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Abstract 

There has been a rapid development on the communication and information 

technologies field (e.g. big data, artificial intelligence, cloud networking) introducing 

various new obstacles that the internet has to overcome such as omni-present 

accessibility, high availability, bandwidth, security threats. Deprecated methods in 

networking concerning manual configuration and management of multiple devices are 

incommodious and liable to errors, therefore making them unable to harness the 

potential of the physical network infrastructure. One of the solutions to the 

aforementioned issue rests within the Software-Defined Network (SDN).  

Network devices have three planes, the management plane (responsible for the 

management, configuration, supervision of the network), the data plane (involves all 

the activities regarding the packets sent forth by the users from end-devices that 

comprise this plane) and the control plane (responsible for the performance of the data 

plane activities, excluding the activities of the end-users). However, as we will see in 

the second section of the thesis, the focus of the layers according to SDN differs from 

the traditional network models. The two most interesting features of the SDN are the 

abstraction of the control plane from the data plane and the provided service of 

programmable network applications.  

This paper will dwell on the capabilities of SDN, latest developments, potential 

benefits, and disadvantages as well as its security implementations on other devices 

based on practical examples. 

 
 

  



 
 

Περίληψη 

Υπάρχει ραγδαία εξέλιξη όσον αφορά τους τομείς τεχνολογιών επικοινωνιών και 

πληροφορίας (λόγου χάριν μεγάλα δεδομένα, τεχνητή νοημοσύνη, δικτύωση νέφους) 

παρουσιάζοντας πληθώρα νέων δοκιμασιών, που καλείται το διαδίκτυο να ξεπεράσει 

όπως πανταχού προσβασιμότητα, διαθεσιμότητα, high bandwidth, απειλές στο 

κομμάτι της ασφάλειας δικτύων. Παρωχημένες μέθοδοι όσον αφορά την διαχείριση 

των δικτύων, όπως χειροκίνητη παραμετροποίηση και διαχείριση πολλών συσκευών 

δεν είναι πρακτικές και επιρρεπής σε σφάλματα. Συνεπώς, καθιστώντας τις μεθόδους 

που προηγήθηκαν ακατάλληλες να φτάσουν πλήρως τις δυνατότητες της φυσικής 

υποδομής δικτύων. Μία από τις λύσεις για αυτό το ζήτημα αποτελεί το Software-

Defined Network (SDN).  

Oι συσκευές δικτύου έχουν τρία πλάνα, το πλάνο διαχείρισης (υπεύθυνο για την 

διαχείριση, παραμετροποίηση, επίβλεψη κομματιών των συσκευών δικτύου), το 

πλάνο δεδομένων (περιλαμβάνει όλες τις δραστηριότητες όσον αφορά τα πακέτα, που 

αποστέλλονται από τους χρήστες από τις τελικές συσκευές που αποτελούν αυτό το 

επίπεδο) και το επίπεδο ελέγχου (υπεύθυνο για την εκτέλεση των δραστηριοτήτων 

του επιπέδου δεδομένων, εξαιρουμένων των δραστηριοτήτων των τελικών χρηστών). 

Ωστόσο, όπως θα δούμε στη δεύτερη ενότητα της διπλωματικής, η εστίαση των 

επιπέδων σύμφωνα με το SDN διαφέρει από τα παραδοσιακά μοντέλα δικτύου. Τα 

δύο πιο ενδιαφέροντα χαρακτηριστικά του SDN είναι η αφαίρεση του επιπέδου 

ελέγχου από το επίπεδο δεδομένων και η παρεχόμενη υπηρεσία προγραμματιζόμενων 

εφαρμογών δικτύου. Αυτό το άρθρο θα ασχοληθεί με τις δυνατότητες του SDN, τις 

τελευταίες εξελίξεις, τα πιθανά οφέλη και τα μειονεκτήματα καθώς και τις εφαρμογές 

του στο πεδίο της κυβερνοασφάλειας σε άλλες συσκευές με βάση πρακτικά 

παραδείγματα. 
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Introduction 
 

In the present day, the emergence of new trends in the network field has been most 

expected with the rapid development brought by cutting-edge technology. As a result 

of the demographic increase, the demand for performing big data analytics on various 

sources of data together with high-quality of multimedia content is growing with the 

network speeds increasing as well. For instance, high-definition televisions and GPS 

applications bring forth massive client-server traffic to data centers and big data 

analysis methods in turn trigger the same amounts of traffic to data centers for data 

partitioning and a combination of the results. Nevertheless, with the development of 

the network potential security threats arise with the growing demand for the 

implementation of protection mechanisms that ensure confidentiality, availability and 

integrity of the data circulating around the network. The master’s thesis will aim at 

presenting and defining the meaning of Software Defined Network and the 

architectural structure while offering an insight into its capabilities and the 

opportunities that arise with its implementation in various systems, as well as the 

obstacles that need to be overcome. These will be covered in the first section and as 

for the rest of this paper, it will be organized as follows.  

The second section will focus on the layers of the SDN architecture, mainly the 

application layer, infrastructure layer and control layer. More specifically, in the B.1 

section, there will be a discussion with an approach to build routing and switching 

SDN devices and the obstacles surrounding them when interacting with varying 

transmission media. The B.2 section introduces the potential issues in performance 

and operations surrounding the control layer. As for the B.3 section, there will be a 

discussion of problems surrounding the application layer.  

Finally, the third section entails details on the security threats for the network and the 

implementation of protection mechanisms that address each problem. Moreover, a 

more practical approach will try to cover the capabilities of the most prominent open-

source tools in a compromise event through a use case. 
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A. What is Software Defined Network (SDN)? 
 

A.1. Definition – Software Defined Networks 

 

GeeksforGeeks (GFG) is an Indian company, which is dedicated to computer science, 

its various fields, such as the new developments in the networking field and provides 

coding challenges for aspiring programmers and technology enthusiasts, as well as 

material for educational purposes. GFG has defined explicitly the Software-Defined 

Networks as follows: 

“Software-defined networking (SDN) is an approach to network management that 

enables dynamic, programmatically efficient network configuration to improve 

network performance and monitoring. This is done by separating the control plane 

(which decides where traffic is sent) from the data plane (which actually moves 

packets to the selected destination).”  

According to this definition, the two distinctive characteristics of SDN are namely the 

abstraction of the control plane from the data plane and the programmability of the 

control plane. Nonetheless, these are not recently developed in the field of 

networking. Several attempts have been made in order to promote programmability in 

the network field. For instance, ANTS (Active Network Transport System) is an 

active solution which allows programming at the packet level as well as the 

modification of network behavior during runtime. Moreover, it is possible to construct 

routers (software) by enabling network devices to be programmable, such example is 

FRRouting and their behavior can be adjusted by loading new or changing existing 

routing software. This allows for dynamic customization of the device's functionality 

to meet specific network requirements. 

As for the abstraction amidst the control plane and the data plane, it has been 

established in the recent years. Many frameworks like ForCES (Forwarding and 

Control Element Separation), which was released by Internet Engineering Task Force 

during 2004 (RFC 3746) in an attempt to create a framework that could decouple the 

control and the data planes. Another concept of the abstraction between control and 

data plane is Routing Control Protocol, which was introduced in 2004, and it involves 

a project in which the OSPF and BGP protocols are replaced by centralized routing 

decisions so as to improve flexibility and network management. 
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In the case of Software Defined Networks, the factor which differentiates it from the 

other approaches is due to the fact that through the abstraction of the control from the 

data plane, programmability is achieved. SDN is capable of providing programmable 

network devices instead of turning existing networking devices more complex, like 

the traditional networking methods dictate. In addition, SDN includes the decoupling 

of the data plane from the control plane in its architectural structure, without altering 

the flows of data, therefore making the separation between the two aforementioned 

planes very effective. 

A.2. Benefits & Obstacles of SDN 

SDN as previously mentioned is a unique network model that sets it apart from the 

traditional models and acts as a solution to various problems. Nevertheless, like all the 

network models it has its benefits and its challenges. A potential characteristic of the 

Software Defined Network resides on the fact, that it provides an experimentation 

platform for conducting surveys and testing new network concepts, attributed to its 

network programmability and the capability of isolating virtual networks through the 

control plane. This subsection focuses on the benefits SDN provides and the 

challenges it has to overcome. 

 

A.2.1. Benefits - SDN 

 

Improved Scalability 

 

A characteristic of virtualized and software-defined networks which represents a 

significant advantage is its scalability. Specifically, scaling virtualized processes and 

network components is more effective in comparison to traditional networking 

methods, on the grounds that it eliminates the need for additional hardware 

attainment. There is no necessity to enhance machines with additional RAM or 

processing power, or even to purchase new equipment, especially when virtual 

functions are hosted on cloud servers. 

 

Moreover, automated scaling capabilities can be arranged through cloud service 

providers. If that demands better security, then these providers are able to perform 

dynamic allocation of new instances in order to address the additional resource 

requirements.  
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As a result, with expanding organizations and with the growth of their infrastructures, 

their demands for better security will also increase. Therefore, the deployment of 

security tools will be executed with remarkable ease, facilitating the evolution of 

various operations. 

 

 

Enhanced Performance 

 

Many organizations in the field of networks aim to increase the utilization of the 

network infrastructure as much as possible. On the grounds that various technologies 

and stakeholders exist within a single network, attempting to accomplish maximum 

performance for the entire network has proven to be burdensome. Existing methods 

frequently concentrate on enhancing the performance of specific network segments or 

improving the user experience for certain services. It is clear that these methods, 

which rely on localized data without considering cross-layer interactions, can result in 

suboptimal outcomes or even conflicting network operations. Due to the 

centralization feature of SDN, they allow for centralized control within a global 

network and control feedback with exchanged information amidst various layers 

within its architecture.  

 

Therefore, numerous complex performance optimization challenges could be 

addressed more effectively through the implementation of well-designed centralized 

algorithms. As a result, new tactics and measures can be implemented and deployed in 

order to address and solve conventional problems, simplifying the evaluation process 

of their impact on the improvement of the network performance. 

 

 

Enhanced Network Security 

 

The rapid development of virtualization has introduced great obstacles in the 

management of the networking field. Due to the dynamic creation of virtual machines 

and their removal amidst physical systems, it becomes arduous to consistently revise 

firewall rules and content filtering policies. In response to these challenges, the 

Software-Defined Networking (SDN) Controller offers a centralized mechanism for 

the management and distribution of diverse security policies throughout the network. 

By abstracting the control plane from the data plane, the tasks of the SDN Controller 

are simplified and thus becoming more efficient in applying security protocols 

throughout the enterprise. 
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However, the centralization of security around a central point, for instance, the SDN 

Controller, introduces a single point of failure, which can create opportunities for 

attackers to manipulate the data flow and consequently result in a potential 

compromise event of the controller, having a tremendous impact on the network's 

security. Even so, if the SDN architecture is fortified with robust security measures, it 

could serve as an efficient tool for managing and enforcing security policies 

throughout complex and diverse network environments. 

 

 

Facilitation of Configuration 

 

Configuration is one of the most vital functions in the networking field. Every time 

new systems/devices or even functions are introduced to existing networks, then to 

achieve united operation of the network as a whole, it is necessary to include proper 

configurations. Be that as it may, due to the diversity of network device manufacturers 

and configuration interfaces, current network configuration generally requires a 

certain degree of manual intervention. The manual configuration process is both time-

consuming and prone to errors. Additionally, troubleshooting a network with 

configuration mistakes requires considerable effort. The problem is that with 

contemporary networking architectures, trying to accomplish automatic and dynamic 

reconfiguration remains a significant obstacle that needs to be overcome. Even so, 

Software-Defined Networking (SDN) offers a solution. More specifically, via the 

implementation of SDN, the control plane is unified across various network devices. 

This unification enables the configuration of these devices from a single, centralized 

point, allowing for automated control via software. Consequently, the entire network 

can be programmatically configured and dynamically optimized in response to real-

time network conditions. 

 

 

Traditional Networking & Software Defined Networking 

As the evolution in the networking industry is endless and ongoing, future network 

infrastructure should encourage change instead of trying to meet with detailed 

precision the requirements for future applications. The primary challenge stems from 

the prevalent use of proprietary hardware in traditional network components, which 

hinders modifications necessary for experimentation. Furthermore, when 

experimentation is possible, it is frequently carried out in isolated, simplified test 

environments. Such experiments do not provide adequate assurance for the industrial 

adoption of new concepts or network designs. The differences and changes that SDN 

brings forth compared to the conventional networking methods are shown in the 

following table. 
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Figures Α.2.1.1 & A.2.1.2: Differences amidst SDN & Traditional Networks 

 

Software-Defined Networking (SDN), contrasted to the conventional networking 

methods encourages evolution via the offer of a programmable networking platform 

that eases the implementation, experimentation, and deployment of new concepts, 

applications, and revenue-generating services conveniently and flexibly. The high 

configurability of SDN allows for a clear distinction between virtual networks, 

enabling experimentation within a real-world environment. Furthermore, the gradual 

deployment of new ideas can be achieved through a seamless transition from the 

experimental phase to the operational phase.  

 

 

A.2.2. Obstacles – SDN 

 

Despite the possibility of accommodating configuration, enhanced performance, 

enhanced network security and encouraging evolution, SDN is still in its early stages 

of development. Various conventional challenges have yet to be fully addressed, with 

standardization and widespread adoption being the most pressing issues. Due to the 

aforementioned problems, we will present next the challenges SDN has to overcome. 

 

 

 Software-Defined Networking Traditional Networking 

Characteristics Abstraction of control plane from data 

plane, programmability of control plane 

Introduction of new protocols per every 

potential issue, network control 

complexity 

Performance Dynamic Global Control – Cross Layer 

Information 

Limited Information & Relatively Static 

Configuration 

Configuration Centralized control which enables facilitated 

configuration via automation mechanisms 

Manual Configuration with great liability 

for errors 
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Issues with Interoperability 

Networks that were newly introduced, share a common trait regarding the fact that 

implementing SDN is relatively straightforward, as all network devices are usually 

compatible with SDN. Alternatively, the transition process to an existing legacy 

network to SDN presents more obstacles, on the grounds that the legacy infrastructure 

often supports critical business and networking systems. Organizations and most 

networking environments must undergo a phased transition to SDN, necessitating a 

period of coexistence between legacy and SDN technologies. 

Legacy network nodes and SDN components can work together through the use of 

suitable protocols that facilitate SDN communication while maintaining backward 

compatibility with existing IP and MPLS control plane technologies. This approach 

minimizes the cost, risk, and service disruptions associated with the transition to 

SDN. 

 

Deployment Complexity 

The deployment of Software-Defined Networking is presented with significant 

obstacles, especially when it has to be implemented into legacy systems. 

Conventional network operations are used with distributed control planes, while SDN 

attempts to centralize the management of networks, therefore making the existence of 

a substantial configuration of network devices necessary so as to facilitate this shift. 

Diverse older systems exist that are not compatible with existing SDN technologies, 

like OpenFlow and as such often require expensive hardware upgrades to ensure 

greater compatibility. The previously mentioned shift involves restructuring the 

network architecture, including revising policies, and traffic management systems, 

and adopting new interfaces for network operations. 

Consequently, the demand for integrating security policies and rules for the 

fortification of the centralized control plane increases, adds to the complexity of 

deploying SDN systems. Organized integration, planning and testing will be needed 

in order to avoid having consistent downtime and potential disruption during the 

network operations so as to retain the maximum possible performance. 

 

Adoption Costs Regarding Software-Defined Networks 

Adoption of Software-Defined Networks can be quite costly because it entails direct 

and indirect expenses, making necessary the need for investment in newly introduced 

hardware and software, which will have to be compatible with SDN. Moreover, 

organizations must upgrade their network infrastructure and implement robust 

security mechanisms so as to ensure the protection of the centralized control plane. 

This transition will also need a concrete training program for the staff responsible for 
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the management and operation of the introduced SDN structure, which will further 

increase the expenses needed. Implementation of the SDN usually has as requirements 

for minimizing downtime, consistent testing and phased deployments, therefore 

making the adaptation process more costly. While the aforementioned measures 

represent a substantial upfront cost, they are indeed utilized so as to deliver long-term 

benefits regarding flexibility, scalability and automation in the network infrastructure 

of many organizations. 

 

Control & Stability of Performance 

In SDN architecture, due to its distinct characteristic involving the abstraction of the 

control plane from the data plane, performance issues are being introduced constantly. 

Compared to SDN, in conventional networks, the devices are primarily responsible 

for the decision-making process. However, in the case of Software-Defined Networks 

a centralized SDN controller is solely capable of making decisions, therefore causing 

processing delays. Every time new traffic patterns are being observed, the controller 

has to process and instruct the network devices accordingly and consequently creating 

latency, especially in case that the controller is dealing with a high volume of traffic. 

Furthermore, the stability of the performance will be affected when there are many 

requests towards the controller and therefore causing it to become a bottleneck 

resulting in slower response time. 

 

The SDN is capable of offering a platform with the aim of developing and introducing 

networking methods. However, the shift from traditional networking architecture to 

SDN architecture is rather complex and challenging. This is why phased 

configurations, robust security strategies, training of the staff involved, and redesign 

of the network infrastructure are measures that are needed to address the main 

concerns of the aforesaid transition. Implementations in Software-Defined Networks 

are usually restricted to test sites used solely for research prototypes, which are not 

adequate enough to encourage its application in large-scale, real-world deployments.  

 

A.3 Architecture Model of SDN 

Figure A.3.1 shows a Software-Defined Network reference model from the academic 

paper [5].  According to this model, the SDN entails three layers, the infrastructure 

layer, the control layer and the application layer. 
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Figure A.3.1: SDN Reference Model  

 

As for the first layer, it consists of mainly switching and routing devices in the data 

plane. The responsibilities of the systems are limited to status collection of the 

network and to storing them temporarily into local devices. Afterwards, the systems 

send them to the SDN controllers of the control layer. The status of the network 

usually holds additional information regarding the volume of the traffic and the 

percentages of network usage. Moreover, these systems must process data packets 

according to the rules provided by the SDN controller. 

Secondly, the next layer, the control layer handles bridging the other two layers 

through its two interfaces. Mainly, for downward interaction with interface layer 

(from application to interface layer), the control layer instructs the accordingly the 

controllers in order to utilize only certain functions provided by the devices from the 

1st layer. Sometimes, these functions might be involved with the report of the network 

status. As for the upward interaction with the 3rd layer (from interface layer to 

application layer), the control layer offers access points with specific services in 

diverse forms, such as an API.  
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Applications of Software-Defined Networking are able to access information 

regarding network status reported from the switching systems through the aforesaid 

API, making decisions about system tuning according to the access information and 

carrying out these decisions via the setting process of the forwarding rules of the data 

packets to the switching devices using the API. Considering that the various SDN 

controllers are going to exist for large-scale administration domains in the network a 

new communication interface will be required in order to share the network 

information and for the coordination of the process for making decisions. 

Finally, the last layer is the SDN applications that are created with the aim of 

completing the requirements of the network users. SDN applications can have access 

to and are capable of controlling switching and routing devices that belong to the 1st 

layer. The aforementioned fact is only possible through the usage of the 

programmable platform offered by the previous layer. The following figure shows the 

architecture of Software-Defined Networks at the infrastructure level. 

The next section will focus on the three layers mentioned in the SDN reference model 

and their relationships within the network as seen in the figure A.3.1. 

 

 
Figure A.3.2: SDN Reference Model in an Infrastructure, with a mesh topology 

(created by the connection of switching devices, through diverse transmission media) 
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B. SDN – Layers 

B.1. Infrastructure Layer 

This is the 1st layer of the SDN architecture, which entails transmission media, such as 

copper wires, optical fibers, wireless radio and switching devices, like routers, which 

are connected with each other in order to construct an exclusive network. It is 

noteworthy to mention that these connections amidst switching devices are only 

formed via the various transmission media. In subsections B.1.1 and B.1.2 the main 

focus will be the various operations that can be utilized via the switching devices as 

well as through the support of the transmission media. 

 

B.1.1. Switches - SDN 

The switching devices in SDN consist of the memory and the switching fabric, which 

are important elements for the two planes: control and data plane. For the data plane, 

the switch demonstrates the forwarding of data packets via the processor unit, based 

on the forwarding rules indicated by the 2nd layer. 

 

 

 

                  

 

 

 

 

 

 

Figure B.1.1: SDN Switching Device Model with a dual-layer logical framework 

comprising a processor responsible for data transmission and integrated memory 

dedicated to managing control information. 

 

 

 

 

SDN Controller Memory Unit 

SDN Fabric 

Control Plane 

Data Plane 
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The previously shown figure attempts to illustrate the design of a switching device in 

the SDN environment, referring to the aforementioned elements of the switches. As 

for the control plane, the switching device initiates the communication with the SDN 

controllers in order to receive the forwarding rules at a switching level, link the tuning 

rules at a data-link level and finally store them in its local memory. 

The previously mentioned upcoming architectural principle offers significant benefits 

to Software-Defined Networking (SDN), which renders it competitive. Compared to 

traditional switching devices, which are not only able to handle packet forwarding but 

moreover being able to execute routing protocols, SDN separates the decision-making 

process between routing and switching devices. As a result, these devices have as 

their sole task to report network status and then gather it, as well as process packets 

according to predefined forwarding rules. Therefore, the design of SDN switching 

devices is eased due to the separation, making them easier to produce. The reduced 

complexity leads to a more cost-effective solution.  

Nonetheless, this new approach necessitates the development of specialized hardware 

for SDN-enabled switches. In this section, we are going to review recent advances in 

switching hardware design, thus covering both the two planes, data and control. 

Furthermore, we will categorize the most widely used switching platforms and 

explore methods for testing and educational purposes. 

 

Data Plane 

The main task that the data plane has in the SDN switching device is the forwarding 

of data packets. When a packet is received, the device is capable of identifying the 

matching forwarding rule and sending the packet to the next destination. Unlike 

traditional networks, where forwarding is based on IP or MAC addresses, SDN allows 

packet forwarding to be decided by various parameters, for instance, TCP or UDP 

ports, VLAN tags, and the switch port where the packet is entered. Nevertheless, 

using a wide range of criteria for forwarding increases the complexity of processing, 

therefore creating a trade-off between cost and efficiency in SDN packet handling. 

Numerous attempts have been made to formulate and commit various methods with 

the aim of enhancing packet processing efficiently, with the two key solutions being 

shown as follows. 

Firstly, in PC-based switches, trying to rely greatly on software for packet processing 

can negatively affect performance. In order to improve the aforesaid situation, the 

recommended hardware-based method is to boost processing throughput. According 

to that design, incoming packets that were directed to an onboard Network Interface 

Controller (NIC), which handles the flow classification in hardware, are now allowing 

the CPU to bypass the lookup process. 
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Secondly, the diverse characteristics of great and diminutive flows can now be 

utilized. Compared to the great data flows, the diminutive ones, are numerous but 

each one entails only a few packets, for instance, those involved in web page retrieval. 

These small flows generate the majority of frequent network events, and recognizing 

this difference can help optimize packet processing strategies. 

 

Control Plane 

In the control plane of SDN switching devices, the efficient management of onboard 

memory is one of the biggest obstacles to overcome in this design. The memory 

requirements of an SDN switching device are directly influenced by the size of the 

network. In the case of greater-sized networks, having more memory needs to be one 

of the main requirements, otherwise, often hardware upgrades will be needed to 

prevent memory overload. If the memory space is insufficient, then data packets 

might either be dropped or forwarded to SDN controllers for additional processing, 

which can negatively impact network performance. 

In order to address the aforementioned issue, alternative methods are required to be 

formulated and applied. To that end, traditional networking techniques used for 

memory management with the aim of optimization of SDN switches can be 

potentially adapted. Especially when there are storing rules and minimizing memory 

usage included. Conventional routing devices utilize methods like route aggregation, 

along with proper cache replacement policies. Route aggregation consolidates 

multiple routing records with a shared prefix into one, effectively reducing memory 

usage. Moreover, a cache replacement policy that is well-built improves the hit rate of 

packet forwarding rules, and as a result, allows limited memory to be utilized more 

efficiently. These techniques have many applications on the enhancement of SDN 

switch designs. 

Another consideration that is vital in enhancing SDN switching devices is the careful 

combination of diverse storage technologies used to balance memory capacity, 

processing speed, and flexibility at a reasonable cost and complexity.  

Different types of storage hardware have varying characteristics. Static Random 

Access Memory (SRAM) is scalable and flexible, whereas Ternary Content 

Addressable Memory (TCAM) provides faster search speeds for packet classification. 

By using both SRAM and TCAM, a balance can be achieved between packet 

classification performance and flexibility. 

 

Categories of Switching Devices 

Switches usually fall into the following categories in SDN as demonstrated in Figure 

B.1.1.2, under the requirements in hardware (software-based SDN switches (general 

purpose hardware), bare-metal SDN switches (open network) and vendor-specific)). 
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Figure B.1.1.2: SDN Switching Device Categories – Hardware Specs Table 

 

Software-Based SDN Switches (Application in General-Purpose Hardware) 

The SDN switching devices that fall into this category are often applied as software 

applications, running on Hosting Operating Systems, such as Linux. Hardware PC 

x64 or x86 is not the only piece of hardware that is highly compatible with the 

running host operating system, said example includes the OpenFlowClick, which is 

based on Click Modular Router and is designed to support general PC hardware, 

running as an extension of the Linux Kernel. Software-based switching devices are 

usually characterized by low port density, on the grounds that it is constrained by the 

limited number of network interface cards that are currently present on the device and 

show slow data packet processing speeds due to their reliance on software processing. 

Moreover, it is noteworthy to mention that another benefit of SDN software-based 

switches is their capability of easing virtual switching for virtual machines among the 

well-known frameworks of server virtualization and cloud computing. Software-

Based SDN switches, for instance, Open Virtual Switch (OVS) offer improved 

network visibility and control in a user-friendly way. Amidst the virtual machines 

residing on the same physical server being kept on a local server. Alternatively, in 

hairpin switching all the traffic is routed to the physical switch that is connected with 

the server and then subsequently bounced back. A detailed demonstration of the 

architecture behind the OVS is as follows. 

Types of SDN Switches 

(Based on Hardware 

Implementation) 

Software-Based 

SDN switches – 

Application in 

General- Purpose 

Hardware 

Bare-Metal SDN 

switches – Application in 

Open Networks 

Application in Vendor-

Specific Switch 

SDN Switching Devices Open vSwitch (OVS) 
Open Network Install 

Environment (ONIE) Indigo 

Flexibility 

High, offers a wide 

range of features and 

APIs, its 

characteristics are 

software-based 

High Low 

Processing Speed low Medium, usually 1 – 10 

Gbps 

High, >= 1Gbps 

Density of Port 
Low, Limited often 

due to the scarce 

number of NICs 

Medium, usually 48 ports High, > 48 ports 
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Figure B.1.1.3: Exemplary Illustration of the Open Virtual Switch Architecture 

 

Bare-Metal SDN Switches (Application in Open Networks)  

As for bare-metal SDN switches’ applications in Open Network Hardware, they are 

provided with an autonomous vendor and a network development programmable 

platform used for educational and research purposes. Open Network Hardware 

Platforms are more industrialized compared to the previously mentioned category and 

as a result, they have received more support.  

Well-known examples of these devices are ORAN and ONIE. Switching devices that 

are Open Network hardware based are the most often utilized in order to construct 

SDN prototypes in laboratory settings, on the grounds that they offer higher flexibility 

and throughput than the other two categories. 

 

Application in Vendor’s Specific Switch  

Recently, there has been a rapidly increasing number of networking hardware vendors 

detected, which have been introducing their strategies and solutions for Software 

Defined Networking (SDN), accompanied by a wide range of SDN-enabled switches, 

such as the Juniper QFX5100, NEC PF5240, MikroTik Cloud Router Switch and 

Pica8 3920. In addition to that, there are initiatives, such as the Indigo project, with 

the aim of enabling SDN functionalities via the application of firmware upgrades on 

vendor-specific switches which were not primarily designed so as to support SDN 

features. 
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In order to make certain that the spirit of evolution will be present in the environment 

of SDN switching devices, it is of vital importance to include performance evaluation 

standards. Appropriate functional operations and the enhancement of performance are 

able to materialize, for instance via continuous testing of the SDN switches. The 

simplification of performance evaluation standards can be achieved through the 

utilization of OpenFlow OPS (Operations Per Second), which is a framework that is 

capable of data packet capture, and timestamping and has great compatibility with 

diverse packet generation. Moreover, the measurement of performance mechanisms is 

entailed in the aforementioned framework with control plane operational activities, 

such as traffic statistics of delayed queries. Since the previously mentioned feature 

can be applied to each of the two, namely hardware and software implementations in 

SDN switches, the OpenFlow OPS vital can also be utilized as a tool capable of 

performing more accurate performance measurements of the SDN switches.  

 

B.1.2. Media of Transmission – Software Defined Networks 
 

Media of transmission such as optical media, wired or wireless ought to be 

encompassed by the environment of the Software-Defined Network, so as to achieve 

an omni-present scope of inclusion, as it is demonstrated in the Figure A.3.2. 

However, it is of great importance to bear in mind that diversity in the transmission 

media equals a great variety in unique configurations and specific administration 

technologies. Therefore, Software-Defined Networks ought to be incorporated with 

the aforementioned technologies in the environments of wireless and optical 

networking, such as Software-Defined Radios, which facilitates the economic 

advancement of radio devices. Through this implementation SDN is given the 

capability to achieve extensive behavioral control over networks, which consists of 

wireless channels, optical frequencies and data packet forwarding. As a result, 

Software-Defined Networks are able to achieve better control over the network 

infrastructure and utilize the resources needed within that infrastructure with greater 

efficiency. Various technologies on the wireless transmission have been constructed in 

order to ensure the most enhanced utilization in the said networks. In this subsection 

there will be a demonstration focused on the most prominent types of transmission 

media, namely optical fibers and wireless radios. 
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Figure B.1.2.1: Exemplary Illustration of Reconfigurable Optical Add and Drop 

Multiplexer  

 

Optical Networks (Fibers) - SDN 

This type of transmission media is often used as the core network for consolidated 

traffic, as they provide ways to lower the rate of power consumption and greater 

capacity as well. The rearrangement of software as a concept, commonly applied in 

wireless networks, can similarly be employed in optical networks through the use of 

Reconfigurable Optical Add and Drop Multiplexers. Incorporating these technologies 

into the SDN control plane enables more accurate and efficient management of the 

data plane. Unified strategies utilizing a single SDN control plane across both packet-

switching and circuit-switching domains are initially considered. As illustrated in the 

second figure of section A.3, Controller B (figure A.3.2) oversees an optical circuit-

switching domain as well as Packet Switching Domain A (figure A.3.2). In light of 

that, a proposal expanding the parameters used for forwarding rule matching has been 

made, extending beyond layer 2, 3, and 4 headers of packets to include layer 1 

switching technologies, such as timeslot, wavelength, and fiber switching. As a result, 

the unification of the control plane for both packet and optical networks is achieved. It 

is noteworthy to bear in mind that the even though the proposed model simplifies 

control, an enhancement of the optical switches for the circuit is needed in order to 

support these additional functions. 

The use of a virtual switch on each optical switching node to achieve a unified control 

plane could be applied. In this method, each physical interface of an optical switching 

node is mapped to a corresponding virtual interface. The messages between the 

controller and the virtual switch are translated into commands that can be understood 
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by optical switching devices. A similar approach is proposed for integrating legacy 

equipment with SDN switching devices. During deployment, an added layer is 

introduced to bridge controllers and legacy switches. Although these methods allow 

for the reuse of existing network equipment, they introduce more communication 

latency due to message proxying. On the grounds that, long-distance transmission is 

inherent in optical networks, it is necessary for an end-to-end data path from source to 

destination to be managed by various entities, with each one being responsible for 

diverse segments of the path. In this case, the incorporation of a single control plane 

throughout the entire data path may not be possible. Split-control approaches, as 

illustrated in the SDN infrastructure architecture illustration, where Controller B 

(figure A.3.2) governs an optical circuit switching domain and Controller C (figure 

A.3.2) manages Packet Switching Domain B (figure A.3.2), might be a more practical 

solution. These approaches can leverage advanced techniques in optical circuit 

switching, such as using a Generalized Multiprotocol Label Switching control plane, 

which is a networking technology that enables fast and reliable network switching of 

data flows on any type of network infrastructure, for instance, the management of the 

optical network. 

 

 

Figure B.1.2.2: Architectural Illustration of Software Defined Optical Networking 
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SDN Wireless Radios 

Enhanced networking technologies have been developed and later incorporated into 

wireless networking environments so as to improve the utilization of the 

electromagnetic frequencies concerning network communications. Software-Defined 

Radio is among the most prominent technologies on the grounds that it enables 

wireless transmission control through the use of software. Since Software-Defined 

Radio has various common traits with the SDN, its implementation to the Software-

Defined Networks should not pose a challenge. The fact that numerous processing 

blocks, which have a great computational complexity and are dominant at the physical 

layer might only have a few differences purely restricted to their configurations. 

For instance, the majority of wireless devices utilize the algorithm known as the Fast 

Fourier Transform varying in lengths. According to the previously mentioned trait, an 

approach that could be taken is the implementation of an Open Radio Access Network 

to perform the abstraction of the wireless from the hardware trait and therefore 

construct an assertive wireless programmable interface for various protocols. As far as 

the access points and the clients are concerned, they need to keep on passing 

information to the central SDR controller on the measurement of the performance, the 

total size of data packets and their count. Afterward, tasks such as the administration 

of the choice of channels, rate of transmission and the traffic of both the access points 

and clients that pass through the application programmable interface (with filters: 

previous and current recordings concerning measurement information) are the 

responsibility of the central controller. Mainly, Open Radio is able to control physical 

layer operations via specialized software, therefore rendering it very similar to the 

Software-Defined Radio frameworks. 

As for the issue of the configuration management of software it can be addressed 

through the incorporation of a Software-Defined Radio system that would allow its 

controllers to have an interface aiming to improve the central control and the 

ubiquitous interpretation of Software-Defined Networks. As a result, the central 

controller of an SDN could enhance its control over the existing SDR devices which 

could extend to all the network systems existing within its scope. 

 

B.2. Control Layer 

As was seen previously in the first illustrations (A.2.1.1, A.3.1) presenting the 

architecture of the Software-Defined Networks, the 2nd layer, namely the control 

layer, acts as the link between the other two layers (infrastructure and application). 

The demonstration of the schematics of the SDN controller, which entails a control 

operation specialized for the data plane, virtualization factor, agent, administrator and 

the three interfaces of the controller layer (northbound, southbound, east/westbound 

used for interaction with infrastructure and application layers and availability 

purposes) will be the primary focus of this section. Moreover, there will be a brief 
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explanation concerning the problems of the control layer, namely policy and rule 

validation, and measurement of performance. The characteristics of the control layer 

will be addressed afterward in the security section. 

 

 

Figure B.2.1.1: Architectural Illustration of the Control Layer  

 

B.2.1. SDN Controller Schematics 

 

SDN Controllers are essentially one of the most vital elements of this architecture, 

which affects even the level of complexity depending on its structure. Furthermore, it 

is noteworthy to bear in mind that the SDN controllers’ boundaries are not 

straightforward. The administrator element is solely responsible for the management 

of the client/server domains. Management of the client and server is important due to 

the fact that amidst all factors of data, control and application models, require 

coordination for their functions. Afterward, the next more prominent component of 

SDN controllers is the control function for the data plane, as it can efficiently use the 

available resources and redistribute them according to the directives received from 

either the administrator or the virtualizer that has control over them. The resources 

usually are processed as information instances with their only access point being the 

agent. Because the range of the SDN controller spans across various virtual 

networking environments, the control function for the data plane is needed to consist 

of operations that work as an aggregation. 

In the architectural model of Software-Defined Networking, the virtualization factor 

has been developed to allocate resources to diverse applications. The Software-

Defined Network Controller provides operating services to various applications via 
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the usage of the available resources, policies and supporting functions. More 

specifically, the functional avatar that provides support to the informational structure 

instance of an application controller plane interface is the virtualizer. It is manifested 

by the administrator for every application or client in the SDN scope. Afterwards, the 

allocated resources are utilized by the virtualizer for the application-controller plane 

interface which exposes its view to the application clients and sets up the installed 

policies therefore causing the development of the agent to take place for each of the 

clients that participated in the aforesaid process. In addition to that, the virtualizer is 

also responsible for the management of the client requests throughout the application 

controller plane interface, while ensuring the validity of the requests according to the 

enforced policies and finally translating them into the form of underlying resources 

and sending the results to the data plane controller functions and data controller plane 

interfaces. As a result, in order to achieve enhanced resource management, provided 

services and integrity of the managed data coordination among the virtualizer, data 

plane controller functions and SDN controller is required. Every protocol is needed to 

conclude at a functional entity. The element that is most proper for the relationship 

amidst the controlled entity and its counterpart is the controller agent model, on the 

grounds that it can be applied recursively to the SDN architecture. The agent is the 

aforementioned controlled entity, which represents the client's resources and 

capabilities within the server's environment. 

As mentioned before, the controller of the SDN environment is made up of three 

application programmable interfaces, which are vital for communication and 

interaction with the other layers. Following there will be an explanation of each one 

of these interfaces. 

 

Northbound Interface 

The Northbound programmable interface handles the connection link amidst the 

application and control layers. It is capable of implementing the programmability 

factor of the SDN controllers into the controllers that are utilized by applications for 

the 3rd layer through the exposure of the circulating data and the operations that exist 

inside the utilized SDN controllers. Unfortunately, since the northbound 

programmable interface is for the most part software, the development of a common 

version of this interface is not yet feasible. 

 

Southbound Interface 

The Southbound programmable interface is primarily responsible for the interaction 

and communication amidst the Software-Defined Networking Controller and the 

forwarded in the 1st layer as well as for the communication with SDN Controller and 

the network systems that are manifested via interfaces. It is noteworthy to mention 
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that usually, the connection that is instantiated amidst the network systems follows the 

TLS protocol.  It is implemented in the aforementioned link with the aim of providing 

security and authentication factors in the connection. The administration of the virtual 

and/or physical systems in the SDN by the Controller is only possible provided that it 

entails the appropriate drivers. Therefore, making the Southbound interface one of the 

most prominent elements for clarifying the differentiation of the roles between the 

control and the data planes. 

 

Westbound/East Interface 

As for the Westbound/East programmable interface, its primary role is to provide a 

specific communication interface that enables the synchronization of the state for 

allocated Software-Defined Networking Controllers within the Control Layer in order 

to achieve higher availability. In addition to that, it is capable of performing data 

importation and exportation amidst the SDN Controllers as well as performing state 

monitoring aiming to ensure whether the SDN Controller is in UP state or sends a 

notification for a takeover for the appropriate set of forwarded components. 

 

B.2.2. Validation of rules & Policy tables 
 

Rendering policies and rules as appropriate or dysfunctional is a very important 

process that could affect the stability of the decision-making process for selecting the 

best routing paths in the Software-Defined Networks and by extension the 

performance and the functionality of the control layer. SDN networks are made up of 

various applications and devices that could potentially connect to the same SDN 

Controller, therefore affecting the overall performance of the Controller. 

Consequently, this could give rise to the creation of conflicts amidst the existing 

configurations, which might have negative effects on the coordination process 

throughout multiple participation units.  

Nevertheless, there are various strategies that have been created such as CORA, and 

role-based source authentication with priority which are able to prevent potential 

conflicts. Subsection B.2.2 will focus on ways to analyze stability in policies that 

dwell in intra-switches, the security field and in network domains of SDN.  

In order to identify and ensure that the rules and policies for network systems in 

finite-state examination models are usually the most prominent method for achieving 

the aforementioned statement. Since then, various strategies and tools have been 

developed with the aim of addressing this issue for intra-switches. For instance, there 

are ways (FlowChecker, PreChecker) to perform network configuration encoding for 

examining overall the behavior of a networking environment in a system which is in a 

single-state. Moreover, FlowChecker is capable of ensuring validity and security via 

writing security parameters in the form of a computational tree, while utilizing a 
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Binary Decision Diagram-based model examination. It is noteworthy to mention that 

a weakness of the Binary Decision Diagrams is that they can be used to test for intra-

switch misconfigurations within a single flow table. Therefore, the FlowChecker is 

able to take advantage of the FlowVisor, which is able to perform network resource 

partitioning and effectively isolate this part from the rest of the network. In addition to 

that, verification of flow policies can be ensured through the implementation of 

modulo and assertion sets, while VeriFlow studies the verification of invariants in 

real-time. An added layer, which sits between the SDN controller and the network 

devices, intercepts flow rules before they reach the network. Although VeriFlow 

boasts low latency in the checking process, it cannot handle multiple SDN controllers. 

Through the use of a security-based language to enable flow-based policy 

enforcement along with network isolation, the aforementioned problem could be 

resolved. It is incorporated as a NOX application and allows the integration of 

external authentication sources so as to offer access control. Veriflow is also capable 

of succeeding in examining in real-time with low latency through the introduction of a 

proxy amidst a controller and switches aiming to check network-wide invariant 

violations dynamically as each forwarding rule is updated. Firstly, it performs rule 

division into equivalence classes based on prefix overlapping and afterward uses the 

data structure of the prefix tree in order to quickly find overlapping rules. Then, the 

proxy generates individual forwarding graphs for all the equivalent classes. Last but 

not least, the OpenFlow Testing Environment is capable of performing black-box 

testing in physical switches with state synchronization with the aim of validating and 

cross-checking the integrity of the rules and policies in these switches and the devices 

in a Software-Defined Networking environment. The next subsection will show a 

detailed explanation of the ways in which performance is measured in Software-

Defined Networks. 
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Figure B.2.2.1: Rule & Policies Interception and Examination for SDN Applications 

(VeriFlow) 

 

B.2.3. Measurement of performance 

Depending on how the control layer functions, the performance of Software-Defined 

Networks could be greatly affected and, in turn, the scalability factor of the SDN 

Controllers constrains it. All of the transactions that take place in the control plane are 

associated with the SDN controllers. For the first packet of each flow that arrives, 

switches are needed to request the controller for packet forwarding reactive rules. As 

for the update of rules and the collection of the overall network status communication 

amidst controllers and switching devices becomes more often. Consequently, the rate 

of consumption for the bandwidth and the latency of frequent communication could 

affect the scalability of the control layer greatly. The aforementioned problem must be 

addressed as it has a negative impact on the SDN performance. Following there will 

be a demonstration of the ways that various techniques could be used so as to prevent 

the issue with scalability and by extension that of the overall SDN performance. 

 

SDN Controller Performance - Benchmarks 

A common issue in SDN controllers when it comes to the stability of the performance 

is processing power and the bottlenecks that might be formed causing the situation to 

become more complex. Therefore, the implementation of benchmarking could be of 

use to address the issue of scalability on the grounds that it is capable of performance 

bottleneck identification and at the same time it is needed for the enhancement of the 
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processing speed. There are frameworks such as OpenFlow Controller Benchmark 

that could perform performance benchmarking for SDN controllers, as they provide 

statistics of various response metrics (time, percentage, count of packets dropped) for 

every switch individually. Additionally, there are other frameworks that are able to 

offer these features and more like Cbench, Iperf with the only exception being that 

these are better suited for multithreading experimentation. The first framework is 

capable of conducting tests for the performance of the SDN controllers through 

request generation for packet forwarding rules, while watching for SDN controller 

response and offers aggregated statistics of controller throughput and response time 

for all the switching devices.  

 

SDN Controllers - Dropping Frequency Rate of Ongoing Requests  

Since the performance of the SDN environment is affected by the scalability of the 

control layer, it is needed to stabilize and manage the offset of the request load and its 

burden on the SDN controllers. The technique that is going to be analyzed for the 

final subsection of this layer is the restructuring of the way the switches are organized 

in the SDN. Well-defined divination of the workload and precise role assignments are 

able to enhance the performance of the control layer. Tools like ONIX and Kandoo are 

capable of achieving the previously mentioned feats. More specifically, ONIX is a 

distributed control platform, which can run various instances of the SDN controller 

throughout multiple locations, working together to manage a network. Allowing 

ONIX to perform load balancing of the requests effectively preventing the creation of 

potential bottlenecks via an individual SDN controller. Furthermore, it is capable of 

sharing instantly the information of the current state of the overall network enabling a 

constant view of the SDN environment. As for Kandoo due to its two layers (top and 

bottom layer), it can offload the heavy burden of the requests on the SDN controller 

through replication of the SDN Controllers at the 2nd layer while the 1st layer is 

responsible for management of the network view and decision-making process like 

forwarding. 

 

B.3. Application Layer 

The final layer of the SDN architecture resides above the control layer as showed in 

the illustration A.3.1. Through the previous layer, applications in the environment of 

Software-Defined Networks are able to effortlessly gain access to a global network 

view with instantaneous status via the utilization of the northbound programmable 

interface of SDN controllers. Furthermore, the application layer entails various 

network programs and applications that are capable of communicating with their 

desired network behavior and informing the SDN control layer of their requirements. 

During the past, when the traditional networking methods were prominent dedicated 

firewalls would be used for load balancing. Nonetheless in the domain of SDN, the 

management of the data plane is handled by the application layer. Section B.3. will 
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focus on what approaches there are regarding the applications of SDN as a service 

platform. 

 

B.3.1. Cloud Computing – SDN 
 

In recent years, the cloud field has been advancing rapidly influencing many network 

environments, businesses and therefore SDN as well. It is capable of providing        

on-demand services like storage resources, programming infrastructure and even 

instant updates in software applications and charges always with server usage and 

virtualization of networks. On the other hand, Software-Defined Networks are able to 

provide the services required to move beyond the resources needed for computational 

operations and storage to include more extended services to achieve efficient cloud 

computing by broadening the horizons of the model of the Infrastructure as a Service. 

Another vital element of Cloud networking is the data center which in order to 

function properly is needed to entail high scalability for large-scale projects, dynamic 

resource provisioning, quality of service for different platforms and wide network 

availability and visibility. These conditions can be met through the implementation of 

the SDN. More specifically, SDN can provide the foundation for the enhancement of 

the IaaS model and by extension for cloud computing by addressing an issue of cloud 

computing, namely virtualization of switches. Virtualization of switches is used 

mainly for achieving a communication channel amidst virtual machines that share the 

same host. Following the traditional networking methods virtualization of switching 

devices was offered with hypervisors, programs that allow multiple operating systems 

to share resources of the same physical hosting machine. Nonetheless, it does not 

provide a satisfactory level of clarity and management. Aiming to address this 

problem, it is possible to have an edge in virtual switching in virtual machines via the 

implementation of a previously mentioned SDN framework, Open Virtual Switch 

(Open vSwitch/OVS). OVS as stated before can monitor and report the overall 

network status as well as manage data packet rules from SDN controllers. 

Nevertheless, due to the fact that it does not provide an abundant amount of storage 

unlike the physical switching devices, it is necessary to incorporate another 

component with the aim of resolving this issue. What is needed is a system that would 

enable the proper management of rules that are both virtual and applicable to the 

cloud environment. Such an example is vCRIB according to the paper presented in 

USENIX “Scalable Rule Management for Data Centers”, which can find and 

enforce the most appropriate rule amidst virtual and physical switching devices, while 

offloading the increasing traffic and adapting to dynamic changes in the cloud field, 

like those in the traffic. 

 

B.3.2. Security in Application Layer 

In this subsection, the primary focus will be the security implementation in the 

applications in SDN. Security in networking is a founding part of the cyber security 

field. Deprecated methods and practices in networking security dictate the 
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implementation of firewalls and proxies in order to ensure the safety of physical 

infrastructure. On the grounds that there are many differences and unique traits in 

various applications in the network, the complexity level of enforcing large-scale 

policies and configuring the aforementioned devices becomes higher. In order to 

mitigate the repercussions of this issue, Software-Defined Networks can be applied 

since they provide centralization and merging platforms that examine thoroughly 

policies, rules and configurations to ensure that the implementation meets the security 

conditions needed to prevent potential events of security breaches. The SDN is able to 

collect the status of the overall network rendering it capable of monitoring and 

analyzing various patterns in traffic to notify instantly and examine security threats. 

For instance, distributed denial of service (DDoS), replay attacks can be identified in 

an instant through the previously mentioned feature of the SDN. Also, due to its 

programmability factor, it offers more centralized control of flows of packet traffic 

and as a result, the reports of SDN can be applied/transferred directly to systems such 

as intrusion detection systems (IDS) and intrusion prevention systems (IPS). In case 

there is an attack detection, then the SDN could install packet forwarding rules to 

switches with the aim of blocking the attack traffic from entering and propagating in a 

network. The feature of centralized control that the SDN has, enables the dynamic 

quarantine of compromised hosts and authentication of legitimate hosts according to 

the information obtained via the request of end hosts, requesting a Remote 

Authentication Dial-In User Service (RADIUS) server for users’ authentication 

information tainting traffic or system scanning during registration. Therefore, through 

the previously mentioned strategies, it is possible to ensure a high level of network 

security for applications in the SDN. 

 

 

Figure B.2.3.1: Statistics on the behavior of the implemented strategies of the SDN in 

network security 
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B.3.3. Management of Network Applications 

The most common issue that network applications face is the configuration errors that 

afterward cause various types of failures. Most of the time, the downtime in network 

infrastructures is the result of human mistakes during the configuration process. 

Unfortunately, well-known networking tools such as ping, traceroute, tcpdump cannot 

offer automated solutions for maintaining the network. In comparison to these 

conventional methods, SDN is capable of providing centralized and automated 

revisioning and enforcement of rules, policies and thus effectively preventing 

configuration errors, while achieving the delivery of automated maintenance and 

reports regarding the state of the overall network. Fortunately, the development of 

tools such as network debugger has already taken place, aiming to identify and detect 

the reason behind networking errors. With Network Debugger each time that a 

switching device comes into contact with a data packet the SDN controller is notified 

via a specific way, “postcards” and afterward the SDN controller constructs a 

backtrace aiming to perform network debugging. To conclude, these tools together 

with the capabilities of the SDN are able to act as a solid way of performing 

automated maintenance of the network, alleviating the burden of the tedious manual 

work that is required to achieve the aforementioned. 
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C. Network Security - SDN 
 

From the earlier sections, the principles behind the Software-Defined Networking 

concept have been elucidated and it is understood that it can serve as a breakthrough 

point with the aim of further extending the capabilities of the existing network 

facilities. Nevertheless, in many software applications, and networks no matter the 

traits they possess and the functions they have, there is not a single one that  is not 

susceptible to cyber security attacks as the following sections will demonstrate. More 

specifically, there will be a detailed explanation regarding the cyber security 

vulnerabilities found in the architecture of the Software-Defined Networks, the 

security threat that various attacks pose to the aforementioned network concept, 

strategies and methods that are able to act as countermeasures and some use cases that 

demonstrate in a more practical way how attacks can be performed in a virtual SDN 

environment. 

 

C.1. Vulnerabilities of SDN Architecture 

Even though the conventional networking architectural structure was not able to offer 

the flexibility that the SDN architecture provides, and its components were more 

dispersed, the latter has its core elements more concentrated and therefore its threats 

in cyber security are focused on certain aspects of the SDN architecture. Following 

the susceptible traits of the SDN architectural nature will be shown. 
 

C.1.1. - Susceptibility – Software-Defined Network Controllers 
 

Various operations and decision-making processes like routing, packet forwarding 

rules, monitoring, gathering of information, and configuration of the networking 

environment revolve around the SDN controllers. The fact that the Software-Defined 

Networks have been designed in a way that a single entity (controller) handles most of 

its functions and daily operations further limits the target scope of potential malicious 

actors and simplifies the attack performance. In addition to that, the fact that the SDN 

is compatible with cloud computing due to its programmable nature, so, provides the 

attacker with many ways to maneuver around the network and implement attacks with 

greater efficiency. As a result, in the event that the SDN controller is compromised 

and there is only one controller, then the malicious user will be able to negatively 

affect the entirety of the SDN domain. Moreover, in case there is only a single SDN 

controller in the aforementioned environment, since there can be more than one 

controller, if the targeted controller is flooded with malformed data packets with 

attacks such as UDP flooding and DNS poisoning then the controller becomes swiftly 

a single-point-of-failure (SPOF), thus causing the performance of the Software-

Defined Network to drop rapidly and all of its functions will cease to work. 
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Additionally, it is noteworthy to mention that in the event that the SDN environment 

has multiple controllers, without proper implementation of security protocols, like 

TLS/SSL, due to the requirement of communication amidst the controllers for the 

maintenance of the stability of the entire network, the data packets that are circulating 

the SDN are susceptible to interception techniques such as packet sniffing rendering 

them a potential source of information for the malicious actors that aim to target the 

network.  

 

C.1.2. - Susceptibility – Open Nature of Application Programmable Interface (API) 
 

The architecture of SDN is defined by open application programmable interfaces and 

as such the aforementioned trait causes the Software-Defined Networks to be more 

vulnerable to cyber security attacks. Open programmable interfaces due to their nature 

tend to unintentionally expose vulnerabilities that software in SDN tend to have. For 

instance, conflicting interactions and rules can be caused by the presence of various 

software applications that have different goals, therefore causing rules with disturbed 

flow to be integrated into switching devices creating an inconsistent and chaotic 

behavior of the devices belonging to the SDN domain. Another example of 

vulnerability of the software application lies in the fact that the SDN applications 

might be due to the workload and the cost-efficiency goals handled by cloud-service 

providers and since there are many software applications that must be developed and 

controlled by various entities (cloud), sometimes there is an issue of unauthorized 

activities performed by the said SDN applications without being able to view what is 

causing this. On the grounds that, applications handled by the cloud are the 

responsibility of third parties, the programmers are unable to discern the main reason 

that causes the aforementioned issue and by extension do not have any authority on 

the matter of security. The susceptible elements that are known due to the open nature 

of the APIs give the opportunity for malicious actors to analyze different patterns and 

orchestrate an attack plan. Additionally, due to the trait of SDN controllers to offer 

many open programmable interfaces to the attackers, potential backdoors upon which 

they are able to perform malicious software embedding, for example, trojan viruses. 

As a result, it is noteworthy to implement robust security policies and incorporate 

mechanisms that thoroughly evaluate the open programmable interface provided by 

the SDN controller. Bear in mind that the software applications that have been 

previously mentioned, are developed on a controller in the SDN architecture and it is 

stationed at the same hosting physical hardware device with the controller itself. In 

case the said software calls functions of the controllers via the link of the control and 

application layers, northbound application programmable interface then, if an attacker 

succeeded in compromising the controller, then the malicious script that is embedded 

on the controller will be executed, causing all sorts of undesirable activities. 

Consequently, making the application layer as another susceptible element of the SDN 

architecture that the malicious actors can exploit. 
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C.1.3. - Susceptibility – Software-Defined Network Switching Devices 
 

Another basic part of the SDN architecture is the switching device. The basic trait of 

the SDN switching devices is the fact that compared to the conventional switches 

when data packets are received, they are not required to enter a flow for matching and 

exiting, but they will attempt to communicate with the SDN controller which will 

perform decision-making process, directing the switching devices exactly what their 

tasks will be regarding the data packets. For example, a well-known directive the 

switches receive from the SDN controllers is the forwarding rules for the data packets. 

Nonetheless, as previously mentioned in case the attacker performs packet 

eavesdropping in the event the communication is not secure, the malicious actor will 

be able to take advantage of the susceptibility of the link amidst controllers and 

switches, which consequently will result in rule tampering and malformed packet 

insertions. Therefore, the malicious actor has the opportunity to provide fraudulent 

rules to the said switching devices, effectively manipulating a part of the SDN 

environment. The case of a vulnerable connection is not limited solely to the link 

between SDN switching devices and SDN controllers, since it can be further extended 

to the communication amidst the switches themselves. Inside the Software-Defined 

Network, many of the data packets circulated and transmitted amidst the switching 

devices are in unencrypted form, containing vital information regarding the users of 

the network, resulting in susceptibility to intercepting mechanisms which are easily 

performed in the communication of switches, since their links are essentially wireless 

media. 

As said previously, the SDN architecture is comprised of three layers, mainly the 

infrastructure, control and application layers. Even though each one of them is located 

in a different place in the Software-Defined Network, their frequent communication is 

required in order to maintain the stability and the high performance of the SDN 

environment. Thus, as seen from subsection C.1.1. the SDN provides more patterns 

for malicious entities to perform various attacks, in comparison to the conventional 

networks. Following there will be an illustration, which will demonstrate the basic 

points an attacker could take advantage of to seize control of the Software-Defined 

Network architecture. 
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Figure C.1.1.1: Susceptible spots of the SDN architecture that the malicious actors are 

able to take advantage of 
 

C.2. Security Threats - Software-Defined Networks  

The evolution of the Software-Defined Networks is rapid due to the extended research 

being conducted on this networking concept in recent years. However, the more SDN 

advances the more eminent the need for the implementation of robust security 

measures becomes. The main focus of this section is C.2. will be a thorough and 

detailed explanation of the various security threats to SDN. According to the 

illustrations C.1.1.1 & A.3.1, the threats can fall under the following categories, about 

their target, either one of the three layers (infrastructure, control, application). 
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C.2.1. - Threats – Software-Defined Networks – Infrastructure Layer 
 

As has been stated previously, this is the 1st layer of the SDN architecture, which 

consists of various interconnected switching devices, whose main responsibility is to 

perform data packet forwarding. In case a compromise event takes place, the data 

packets will not follow the proper flow as the forwarding rules would have been 

changed. Furthermore, it is noteworthy to bear in mind that switching devices 

represent the central entrance of network access for the end users, so the attackers 

could embed a malicious link to a port service of the said switch. To conclude, it is 

vital that security threats are identified swiftly via the incorporation of mechanisms 

that detect and correlate adverse events. For this section, the structure of the SDN 

switches will adhere strictly to the concept of the OpenFlow protocol. It entails the 

following basic elements, mainly the flow buffer, table and the client of the 

OpenFlow. In case a data packet is received from the proper input port, then the 

aforesaid data packet will be placed in the buffer flow and afterward a search will be 

conducted in order to locate a matching rule to the message fields of the 

corresponding packet, like transmission control protocol port. When the ideal rule is 

found, then the previously mentioned data packet is going to be removed from the 

buffer flow, and it will be routed to the corresponding output port. However, in the 

event that the appropriate rule is not found, the SDN switching device is required to 

send a packet in a message to the SDN controller with the aim of receiving directives. 

When the decision-making process is completed the SDN controller will perform 

routing and the insertion of an ideal rule into the table flow. The threats that are 

prominent in this case are Denial-of-Service attack in order to paralyze the table and 

buffer flow and a Man-In-The-Middle attack in which a malicious actor could 

intercept the data packets between the switch and the controller and therefore perform 

rule modification without either one (switching device, controller) being none the 

wiser. 

C.2.1.1 - Denial-of-Service (DoS) Attack – Flow Table & Buffer Saturation 
 

The OpenFlow protocols bear a trait in their structure which involves changing the 

existing rules in a data packet in case it does not have a known address. This design 

creates a potential way for any malicious actor to easily perform Denial-of-Service 

attacks or even distributed DoS attacks, since all it would take is for the attacker to 

keep on sending a tremendous amount of data packets with destinations that do not 

have known addresses during a short time frame via the utilization of a script aiming 

to generate a high volume of traffic that would cause the table flow to malfunction 

and stop performing the appropriate forwarding of the legal data packets, due to the 

fact that there will be no more available resources used for the creation and 

attachment of the new ideal rules, therefore preventing the overwriting of the rules.  
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On the other hand, it is important not to forget that another potential target of the 

previously mentioned attack is also the buffer flow. Previously, it was mentioned that 

it is needed for the data packet to be buffered in the buffer flow in order to wait for the 

result of the ideal rule search or the insertion of a new ideal rule, and afterward 

perform the data packet forwarding. On the grounds that the buffer flow has a 

limitation regarding its storage, it always marks the data packets that are to be deleted 

according to the principle of First In First Out (FIFO) with the aim of releasing 

unnecessarily used storage space. The concept behind the attack strategy is similar to 

the one mentioned before. The malicious actor can perform DoS/DDoS attacks such 

as tcp flooding by sending tcp packets that are a part of another data flow, different 

from the one that is currently on the switching device causing the device to perform a 

buffer of the data packets that are currently flowing on to the switch, which 

consequently is forcing the buffer flow to mark the new data packets as deleted in 

order to free storage space and store the current non-fraudulent data packets to be 

stored. This causes the buffer flow to malfunction as well, with its performance 

dropping rapidly. 

 
Figure C.2.1.1.1: Attack Vectors in Software-Defined Networks towards OpenFlow 

Switch affecting the table and buffer flow 
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C.2.1.2 – Man-In-The-Middle (MITM) Attack – Controller & Switching Device 

The concept behind the Man-In-The-Middle attack is to take control over a node in 

the communication amidst a source and a destination node that acts as an intermediary 

for the other two, with the aim of intercepting the data packets sent back and forth by 

each one of them without being detected by either one of them, mainly source or the 

destination node. It is considered a network intrusion attack, and it could be applied in 

the Software-Defined Networking environment as well. Since the controllers and the 

switching devices are frequently communicating with each other, it is the ideal 

situation for performing this attack. Malicious actors could intercept the data packet, 

and change the existing forwarding rules which are attached to the switching device in 

order to take advantage of the data packet forwarding process. This gives the 

opportunity to the attackers to perform ARP poisoning attacks as will be demonstrated 

in the following use cases. Moreover, it is vital to remember that it is not necessary 

for the controller and the switching device to have a physical connection, they might 

be connected in a virtual environment or even have data packets travel via multiple 

different switches in order to reach their destination (amidst switch and controller). 

Resulting, in the susceptibility of all the switching devices and controllers to the 

MITM attack in the SDN domain. Following we will have an illustration 

demonstrating in a simple way how the MITM attack works. 

 

Figure C.2.1.2.1: Man-In-The-Middle Attack Representation in SDN (OpenFlow) 
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C.2.2. - Threats – Software-Defined Network - Control Layer 

According to the SDN architecture the 2nd layer, Control Layer is connected to both 

the 1st and 3rd layer and in case of a security compromise event both layers can be 

affected (infrastructure, application) since this affects adversely the data from the 

infrastructure layer as well as the data packets that are circulated from the link amidst 

the controllers and the software application in SDN (application layer). The controller 

in Software-Defined Networks is a core element for ensuring the stability and high 

performance of the SDN, since it is primarily responsible for decision-making 

processes that affect many of its components from switching devices to software 

applications. Therefore, if a malicious actor were to take control of a controller, it 

would have everlasting consequences on the entire SDN. The SDN switches receive 

ideal forwarding rules from the controller so as to forward data packets correctly, 

otherwise the process cannot be carried out properly. On the grounds that the 

controller is a figure of great importance, it is one of the primary targets for a 

potential attacker. Following there will be a detailed explanation of the main threats of 

the control layer, which involve DDoS attacks on the SDN controller and the concept 

around the multiple SDN controllers’ structure. 

C.2.2.1 – Distributed Denial-of-Service (DDoS) & Denial-of-Service (DoS) Attack – SDN 

Controller 

The main target of the Distribute Denial of Service attacks is to force the SDN 

controller to enter a paralysis state, making its functionality completely non-existent 

and therefore making the controller’s services unavailable to all the users of the 

network. The approach that is taken in the DoS attack is very similar to the approach 

discussed in subsection C.2.1.1. The aforementioned state is achieved through the 

exhaustion of the available resources. The attacker is able to create high-volume 

traffic through the generation of a huge amount of UDP, TCP packets through the 

utilization of distributed compromised computers also known as zombie computers or 

bots or via utilizing their own hosting device. Since the packets produced are 

malformed it means that they cannot be easily discerned from the non-fraudulent 

packets existing in the current traffic. As explained before, according to the principles 

of the OpenFlow protocol the switching devices do not handle well new data packets 

and as a result, it will first store the current packet in its buffer flow and send 

afterward a packet in the message so as to ask for directives from the SDN controller. 

As a result, in case of the Distributed-Denial-of-Service attack (as seen in the figure 

C.2.2.1.1), the controller is forced to manage the high-volume traffic generated by the 

creation of multiple packets in a short time frame, which ensures available resource 

depletion. The controller will not be able to process the current traffic, the bandwidth 

will be occupied by the fraudulent traffic, and this will drop the levels of performance 

and functionality of the SDN network rapidly.  
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Figure C.2.2.1.1: Distributed Denial-of-Service Attack in Software-Defined Networks 

towards OpenFlow Switch (& SDN Controller) 

 

C.2.2.2 – Model with Various SDN Controllers 

Software-Defined Networks had been designed at first with the concept of having one 

SDN controller, however with the aim of avoiding the loss of scalability and the 

creation of a Single-Point-Of-Failure (SPOF), various solutions were proposed by 

many researchers in the field among which was the integration of multiple distributed 

SDN controllers. Every one of them will be individually capable of specific switching 

devices and then afterwards these controllers would cooperate with each other, 

achieving total management of the whole network. Nevertheless, even though there 

are many controllers responsible for the maintenance of the SDN environment it is 

still transparent to the infrastructure layer, which means that on the surface it is 

needed for the controllers to appear as a single one. In the aforementioned scenario, 

the software application which is spread across various network control environments 

is required to handle several cyber security issues, like authentication, privacy during 

the circulation of information, and authorization. Moreover, with the cooperation of 

the distributed SDN controllers, the existence of many controllers at once and the 

switching amidst the controllers for the role of the master controller might cause the 

potential creation of conflicting configurations. Thus, in the previously mentioned 

architecture, it is of the essence to identify constantly changeable configurations, on 

the grounds that they could pose a potential security threat. 
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C.2.3. - Threats – Software-Defined Networks - Application Layer 
 

This is the final layer of the Software-Defined Networks where software applications 

are set up for executing various operations within the scope of this environment. In 

order for these applications to complete their tasks, it is of the essence to call 

functions. Malevolent actors could take advantage of the aforementioned need for the 

software applications and attempt to inject malicious code through the insertion of 

malware such as spyware (which is capable of gathering information regarding the 

activities of the targeted user, in a stealthy way) into the said application. Additionally, 

since it is not uncommon for the management of the SDN software applications to be 

handled by third-party service providers, like the cloud, it would prove to be less 

difficult for an attacker to pretend to be the third-party application and gain 

unauthorized access. Therefore, making the applications and the controllers 

themselves prime subjects to attacks, while effectively interfering with their everyday 

operational activities and negatively affecting the availability and reliability of the 

SDN domain.  

Another issue that arises within the application layer is whether the management and 

incorporation of security rules, policies and configurations are handled appropriately. 

Even though the OpenFlow protocol exists and is capable of executing specific 

functions that provide security identification and detection services for a multitude of 

software applications, the management of multiple applications is challenging, due to 

their differences in their programming language, structure and configuration settings. 

Consequently, this results in misconfigurations and conflicts amidst the various 

security policies and rules that need to be implemented to ensure protection from 

potential threats. Following, there is going to be a detailed explanation that aims to 

prove how the conflicting problems that arise represent a threat and why unauthorized 

access and spoofing can adversely affect the 3rd layer of the SDN architecture. 

C.2.3.1 – Conflicting Issues – Rules – Security Policies – Misconfiguration  

As stated before, the application layer is made up of security software applications 

that are necessary for gaining access to the programmable interfaces of the SDN 

controllers with the aim of offering a variety of high-quality network services. 

However, when the number of applications which are set up on the network scope of 

SDN is high, the complexity of the management process increases on the grounds that 

more rules need to be incorporated and applied, leading to mass disarray and 

confusion of the tasks that every service has to complete, arising conflicts between 

countless configurations. Furthermore, amidst the tediousness of the handling process, 

security policies cannot effectively cover the security needs of the applications 

connected to the controllers and their functions, which cannot suffice as a prevention 

method for attacks. 
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C.2.3.2 – Unauthorized Access 

Most of the Software-Defined Network applications which are being executed on the 

controllers in accordance with the OpenFlow protocol, are given the appropriate 

privileges that allow them to gain access to various resources regarding the entirety of 

the network and even participate in the process of decision-making for the molding of 

the network’s behavior as well as for the directives that will be given. 

Notwithstanding, it is not the case that all of the network applications that are running 

on the controllers are developed by the controller vendors. Actually, the task of their 

development falls under third-party entities, causing a major issue. Anything that is 

being handled by a third-party actor does not provide visibility for security matters, 

leading to the inability to create robust, stable and reliable security methods that aim 

to thwart potential threats. This enables malicious actors to easily gain unauthorized 

access to the inner workings of the applications (via the injection of malware that 

could later be executed remotely such as trojan virus) that run on the SDN controllers 

and effectively have control of a significant portion of the network. Additionally, most 

of the security applications are optional, this condition does not ensure a trustworthy 

connection link amidst the software application and the controller. There are of course 

methods that have been developed for security purposes, such as certification, 

monitoring, and logging. Nonetheless, a method that is globally accepted for the task 

of testing the validity of network applications does not exist. 

C.2.3.3 – Spoofing  

The SDN controllers and the software applications that are running on them require 

authentication protocols, such as TLS (v1.3), and Kerberos in order to succeed in 

creating a secure communication. Otherwise, the malicious actor will be able to 

perform altering information attacks like spoofing. Spoofing is not only limited to 

changing the source IP address of the data packet, since by masquerading as a non-

fraudulent Software-Defined Network controller altering further information, 

regarding the statistics (for instance the number of packets that are being received) so 

as to confuse the application that there is a high volume of traffic and causing the 

application to perform inappropriate decision-making process, becomes possible. 

Additionally, the attacker could take a different approach and use the spoofing attack 

to obtain vital information regarding the statistics of various functions gathered from 

other switching devices to which the controller is connected, therefore achieving 

illegal access to service level agreement and utilizing it in their potential future attack. 

All in all, without strong authentication the attacker will be able to gain control of an 

SDN controller (since there can be more than one) and by extension obtain intel 

regarding the connected switching devices and applications’ daily operational 

activities and take advantage of them to gain a foothold and launch further attacks on 

the application layer. 
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C.3. Countermeasures – Prevention Methods for attacks towards 

Software-Defined Networks 

From the earlier subsections, it could be deduced that many threats are lingering 

around the SDN architecture for each of the three layers with the majority of them 

targeting not only the SDN controllers, even though they bear the responsibility of 

decision-making processes that affect all the layers. Also, prime targets are the errors 

and issues that exist due to human mistakes or the complexity of handling multiple 

entities in the same network such as potential misconfigurations. All in all, the need 

for introducing and implementing countermeasures that contribute to the creation of a 

robust security network system is becoming urgent. The following sub-sections are 

going to provide insight about the ways that the aforementioned threats could be 

prevented.   

C.3.1. - Countermeasure – Software-Defined Networks – Infrastructure Layer 

C.3.1.1 - Denial-of-Service (DoS) Attack – Flow Table & Buffer Saturation – Countermeasure 

OpenFlow protocol is able to interact with other frameworks/technologies that have 

been developed so as to mitigate events in which the quality of availability is being 

endangered. The virtual source address validation edge is a platform that entails 

protection schematics against Denial-of-Service attacks with the architectural design 

of NOX, which is the original controller of the OpenFlow protocol, and it is capable 

of serving as a platform responsible for maintaining the control of the network and 

also offers a wide range of programmable interfaces that are utilized for developing 

network applications. For instance, in the event of a DoS attack launched towards the 

SDN controller the data packets that will be sent without having any legitimate rules 

or rules that match those of the Flow table will be sent to another controller whose 

role is to perform validation of the source IP address, and in case it is fraudulent, (like 

spoofing) then a new rule will be created and sent back to the Flow table in order to 

halt the flow that these packets follow by adding the rule that drops packets from the 

specified source IP address. Additionally, the incorporation of intrusion detection and 

intrusion prevention systems could provide great support in finding abnormal 

behavioral patterns in the traffic and finding the sources of the machines that Denial-

of-Service (even distributed) are launched. Implementation of the said systems in 

switching devices that are connected to the SDN controllers could render the dynamic 

behavioral access control possible, since with their support security rules and policies 

could be applied according to the real-time data packet analysis and flow-level 

information. Therefore, the access control policies are strengthened, and the impacts 

of the potential DoS attacks could be greatly mitigated. Another measure that can be 

taken into consideration about the prevention of DoS attacks against SDN controllers 

and OpenFlow switches is the implementation of a framework known as SFlow.  
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It is capable of performing real-time based traffic and according to the hardware 

equipment and network bandwidth its detection speed can reach even higher levels.  

It is made up of three main elements as stated by the research paper [40]: 

➢ SFlow-RT Agent: It is usually found and implemented in a switching device 

and its main role is to gather information about data packet samples that 

circulate on the network and send them in datagram format to the SDN 

collector. 
 

➢ SFlow-RT Analyzer: As its name suggests, the responsibility of this element 

is to perform extensive analysis on the received datagrams and offer real-time 

based information about the data parameters in order to discern abnormal 

behavioral patterns and identify swiftly attacks like DoS/DDoS. 
 

➢ SFlow-RT Collector: This is the server in which the aforementioned 

datagrams are being gathered and afterward stored. 

This will be further tested on a use-case with Mininet, which is an SDN virtual 

framework, together with the open-source SDN controller Ryu and the Open Virtual 

Switches (OpenFlow protocol). 

 
Figure C.3.1.1.1: SFlow Architecture 
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C.3.1.2 – Man-In-The-Middle (MITM) Attack – Controller & Switching Device – 

Countermeasure  

This kind of attack has targeted many organizations over the years, and it has become 

well-known in the cyber security industry, and because of that extensive studying has 

been done behind its principles and its inner workings. The platform NOX and more 

specifically the NOX OpenFlow controller, which was mentioned previously, entails 

an extension, which is capable of performing authentication and source authorization 

in accordance with a role-based model. Through the functional operations it is made 

up of, rule collision detection is viable. The extension is named FortNOX and due to 

its ability to perform validation of the alteration mechanisms through the use of digital 

signatures, prior to the execution of the software applications that utilize them on 

forwarding rules, it provides a robust security measure against potential 

eavesdroppers or fraudulent intermediaries. Together with FortNOX another 

technology similar to sflow that could be incorporated as an intermediary amidst the 

controller and the switching device is VeriFlow, which is able to perform instant 

validation on the packets sent between two targets on the network. Apart from the 

support of existing technologies that have been developed for compromise events, it is 

noteworthy to bear in mind that another key to achieving the limitation of the adverse 

effects of a potential MITM attack is to the application of recovery strategies. The 

OpenFlow protocol entails algorithms that can examine the effectiveness of the 

stability of the controller’s performance by having SDN switching devices keep on 

pinging or sending messages to the controller and check out its response. In the case 

that there is an error message or failure response then it uses the backup controllers 

via its switches (they connect to a backup controller). This also happens in case the 

switch does not receive a response for a specific amount of time. 

 
Figure C.3.1.2.1: FortNOX Architecture  
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C.3.2. - Countermeasure – Software-Defined Networks – Control Layer 

C.3.2.1 – Distributed Denial-of-Service (DDoS) Attack & Denial-of-Service (DoS) Attack – SDN 

Controller – Countermeasure  

Similar to the approach that was taken in subsection C.3.1.1, where we took 

advantage of the analysis of the flow of traffic midst the controllers and the OpenFlow 

switching devices, a specific framework could be utilized to identify irregular patterns 

swiftly and detect the DoS-related events. According to the research conducted on 

ways to mitigate Denial of Service attacks in the paper [41], there is a framework that 

been developed specifically for DoS related situations. The name of the 

aforementioned technology is FloodGuard, and it is a security framework that is 

SDN-aligned and entails two basic elements Analyzer of Active Flow and Packet 

Migration. The respective roles of the two software modules are as follows, for the 

former the aim is to perform dynamically a thorough analysis of the data packets in 

the traffic flow, that is real-time based on the view of the SDN controller, so as to 

identify which of the flows in the traffic are the result of a DoS attacks. As for the 

latter, the main task is to perform buffering on the received data packets and afterward 

sending them to the corresponding controller in order to process them via the 

utilization of an algorithm that works on a rolling schedule and thus effectively limits 

the rate in which resources are being consumed by the controller. If the identification 

of the said attack has been detected, the migration of packets software component will 

keep on monitoring the abnormal flow traffic aiming to discern the appropriate 

variables, which are going to support the controller with the task of forwarding flow 

rules generation and their afterward insertion to the switching devices.  

Nonetheless, the aforesaid solution could not have the same effect on the case of the 

Distributed version of the DoS attack, since it is more potent on the grounds that it is 

not launched from one machine but multiple compromised devices at the same time 

that are being controlled by the bot herder machine, which causes high-volume attack 

traffic towards targets, like the controller. A promising solution to the prevention of 

DDoS attacks is discussed in the paper [42], which is the Content-Oriented 

Networking Architecture (CONA). It is a node (proxy) that is situated between the 

client and the server. CONA is able to communicate with the SDN controller. 

Furthermore, since all the request messages, data packets that originate from the 

clients are being examined, intercepted and analyzed by the previously mentioned 

technology in case the rate of the received data packets, messages (received from the 

server) surpass the intended value, that flow traffic will be marked as a potential 

DDoS related event.  

Afterwards, with the aim of thwarting this attack scenario the controller will send a 

proper message to all related CONA agents and redirect the non-fraudulent data 

packets and messages to another server, effectively mitigating the adverse effects of 

the DDoS attack. All in all, from the aforementioned it is eminent that these 

technologies with the support of the SDN characteristics are utilized in order to 

prevent DDoS and DoS attacks and they might be used as the foundation for further 
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research so that more advanced strategies and methods are formulated for the 

enhancement of the Software-Defined Network structure. 

C.3.2.2 – Model with Various SDN Controllers – Countermeasure  

In order to defend against attacks that take advantage of the flaws of the multi-

controller architectural design of the Software-Defined Networks it is not enough to 

implement technologies and frameworks that are limited to a single entity such as the 

controller, but those that can be applied for the entire control layer. One existing 

method, which could be incorporated into the SDN 2nd layer, is the load balancing 

technique, due to its ability to improve scalability and stabilize the functionality of the 

controllers. Load balancing in SDN can be utilized to gather information from both 

the application and the infrastructure layers together with the state of the network and 

apply it to support the controllers in the decision-making process, and therefore 

effectively limiting the workload of the controllers and elucidating the configuration 

process of the applications and the controllers alike, preventing the creation of further 

conflicting issues that could be used by malicious actors for launching various attacks. 

Moreover, it supports the correct placement (logical) of the SDN controllers 

improving the security of the controllers and enhancing their scalability.  

 
Figure C.3.2.2.1: Load-Balancing in multi-controller SDN architecture  

Even though the load balancing technique is efficient, it is not potent enough on its 

own so as to address the issue of the raising complexity that comes with the 

management of multiple controllers in the environment of the Software-Defined 

Network. Hyperflow [43], which is a distributed event-driven controller framework 

developed for the OpenFlow protocol. In the environment of the HyperFlow, various 

controllers are running their functional operations at the same time, with every one of 

the controllers performing decision-making processes at a local level. As a result, the 

new forwarding and flow rules are being created and issued at a faster rate, enhancing 

the overall performance of the controllers in the 2nd layer. 
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Another approach that could be taken for this scenario is the allocation of the SDN 

controllers with the implementation of resilient controller placement. In the research 

paper [44] it is discussed that the development of a framework that forwards the 

suggestion that a controller is ought to fulfill certain conditions in its everyday 

operations, such as the impediment of the communication amidst the controllers and 

the switching devices in SDN, aiming to prevent relative attacks with more efficiency. 

C.3.3. - Countermeasure – Software-Defined Networks – Application Layer 

C.3.3.1 – Conflicting Issues – Rules – Security Policies – Misconfiguration – Countermeasure  

According to the research work that has been conducted on [45][46] the frameworks 

Flover and Anteater are discussed which contribute to the examination of the behavior 

of the software applications of the SDN network and prevent the unintended creation 

of conflicts amidst security policies, rules and configurations. The former, is actually 

a system tasked with the examination and verification of policies, which are issued for 

the various flows of traffic circulating in the SDN domain, through the utilization of 

assertion sets. Its incorporation follows the principle of NOX, with its feature the 

Yices Solver (SMT) and offers verification services for the functional operations of 

the behavior of a OpenFlow network from the aspect of security. Afterwards, for any 

abnormality detected in the policies implemented, Flover considers them as conflicts. 

The aforementioned service is conducted through the continuous gathering of 

response messages from the controller via batches.  

On the other hand, the latter system is capable of performing static examination of 

potential network misconfigurations or conflicts, debugging and is able to provide 

validation operations for the infrastructure layer of the SDN. Even though its 

execution and effect do not last for a long time period, it is still capable of identifying 

the source of the issues that have already occurred since it runs static tests instead of 

getting dynamically information based on real-time events. 

 

C.3.3.2 – Unauthorized Access – Countermeasure  

In papers [48] and [49], the authors of the corresponding papers discuss technologies 

that are capable of enforcing verification techniques on the validation of activities 

conducted inside the Software-Defined network. The first one is verificare, which is 

tasked with creating models for distributed devices using validation methods. The 

practical example given for this tool was to formulate a model based on the OpenFlow 

Network continuously so as to validate its most vital properties and appropriateness. 

The second platform, vericon it is responsible for the validation of how accurate the 

controllers’ functions are. One of Dijkstra’s theories is incorporated via the first-order 

principle and the ideal network-wise constants, which is the FloydHoare-Dijkstra. The 

aforementioned experiments showed great promise according to their final results, 

which were great since irregularities and bugs for wide SDN applications were 

identified swiftly and as for the process of the validation it was a success.  
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Finally, according to [50] it represents a new enforcement tool, NICE, in which the 

examination process of the OpenFlow network applications becomes automated and 

therefore the validation of the correctness of them is performed at a faster pace. 

Additionally, it is capable of testing event handlers via model checking that can 

swiftly examine the current condition of the NOX controllers which were not 

changed. 

C.3.3.3 – Spoofing – Countermeasure  

The research paper [38] has been discussing the implementation of the POX controller 

into the SDN environment, which is written in the programming language Python and 

usually it is bundled with the Mininet SDN network. According to the research 

conducted by the authors of the paper, the application which will be developed on the 

SDN POX controller will be able to defend against ARP spoofing attacks by detecting 

the malformed requests and replies that force the packets to be redirected to malicious 

domains. Furthermore, it is capable of monitoring and detecting excessive amounts of 

data arp packets and therefore prevents them through the installation of rules adhering 

strictly to the principles of the OpenFlow protocol. From the above, it can be 

concluded that POX controller can efficiently defend against arp spoofing attacks. 

Additionally, another way of preventing spoofing attacks is the incorporation of 

strong authentication protocols of mutual identifiers, such as the certificates that are 

signed by a trusted certificate authority. In the following section, there will be a 

demonstration of attacks conducted in the SDN environment, for educational purposes 

only via use-cases. 

 

C.4. Use-Case: Distributed Denial-Of-Service Attack 

For this use case, the main focus will be the examination of the effects of DDoS 

attacks regarding the SDN controller FloodLight and targeted host inside Mininet, as 

well as testing prevention and mitigation methods for the aforesaid scenario. In this 

use-case the hosts h5, h4, h3 will be compromised in order to launch the attack with 

the topology being simple with 6 hosting devices. 

The Software-Defined Network oriented open-source tools will include FloodLight, 

Mininet, Open Virtual Switch and SFlow-RT with the installation guide being 

included at the beginning of this thesis. The attack scenario illustrated in this use-case 

is purely for educational purposes. 

The goal of this use-case is to successfully cause the SDN Controller and hosting 

device to crash or drop their performance rate dramatically by flooding them with an 

excessive amount of traffic. Following, the SDN Controller FloodLight is launched, 

which is open-source Java-based controller that supports the OpenFlow protocol and 

offers a restful application programmable interface in order to issue commands, set 

rules and interact with the controller. The controller is launched with the command 

sudo java -jar target/floodlight.jar as seen in the following illustration. 
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Figure C.4.1.1: FloodLight SDN Controller Launched – Ubuntu 22.04 LTS | Logs 

Afterward, Mininet SDN Framework must be launched in order to set up the SDN 

environment and the network topology. It is well-suited for this case, on the grounds 

that it is a framework OpenFlow-based capable of deploying networks of massive 

scale on the limited resources of a single computing device, thus being proper for 

personal experimentation and practice.  

Since FloodLight is launched on the VM’s IP address, for this use-case it will be the 

10.0.2.15 IP address and therefore, the topology settings will be as follows. PingAll 

command is needed in this case to verify that all the hosting devices in the virtual 

SDN environment communicate with each other. 

 
Figure C.4.1.2: Mininet SDN Emulator – Ubuntu 22.04 LTS | Single-switching device 

Topology 
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Then, it is of the essence to launch the SFlow-RT open-source network analysis and 

metrics tool so as to have a display of the current state of the SDN environment in 

real-time as seen below. 

 

 
Figure C.4.1.3: SFlow-RT SDN Analytics Tool 

Nonetheless, it is not enough to simply launch the tool, due to the fact that it will not 

have visibility on the data flow, thus a bridge link must be formed in order to solve 

this issue. 
 

 
 Figure C.4.1.4: Open Virtual Switch SDN | Setting bridge link s1 amidst the flow in 

lo interface & SFlow-RT open-source tool 

 

 

If we open the FloodLight SDN controller, via heading to the link 

http://10.0.2.15:8080/ui/pages/index.html and checking the components of our 

network in the RESTful API, if everything went well, we should see 6 hosts and 1 

switching device (OVS). The controller is active, and the devices are six as they 

should be. 
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Figure C.4.1.5 & C.4.1.6: SDN Controller FloodLight Interface | Single Topology 

made up of six hosting devices with a sole Switching Device (OVS) 

 
 

Under the assumption that the attacker has taken control of three of the six hosting 

devices in the SDN domain (Mininet) (h3, h4, h5) with IP addresses 10.0.0.3, 

10.0.0.4, 10.0.0.5 having access in the tools xterm and hping3, the malicious actor 

could launch a new shell instance for each of the three hosting devices and execute 

Denial-Of-Service attack with the hping3. An open-source tool utilized mainly for 

packet fragmentation, sending custom data packets and even though it is usually used 

for testing purposes such as firewall rules, ports, and performance, it can also be 

utilized for malicious goals. Following is three shell instances launched for the three 
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hosting devices respectively. The first two are launching a DoS attack simultaneously 

by trying to flood the data traffic in the FloodLight SDN Controller, while the third 

one will launch an IP flood DoS attack with spoofed data packets towards the second 

hosting device. 
 

 

 

 
Figure C.4.1.7: Xterm launched instances for the compromised hosting devices h3, 

h4, h5 | UDP, TCP and IP Flood DoS Attack towards the SDN Controller & h2 

(targeted hosting device) 
 

 

The first command attempts to send multiple (-i u1) TCP SYN packets (-S) towards 

port 6653, because this is the default port of the OpenFlow Protocol, on which the 

FloodLight Controller runs with the targeted IP address localhost, while the second 

generates thousands (-i u1000) of UDP packets in an attempt to cause UDP flood. The 

final command creates the IP packets with spoofed IP source address (-a) with 

destination address the address of the h2 device with port 6653 since it is connected 

with the controller. The following are details on the six hosts of our topology. 

 
Figure C.4.1.8: Table of hosting devices in the FloodLight SDN Controller 

 

 

At the same time, the tools SFlow-RT and Wireshark packet sniffing tool are launched 

in order to detect the difference in the traffic flow and to check whether the tools are 

able to detect malfunctions and irregularities among the data flow. Following is the 

data flow before the DDoS attack is launched. 

 



~ 51 ~ 
 

 
 

 
Figure C.4.1.9: SFlow-RT & Flow Table of Mininet – Before DDoS | FloodLight 

Environment 

 

Nevertheless, it appears that after the DDoS attack takes place, the difference is quite 

evident in the SFlow-RT mn flow. 
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Figure C.4.1.10: Flow Table of Mininet – After DDoS | FloodLight Environment 

 

However, even though the difference is clear, it is vital to include the Wireshark 

sniffing packet tool with the aim of collecting more details on the DDoS scenario and 

the devices, controller involved in the SDN environment. 

 
 

The Wireshark tool is capable of performing filtering on packets and detailed analysis 

on the captured packet, passive and active monitoring. 
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Figure C.4.1.11 & C.4.1.12: Wireshark – DDoS Attack – OpenFlow Malformed 

Packets – Central Interface – FloodLight Controller 

 

Moreover, if we divert our attention to the interfaces of the compromised devices, we 

will see that it detected anomalies in the LLDP packets sent to our controller during 

DDoS attack. 
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Figure C.4.1.13 - C.4.1.15: Wireshark – DDoS Attack – OpenFlow Malformed 

Packets – Origin – Compromised Devices 

 

From the aforementioned illustrations, it seems that Wireshark has detected the flood 

DDoS attack with the OpenFlow protocol version 1.5 with security errors as 

malformed. The destination port is 6653 is used due to the fact that it is the default 

service port for the FloodLight SDN Controller.  
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When the attempt was made to refresh the controller, its performance was dropped 

dramatically with it being slowed down. From the sheer amount of the packets sent, it 

caused the controller to show timeout error (server overload), as seen below: 

 

 

 
Figure C.4.1.16 – Figure C.4.1.18: FloodLight Controller – Error Logs 
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Additionally, Wireshark as a sniffing packet tool was capable of detecting the IP 

spoofed packets with the fraudulent source IP address “192.168.2.11” towards the 

destination IP address 10.0.0.2 of the hosting device h2 (Mininet). 
 

 

 

 
Figure C.4.1.19 – Figure C.4.1.20: SFlow-RT InMon Packets ARP – IP Spoofed 

Hping3 – FloodLight SDN – Mininet 
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Wireshark detected the spoofed packets and displayed the message "acknowledgment 

number field is nonzero while the ACK flag is not set", which is a sign of a potential 

attack on a transmission protocol level. Due to the fact that the acknowledgement 

number is utilized in order to ensure whether the data were retrieved successfully or 

not, through the indication of the following sequence number. The attacker could have 

intentionally set the number to a non-zero and not set a flag on the grounds that 

intrusion detection and prevention systems might not have filters for logical 

correlation amidst the acknowledgment flag and the acknowledgment number, 

rendering them vulnerable to malicious data packets that could bypass the security as 

malformed and ignore them. Consequently, the actor will have successfully evaded 

the packet filtering. In order to truly prevent and mitigate such attacks, it is of vital 

importance to include Web Application Firewalls, limit the packet processing rate, and 

apply IPS/IDS systems with proper filtering rules. 

 

Another solution for the aforementioned issue would be the implementation of the 

DDoS protection application that SFlow-RT entails, which is capable of limiting the 

rate of the incoming packets and identifying DDoS-related incidents. 

 

From the DDoS-Protect, we have filters table on the IP addresses that need to be 

excluded from the access lists regarding the addresses that are allowed to 

communicate with the FloodLight Controller. 
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Figure C.4.1.21 – Figure C.4.1.22: SFlow-RT DDoS Protect – Access Control Groups 

 

If the attacker attempts to perform DDoS from any of the compromised hosting 

devices (h3, h4, h5) then the DDoS-Protect will cut off any packets that come from 

these devices, as demonstrated below. 

 

 
 

 

 

 

 

Therefore, we successfully thwarted the attempt to flood our SDN environment. 

However, these measures alone will not suffice, and this is why security policies, rules 

and automated configuration handling methods are also needed to mitigate such 

events. 
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Conclusion 

From the entirety of the thesis, we have been thoroughly discussing and examining 

the architecture as well as the inner workings of the Software-Defined Networks. The 

new trends that surround it, their benefits and challenges have been analyzed not only 

in comparison to their predecessor but also when it concerns the relationships between 

the three layers and their major components. Afterward, the Software-Defined 

Networks were examined from the aspect of security. Meticulously reviewing its main 

susceptibilities and the countermeasures that can be taken, while providing the 

prominent security traits of the Software-Defined Networks that set it apart from the 

rest of the other network technologies. The three layers, mainly infrastructure, control 

and application layer were analyzed not only from a network but also from a security 

perspective with preventive and mitigation measures. The SDN concept even though 

it is relatively new to the fields of both networking and security, many have been 

researching it giving birth to technologies and methods, causing its rapid development 

and proving its worth as a solution for the problems that were caused by the 

traditional networks. All in all, on the grounds that the SDN still has room for 

improvement and since it has various applications in cloud computing and network 

virtualization, combined with its vast potential for the enhancement of network 

security, it will be an asset of vital importance, that will bring about a great change to 

many fields and due to the aforesaid fact, it is expected to draw tremendous amounts 

of attention. 
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Use-Cases – SDN Open-Source Tools’ Table 

 

 

 

 

Installation Guide – Open-Source Tools (In Ubuntu/Kali Linux) 

The use-case C.4 will be demonstrated in the Operating System Ubuntu (22.04 LTS), 

however it can be applied to the Kali Linux environment as well. The use-case is 

executed in Virtual Environment hosted by the VirtualBox (more specifically by the 

physical host machine, due to the hypervisor). For further details regarding the 

installation of the VirtualBox are found in the link description 

https://www.virtualbox.org/ as well as for the VMs Ubuntu and Kali Linux from the 

following links: https://medium.com/@maheshdeshmukh22/how-to-install-ubuntu-22-

04-lts-on-virtualbox-in-windows-11-6c259ce8ef60, https://www.kali.org/get-kali/#kali-

platforms.  

The installation process is the same for either of the two OS, as follows: 

➢ Mininet SDN Framework: Open a terminal instance after VirtualBox and a 

Kali Linux/Ubuntu virtual machine have been setup and afterwards execute the 

commands sudo apt-get update -y and sudo apt-get install mininet -y. 
  
 

➢ SDN Controller FloodLight: In the terminal’s command line, it is vital to 

install ant via the command sudo apt install build-essential ant python2-dev 

openjdk-8-jdk maven git and afterwards clone the FloodLight repository from 

github, sudo git clone https://github.com/floodlight/floodlight. 

 

 

 

Open-Source Tools Use-Case | Description - Usage 

Mininet SDN Framework It will be the platform that will provide a virtual testing environment for our 

Software-Defined Network | Use-Case: C.4 

SDN Controller FloodLight 
Java-Based OpenFlow Controller for SDN which will be utilized as one of the 

primary tools for Distributed Denial-of-Service Attack in our virtual SDN 

environment | Use-Case: C.4 

Open Virtual Switch (OVS) This is a multi-layer virtual switch supporting Apache 2.0 and it will be 

utilized to produce and manage our virtual switching devices | Use-Case: C.4 

SFlow-RT 
Real-Time analysis open-source tool, utilized for network traffic monitoring 

and metric, specifically for Software-Defined Network environment and it 

will be utilized to monitor the state of the controller | Use-Case: C.4 

https://www.virtualbox.org/
https://medium.com/@maheshdeshmukh22/how-to-install-ubuntu-22-04-lts-on-virtualbox-in-windows-11-6c259ce8ef60
https://medium.com/@maheshdeshmukh22/how-to-install-ubuntu-22-04-lts-on-virtualbox-in-windows-11-6c259ce8ef60
https://www.kali.org/get-kali/#kali-platforms
https://www.kali.org/get-kali/#kali-platforms
https://github.com/floodlight/floodlight
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Then, head to the website of maven repository https://mvnrepository.com and 

install the jar files for the libraries libthrift ver 0.14.1 and netty-all ver 

4.1.66.Final. Head to the terminal, and from there to the ~/floodlight/lib 

directory and there remove the jar files libthrift-0.9.0.jar, netty-all-4.0.31.final 

(it is not necessary for them to be in the aforementioned versions).  

 

 

Build the file using gedit build.xml to ensure that the jar files have been 

removed and copy the downloaded jar files ro rhe directory ~/floodlight/lib via 

the commands sudo cp libthrift-0.14.1.jar ~/floodlight/lib, sudo cp netty-all-

4.1.66.Final.jar ~/floodlight/lib/. Inside the floodlight directory (cd ..) check 

whether there are any issues with the jar versions and initialize, update the 

modules with the commands sudo git submodule init, sudo git submodule 

update. Furthermore, it is essential to ensure to execute git pull in order to fetch 

the latest updates from the master branch of the remote repository origin 

(floodlight) and merge them to our current branch. Clear the lingering files in 

the target sub-directory with sudo ant clean then compile the source Java code, 

and link the existing libraries according to the directives of the build.xml file 

via the command sudo ant. Finally, launch the floodlight SDN controller after 

everything have been setup correctly with the command sudo java -jar 

target/floodlight.jar. 

 

➢ Open Virtual Switch (OVS): Open a new terminal instance and execute the 

commands sudo apt-get update -y and then sudo apt-get install openvswitch-

switch -y. 

 

➢ SFlow-RT: In the terminal execute wget in order to acquire the software 

package from inmon, wget https://inmon.com/products/sFlow-RT/sflow-

rt.tar.gz, extract the file into a directory via sudo tar -xvzf sflow-rt.tar.gz. 

Afterwards, redirect to the website https://sflow-rt.com/download.php, which 

entails further instructions regarding application packages for SFlow-RT. With 

the command ./sflow-rt/get-app.sh sflow-rt [application_name], applications 

such as browse-metrics, ddos-protect can be installed in the current tool and 

after a restart ./sflow-rt/start.sh the applications will be working properly. 

 

Additional Files – Use-Case: It is noteworthy to mention that all the results of the 

captured packets via Wireshark found in the third section of the thesis are found in the 

file Wireshark_Findings_Use_Case_#1.zip. 

 

 

https://mvnrepository.com/
https://inmon.com/products/sFlow-RT/sflow-rt.tar.gz
https://inmon.com/products/sFlow-RT/sflow-rt.tar.gz
https://sflow-rt.com/download.php
https://drive.google.com/file/d/1yOo-spNPo5L6_OCpwBcb9WCODR9B4v3C/view?usp=drive_link
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