prevent relative attacks with more efficiency.

C.3.3. - Countermeasure – Software-Defined Networks – Application Layer

C.3.3.1 – Conflicting Issues – Rules – Security Policies – Misconfiguration – Countermeasure

According to the research work that has been conducted on [45][46] the frameworks

Flover and Anteater are discussed which contribute to the examination of the behavior

of the software applications of the SDN network and prevent the unintended creation

of conflicts amidst security policies, rules and configurations. The former, is actually

a system tasked with the examination and verification of policies, which are issued for

the various flows of traffic circulating in the SDN domain, through the utilization of

assertion sets. Its incorporation follows the principle of NOX, with its feature the

Yices Solver (SMT) and offers verification services for the functional operations of

the behavior of a OpenFlow network from the aspect of security. Afterwards, for any

abnormality detected in the policies implemented, Flover considers them as conflicts.

The aforementioned service is conducted through the continuous gathering of

response messages from the controller via batches.

On the other hand, the latter system is capable of performing static examination of

potential network misconfigurations or conflicts, debugging and is able to provide

validation operations for the infrastructure layer of the SDN. Even though its

execution and effect do not last for a long time period, it is still capable of identifying

the source of the issues that have already occurred since it runs static tests instead of

getting dynamically information based on real-time events.

C.3.3.2 – Unauthorized Access – Countermeasure

In papers [48] and [49], the authors of the corresponding papers discuss technologies

that are capable of enforcing verification techniques on the validation of activities

conducted inside the Software-Defined network. The first one is verificare, which is

tasked with creating models for distributed devices using validation methods. The

practical example given for this tool was to formulate a model based on the OpenFlow

Network continuously so as to validate its most vital properties and appropriateness.

The second platform, vericon it is responsible for the validation of how accurate the

controllers’ functions are. One of Dijkstra’s theories is incorporated via the first-order

principle and the ideal network-wise constants, which is the FloydHoare-Dijkstra. The

aforementioned experiments showed great promise according to their final results,

which were great since irregularities and bugs for wide SDN applications were

identified swiftly and as for the process of the validation it was a success.

~ 46 ~

Finally, according to [50] it represents a new enforcement tool, NICE, in which the

examination process of the OpenFlow network applications becomes automated and

therefore the validation of the correctness of them is performed at a faster pace.

Additionally, it is capable of testing event handlers via model checking that can

swiftly examine the current condition of the NOX controllers which were not

changed.

C.3.3.3 – Spoofing – Countermeasure

The research paper [38] has been discussing the implementation of the POX controller

into the SDN environment, which is written in the programming language Python and

usually it is bundled with the Mininet SDN network. According to the research

conducted by the authors of the paper, the application which will be developed on the

SDN POX controller will be able to defend against ARP spoofing attacks by detecting

the malformed requests and replies that force the packets to be redirected to malicious

domains. Furthermore, it is capable of monitoring and detecting excessive amounts of

data arp packets and therefore prevents them through the installation of rules adhering

strictly to the principles of the OpenFlow protocol. From the above, it can be

concluded that POX controller can efficiently defend against arp spoofing attacks.

Additionally, another way of preventing spoofing attacks is the incorporation of

strong authentication protocols of mutual identifiers, such as the certificates that are

signed by a trusted certificate authority. In the following section, there will be a

demonstration of attacks conducted in the SDN environment, for educational purposes

only via use-cases.

C.4. Use-Case: Distributed Denial-Of-Service Attack

For this use case, the main focus will be the examination of the effects of DDoS

attacks regarding the SDN controller FloodLight and targeted host inside Mininet, as

well as testing prevention and mitigation methods for the aforesaid scenario. In this

use-case the hosts h5, h4, h3 will be compromised in order to launch the attack with

the topology being simple with 6 hosting devices.

The Software-Defined Network oriented open-source tools will include FloodLight,

Mininet, Open Virtual Switch and SFlow-RT with the installation guide being

included at the beginning of this thesis. The attack scenario illustrated in this use-case

is purely for educational purposes.

The goal of this use-case is to successfully cause the SDN Controller and hosting

device to crash or drop their performance rate dramatically by flooding them with an

excessive amount of traffic. Following, the SDN Controller FloodLight is launched,

which is open-source Java-based controller that supports the OpenFlow protocol and

offers a restful application programmable interface in order to issue commands, set

rules and interact with the controller. The controller is launched with the command

sudo java -jar target/floodlight.jar as seen in the following illustration.

~ 47 ~

Figure C.4.1.1: FloodLight SDN Controller Launched – Ubuntu 22.04 LTS | Logs

Afterward, Mininet SDN Framework must be launched in order to set up the SDN

environment and the network topology. It is well-suited for this case, on the grounds

that it is a framework OpenFlow-based capable of deploying networks of massive

scale on the limited resources of a single computing device, thus being proper for

personal experimentation and practice.

Since FloodLight is launched on the VM’s IP address, for this use-case it will be the

10.0.2.15 IP address and therefore, the topology settings will be as follows. PingAll

command is needed in this case to verify that all the hosting devices in the virtual

SDN environment communicate with each other.

Figure C.4.1.2: Mininet SDN Emulator – Ubuntu 22.04 LTS | Single-switching device

Topology

~ 48 ~

Then, it is of the essence to launch the SFlow-RT open-source network analysis and

metrics tool so as to have a display of the current state of the SDN environment in

real-time as seen below.

Figure C.4.1.3: SFlow-RT SDN Analytics Tool

Nonetheless, it is not enough to simply launch the tool, due to the fact that it will not

have visibility on the data flow, thus a bridge link must be formed in order to solve

this issue.

 Figure C.4.1.4: Open Virtual Switch SDN | Setting bridge link s1 amidst the flow in

lo interface & SFlow-RT open-source tool

If we open the FloodLight SDN controller, via heading to the link

http://10.0.2.15:8080/ui/pages/index.html and checking the components of our

network in the RESTful API, if everything went well, we should see 6 hosts and 1

switching device (OVS). The controller is active, and the devices are six as they

should be.

~ 49 ~

Figure C.4.1.5 & C.4.1.6: SDN Controller FloodLight Interface | Single Topology

made up of six hosting devices with a sole Switching Device (OVS)

Under the assumption that the attacker has taken control of three of the six hosting

devices in the SDN domain (Mininet) (h3, h4, h5) with IP addresses 10.0.0.3,

10.0.0.4, 10.0.0.5 having access in the tools xterm and hping3, the malicious actor

could launch a new shell instance for each of the three hosting devices and execute

Denial-Of-Service attack with the hping3. An open-source tool utilized mainly for

packet fragmentation, sending custom data packets and even though it is usually used

for testing purposes such as firewall rules, ports, and performance, it can also be

utilized for malicious goals. Following is three shell instances launched for the three

~ 50 ~

hosting devices respectively. The first two are launching a DoS attack simultaneously

by trying to flood the data traffic in the FloodLight SDN Controller, while the third

one will launch an IP flood DoS attack with spoofed data packets towards the second

hosting device.

Figure C.4.1.7: Xterm launched instances for the compromised hosting devices h3,

h4, h5 | UDP, TCP and IP Flood DoS Attack towards the SDN Controller & h2

(targeted hosting device)

The first command attempts to send multiple (-i u1) TCP SYN packets (-S) towards

port 6653, because this is the default port of the OpenFlow Protocol, on which the

FloodLight Controller runs with the targeted IP address localhost, while the second

generates thousands (-i u1000) of UDP packets in an attempt to cause UDP flood. The

final command creates the IP packets with spoofed IP source address (-a) with

destination address the address of the h2 device with port 6653 since it is connected

with the controller. The following are details on the six hosts of our topology.

Figure C.4.1.8: Table of hosting devices in the FloodLight SDN Controller

At the same time, the tools SFlow-RT and Wireshark packet sniffing tool are launched

in order to detect the difference in the traffic flow and to check whether the tools are

able to detect malfunctions and irregularities among the data flow. Following is the

data flow before the DDoS attack is launched.

~ 51 ~

Figure C.4.1.9: SFlow-RT & Flow Table of Mininet – Before DDoS | FloodLight

Environment

Nevertheless, it appears that after the DDoS attack takes place, the difference is quite

evident in the SFlow-RT mn flow.

~ 52 ~

Figure C.4.1.10: Flow Table of Mininet – After DDoS | FloodLight Environment

However, even though the difference is clear, it is vital to include the Wireshark

sniffing packet tool with the aim of collecting more details on the DDoS scenario and

the devices, controller involved in the SDN environment.

The Wireshark tool is capable of performing filtering on packets and detailed analysis

on the captured packet, passive and active monitoring.

~ 53 ~

Figure C.4.1.11 & C.4.1.12: Wireshark – DDoS Attack – OpenFlow Malformed

Packets – Central Interface – FloodLight Controller

Moreover, if we divert our attention to the interfaces of the compromised devices, we

will see that it detected anomalies in the LLDP packets sent to our controller during

DDoS attack.

~ 54 ~

Figure C.4.1.13 - C.4.1.15: Wireshark – DDoS Attack – OpenFlow Malformed

Packets – Origin – Compromised Devices

From the aforementioned illustrations, it seems that Wireshark has detected the flood

DDoS attack with the OpenFlow protocol version 1.5 with security errors as

malformed. The destination port is 6653 is used due to the fact that it is the default

service port for the FloodLight SDN Controller.

~ 55 ~

When the attempt was made to refresh the controller, its performance was dropped

dramatically with it being slowed down. From the sheer amount of the packets sent, it

caused the controller to show timeout error (server overload), as seen below:

Figure C.4.1.16 – Figure C.4.1.18: FloodLight Controller – Error Logs

~ 56 ~

Additionally, Wireshark as a sniffing packet tool was capable of detecting the IP

spoofed packets with the fraudulent source IP address “192.168.2.11” towards the

destination IP address 10.0.0.2 of the hosting device h2 (Mininet).

Figure C.4.1.19 – Figure C.4.1.20: SFlow-RT InMon Packets ARP – IP Spoofed

Hping3 – FloodLight SDN – Mininet

~ 57 ~

Wireshark detected the spoofed packets and displayed the message "acknowledgment

number field is nonzero while the ACK flag is not set", which is a sign of a potential

attack on a transmission protocol level. Due to the fact that the acknowledgement

number is utilized in order to ensure whether the data were retrieved successfully or

not, through the indication of the following sequence number. The attacker could have

intentionally set the number to a non-zero and not set a flag on the grounds that

intrusion detection and prevention systems might not have filters for logical

correlation amidst the acknowledgment flag and the acknowledgment number,

rendering them vulnerable to malicious data packets that could bypass the security as

malformed and ignore them. Consequently, the actor will have successfully evaded

the packet filtering. In order to truly prevent and mitigate such attacks, it is of vital

importance to include Web Application Firewalls, limit the packet processing rate, and

apply IPS/IDS systems with proper filtering rules.

Another solution for the aforementioned issue would be the implementation of the

DDoS protection application that SFlow-RT entails, which is capable of limiting the

rate of the incoming packets and identifying DDoS-related incidents.

From the DDoS-Protect, we have filters table on the IP addresses that need to be

excluded from the access lists regarding the addresses that are allowed to

communicate with the FloodLight Controller.

~ 58 ~

Figure C.4.1.21 – Figure C.4.1.22: SFlow-RT DDoS Protect – Access Control Groups

If the attacker attempts to perform DDoS from any of the compromised hosting

devices (h3, h4, h5) then the DDoS-Protect will cut off any packets that come from

these devices, as demonstrated below.

Therefore, we successfully thwarted the attempt to flood our SDN environment.

However, these measures alone will not suffice, and this is why security policies, rules

and automated configuration handling methods are also needed to mitigate such

events.

~ 59 ~

Conclusion

From the entirety of the thesis, we have been thoroughly discussing and examining

the architecture as well as the inner workings of the Software-Defined Networks. The

new trends that surround it, their benefits and challenges have been analyzed not only

in comparison to their predecessor but also when it concerns the relationships between

the three layers and their major components. Afterward, the Software-Defined

Networks were examined from the aspect of security. Meticulously reviewing its main

susceptibilities and the countermeasures that can be taken, while providing the

prominent security traits of the Software-Defined Networks that set it apart from the

rest of the other network technologies. The three layers, mainly infrastructure, control

and application layer were analyzed not only from a network but also from a security

perspective with preventive and mitigation measures. The SDN concept even though

it is relatively new to the fields of both networking and security, many have been

researching it giving birth to technologies and methods, causing its rapid development

and proving its worth as a solution for the problems that were caused by the

traditional networks. All in all, on the grounds that the SDN still has room for

improvement and since it has various applications in cloud computing and network

virtualization, combined with its vast potential for the enhancement of network

security, it will be an asset of vital importance, that will bring about a great change to

many fields and due to the aforesaid fact, it is expected to draw tremendous amounts

of attention.

Acknowledgements

Primarily, I would like to show appreciation to my advisor professor George

Xylomenos, for his invaluable guidance, insightful feedback as well as his unfaltering

support throughout the duration of my master’s thesis. His expertise and constructive

criticism have motivated me to broaden my horizons and sharpen my critical thinking

regarding my approach to understanding the network concept, Software-Defined

Network. I am very fortunate to have had this opportunity, mainly to learn under his

guidance.

Moreover, I would like to extend my sincere thanks to my colleagues, friends and

family for their advice in every part of my research. Their encouragement and advice

helped me to reach the answers that eluded me during the process of understanding

the Software-Defined Networks.

References – Bibliography

 [1]. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M. and Gu, G.

(2012). A security enforcement kernel for OpenFlow networks. Proceedings

of the first workshop on Hot topics in software defined networks - HotSDN

’12. [online] doi:https://doi.org/10.1145/2342441.2342466.

 [2]. Zhou, Y., Li, H., Chen, K., Pan, T., Qian, K., Zheng, K., Liu, B., Zhang,

P., Tang, Y. and Hu, C. (2021). Raze policy conflicts in SDN. Journal of

Network and Computer Applications, [online] 199, pp.103307–103307.

doi:https://doi.org/10.1016/j.jnca.2021.103307.

 [3]. Xia, W., Wen, Y., Foh, C.H., Niyato, D. and Xie, H. (2015). A Survey on

Software-Defined Networking. IEEE Communications Surveys & Tutorials,

[online] 17(1), pp.27–51. doi:https://doi.org/10.1109/comst.2014.2330903.

 [4]. ResearchGate. (n.d.). Figure 1.Traditional Network versus SDN. [online]

Available at: https://www.researchgate.net/figure/Traditional-Network-versus-

SDN_fig1_319876305.

 [5]. Sultan Almakdi, Aqsa Aqdus, Amin, R. and Alshehri, M.S. (2023). An

Intelligent Load Balancing Technique for Software Defined Networking based

5G using Machine Learning models. IEEE Access, 11, pp.105082–105104.

doi:https://doi.org/10.1109/access.2023.3317513.

 [6]. Xia, W., Wen, Y., Foh, C.H., Niyato, D. and Xie, H. (2015). A Survey on

Software-Defined Networking. IEEE Communications Surveys & Tutorials,

[online] 17(1), pp.27–51. doi: https://doi.org/10.1109/comst.2014.2330903.

 [7]. Exemplary Illustration of the Open Virtual Switch Architecture | P4.org

(2016). P4 and Open vSwitch - Open Networking Foundation. [online] Open

Networking Foundation. Available at: https://opennetworking.org/news-and-

events/blog/p4-and-open-vswitch/.

 [8]. Jha, R.K. and Llah, B.N.M. (2019). Software Defined Optical Networks

(SDON): proposed architecture and comparative analysis. Journal of the

European Optical Society-Rapid Publications, 15(1).

doi:https://doi.org/10.1186/s41476-019-0105-4.

 [9]. Sangodoyin, A., Sigwele, T., Pillai, P., Hu, Y.F., Awan, I. and Disso, J.

(2018). DoS Attack Impact Assessment on Software Defined Networks.

Wireless and Satellite Systems, pp.11–22. doi:https://doi.org/10.1007/978-3-

319-76571-6_2.

https://www.researchgate.net/figure/Traditional-Network-versus-SDN_fig1_319876305
https://www.researchgate.net/figure/Traditional-Network-versus-SDN_fig1_319876305
https://doi.org/10.1109/comst.2014.2330903

 [10]. Ehab Al-Shaer and Saeed Al-Haj (2010). FlowChecker: Configuration

analysis and verification of federated OpenFlow infrastructures. [online]

ResearchGate.

 [11].https://www.researchgate.net/publication/247928775_FlowChecker_Conf

iguration_analysis_and_verification_of_federated_OpenFlow_infrastructures

 [12]. Khurshid, A., Zou, X., Zhou, W., Caesar, M. and Godfrey, P. (n.d.).

USENIX Association 10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’13) 15 VeriFlow: Verifying Network-Wide

Invariants in Real Time. [online]

Available at: https://www.usenix.org/system/files/conference/nsdi13/nsdi13-

final100.pdf.

 [13]. Zhu, L., Karim, M.M., Sharif, K., Li, F., Du, X. and Guizani, M. (2019).

SDN Controllers: Benchmarking & Performance Evaluation.

arXiv:1902.04491 [cs]. [online] Available at:

https://arxiv.org/abs/1902.04491.

 [14]. Ranjit Jhala and Schmidt, D. (2011). Verification, Model Checking, and

Abstract Interpretation. Springer Science & Business Media.

 [15]. GeeksforGeeks (n.d.). GeeksforGeeks | A computer science portal for

geeks. [online] GeeksforGeeks. Available at: https://www.geeksforgeeks.org/.

 [16]. Open Networking Foundation. (n.d.). Open Networking Foundation.

[online] Available at: https://opennetworking.org/.

 [17]. Cisco (2023). Cisco - Global Home Page. [online] Cisco. Available at:

https://www.cisco.com/.

 [18]. VMware (2019). VMware – Cloud, Mobility, Networking & Security

Solutions. [online] VMware. Available at: https://www.vmware.com/.

 [19]. Cloudflare (2019). Cloudflare. [online] Cloudflare. Available at:

https://www.cloudflare.com/.

 [20]. Oracle.com. (2024). Oracle Virtual Cloud Network. [online] Available

at: https://www.oracle.com/uk/cloud/networking/virtual-cloud-network/.

https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final100.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final100.pdf
https://www.oracle.com/uk/cloud/networking/virtual-cloud-network/



 [21]. Handigol, N., Heller, B., Jeyakumar, V., Mazières, D. and Mckeown, N.

(n.d.). Where is the Debugger for my Software-Defined Network? [online]

Available at:https://www.scs.stanford.edu/~dm/home/papers/handigol:ndb-

hotsdn.pdf.

 [22]. Haas, Z.J., Culver, T.L. and Sarac, K. (2021). Vulnerability Challenges

of Software Defined Networking. IEEE Communications Magazine, 59(7),

pp.88–93. doi:https://doi.org/10.1109/mcom.001.2100128.

 [23]. Shu, Z., Wan, J., Li, D., Lin, J., Vasilakos, A.V. and Imran, M. (2016).

Security in Software-Defined Networking: Threats and Countermeasures.

Mobile Networks and Applications, 21(5), pp.764–776.

doi:https://doi.org/10.1007/s11036-016-0676-x.

 [24]. Yang M, Li Y, Jin D, Zeng L, Wu X, Vasilakos A (2015) Software-

defined and virtualized future mobile and wireless networks: a survey.

ACM/Springer Mob Netw Appl 20(1):4–18

 [25]. Dierks T (2008) The transport layer security (TLS) protocol version 1.2

[Online]. Available: http://tools.ietf.org/html/rfc5246

 [26]. Scott-Hayward S, O’Callaghan G, Sezer S (2013) Sdn security: a survey.

In: IEEE SDN Future Networks and Services (SDN4FNS), pp 1–7

 [27]. ryu-sdn.org. (n.d.). Ryu SDN Framework. [online] Available at:

https://ryu-sdn.org/.

 [28]. GitHub. (2021). faucetsdn/ryu. [online] Available at:

https://github.com/faucetsdn/ryu.

 [29]. mininet.org. (n.d.). Mininet: An Instant Virtual Network on Your Laptop

(or Other PC) - Mininet. [online] Available at: https://mininet.org/.

 [30]. Heller B, Sherwood R, McKeown N (2012) The controller placement

problem. In: Proceedings of the First Workshop on Hot Topics in Software

Defined Networks, ACM, pp 7–12



http://tools.ietf.org/html/rfc5246

 [31]. Alaa Taima Albu-Salih (2022). Performance Evaluation of Ryu

Controller in Software Defined Networks. Magallaẗ al-qādisiyyaẗ li-ʿulūm al-

ḥāsibāt wa-al-riyāḍiyyāt, 14(1).

doi:https://doi.org/10.29304/jqcm.2022.14.1.879.

 [32]. Shin S, Porras P, Yegneswaran V, Fong M, Gu G, Tyson M (2013)

FRESCO: Modular Composable Security Services for Software-Defined

Networks. In: Proceedings of Network and Distributed Security Symposium,

pp 1-16

 [33]. Amin, R., Hamza Aldabbas and Ahmed, N. (2024). Intrusion detection

systems for software-defined networks: a comprehensive study on machine

learning-based techniques. Cluster Computing. [online]

doi:https://doi.org/10.1007/s10586-024-04430-6.

 [34]. Eliyan, L.F. and Di Pietro, R. (2021). DoS and DDoS attacks in Software

Defined Networks: A survey of existing solutions and research challenges.

Future Generation Computer Systems, 122.

doi:https://doi.org/10.1016/j.future.2021.03.011.

 [35]. Conti, M., Gangwal, A. and Gaur, M.S. (2017). A comprehensive and

effective mechanism for DDoS detection in SDN. [online] IEEE Xplore.

doi:https://doi.org/10.1109/WiMOB.2017.8115796.

 [36]. Sebbar, A., Zkik, K., Boulmalf, M. and El Kettani, M.D.E.-C. (2019).

New context-based node acceptance CBNA framework for MitM detection in

SDN Architecture. Procedia Computer Science, 160, pp.825–830.

doi:https://doi.org/10.1016/j.procs.2019.11.004.

 [37]. Open Networking Foundation. (2017). Open Networking Technical

Communities, Corporate Memberships. [online] Available at:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/technical.

 [38]. AbdelSalam, A.M., El-Sisi, A.B. and Reddy K, V. (2015). Mitigating

ARP Spoofing Attacks in Software-Defined Networks. [online] IEEE Xplore.

doi:https://doi.org/10.1109/ICCTA37466.2015.9513433.

 [39]. Iqbal, M., Iqbal, F., Mohsin, F., Rizwan, M. and Fahad Ahamd (2019).

Security Issues in Software Defined Networking (SDN): Risks, Challenges and

Potential Solutions. [online] Available at:

https://www.researchgate.net/publication/338019274_Security_Issues_in_Soft

ware_Defined_Networking_SDN_Risks_Challenges_and_Potential_Solutions

 [40]. Lawal, B.H. and At, N. (2018). Improving Software Defined Network

Security via sFLow and IPSec Protocol. Anadolu University Journal of

Science and Technology-A Applied Sciences and Engineering, pp.1–2.

doi:https://doi.org/10.18038/aubtda.421939.

 [41]. Wang, H., Xu, L. and Gu, G. (2015). FloodGuard: A DoS Attack

Prevention Extension in Software-Defined Networks. [online] IEEE Xplore.

doi:https://doi.org/10.1109/DSN.2015.27.

 [42]. Suh, J., Choi, H.-G., Yoon, W., You, T., Taekyoung, T., Kwon, quot;

and Choi, Y. (n.d.). Implementation of Content-oriented Networking

Architecture (CONA): A Focus on DDoS Countermeasure. [online] Available

at:

https://www.cl.cam.ac.uk/research/srg/netos/projects/netfpga/workshop/eurod

ev2010/suh/suh.pdf.

 [43]. Tootoonchian, A. and Ganjali, Y. (n.d.). HyperFlow: A Distributed

Control Plane for OpenFlow. [online] Available at:

https://www.usenix.org/legacy/event/inmwren10/tech/full_papers/Tootoonchia

n.pdf.

 [44]. Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T. and Phuoc

Tran-Gia (2013). Pareto-optimal resilient controller placement in SDN-based

core networks. International Teletraffic Congress.

doi:https://doi.org/10.1109/itc.2013.6662939.

 [45]. Son, S., Shin, S., Vinod Yegneswaran, Porras, P. and Gu, G. (2013).

Model checking invariant security properties in OpenFlow.

doi:https://doi.org/10.1109/icc.2013.6654813.



 [46]. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B. and King,

S.T. (2011). Debugging the data plane with anteater. ACM SIGCOMM

Computer Communication Review, [online] 41(4), pp.290–301.

doi:https://doi.org/10.1145/2043164.2018470.

 [47]. Ma, Y.-W., Chen, J.-L., Tsai, Y.-H., Cheng, K.-H. and Hung, W.-C.

(2016). Load-Balancing Multiple Controllers Mechanism for Software-

Defined Networking. Wireless Personal Communications, 94(4), pp.3549–

3574. doi:https://doi.org/10.1007/s11277-016-3790-y.

 [48]. Skowyra, R., Lapets, A., Bestavros, A. and Kfoury, A. (n.d.). Verifiably-

Safe Software-Defined Networks for CPS. [online] Available at:

https://www.cs.bu.edu/fac/best/res/papers/hicons13.pdf.

 [49]. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M.,

Schapira, M. and Valadarsky, A. (2014). VeriCon. ACM SIGPLAN Notices,

49(6), pp.282–293. doi:https://doi.org/10.1145/2666356.2594317.

 [50]. Canini, M., Venzano, D., Perešíni, P., Kostić, D., Rexford, J. and Epfl

(n.d.). A NICE Way to Test OpenFlow Applications. [online] Available at:

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final105.pdf

 [51]. Nadjib Achir, Mauro, Ghamri, Y.M., Doudane Nazim and Agoulmine

Ahmed Mehaoua (2001). Active Networking System Evaluation: A Practical

Experience. [online] Available at:

https://www.researchgate.net/publication/2400076_Active_Networking_Syste

m_Evaluation_A_Practical_Experience.

 [52]. Yeganeh, S. and Ganjali, Y. (2012). Kandoo: a framework for efficient

and scalable offloading of control applications. [online] Semantic Scholar.

doi:https://doi.org/10.1145/2342441.2342446.

 [53]. Perešíni, P. and Canini, M. (2011). Is your OpenFlow application

correct? Infoscience (Ecole Polytechnique Fédérale de Lausanne), pp.1–2.

doi:https://doi.org/10.1145/2079327.2079345.

 [54]. Handigol, N., Heller, B., Jeyakumar, V., Mazières, D. and Mckeown, N.

(n.d.). Where is the Debugger for my Software-Defined Network? [online]

Available at: https://www.scs.stanford.edu/~dm/home/papers/handigol:ndb-

hotsdn.pdf.

 [55]. Braga, R., Mota, E. and Passito, A. (2010). Lightweight DDoS flooding

attack detection using NOX/OpenFlow. IEEE Local Computer Network

Conference. doi:https://doi.org/10.1109/lcn.2010.5735752.

 [56]. Scirp.org. (2015). Rigney, C., Willens, S., Rubens, A. and Simpson, W.

(2000) Remote Authentication Dial in User Service (RADIUS). RFC 2865. -

References - Scientific Research Publishing. [online] Available at:

https://www.scirp.org/reference/referencespapers?referenceid=1631785.

 [57]. Handigol, N., Seetharaman, S., Flajslik, M., Mckeown, N. and Johari, R.

(n.d.). Plug-n-Serve: Load-Balancing Web Traffic using OpenFlow. [online]

Available at:

https://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-

final26.pdf.

 [58]. Yehuda Afek, Anat Bremler-Barr and Shafir, L. (2017). Network anti-

spoofing with SDN data plane. International Conference on Computer

Communications. doi:https://doi.org/10.1109/infocom.2017.8057008.

 [59]. Heli Amarasinghe and Karmouch, A. (2016). SDN-Based Framework for

Infrastructure as a Service Clouds. [online] pp.782–789.

doi:https://doi.org/10.1109/cloud.2016.0108.

 [60]. Medium.com. (2024). Restricted. [online] Available at:

https://medium.com/@dishadudhal/performance-evaluation-of-sdn-

controllers-using-cbench-and-iperf-e9296f63115c.

 [61]. Ryait, D.K. and Sharma, Dr.M. (2020). To Eliminate the Threat of a

Single Point of Failure in the SDN by using the Multiple Controllers.

International Journal of Recent Technology and Engineering (IJRTE),

[online] 9(2), pp.234–241. doi:https://doi.org/10.35940/ijrte.b3433.079220.

 [62]. YADAV, J.S. and SAI, M.A. (2023). Securing SDN Data

Plane:Investigating the effects of IP SpoofingAttacks on SDN Switches and its

Mitigation : Simulation of IP spoofing using Mininet. [online] DIVA.

Available at: https://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A1782968&dswid=-5050

 [63]. Suleman, N.A., Mustafa, N.A., Kayani, R., Raza, A. and Saleem, N.A.

(2023). REVIEW OF SECURITY ATTACKS ON SOFTWARE DEFINED

NETWORKING. Pakistan journal of scientific research, 3(1), pp.60–80.

doi:https://doi.org/10.57041/pjosr.v3i1.966.

 [64]. mvnrepository.com. (n.d.). Maven Repository: Search/Browse/Explore.

[online] Available at: https://mvnrepository.com/.

 [65]. www.sciencedirect.com. (n.d.). Floodlight Controller - an overview |

ScienceDirect Topics. [online] Available at:

https://www.sciencedirect.com/topics/computer-science/floodlight-controller

 1

Use-Cases – SDN Open-Source Tools’ Table

Installation Guide – Open-Source Tools (In Ubuntu/Kali Linux)

The use-case C.4 will be demonstrated in the Operating System Ubuntu (22.04 LTS),

however it can be applied to the Kali Linux environment as well. The use-case is

executed in Virtual Environment hosted by the VirtualBox (more specifically by the

physical host machine, due to the hypervisor). For further details regarding the

installation of the VirtualBox are found in the link description

https://www.virtualbox.org/ as well as for the VMs Ubuntu and Kali Linux from the

following links: https://medium.com/@maheshdeshmukh22/how-to-install-ubuntu-22-

04-lts-on-virtualbox-in-windows-11-6c259ce8ef60, https://www.kali.org/get-kali/#kali-

platforms.

The installation process is the same for either of the two OS, as follows:

➢ Mininet SDN Framework: Open a terminal instance after VirtualBox and a

Kali Linux/Ubuntu virtual machine have been setup and afterwards execute the

commands sudo apt-get update -y and sudo apt-get install mininet -y.

➢ SDN Controller FloodLight: In the terminal’s command line, it is vital to

install ant via the command sudo apt install build-essential ant python2-dev

openjdk-8-jdk maven git and afterwards clone the FloodLight repository from

github, sudo git clone https://github.com/floodlight/floodlight.

Open-Source Tools Use-Case | Description - Usage

Mininet SDN Framework It will be the platform that will provide a virtual testing environment for our

Software-Defined Network | Use-Case: C.4

SDN Controller FloodLight
Java-Based OpenFlow Controller for SDN which will be utilized as one of the

primary tools for Distributed Denial-of-Service Attack in our virtual SDN

environment | Use-Case: C.4

Open Virtual Switch (OVS) This is a multi-layer virtual switch supporting Apache 2.0 and it will be

utilized to produce and manage our virtual switching devices | Use-Case: C.4

SFlow-RT
Real-Time analysis open-source tool, utilized for network traffic monitoring

and metric, specifically for Software-Defined Network environment and it

will be utilized to monitor the state of the controller | Use-Case: C.4

https://www.virtualbox.org/
https://medium.com/@maheshdeshmukh22/how-to-install-ubuntu-22-04-lts-on-virtualbox-in-windows-11-6c259ce8ef60
https://medium.com/@maheshdeshmukh22/how-to-install-ubuntu-22-04-lts-on-virtualbox-in-windows-11-6c259ce8ef60
https://www.kali.org/get-kali/#kali-platforms
https://www.kali.org/get-kali/#kali-platforms
https://github.com/floodlight/floodlight

 2

Then, head to the website of maven repository https://mvnrepository.com and

install the jar files for the libraries libthrift ver 0.14.1 and netty-all ver

4.1.66.Final. Head to the terminal, and from there to the ~/floodlight/lib

directory and there remove the jar files libthrift-0.9.0.jar, netty-all-4.0.31.final

(it is not necessary for them to be in the aforementioned versions).

Build the file using gedit build.xml to ensure that the jar files have been

removed and copy the downloaded jar files ro rhe directory ~/floodlight/lib via

the commands sudo cp libthrift-0.14.1.jar ~/floodlight/lib, sudo cp netty-all-

4.1.66.Final.jar ~/floodlight/lib/. Inside the floodlight directory (cd ..) check

whether there are any issues with the jar versions and initialize, update the

modules with the commands sudo git submodule init, sudo git submodule

update. Furthermore, it is essential to ensure to execute git pull in order to fetch

the latest updates from the master branch of the remote repository origin

(floodlight) and merge them to our current branch. Clear the lingering files in

the target sub-directory with sudo ant clean then compile the source Java code,

and link the existing libraries according to the directives of the build.xml file

via the command sudo ant. Finally, launch the floodlight SDN controller after

everything have been setup correctly with the command sudo java -jar

target/floodlight.jar.

➢ Open Virtual Switch (OVS): Open a new terminal instance and execute the

commands sudo apt-get update -y and then sudo apt-get install openvswitch-

switch -y.

➢ SFlow-RT: In the terminal execute wget in order to acquire the software

package from inmon, wget https://inmon.com/products/sFlow-RT/sflow-

rt.tar.gz, extract the file into a directory via sudo tar -xvzf sflow-rt.tar.gz.

Afterwards, redirect to the website https://sflow-rt.com/download.php, which

entails further instructions regarding application packages for SFlow-RT. With

the command ./sflow-rt/get-app.sh sflow-rt [application_name], applications

such as browse-metrics, ddos-protect can be installed in the current tool and

after a restart ./sflow-rt/start.sh the applications will be working properly.

Additional Files – Use-Case: It is noteworthy to mention that all the results of the

captured packets via Wireshark found in the third section of the thesis are found in the

file Wireshark_Findings_Use_Case_#1.zip.

https://mvnrepository.com/
https://inmon.com/products/sFlow-RT/sflow-rt.tar.gz
https://inmon.com/products/sFlow-RT/sflow-rt.tar.gz
https://sflow-rt.com/download.php
https://drive.google.com/file/d/1yOo-spNPo5L6_OCpwBcb9WCODR9B4v3C/view?usp=drive_link

	Καραχάλης
	Καραχάλης_App

