OIKONOMIKO ATHENS UNIVERSITY
NANEMIETHMIO (™9 OF ECONOMICS

AOHNON AND BUSINESS

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

School of Information Sciences and Technology/Department of
Informatics

MSc in Information Systems Development and Security

Implementing a Recirculation-Based Selective
Forwarding Unit Using P4

Efthymios Papageorgiou f3312410

Supervisor

Prof. Georgios Xylomenos

Athens, 2026

Abstract

Modern video conference applications rely on Selective Forwarding Units
(SFU) to replicate packet traffic between participants. Traditional SFUs commonly
operate in user space and as such are required to move packets to and from it so they
can copy them. These operations have a significant negative impact on latency.
Switches with programmable dataplanes offer a solution to this problem enabling
SFUs to run directly on switches and thus not to incur such costs. Using P4, an open-
source programing language for switches, specifically its recirculation feature, in
which packets can reenter a switch pipeline instead of being transmitted, a more
efficient SFU was developed. After its development, it was compared with a Python-
based SFU implementation running in user space on a Linux host, instead of on a
switch, similarly to traditional SFUs. Even in simulated hardware, the P4-Based SFU
outperformed its counterpart by demonstrating lower latency, increased stability and
reduced packet loss. The results highlight the potential of programmable dataplanes
for the development of high performance SFUs.

MepiAnyn

OLouyxpoveg edpappoyecg Bivteodlaokedng Baacidovtal oe Selective Forwarding Units
(SFU) yla tnv avamapaywyn tTh¢ KUKAoOPopiag TTAKETWYV PETAEY TWY CUPHUETEXOVTWV.
Ot mtapadoaotakeg SFU Asttoupyolv cuviBwc oTov XWPOo XPHoTn Kal, we K TOUTOU,
aratteital N JeTadpopa TAKETWYV ATIO KAL TIPOC AUTOV TIPOKELHMEVOU va avtlypadpouv.
AuTEcg ol Asltoupyieg emuiBapuvouy onuavtikd tnv kabuotepnon. Ol yetaywyol pe
poypappatilopeva emineda dedopevwy (programmable dataplane) mpoodpepouv
plaAbon oto PpoBANuUa, emitpeEnovtac otic SFU va ekteAovvrtal aneubeiag otov
HETAYWYO, KL £TOL va arnodpeUyouv auTo To KOOTOC. Xpnaotlpotmowwvtag tnv P4, pa
YAWOCOQA TIPOYPAUHATIOHOU avolXTtoU KW3LKA yia HETAYWYOUC, KAl CUYKEKPLUEVA TNV
avakukAodopia (recirculation), p€ow tTNg omoiag Ta MAKETA UTTopo UV va eLGEABOLV
EK VEOU OTOV aywyo emeéepyaoiac avti va petadobolv, avamtixOnKe pa Lo
amodotiky SFU. Metd tnv avdamtuén tng, ouykpibnke pe pla vAomtoinon SFU ce
Python Ttou ekteAeital oe Xwpo xprnotn oe evav uttoAoyloth Linux, otwg cupBaivet
oTic Tapadociakec SFU. AkOun Kal o€ TIPOCOUOLWHEVO UALKO, N SFU Ttou Baciletat
otnv P4 umtepeixe Tng avtiotolxng vAomoinong, mapouotadoviag XaunAotepn
KaBuotépnon, avénuévn otabepdTNTA KAl HELWHEVN aTTWAELA TTAKETWY. Ta
armoteAEopata avadelkvUouV TIC OUVATOTNTECG TWV TIPOYPAUHATI{OHEVWY ETUTIEd WV
oedopévwy yla tnv avamtuén SFU vPnAng antodoonc.

Acknowledgments

| would like to thank my supervisor Prof. Georgios Xylomenos for his guidance and
feedback throughout this project. | am also grateful to Pavlos Tsikrikas, who,
alongside my supervisor authored the paper “A Selective Forwarding Unit
Implementation in P4”, which provided the foundation this project was built. Finaly, |
would like to thank the Onassis Foundation for providing the scholarship which
enabled me to pursue my master’s degree.

Table of Contents

ADSTIACT ..ttt ettt e a et e e e e eaaes 2
[ILE=T o171 111 E PSP OURPRPPRTPRE 3
ACKNOWLEAZIMENTS ..eiiiiiiiieii ittt ete et e te et eeeeu et e e eeneeensanaansansannsensennsens 4
RS o) ll 7= U] = S P TR PP TR PPP PR PRPRPON 7
LiSt Of TADLES . cevuiiiiiiiiiiiccii e 9
[IEY o) /AN o]] 01V 1 1 1= T 10
1. INTFOAUCTION ceeeiiiiii i e 11
1.1. Real-time conferencing and latenNCyccveuiiiiiiiiiiiiiiee e ee e eaees 11
1.2. Types of video conference application architecturec..ccoeevveevviienniinnennnn. 11
1.3. How SFUs work in detail........cc.ceiiiiiiiiiiiiiiiiiiiiiiiiiicciccci e 14
1.4. Programmable dataplanes and P4........cocoouiiiiiiiiiiiiiiir e eee e 14
1.5. Motivation and related WOrkccceviiviiiiiiiiiiiiiiini 16
2. Design and implementation of the SFUS ..o 18
2.71.DeSIZN aSSUMPTIONS tuuiiiiiiiiiiiiiiirereeieteereeeneeneerernesnssnsensensnssnsensensassnsenns 18
2.2.P4-DBasS@d SFU ... e e 19
2.3, USEBI SPACE SFU ittt ie ettt eteee e e e et et s e e et snesneeneaaeaaanaanns 26
. EXPErimeENtal SEIUD «.eniiiii et ae e e 28
3.1. ENvironment CoNfigurationcv. i iiiieiiiirieer e re et eese e e e e saennanes 28
3.2. Network and application SEtHINGS ...vvverieriiiiirerieirire e eeenenes 28
3.3. Measurement MethodOlOgY ..cu.iuviiinieiiiiiiirr e re e e 31
4. Evaluation RESULLS.......cciuiiiiiiiiiiiiiiiiiii e 33
4.7, Bitrate Of 4 MBS couee i e e e eaas 33
4.2, Bitrate Of 2.5 MbDPS cuuiiiiiiiii e e e e e 35
4.3, Bitrate Of 0.15 M P S ittt et e e e eesae e s e s e sanenaanns 37
4.4, Bitrate 0f 0.076 MBS ..iuiiiiiiiiiiiiie et sa e e 40
4.5. General observations and COmMPAariSONccuiveiieeiiiiieie e eeeeaeas 42
5. Conclusions and future reSearCho. i, 46
6. Appendix: EXTENAEd reSULLS ..cuiuiiie i e a s e e e 47

7. References

List of Figures

Figure 1:
Figure 2:
Figure 3 :
Figure 4 :
Figure 5:
Figure 6:
Figure 7 :
Figure 8 :
Figure 9:
Figure 10
Figure 11

Figure 12 :
Figure 13
Figure 14 :
Figure 15:
Figure 16:
Figure 17 :

o= | (o]]} =Tl (U] ¢ PPN 12
(O =T (o] o V1 =Yo1 (B | TR 13
T =T (o] aTL (Yot U TN 14
Recirculation MeChaniSM.......viiiiiiieiiec e e e 19
(o TaV'Z=] fo i (o T o Tt IF= o3 1o o TSR 20
CLlONING EXAMPLE tuuiiniiiiiiiieie et ettt ete et et et et eeieeneeen st aensansannns 20
Pipeline with recirculation and cloningaddedccccceviiiiiriininniiniinnenn. 21
ReCIrCULAte @CTiON ..vuiii ittt ee et e e ee e e eans 21
Register defiNitionccu i et ee et s e ee e e eans 22
: SFU using registers to read viewer addreSSesccuevvvivieeiiiiineeneennennnn. 22
:Presenter matching table ... e 23

Examples presenter matching using If statements......cc.cceeeviieniinnennee. 23
Registers before usingthe controller.......ccoviveiiiiiiiiiiiinieee e, 24
Example uses of the CONtroller......euienieniiiiiiie e, 24
Registers after using the Controller......ccouviiiiiiiiiiii i, 24
Final version of the P4-Based SFU pipelin€.....ccceeeuviveiiiiiiiiiiiiieieennenne, 25
Ingress pipeline (excluding most If statements used for group matching)

.. 25
Figure 18 : ReCirculation @CtioNc.iiueiiiiiiii et ee e ee e e e e e ees 26
Figure 19 i EZress PIPELINE cou vttt et re e ee e seenens e sansnnannens 26
Figure 20 : user space SFU flowChartooouiiiii e 27
Figure 21: Network topology for experiments with the P4-Based SFU..................... 29
Figure 22 : Network topology for experiments with the user space SFU................... 30
Figure 23 : Average delay vs number of viewers graph for the P4-Based SFU at 4

71 o] o 1 T PP PP PP 34
Figure 24 : Average delay vs number of viewers graph for the user space SFU at 4

71 o] o 1 TP PP PRSPPI 35
Figure 25 : Average delay vs number of viewers graph for the P4-Based SFU at 2.5

171 o] o I T PP 36
Figure 26 : Average delay vs number of viewers graph for the user space SFU at 2.5
171 o] o I T PP 37
Figure 27: Average delay vs number of viewers graph for the P4-Based SFU at 0.15

171 o] o 1 TP PP PRP 38
Figure 28 : Average delay vs number of viewers graph for the user space SFU at 0.15
171 o] o 1 TP PO 40

Figure 29 : Average delay vs number of viewers graph for the P4-Based SFU at 0.076

171 o] o 1< I TSRO P PP PP PPN 41
Figure 30 Average delay vs number of viewers graph for the user space SFU at 0.076
171 o] o 1< S PP PP PRSPPI PRPIN 42

Figure 31 : Comparison graph of P4-based SFU and user space SFU at 0.15Mbps..43
Figure 32 : Comparison graph of P4-based SFU and user space SFU at 0.0.76Mbps

List of Tables

Table 1: Summary results for P4-Based SFU at 4 MbpS ...c.ceeviiiiiiriiiiiiiiiieeieeenenens 33
Table 2 : Summary results for user space SFU at 4 MbPS ...cevieiiiiiiiiiiiiiiiiiierinenens 34
Table 3 : Summary results for P4-Based SFU at 2.5 MbPS ..coviiiiiiiiiiiiiiriicierinenens 35
Table 4 : Summary results for user space SFU at 2.5 MbpS ...oeuvieeviiiiiiiiiiniiciiinenens 36
Table 5 Summary results for P4-Based SFU at 0.15 MbpPS ..ccviviiviiiiiiiiiiiiieeinenens 37
Table 6 : Summary results for user space SFU at 0.15 Mbpsccvviivieiiiiiiinieennennn. 39
Table 7 : Summary results for P4-Based SFU at 0.076 MbPSccovvvieiiiiiiiiieninnnne. 40
Table 8 : Summary results for user space SFU at 0.076 MbPS ...ccevvveeeeiniiiiinieennenne. 41
Table 9 : Comparison of P4-based SFU and user space SFU at 0.15Mbps 43
Table 10 : Comparison of P4-based SFU and user space SFU at 0.0.76Mbps 43
Table 11 : Extended results for P4-based SFU at 4AMbpS....cccceveiiiiiiiiiiiiiiiiieeceene, 47
Table 12 : Extended results for user space SFU at 4 MbpS ...cccevviiiiieiiiiiiiniecinnenne. 48
Table 13 : Extended results for P4-based SFU at 2.5 MbPS...ccvveiiiiiiiiiiiiiiiieeeenenne, 48
Table 14 : Extended results for user space SFU at 2.5 MbpS...ccccvvveeieeiiiiiineeeennenne. 49
Table 15 : Extended results for P4-based SFU at 0.15 MbpS ..ccceviiiiiiiiiiiiiiiecennenne, 49
Table 16 : Extended results for user space SFU at 0.15 Mbps....ccccvveeeeiiiiiiieinnenn.. 51
Table 17 : Extended results for P4-based SFU at 0.076 MbPScovvveeieeeiiieienennnnne. 51
Table 18 : Extended results for user space SFU at 0.076 MbpPS.....cccevveevenvineenennnne. 52

List of Acronyms

P2P: Peer-to-Peer
MCU: Multipoint Control Unit
SFU: Selective Forwarding Unit

RTP: Real-time Transport Protocol

c

DP: User Datagram Protocol

o

‘.

4: Programming Protocol-Independent Packet Processors

o

A: Portable Switch Architecture

TNA: Tofino Native Architecture

I2E: Ingress-to-Egress Clone
E2E: Egress-to-Egress Clone

API: Application Programming Interface

BIER: Bit Index Explicit Replication

BIER-FRR: Bit Index Explicit Replication — Fast Reroute
BMv2: Behavioral Model v2:

IP: Internet Protocol

QVS: Open vSwitch

10

1. Introduction

1.1. Real-time conferencing and latency

In today’s increasingly digital world, video conferencing applications like
Microsoft Teams, Google Meet and Zoom are becoming more common in many
aspects of life. A major factor for the smooth operation of such real-time video
streaming applications is keeping latency as low as possible to avoid potential
communication disruptions, since most users generally tolerate delays up to 150ms
[1]. At the same time, with resolution and bitrate increasing (e.g., 4K conferencing),
the need for fast packet replication and forwarding becomes more pressing to
facilitate the smooth operation of video conferencing applications. One of the main
factors that need to be taken into consideration when attempting to maintain low
latency is the application architecture, and especially, its handling of multiparty
communications.

1.2. Types of video conference application architecture

There are multiple architectural approaches for allowing communication
between several hosts developers can follow [2] [3]:

e Full-mesh peer-to-peer networks (P2P): In this case every host
receives packets from and transmits packets to every other host at the

video conference. This is a very simple concept that has several
advantages, mainly the ability to easily use end-to-end encryption and
give users the ability to customize exactly which streams they want to
receive. At the sametime, it results in each host receiving and sending
a number of packet streams that can be up to the number of hosts it
shares the conference with. With many hosts, this can result in a very
large bandwidth cost, making this type of connection impractical,
even though it has the lowest possible delay [4] [3].

11

rd
/ AN
// N
™
g
/ ™\
’ N
Host 1 Host 3

Figure 1 : P2P architecture

Multipoint Control Units (MCUSs): In this type of architecture a server
acts as anintermediary for the conference. Each host sends its stream
exclusively to the server, which then combines the streams from all
hosts into a single stream. While this drastically reduces the number
of streams that the hosts need to deal with and, thus, the required
bandwidth, italso introduces a host of new issues. Firstly, itintroduces
the need for synchronization between all the different streams sent to
the server, meaning that delays in one host’s transmission can
negatively impact the streams from all other hosts. The computational
overhead required is also increased, since there is a need to decrypt
and re-encrypt the streams to enable combining them, while also
introducing potential security risks and privacy concerns. Finally,
combining all streams into one means that hosts are forced to receive
the data of every stream, even if they have no use for it, meaning
increased bandwidth requirements for receiving essentially useless
data. As an example, in a digital classroom setting while the teacher
might want to be able to receive the video streams of all participants,
the students might only wish to see the teacher’s stream, but they are
forced to receive each other’s streams anyway [5] [3].

12

Host 2

(-

Host 1 Host 3

Figure 2 : MCU architecture

Selective Forwarding Units (SFUs): SFUs are the current dominant

video conference architecture, since they manage to combine the
centralized control of MCUs while keeping some of the advantages of
peer-to-peer connections like their versatility. Like an MCU, the SFU is
also located in the “center” of a video conference and receives the
streams transmitted by all participants. Unlike an MCU, the streams
are not combined into one, instead the SFU forwards to each host
multiple streams, but only the ones that the host has asked for. This
means that each host is transmitting only one stream, keeping the low
upload requirements of the MCU architecture. While it does receive
multiple streams, since itis only the ones it needs, itis most likely that
their combined required download bandwidth is lower than an MCU'’s
single large stream. SFUs are also commonly used alongside layered
coding, where each host creates multiple streams, each with a
different resolution. This way, others in the video conference can
select the resolution their network can best support, without requiring
the SFU to perform transcoding, thus reducing overhead and delays.
Finally, unlike MCUs, SFUs can make use of end-to-end encryption,
matching the privacy advantages of P2P architectures [6] [3].

13

Host 1 Host 3

Figure 3 : SFU architecture

1.3. How SFUs work in detail

The main purpose of a Selective Forwarding Unit (SFU) is to decide which
participant in a conference gets forwarded what stream, based on the rules of the
conference. It does not transcode or mix streams, it only forwards and, if needed,
makes copies of the stream’s packets so multiple participants can receive the same
stream. Media flows from each participant to the SFU and then to other participants
over RTP/UDP. The forwarding logic is based on the SFU maintaining lists of
participants and the streams they have subscribed to. When a packet arrives at the
SFU, the source stream is first identified and then the packet is replicated and
forwarded to all the stream’s subscribers. SFUs usually support features like taking
decisions based on network conditions, dynamic subscriptions with the participants
being able to change which streams they receive on the fly and scalable video coding,
where participants send streams of different quality levels and the SFU decides
which to forward based on the receiver’s bandwidth. [3]

1.4. Programmable dataplanes and P4

Traditional networking devices like routers and switches have fixed dataplanes
meaning that the functions they perform like parsing, forwarding and filtering are
hardcoded. Devices with programmable dataplanes allow their operators to define
how packets are processed and potentially change those definitions at a later date.
This ability is particularly useful when it comes to trying out prototypes or specialized
applications that require unusual forwarding logic.

P4 stands for Programming Protocol-Independent Packet Processors and is
described as “a high-level language for programming protocol-independent packet

14

processors”[7]. It was developed with the goal of providing a way for switch operators
to reconfigure their behavior after deployment as well as to provide target
independence giving developers the ability to describe packet processing
functionality independent of the hardware they are using. The basic concepts from
P4 relevant to this projectinclude:

Pipeline

In P4 the dataplane is organized as a packet processing pipeline. When a
packet enters the switch, it goes through the following steps [7]:

e Parser: extracts the headers from the raw packet and stores them in
fields that are carried in the rest of the pipeline along the packet.

e Ingress: does some of the processing, like rewriting headers or
deciding forwarding.

e Egress: process the packet further, for example, using recirculation.

e Deparser: reassembles the headers into the packet for transmission.

It should be noted that the above stages exist in the vimodel architecture which was
followed by this project; other architectures for P4 (such as PSA or TNA) also exist and
might make use of additional pipeline stages [8][9]. All processing takes place as the
packet goes from stage to stage.

Metadata

Metadata is temporary information carried alongside a packet throughout the
pipeline, without them being part of the packetitself. Unlike headers, they are created
by the P4 program itself and never leave the switch. They usually relate to data like
flags or calculated values [7], which are specific to a packet.

Registers

In P4 registers are stateful memory arrays inside the dataplane. They are
defined with a type and fixed size and unlike metadata and headers, they persist
across packets. They can be read and written using the appropriate P4 operations
[10], and serve as persistent memory in the switch.

Match action tables

They are tables that match packet fields and apply some predetermined
action when a match is found. The match keys usually include header fields or
metadata [7].

15

Recirculation

Unlike traditional programming languages, the P4 pipeline is completely linear
and does not include loops. Recirculation in P4 allows a packet that has completed
the pipeline to be sent back to the beginning of the pipeline to be processed again. In
the vimodel architecture, which was used by this project, a packet can be selected
for recirculation by being redirected to a designated recirculate port [11][12].

Packet Cloning

Cloning simply creates a duplicate of the packet. In this project two types of
cloning are relevant [9] [8]:

e Ingress to egress (12E): The clone is created based on the packet as it was at
the start of the ingress and is injected at the beginning of the egress.

e Egress to egress (E2E): The clone is created based on the packet as it was at
the start of the egress and is injected back into the egress.

P4Runtime

P4Runtime is a control-plane APl designed to manage devices programmed in
P4. While the P4 language specifies how packets are processed in the dataplane,
P4Runtime enables external controllers to reconfigure P4 switches, without the need
for recompilation, for example, by modifying the registers or updating the match
action tables[10].

1.5. Motivation and related work

The main motivation behind this project was to create a more realistic
alternative to the P4-Based SFU created for the paper “A Selective Forwarding Unit
Implementation in P4” authored by Pavlos Tsikrikas and George Xylomenos. In this
work the authors of the paper created a P4-Based SFU taking advantage of the fact
that P4 runs on a switch rather than a server, leveraging the inherent advantages of
hardware-based packet processing. Switches are optimized for fast operations,
avoiding the overhead of system calls and kernel-user space crossings present in
server implementations. They concluded that their SFU had major advantages when
it came to minimizing latency compared to a user space SFU written in Python which
they also created [13]. However, one limitation of their study was that the SFU
developed relied on multicasting to create multiple copies of each packet, therefore
ithad to be located in such a way that each destination would be served by a different
port, which would only make sense for a small local area scenario. In practice, most
SFU servers make use of only a limited number of ports to communicate with users
and are usually located on the edges of networks.

16

The paper “P4-Based Implementation of BIER and BIER-FRR for Scalable and
Resilient Multicast” written by Daniel Merling, Steffen Lindner and Michael Menth,
served as inspiration for a more realistic P4-based SFU. In this paper the authors
implement Bit Indexed Explicit Replication (BIER) using P4; in BIER, packets are
replicated using a bitmap included in their header. While BIER itself is not directly
related to this project, the authors implemented the novel idea of making use of
recirculation in conjunction with the use of metadata flags to achieve the replication
of packets, thus avoiding the limitations imposed by P4’s lack of real loop
functionality. Although this approach is slower than multicast groups, it avoids the
need for dedicating a port to each host connected to the SFU [12].

The main purpose of this project was to attempt to develop a new SFU in P4,
using recirculation to avoid multicast and, as in the original publication, compare it
with a similar SFU developed in Python, in order to determine if it maintained its lower
latency advantage and how its latency scaled when increasing the number of
recipients the SFUs had to transmit to. The project also had the secondary goal of
making the P4-Based SFU dynamically configurable, to take further advantage of P4’s
capabilities; for example, this could be used to allow adding and dropping senders
and receivers from a conference.

All source code, scripts, and experimental data used in this thesis are
available at: https://github.com/efthpapag/p4-SFU .

17

https://github.com/efthpapag/p4-SFU

2. Design and implementation of the SFUs

2.1. Design assumptions

In order to assess the benefits of using P4 two SFUs were created. One was
programmed using P4_16 and could be executed by P4 compatible programmable
switches. For this project, it ran on a BMv2 software switch and, more specifically,
BMv2’s simple_switch target, the reference software implementation of the vimodel
architecture [14]. This type of setup provided a programmable dataplane that
supported all the actions needed for the implementation of the SFU’s functionality.
While BMv2’s performance does not match that of a hardware switch, itis commonly
used for prototyping and testing P4 programs [8].

The other SFU was a standard user space SFU programed using Python 3 and
ran on a Linux server. Unlike the SFU written in P4, this one had to use socket calls to
receive and send packets, performing packet duplication on the user level. For the
sake of keeping the comparison fair, it worked in a similar way to the P4-Based SFU.

Another assumption made about the system was that each host that took part
in a conference would only have the ability to transmit a single stream with a steady
bitrate and packet size. This way the SFUs would only need to consider the host’s IP
address when determining where they had to address the replicated packets to. The
hosts and the SFUs would communicate with each other through a switch located in
the center of the network.

The way in which the SFUs decided which host they would send copies of a
packet to in this project was based on a subscription model similar, though not
completely identical to, the way a lot of real SFUs work [3]. The basic concept is that
there are groups each of which correspond to the IP address of a host that transmits
a stream of packets; hereafter this host will be referred to as the presenter. This group
is essentially a list with the IP addresses of all the hosts that wish to receive the
presenter’s stream. These hosts will from now on be referred to as the viewers. The
idea is that when a new host enters a video conference a new empty group is created
with it as the presenter. When another host wants to receive its stream, it subscribes
to the stream by adding itself as a viewer in the presenter’s group. So essentially every
host sends its stream to the viewers of the group it is the presenter of. It is important
to note that for this project it was assumed that each host sends only one stream, in
reality this usually is not the case and hosts often send multiple streams, for example
different streams for audio, camera feed, screen sharing etc. [2]

18

In addition to the SFUs, a few supporting scripts were created to assist with
testing as well as the setup of the system. The first was a Python script which would
transmit a number of packets from the host it was running, using Python’s Scapy
library. Scapy is a Python library that enables the creation, manipulation,
transmission, and capture of network packets directly within Python scripts [15].
Later on in the project, the way the packets were transmitted was changed in the
experimental part of the project, as detailed in section “3.1. Environment
configuration”. A second Python script, also using Scapy, this time with the purpose
of recording any packets received by the host was also created. In addition to the two
Python scripts, a shell code script was created to set up some parts of the network.
This script’s uses included configuring the non-programmable software switch that
was in the center of the network, assigning an IP address to the port of the BMv2
switch that the SFU was receiving packets from, configuring a clone/mirroring
session on the same switch and, finally, resetting the BMv2’s registers.

2.2. P4-based SFU

In this section the development and function of the P4-Based SFU is
described. Firstly, the main idea behind it is described, then the main changes that
happened during its development and, finally, its final version is described in detail.

The central idea behind the implementation of the P4-Based SFU is
recirculation. When the SFU receives a packet, it must make a clone of it for each host
that needs to receive it. Since the goal was to use only one port for outgoing packets,
multicasting could not be used, since it would require a number of ports equal to the
number of viewers. Sending multiple copies of the packet requires the original packet
passing through the pipeline once for each viewer, with a copy being made and sent
for every pass. In order to circumvent P4’s lack of loops, packet recirculation would
be used. When using recirculation, the packet passes through the pipeline as usual,
but at the end of the egress stage, instead of being sent to the network, it goes back
to the beginning of the pipeline as shown in Figure 4. The egress stage can be
informed which packets are to be recirculated and which are not by a metadata field
acting as a flag. In P4 metadata are fields carried alongside a packet through the
pipeline, without them being part of the packet itself. P4 can also preserve selected
metadata, so that they can follow the packet between recirculations.

Recirculation

Input —wFarser —m| Ingres_s | Egres; | Deparser JNillutr;but
Processing Processing

Figure 4 : Recirculation mechanism

19

Development

Initially, the SFU was not created as a simple forwarding switch, to make sure
the pipeline’s basic components had been correctly implemented. It is also
important to note that during the development phase of the project the SFU did not
have its own IP address; instead, the central switch directed all packets not coming
from the SFU towards it.

The first step towards implementing the actual SFU functionality was
overriding a packet’s destination, so that it can be sent to a host selected by the SFU.
The SFU would override the destination of all packets with the IP address of one of the
hosts, named h1, which had an IP address of 10.0.0.1, as can be seen in Figure 5.

action forward to hl
meta.force hl = 1;
hdr.ethernet.srcAddr = S

hdr.ethernet.dstAddr
hdr.ipv4.dstAddr 0>

standard metadata.eg

Figure 5 : Forward to h1 action

The next step was to implement duplication, which required cloning. The goal
was to detect packets where h1, the presenter, was a packet’s source, and clone it.
The host named h2, with an IP address of 10.0.2.2, and the packet’s original
destination host would act as viewers. To achieve this, when a packet arrived from h1
it would be cloned, the clone would be sent to the network unmodified, ending up at
the original destination, while the original would continue down the ingress pipeline
when its destination changed to h2, as seen in Figure 6.

Ingress
' Original Packet Original Packet Change Dst. IP Original Packet
T\ Dst 1P 10.0.3.3 I2E Clone Dst. 1P 10.0.3.3 0 10.0.2.2 Dst. 1P 10.022 Egress

Clone Packet
Dst IP:10.0.3.3

Figure 6 : Cloning example

20

Based on [12] the type of cloning used was ingress to egress (I12E). This type
creates a clone packet with the same contents as the original at ingress and then
immediately injects it into egress.

Next, it was time to give the program proper SFU functionality, by
implementing the recirculation of packets. To implement it, a new metadata field
called viewer_index was added and used to keep track of the number of viewers that
had already been sent copies of the packet. Another metadata field called
recirculate_next was used as a flag to notify the egress if the packet should be
recirculated or not. When a packet entered ingress, if viewer_index was less than the
number of viewers, recirculate_next was set to 1 to indicate the packet should be
recirculated. Otherwise, it was set to 0 and viewer _index was also reset to zero. The
IP and MAC addresses of the viewers were hardcoded and used based on the index.
Index 0 corresponded to h2’s address, index 1 to h3’s and index 2 to h4’s.

QOriginal Packet

Ingress Egress

True

Change Dst. IP

to next viewer i
False
Original Packet I12E Clone Original Packet i T;r;z;"?;?m = Original Packet >_next Original Packet
recirculate_next =1
Clone Packet

Figure 7 : Pipeline with recirculation and cloning added

n recirculate <32> max viewers

-.etherne
.ether

o] .dstAddr
.ipv4.ttl

meta.current viewer index <
meta.current viewe

recirculate
ndard metadat

standard metadata.egress spec

Figure 8 : Recirculate action

21

At this point, a bug that will be referred to as the extra packet bug first
appeared; it would not be solved until the end of the development phase. Although
the SFU had no IP yet and the packets were sent to it automatically by the central
switch, the packets still needed to have a valid destination, so the presenter set one
of the viewers’ IPs as the destination address. It was observed that an extra copy of
the packet was sent to that viewer, before all the expected copies were transmitted.
As an example, if h1 addressed the packet to h3, the packets sent from the SFU would
go to h3, h2, h3, h4, in that order. If the packet was addressed to a host that was not
a viewer, then the first packet would still go to it once.

After the basic functionality of SFU had been implemented, it was time to
make it work dynamically, beginning with the viewers. The foundation of the SFUs
dynamic functions was that all IP and MAC addresses would be read by the P4
program from the switch’s registers. Registers are independent from the P4 program
and as such, unlike hardcoded values, their values can be modified without the need
to restart the SFU. These registers could be modified using an external shell code
script. Also, the viewer_index variable was renamed to dynamic_viewer_count and
indicated the register which stored the address of the next viewer.

register< <32>>(1) viewer count;

register<ip4Addr t=>(MAX VIEWERS)
register<macAddr t>(VIEWERS) °

Figure 9 : Register definition

hdr.ipv4.isvalid()
if (detect presenter.apply().hit) {
r ip, meta.current \ index) ;

mac, meta.current \ r index);

- Cou

;
ic viewer count, 0);

recirculate dyﬂanE viewer count);

} else {

forward to hl

Figure 10 : SFU using registers to read viewer addresses

Next, in order to be able to have multiple presenters that could be changed
dynamically, they were also stored in registers. When a packet entered ingress, its
source IP would be matched to that of a presenter. Each register containing a

22

presenter’s IP corresponded to a numbered group, essentially a list, of registers
containing the information of the viewers that had subscribed to it. Originally there
was only one presenter register, so matching the source IP with its contentswas done
through the match-action table shown in Figure 11, but when multiple presenters
were added this was done thought a series of If statements, as shown in Figure 12.

detect presenter {
key =
hdr.ipv4.srcAddr: exact;

initiate fanout;
NoAction;

size =
default action = NoActionl();

Figure 11 : Presenter matching table

<32> ip@; presen
(hdr.ipv4.src/
matched group = 0;

<32> ipl; presenter ips.read(ipl,
if (hdr.ipv4.srcAddr == ipl)
matched group = 1;

<32> ip2; presenter ips.read({ip2,
if (hdr.ipv4.srcAddr == ip2) {
matched group = 2;

Figure 12 : Examples of presenter matching using If statements

In order to make register modifications easily, a P4Runtime controller was
created. The controller used a combination of functions provided by P4Runtime and
some supporting shell code scripts called by the P4Runtime, with the ability to add
new groups and their presenter information, add viewers to existing groups, remove
viewers from groups and delete groups. The reason for calling shell code scripts for
some functions was that P4Runtime does not yet support read and write register
operations for simple_switch [14].

23

Presenter group 1: IP=167772674, MAC=8796093022754, Viewers=3
i : IP=167772417, MAC=8796093022481
: IP=167772931, MAC=8796093023027
: IP=167773188, MAC=8796093023300

group 2: IP=167772931, MAC=8796093023027, Viewers=3
: IP=167772417, MAC=8796093022481
¢ IP=167772674, MAC=8796093022754
: IP=167773188, MAC=8796093023300

group 3: IP=167773188, MAC=8796093023300, Viewers=3
: IP=167772417, MAC=8796093022481
1: IP=167772674, MAC=8796093022754
Viewer 2: IP=167772931, MAC=8796093023027

Presenter group 4: IP=0, MAC=0, Viewers=0

ip 1111 --mac 1111

88 from group 2 at index 26

Figure 14 : Example uses of the controller

Presenter group 1: IP=167772674, MAC=8796093022754, Viewers=4
0: IP=167772417, MAC=8796093022481
1: IP=167772931, MAC=8796093023027
2: IP=167773188, MAC=8796093023300
3: IP=1111, MAC=1111

group 2: IP=167772931, MAC=8796093023027, Viewers=3
1 IP=167772417, MAC=8796093022481
: IP=167772674, MAC=8796093022754
: IP=0, MAC=0

Presenter group 3: IP=0, MAC=0, Viewers=0

Presenter group 4: IP=1111, MAC=1111, Viewers=0
Figure 15 : Registers after using the controller

The final major change to the P4-Based SFU was to resolve the extra packet
bug mentioned previously. At first glance, the cause would appear to be obvious,
since the SFU clones the original packet before changing its IP, so an unmodified
clone of the original packet would be transmitted in the first loop. However, reversing
the order of operations and placing the rewrite before cloning did not resolve the bug!
The next possible solution was dropping the packet, but all attempts to drop it at
either the ingress or egress failed. The solution was to remove the ingress-to-ingress
(I2E) clone from the ingress stage and replace it with an egress-to-egress (E2E) clone
in the egress stage. It would appear that cloning in the ingress was too early, since I12E

24

cloning creates a clone immediately when the packet enters the ingress stage, no
matter where the actual clone command is located, meaning that the header rewrite
was always happening after the clone, since both were in the ingress stage.

Original Packet

Ingress i H Egress

Original Packet Original Packet

Change DL 1P| |

: to next viewer | |
H Match Src. IP " If more viewers | |
. i original Packet 1 group Original Packet remainset |
3 recirculate_next| |

E2E Clone Original Packet

Clone Packet

Figure 16 : Final version of the P4-Based SFU pipeline
Summary of the final version

To summarize, a description of how the final version of the P4-Based SFU
works follows. When a packet enters the SFU, it is parsed and processed in the
ingress stage. The source IP is checked against the presenter registers through a
series of if statements; if a match is found, the corresponding group ID is noted. The
currentviewer’s IP and MAC are read from the viewer registers using meta.group_id *
MAX_VIEWERS + meta.current_viewer_index to find the registers location and the
number of viewers in the group is also read.

hed group <
ta.group id

dynami
viewer counts.

prepare recircu

meta.emit clone = 1;

Figure 17 : Ingress pipeline (excluding most If statements used for group matching)

25

The packet’s destination headers are rewritten with the viewer’s information.
If more viewers remain, the recirculate_next flag is set to 1 otherwise it is set to 0.

action prepare_recirculation(<32> dynamic viewer count

r.ethernet.srcAddr = SWITCH MAC;
r.ethernet.dstAddr = meta.viewer mac;
r.ipv4.dstAddr = meta

r.ipv4. ttl =

meta viewer index < dynamic viewer count - 1
meta /er in meta.current viewer index + 1;
meta

meta.recirculate next = 0;

Figure 18 : Recirculation action

In egress, the packet is cloned (CloneType.E2E) so that a copy is emitted. If
recirculate_nextis set, the packet is recirculated back to ingress without ever leaving
the switch to serve the next viewer. If not, the packet simply exits the switch after
serving the final viewer.

EgressProcessing(inout headers hdr,
inout metadata meta,
inout standard metadata t standard metadata) {

0;

v,

recirculate a'l field list(RECIRC FIELDS);

Figure 19 : Egress pipeline

2.3. user space SFU

The user space SFU was implemented as a Python 3 script that was executed
on a server and was made to work in a similar way to the P4-Based SFU, transmitting
one packet at a time using a single port. This meant that the implementation was
intentionally simple and unoptimized. It used only a single thread and pure Python
packet handling. The goal was not to build a production grade SFU but to mirror the
P4-Based implementation as closely as possible to keep the comparison fair.

26

Replication was achieved by looping over the set of intended recipients. In
this SFU the groups were hardcoded and represented as a dictionary where the key is
the group’s presenter, and the value is a list with the IP addresses of the group’s
viewers. The script was scanning the server port that was connected to the rest of the
network trying to detect any packets that arrived atit. When a packet entered the SFU
its source address was read and through the previously mentioned dictionary the
addresses of those that should receive it. Since Python, unlike P4, can make use of
loops, there is no need for recirculation; the script executed a loop. In every repetition
a clone of the original packet was created with the IP and MAC addresses of a viewer
as its destination. The clone was then transmitted using the sendp function of Scapy.
When clones had been sent to all viewers in the group the loop ended.

(Wait fior next packet
L to arrive
Mo
¥

Are there more
viewers in

Packet source is

Packet enters the matched with group's

SFU presenter the group 7
Yes
Create clone with Read next viewer's IP
Send clone viewers IP and MAC and MAC

Figure 20 : user space SFU flowchart

27

3. Experimental setup

3.1. Environment configuration

The experiments were executed on a virtual machine running on Oracle
VirtualBox 7.1 with Ubuntu 24.04.2 LTS installed. The virtual machine already had
most of the necessary tools needed to use P4 preinstalled [16]; all that was needed
was to execute the ./p4-guide/bin/install-p4dev-v8.sh installation script. The project
was developed and ran in the tutorial folder already installed in the virtual machine.
In this manner, the configuration for the automated network generation for these
tutorials could be used for the development and testing of the project.

The virtual network was simulated using the network emulator Mininet [17].
For traffic generation a Python script was used to create the dummy packets needed
and write them in a .pcap trace file. Then, the script used the Linux command line to
call tcpreplay, an open-source suite of tools used for editing or sending packets
recorded in .pcap trace files [18], to transmit the packets it had created to the network
at the rate required for the experiments. It should be noted that in some earlier
iterations of the setup we used Python’s Scapy library to transmit the packets, but
Scapy could not achieve some of the higher bitrates required for the experiments. In
addition, it also lacked the desired accuracy when it came to sending the packets at
regular time intervals. To execute the Python scripts on the hosts created by Mininet,
including the send script, the user level SFU and a script used to record any packets
the host received, xterm was used to access the desired host’s command line.

Torecord the traffic senttowards and generated by the two SFUs, a shell script
was created which was ran on the host virtual machine; it started Wireshark captures
at the points of the network where required. After its termination, it stored the
recordings at a predetermined location. To analyze the recorded data a Python script
was created which read the contents of the .pcap files created by Wireshark and in
turn generated two CSV files and a graph based on the recordings. More details on
the contents of these files are in the “3.3. Measurement and analysis method”
section.

3.2. Network and application settings

The goal of the experiments was to attempt to simulate a video conferencing
application. For that purpose, in both the P4-based SFU and the user space SFU
experiments, the network was arranged in a star-like topology with an Open vSwitch
(OVS) instance atits center. OVS, a non-programmable virtual switch [19], facilitated
the communication between the hosts and the SFU by forwarding any packets it

28

received to their designated destination. This switch was connected with each host

using a different port.

In the case of the P4-Based SFU, the SFU ran on a second switch which
maintained a single connection with the central switch, as shown in Figure 21. This
switch was a BMv2 programmable software switch that could execute P4 programs.
It should be noted that unlike traditional Layer-2 switches, the P4-Based SFU switch
was configured with an IP address on its ingress interface. This allowed hosts to treat
the switch as an IP endpoint and send packets directly to it.

Host 1

Host 2

N4

P4-Based SFU

Switch

Host 3

Figure 21: Network topology for experiments with the P4-Based SFU

29

The user space SFU ran on a Linux host and also maintained a single
connection with the central switch, leading to a topology identical to that of the P4-
Based SFU experiments, as shown in Figure 22.

Host 2

- l‘;‘;l ()

& .
Host 1 Switch Host 3

L J
(|
Le]
—
User-Level SFU

Figure 22 : Network topology for experiments with the user space SFU

All packets transmitted during the experiments were UDP packets with a total
size of 1400 bytes. This size is less than the Ethernet Maximum Transmission Unit
(MTU) of 1500 bytes [20], but it was large enough to minimize the number of packets
required to achieve a specific bitrate and, by extension, the strain on the system that
results from small transmission intervals. It was also selected to more accurately
reflect the relatively large size of video packets. The payload of each packet included
the name of the host which transmitted it, a sequence number indicating its position
in the burst and, finally, enough padding to get it to the desired size of 1400 bytes.

Preliminary testing showed that the delay of the P4-Based SFU, for a given
bitrate and number of copies, started stabilizing when testing with bursts of around
50 packets. Despite that, it was decided that bursts of 300 packets should be used to
minimize the effects of potential spikes in delay time due to unrelated processes
running on the host virtual machine, like the Wireshark recordings. All experiments
were repeated three times; in each run, we sent a burst of 300 packets to the SFU, for
a given number of participating hosts. The SFU then transmitted copies of those
packets to the specified number of hosts, beginning with one host and increasing the
number of hosts by one in each subsequent set of three runs. Each experiment was
ran for both the P4-Based SFU and the Python (user space) SFU.

30

Initially, we attempted to use source bitrates of 0.15 Mbps, 2.5 Mbps and 4
Mbps, since those are the minimum, recommended and best performance bitrates
for the Microsoft Teams Application, respectively [21]. However, as the user space
SFU relied on Python’s limited ability to handle relatively fast bitrates, the tests
resulting in large amounts of packets being lost, so we added experiments with the
slower bitrate of 0.076 Mbps. 0.076 is the bitrate recommended for best performance
by Microsoft Teams for audio only meetings, so while not totally unrealistic, since this
project is mostly concerned with video calls, it is not ideal either.

3.3. Measurement methodology

The primary objective of the experiments was to compare the performance of
the two SFU implementations when it came to delay for a given number of hosts, the
scaling behavior of delay when increasing the number of hosts and the maximum
number of hosts they could be supported for a given bitrate.

To record the packets in our experiments, a shell script was used that started
four Wireshark instances that captured packets for each 300-packet run and stored
them in .pcap files. For the P4-Based SFU, Wireshark captured all UDP packets
arriving at the interface used by the SFU to receive packets from the central switch
with the P4-Based switch as their destination, and all packets leaving from the SFU
towards the central switch with destination IPs other than that of the SFU. For the user
space SFU, both Wireshark instances recorded traffic in the central switch’s interface
that was connected to the host the SFU was running on. This setup was due to the
fact that in a realistic setting it would be necessary for the user space SFU to always
have a switch between itself and the rest of the network; to make the two topologies
comparable, even though the P4-Based SFU could run on the central switch, we
decided torunitin a separate switch connected to the central switch. One Wireshark
instance recorded incoming packets, that is, packets with the SFU’s IP as the
destination, and another one outgoing packets, with any IP destinations except the
SFU’s host.

To analyze the results, a Python script was created that read all .pcap files of
an experiment, matching each original packet received by the SFU with its copies
transmitted form the SFU, based on the packet’s unique payload consisting of the
source host, its sequence number and padding for example h1001[padding to reach
1400 bytes] and produced a number of metrics about them. It should be noted that
while foreach 300-packet run both the P4-Based SFU and the user space SFU related
Wireshark captures were running, for practical purposes, each experiment was ran

31

only for one of the SFUs at a time, so in practice while four .pcap files were produced,
only two contained packets in them with the other two being empty.

The results of the analysis of each experiment produced a graph showing the
relation between the average delay and the number of hosts, a CSV file in which each
row represented a 300-packet run and included data about the bitrate the experiment
was run with, average packet size to confirm it was 1400 Bytes, the number of viewers
in the run, the duration of the trial (calculated as the difference between the arrival
time of the first and the last packets sent to the SFU), the minimum delay to process
a packet, the maximum delay to process a packet, the average delay to process a
packet, the standard deviation between the delays of all packets in the run, the
number of packets sent to the SFU, the number of packets transmitted by the SFU,
packetslostin, meaning packets thatwhere sentto the SFU butdid notgetreplicated,
packets lost out, meaning packets that where transmitted by the SFU but did not
match an original packet, volume in Kb received by the SFU, volume in Kb transmitted
by the SFU, average delay compared to the previous trial of the same experiment (to
check the consistency between identical trials) and, finally, the true bitrate of the
trial, calculated by dividing the volume of data received by the SFU with the duration
of the trial; this was done since some early experiments failed to achieve the desired
bitrate and modifications to the way packets were sent to the SFU where needed.

A second CSVfile is created by the Python script, summarizing the results per
number of hosts. This included data about the number of viewers this row contains
data about, the average of all average delays for this number of viewers, the average
of average delays compared to the previous number of receiving hosts, a count of the
number of runs made for this number of hosts to make sure it was three, as planned,
the standard deviation of the delay across the runs for each number of hosts as a
measure of stability, plus the average packets lost in and out for this humber of
viewers.

32

4. Evaluation Results

used in said experiments, in the order that they were conducted. Then, general
observations and a comparison between the performances of the two SFUs are

This section presents the results of the experiments, grouped by the bitrate

presented. For brevity, only the tables from the summary CSVs are included in this

section; the extended results can be found in the appendix.

4.1. Bitrate of 4 Mbps

P4-Based SFU results

Table 1: Summary results for P4-Based SFU at 4 Mbps

Number of | Minimum | Maximum | Average delay | Average delay | Standard Average
viewers delayin Delay in in seconds comparedto | deviation of | number
seconds | seconds previous delay of
number of between packets
viewers runs for the lost
given
number of
viewers
1 0.001013 | 0.007868 | 0.001692 0.000213 0
2 0.001782 | 0.018843 | 0.002945 74.11% 0.000473 0
3 0.003347 | 0.025315 | 0.006555 122.54% 0.001996 0
4 0.004434 | 0.161159 | 0.044819 583.78% 0.009311 0
5 0.006676 | 0.299062 | 0.141954 216.72% 0.015069 0
6 0.007707 | 0.610527 | 0.256515 80.70% 0.019832 0
7 0.008008 | 0.750984 | 0.353978 38.00% 0.013223 0
8 0.011734 | 1.066183 | 0.486725 37.50% 0.015256 0
9 0.012599 | 1.184818 | 0.579637 19.09% 0.031377 0
10 0.012622 | 1.473549 | 0.702944 21.27% 0.029031 0
11 0.01472 1.804093 | 0.854824 21.61% 0.033296 0

In the first experiment, the P4-Based SFU was tested with packets being sent

with a bitrate of 4 Mbps. Up to the third viewer, the added latency remains very low;

as we can clearly see in Figure 23, it scales almost completely linearly with the

number of viewers. With the addition of a fourth host the delay starts to increase

nonlinearly, reaching around 45ms, and by the fifth viewer it has risen dramatically to

slightly above 140ms, with similar increases following the addition of further viewers.

From this, we can easily calculate that the SFU with the current setup can transmit

with a rate of around 16Mbps (4 viewers * 4 Mbps), while keeping the delay increase

33

linear. It is interesting to note that the later increases appear to follow a new linear

scale. When it comes to the standard deviation between runs with the same number

of viewers, it remains consistently low, indicating the relative stability of the SFU,

though it also begins rising after the addition of the fourth viewer. It is also important

to note that even with the maximum number of eleven viewers, there was no packet

loss observed. These

results align with expected bottleneck dynamics in

programmable switches: once queues saturate, delay dominates while throughput

remains intact.

Average Delay vs Number of Viewers

0.8

0.6

0.4

Average Delay (seconds)

0.2

0.0

—e— Measured Avg Delay
=¥= Linear Scaling Reference

e —— =N — === = F ——— P SE—— o W %

Figure 23 : Average delay vs number of viewers graph for the P4-Based SFU at 4 Mbps

user space SFU results

Table 2 : Summary results for user space SFU at 4 Mbps

T T
5]

T T T
7 8 9

Number of Viewers (Hosts)

T T
10 11

Number | Minimum | Maximum | Average | Average delay | Standard | Average
of delayin Delayin delayin compared to deviation | number
viewers | seconds | seconds | seconds | previous of delay of
number of between | packets
viewers runs for lost
the given
number
of viewers
1 0.012521 | 2.170998 | 1.037004 | - 0.081095 | 210.33

When testing the user space SFU, it quicky became obvious that it could not

handle 4 Mbps, with more than a third of the packets sent to it producing no clones

34

and being lost even with a single user. As a result, no further testing was conducted
at this bitrate.

Figure 24 : Average delay vs number of viewers graph for the user space SFU at 4 Mbps

Average Delay vs Number of Viewers

108 +

1.06 ~

1.04 4

Average Delay (seconds)

1.00 +

—8— Measured Avg Delay
—»- Linear Scaling Reference

0.98

4.2. Bitrate of 2.5 Mbps

P4-Based SFU results

Table 3 : Summary results for P4-Based SFU at 2.5 Mbps

T
1

MNumber of Viewers (Hosts)

Number Minimum | Maximum | Average Average Standard | Average
of viewers | delayin Delay in delayin delay deviation | number
seconds | seconds | seconds compared | of delay | of
to between | packets
previous runs for lost
number the given
of viewers | number
of
viewers
1 0.000977 | 0.00899 0.00173 0.000112 | O
2 0.001842 | 0.020609 | 0.003032 75.28% 0.000344 | 0
3 0.002798 | 0.023963 | 0.005009 65.18% 0.00081 |0
4 0.003808 | 0.01526 0.005586 11.53% 0.000191 | O
5 0.005408 | 0.045238 | 0.008742 56.49% 0.00129 |0
6 0.007504 | 0.02831 0.014479 65.63% 0.003086 | O
7 0.009179 | 0.319847 | 0.142304 882.83% | 0.040563 | 0
8 0.008522 | 0.411645 | 0.194082 36.39% 0.018613 | 0

35

9 0.009325 | 0.754314 | 0.348544 79.59% 0.017672 | O
10 0.012828 | 0.920747 | 0.446259 28.03% 0.030696 | O
11 0.010544 | 1.161713 | 0.582184 30.46% 0.028054 | O

When experimenting with the P4-Based SFU at a bitrate of 2.5Mbps, the
behavior observed is similar to when using a bitrate of 4Mbps. This time the average

delay remains low and increases linearly up to six viewers, where it reaches 14.5ms.

After that point, there is a majorincrease in both the rate at which the delay increases,

as well as the standard deviation, indicating increased instability. The maximum
bitrate at which the SFU can transmit comfortably is 15Mbps (2.5 Mbps x 6 viewers),

close to the 16Mbps observed in the previous test run. Once again, no packet loss

was observed during the experiment.

Average Delay vs Number of Viewers

0.7 4 —®— Measured Avg Delay

0.6 1

0.5

0.4

0.3

Average Delay (seconds)

0.2

0.1

—¥- Linear Scaling Reference

0.0 —@——=

Number of Viewers (Hosts)

Figure 25 : Average delay vs number of viewers graph for the P4-Based SFU at 2.5 Mbps

user space SFU results

Table 4 : Summary results for user space SFU at 2.5 Mbps

Number Minimum | Maximum | Average | Average Standard Average
of delayin Delayin delayin delay deviation number
viewers seconds | seconds | seconds | comparedto | of delay of
previous between packets
number of runs for lost
viewers the given
number of
viewers

36

0.014899

2.137533 |1.029144 -

0.094613

185

As in the experiment using a 4Mbps bitrate, major packet loss is observed
already from the very first viewer, with more than half of the packets being lost and
extremely high latency, taking more than a second for each packet to be cloned.

Average Delay vs Number of Viewers

1.08 4

1.06 ~

1.04 +

102 4

Average Delay (seconds)

1.00

0.98

—8— Measured Avg Delay
—»- Linear Scaling Reference

4.3. Bitrate of 0.15 Mbps

P4-Based SFU results

Table 5 Summary results for P4-Based SFU at 0.15 Mbps

1

Number of Viewers (Hosts)

Figure 26 : Average delay vs number of viewers graph for the user space SFU at 2.5 Mbps

Number | Minimum | Maximum | Average | Average Standard Average
of delayin Delayin delayin delay deviation of number
viewers | seconds | seconds | seconds | compared | delay of
to between runs | packets
previous for the given lost
number number of
of viewers | viewers
1 0.000964 | 0.015707 | 0.001896 0.000255 0
2 0.001719 | 0.010157 | 0.002971 | 56.72% 0.000232 0
3 0.002554 | 0.018129 | 0.004402 | 48.14% 0.000268 0
4 0.003417 | 0.028455 | 0.005436 | 23.49% 0.000806 0
5 0.004075 | 0.025499 | 0.008154 | 50.01% 0.000557 0
6 0.004998 | 0.0241 0.009864 | 20.98% 0.000424 0
7 0.005958 | 0.017037 | 0.00872 | -11.60% 0.000764 0

37

8 0.006463 | 0.025187 | 0.011216 | 28.63% 0.002905 0
9 0.008239 | 0.033649 | 0.013401 | 19.48% 0.000477 0
10 0.008776 | 0.040953 | 0.014568 | 8.71% 0.002072 0
11 0.009499 | 0.029708 | 0.013122 | -9.93% 0.002606 0
12 0.010649 | 0.040122 | 0.015455 | 17.78% 0.00166 0
13 0.011838 | 0.056409 | 0.018733 | 21.21% 0.000829 0
14 0.012522 | 0.055912 | 0.018242 | -2.62% 0.002147 0
15 0.011456 | 0.036355 | 0.020823 | 14.15% 0.002889 0
16 0.012733 | 0.049815 | 0.019491 | -6.40% 0.002791 0
17 0.014798 | 0.053912 | 0.023127 | 18.65% 0.001318 0
18 0.014973 | 0.044334 | 0.01896 | -18.02% 0.001654 0
19 0.018484 | 0.054291 | 0.025165 | 32.73% 0.001099 0

When using a bitrate of 0.15 Mbps, the P4-Based SFU once more maintains

zero packet loss. Its latency increases in a nearly linear fashion and for the duration

of this experiment there was no sharp increase, as with the bitrates of 2.5Mbps and

4Mbps. Since in the previous experiments conducted with the P4-Based SFU the

sharp increase happened at the point when the SFU transmitted with around 15Mbps

that would mean that for 0.15Mbps it would take around one hundred viewers to

reach that point, which the virtual machine host would probably not be able to

support, so it was decided to stop the experiment at the nineteenth viewer.

Average Delay vs Number of Viewers

0.030 4

e
o
~
o

0.020 +

0.015 4

Average Delay (seconds)

0.010 +

0.005 4

—8— Measured Avg Delay
0.035 | =%~ Linear Scaling Reference

Figure 27: Average delay vs number of viewers graph for the P4-Based SFU at 0.15 Mbps

T T T T T T T T T T T T T
7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Viewers (Hosts)

38

user space SFU results

Table 6 : Summary results for user space SFU at 0.15 Mbps

Number | Minimum | Maximum | Average Average Standard | Average
of delayin Delay in delayin delay deviation | number
viewers | seconds | seconds seconds compared | ofdelay | of
to between | packets
previous runs for | lost
number the given
of viewers | number
of
viewers
1 0.005123 | 1.28837 0.054924 | - 0.053063 | O
2 0.023196 | 1.509373 | 0.190789 |247.37% | 0.213357 |0
3 0.034977 | 2.024044 | 0.516701 | 170.82% | 0.338272 | 7.67
4 0.065941 | 10.078093 | 3.026833 | 485.80% | 1.806817 | 118.33
5 0.106272 | 12.109511 | 3.98331 31.60% 1.843851 | 168

When sending a stream with a bitrate of 0.15Mbps to the user space SFU,
latency initially increases relatively linearly for only the first two hosts, with a
noticeable increase from 191ms to 517ms at the third. When just one more host is
added then the average delay skyrockets to more than 3 seconds. As far as packet
loss is concerned for the first two hosts there is none, and at viewer number three it’s
2.5%, just above the maximum acceptable in applications like Zoom [22]. From the

fourth viewer and onwards, packet loss becomes clearly unacceptable with more
than a third of the packets being lost. The standard deviation of delay between runs
also increases significantly at that point.

39

Average Delay vs Number of Viewers

4.0 1 —®— Measured Avg Delay

3.5 1

3.0 1

2.5

2.0

1.5

Average Delay (seconds)

104

0.5

0.0

=¥= Linear Scaling Reference

Number of Viewers (Hosts)

Figure 28 : Average delay vs number of viewers graph for the user space SFU at 0.15 Mbps

4.4. Bitrate of 0.076 Mbps

P4-Based SFU results

Table 7 : Summary results for P4-Based SFU at 0.076 Mbps

Number | Minimum | Maximum | Average | Average Standard | Average
of delayin Delay in delayin delay deviation number of
viewers | seconds | seconds | seconds | compared | of delay packets
to between lost
previous runs for
number the given
of viewers | number of
viewers
1 0.00093 | 0.023949 | 0.00181 | - 0.000269 | O
2 0.001754 | 0.021029 | 0.003233 | 78.64% 0.000346 | O
3 0.002545 | 0.026238 | 0.00399 | 23.40% 0.00027 0
4 0.003376 | 0.023085 | 0.00617 | 54.64% 0.000482 |0
5 0.004112 | 0.033264 | 0.006438 | 4.35% 0.000767 | O
6 0.005401 | 0.020137 | 0.007918 | 22.99% 0.000948 |0
7 0.005733 | 0.027613 | 0.008599 | 8.60% 8.70E-05 0

Once again, with a bitrate 0.076Mbps the average delay for the P4-Based SFU
scales relatively linearly. This experiment was ended at seven viewers to match the

40

corresponding user space SFU experiment, since it was not part of the original set of
experiments and was added just to provide more data for comparing the two SFUs.

Average Delay vs Number of Viewers

—8— Measured Avg Delay

—»- Linear Scaling Reference
0.012

0.010 +

0.008 4

0.006

Average Delay (seconds)

0.004 4

0.002 +

T
4

T
5

Number of Viewers {Hosts)

Figure 29 : Average delay vs number of viewers graph for the P4-Based SFU at 0.076 Mbps

user space SFU results

Table 8 : Summary results for user space SFU at 0.076 Mbps

Number | Minimum | Maximum | Average Average Standard | Average
of delayin Delay in delayin delay deviation | number
viewers | seconds | seconds seconds compared | of delay | of
to between | packets
previous runs for lost
number the given
of viewers | number
of
viewers
1 0.005578 | 1.041137 | 0.061121 0.053466 | 0
2 0.024309 | 2.071009 | 0.154619 | 152.97% | 0.116966 |0
3 0.037442 | 4.173761 | 0.320757 | 107.45% | 0.34386 | 4.67
4 0.060191 | 7.401644 | 1.405437 | 338.16% | 0.55846 | 32.33
5 0.072576 | 4.772319 | 1.162259 | -17.30% 0.970617 | 29
6 0.107365 | 14.352738 | 3.816721 | 228.39% | 2.388305 | 98.67
7 0.113907 | 6.157235 | 1.997344 | -47.67% 0.875714 | 78.33

41

The user space SFU can deal with up to three viewers at a bitrate of 0.076Mbps
with the delay scaling linearly and small or non-existent packet loss. However, both
delay and packet loss increase by a large margin with the addition of a fourth host.
The most striking result of this experiment is probably the large degree of instability
that can be observed in the results both in the relatively high standard deviation as
well as the fact that from the fourth host and onwards the average delay does not
maintain its upwards trend, instead having noticeable increases and decreases in its
average delay.

Average Delay vs Number of Viewers

4.0
—e— Measured Avg Delay

=¥= Linear Scaling Reference
3.5 1

3.0 4

N
w
L

Average Delay (seconds)
[18]
W o
1

=
(=]
L

0.5 1

0.0

Number of Viewers (Hosts)
Figure 30 Average delay vs number of viewers graph for the user space SFU at 0.076 Mbps

4.5. General observations and comparison

Comparing the two SFUs it becomes clear that the P4-Based implementation
has a distinct advantage in all metrics. When it comes to lower latency, which was
the main objective of this project, the P4-based SFU is much faster in all cases, with
delays consistently in the 2msto 20ms range in most cases. As the number of viewers
increases, the latency increases in a mostly linear fashion until the SFU has to
transmit at a rate of more than 15Mbps. It can be relatively safely assumed that if this
implementation used real hardware or software running on better hardware than
whatwe had available, this ceiling would be higher. On the other hand, the user space
SFU is much slower with delays extending to several seconds with the P4-based SFU
being from 95% to 100% faster. The scalability of the user space implementation also
leaves much to be desired, with delays increasing at a non-linear rate even at low
viewer counts.

42

Table 9 : Comparison of P4-based SFU and user space SFU at 0.15Mbps

Number | Average delay in Average delay in P4-based Faster (%)
of seconds for P4-based | seconds for user
viewers | SFU space SFU
1 0.001896 0.054924 96.54795718
2 0.002971 0.190789 08.44278234
3 0.004402 0.516701 99.14805661
4 0.005436 3.026833 99.82040635
5 0.008154 3.98331 99.79529587
Comparison of Avg Delay: P4 vs Python
4.0 4 —®— P4 Avg Delay
Python Avg Delay
3.5+
3.0
E 2.5
%2.0—
g 1.5 1
1.0 4
0.5
0.0 1 L & L L 2 .]
l:O l.‘5 2:0 2.‘5 3.|0 3.‘5 4.IO 4.I5 5.‘0
Number of Viewers
Figure 31 : Comparison graph of P4-based SFU and user space SFU at 0.15Mbps

Table 10 : Comparison of P4-based SFU and user space SFU at 0.0.76Mbps

Number | Average delay in Average delay in P4-based Faster (%)

of seconds for P4- seconds for user

viewers | based SFU space SFU
1 0.00181 0.061121 97.03866102
2 0.003233 0.154619 97.90905387
3 0.00399 0.320757 98.75606768
4 0.00617 1.405437 99.56099064
5 0.006438 1.162259 99.44607871
6 0.007918 3.816721 99.79254444
7 0.008599 1.997344 99.56947827

43

Comparison of Avg Delay: P4 vs Python
4.0

—8— P4 Avg Delay
Python Avg Delay
3.5 1

3.0 1

]
w
L

Avg Avg Delay (s)
15
=)

=
wn
L

1.0 1

0.5

0.0 v \ 2 L & & .

T T T T T T T
1 2 3 4 5 6 7
Number of Viewers

Figure 32 : Comparison graph of P4-based SFU and user space SFU at 0.0.76Mbps

Itcan also be observed that the P4-based SFU is significantly more stable, with
usually low standard deviation, even when delay begins torise. This is to be expected
since the user space SFU must deal with overhead from user space scheduling,
garbage collection etc.

When it comes to packet loss, in all tests the P4-based SFU caused no loss of
packets, unlike its counterpart which experienced significant packet loss, especially
when having to deal with higher bitrates, where the packet loss was so severe that the
user space SFU became unusable.

Finaly, when comparing this project to the work “A Selective Forwarding Unit
Implementation in P4” [13] which was the main inspiration behind this project,
although the SFU in that work relies on multicast replication inside the switch
pipeline, an approach that is theoretically ideal for minimizing overhead, its
evaluation was conducted under extremely low traffic rates. The authors used
packets of only 352-376 bits and transmission intervals of 36-62 ms, resulting in
effective bitrates of approximately 6-9 kbps per stream. In contrast, the SFU
evaluated in this work operates under substantially higher traffic loads, with
per-viewer bitrates an order of magnitude greater. Despite this heavier load, the
P4-based SFU developed here maintains low delay, predictable scaling, and zero
packet loss across a wide range of viewer counts. This suggests that while multicast
replication is conceptually optimal, the practical performance of a P4 SFU under
realistic traffic conditions depends more on pipeline design and efficiency than on

44

the specific replication mechanism used. Consequently, the results of this work
complement the findings of the original paper by demonstrating that a P4-based SFU
can remain stable and performant, even when subjected to significantly higher
bitrates than those used in prior evaluations.

45

5. Conclusions and future research

During this project, two SFUs were developed: one implemented in P4 and
executed on a programmable switch, and one implemented in Python and executed
in user space. The evaluation demonstrated clear advantages for the P4-based SFU,
which consistently achieved lower latency and exhibited significantly better
scalability as the number of viewers increased.

However, some limitations must be acknowledged. Due to the system being
emulated, its performance differed compared to testing on real hardware. BMv2’s
performance is significantly lower than hardware programable switches, while at the
same time both Mininet and the use of a virtual machine likely introduced some
timing inaccuracies when running the experiments. The user space SFU also had
some inherent disadvantages built into it, since it was notintended to be as optimized
as possible, but to instead mirror its P4-based counterpart.

The natural next step would be to run the tests on different machines with the
P4-based SFU on a P4 compatible hardware switch to evaluate the real word
performance benefits of a switch based SFU developed in P4. Additionally, while the
P4-based SFU presented had the ability to be reconfigured dynamically, this was
done only through the machine it was ran on and not with the use of signaling. In
theory at least, it would be relatively simple to use the full capabilities of the
P4Runtime API to enable it to receive sighals from the hosts connected and run the
appropriate controller scripts to respond to their requests. Such an extension would
bring the SFU a step closer to being a realistic production ready system. Another
additional step to increase realism would be adding multiple streams of different
qualities being transmitted by each host.

46

6. Appendix: Extended results

Abbreviations:

Pkt Size: Packet size

Viewers: Number of viewers

Dur: Duration

Min Dly: Minimum Delay

Max Dly: Maximum Delay

Avg Dly: Average Delay

Std Dly: Standard deviation of delay in this run
In Pkts: Number of packets that entered the SFU

Out Pkts: Number of packets that exited the SFU

Lost: Number of packets that entered the SFU but whose content did not much any

packets that exited (they were not copied)
Vol In (KB): Total volume of packets that entered the SFU in Kilobytes
Vol Out (KB): Total volume of packets that exited the SFU in Kilobytes

AAvg Dly vs Prev: Average delay compared to the previous run

True BR: True bitrate

Table 11 : Extended results for P4-based SFU at 4Mbps

Pkt Size Count | Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol Vol AAvg True BR
Pkts | Pkts In Out Dly
«B) | (KB) | vs
Prev
1400 1 0.840071 | 0.001126 | 0.005749 | 0.001992 | 0.000761 | 300 | 300 | o | 3360 | 3360 3999.662
1400 1 0.840039 | 0.001013 | 0.007868 | 0.001525 | 0.000625 | 300 | 300 | o | 3360 | 3360 | -23% | 3999.814
1400 1 0.839808 | 0.001014 | 0.005361 | 0.001558 | 0.000482 | 300 | 300 | o | 3360 | 3360 | 2% | 4000.914
1400 2 0.839873 | 0.001899 | 0.007724 | 0.003033 | 0.000742 | 300 | 600 | 0 3360 | 6720 | 95% | 4000.605
1400 2 0.83989 | 0.001782 | 0.0057 | 0.002327 | 0.000488 | 300 | 600 | o | 3360 | 6720 | -23% | 4000.524
1400 2 0.840075 | 0.001953 | 0.018843 | 0.003476 | 0.002089 | 300 | e00 | o | 3360 | 6720 | 49% | 3999.643
1400 3 0.839416 | 0.003662 | 0.00881 | 0.004904 | 0.001028 | 300 | 900 | o | 3360 | 10080 | 41% | 4002.783
1400 3 0.839988 | 0.003575 | 0.025315 | 0.009363 | 0.005057 | 300 | 900 | o | 3360 | 10080 | 91% | 4000.057
1400 3 0.83989 | 0.003347 | 0.020565 | 0.005397 | 0.002357 | 300 | 900 | o | 3360 | 10080 | -42% | 4000.524

47

1400 4 0.839522 0.005637 | 0.091801 0.052478 | 0.028233 | 300 1200 | O 3360 | 13440 | 872% | 4002.277
1400 4 0.840005 0.005102 | 0.062977 | 0.031714 | 0.011654 | 300 1200 | O 3360 | 13440 | -40% 3999.976
1400 4 0.840002 | 0.004434 | 0.161159 | 0.050266 | 0.041674 | 300 | 1200 | O 3360 | 13440 | 58% 3999.99
1400 5 0.839764 | 0.009125 | 0.299062 | 0.160502 | 0.081817 | 300 | 1500 | 0 3360 | 16800 | 219% | 4001.124
1400 5 0.839759 | 0.006813 | 0.280549 | 0.141767 | 0.074852 | 300 | 1500 | 0 3360 | 16800 | 12% | 4001.148
1400 5 0.839833 | 0.006676 | 0.256672 | 0.123592 | 0.071931 | 300 | 1500 | O 3360 | 16800 | -13% | 4000.795
1400 6 0.839645 | 0.009633 | 0.478654 | 0.244178 | 0.141494 | 300 | 1800 | O 3360 | 20160 | 98% 4001.691
1400 6 0.839985 | 0.008251 | 0.461733 | 0.24087 0.13393 300 | 1800 | O 3360 | 20160 | -1% 4000.071
1400 6 0.840004 | 0.007707 | 0.610527 | 0.284496 | 0.172007 | 300 | 1800 | 0 3360 | 20160 | 18% 3999.981
1400 7 0.839803 | 0.008008 | 0.750984 | 0.366745 | 0.215756 | 300 | 2100 | O 3360 | 23520 | 29% 4000.938
1400 7 0.839951 | 0.009536 | 0.656126 | 0.335761 | 0.188818 | 300 | 2100 | O 3360 | 23520 | -8% 4000.233
1400 7 0.839559 | 0.010009 | 0.696611 | 0.359427 | 0.202036 | 300 | 2100 | O 3360 | 23520 | 7% 4002.101
1400 8 0.839856 | 0.011768 | 0.928352 | 0.471629 | 0.266175 | 300 | 2400 | 0 3360 | 26880 | 31% 4000.686
1400 8 0.839942 | 0.011825 | 1.066183 | 0.507622 | 0.308019 | 300 | 2400 | 0 3360 | 26880 | 8% 4000.276
1400 8 0.83995 0.011734 | 0.907618 | 0.480925 | 0.255181 | 300 | 2400 | 0 3360 | 26880 | -5% 4000.238
1400 9 0.839882 | 0.012903 | 1.088686 | 0.559527 | 0.317864 | 300 | 2700 | O 3360 | 30240 | 16% 4000.562
1400 9 0.840127 | 0.016214 | 1.184818 | 0.623948 | 0.335394 | 300 | 2700 | O 3360 | 30240 | 12% 3999.395
1400 9 0.840036 | 0.012599 | 1.150188 | 0.555436 | 0.324165 | 300 | 2700 | O 3360 | 30240 | 11% | 3999.829
1400 10 0.839429 | 0.013649 | 1.42612 0.738477 | 0.412874 | 300 | 3000 | O 3360 | 33600 | 33% 4002.721
1400 10 0.83936 0.013587 | 1.473549 | 0.70299 0.418946 | 300 | 3000 | O 3360 | 33600 | -5% 4003.05
1400 10 0.840008 | 0.012622 | 1.351014 | 0.667366 | 0.38786 300 | 3000 | O 3360 | 33600 | -5% 3999.962
1400 11 0.839805 | 0.01472 1.690892 | 0.842292 | 0.478328 | 300 | 3300 | O 3360 | 36960 | 26% 4000.929
1400 11 0.839989 | 0.01791 1.804093 | 0.900398 | 0.524497 | 300 | 3300 | O 3360 | 36960 | 7% 4000.052
1400 11 0.839992 | 0.01616 1.616436 | 0.821781 | 0.462946 | 300 | 3300 | 0 3360 | 36960 | -9% 4000.038
Table 12 : Extended results for user space SFU at 4 Mbps
Pkt Size Count | Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol Vol AAvg | True BR
Pkts | Pkts In Out Dly
(KB) | (KB) Vs
Prev
1400 1 0.833683 0.017725 | 1.432714 | 0.931715 | 0.483148 | 300 | 88 212 | 3360 | 985.6 4030.309
1400 1 0.823529 0.012521 | 1.958873 1.050276 | 0.6424 300 | 91 209 | 3360 | 1019.2 | 13% | 4080.002
1400 1 0.839714 | 0.015385 | 2.170998 1.129021 | 0.712034 | 300 | 90 210 | 3360 | 1008 7% 4001.362
Table 13 : Extended results for P4-based SFU at 2.5 Mbps
Pkt Size Count | Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol Vol NAvg True BR
Pkts | Pkts In Out Dly vs
(KB) | (KB) Prev
1400 1 1.343813 0.001135 | 0.00899 0.001816 | 0.000908 | 300 | 300 0 3360 | 3360 2500.348
1400 1 1.34407 0.001019 | 0.004263 0.001572 | 0.000404 | 300 | 300 0 3360 | 3360 13% 2499.87
1400 1 1.344105 0.000977 | 0.005838 0.001802 0.000909 300 300 0 3360 | 3360 15% 2499.805
1400 2 1.343977 0.001882 | 0.007602 0.00283 0.000613 300 600 0 3360 | 6720 57% 2500.043
1400 2 1.344294 0.001875 | 0.003832 0.002751 0.000314 300 600 0 3360 | 6720 3% 2499 453

48

1400 2 1.344138 0.001842 | 0.020609 0.003516 0.001949 300 600 0 3360 | 6720 28% 2499.743
1400 3 1.343859 0.002957 | 0.023963 0.004181 0.00238 300 900 0 3360 | 10080 19% 2500.262
1400 3 1.344189 0.003218 | 0.020329 0.004736 0.002394 300 900 0 3360 | 10080 13% 2499.648
1400 3 1.343988 0.002798 | 0.022569 0.006109 | 0.003578 | 300 | 900 0 3360 | 10080 29% 2500.022
1400 4 1.344082 0.003833 | 0.011537 0.005708 | 0.001162 | 300 | 1200 | O 3360 | 13440 7% 2499.847
1400 4 1.343776 0.003808 | 0.01526 0.005316 | 0.001253 | 300 | 1200 | O 3360 | 13440 7% 2500.417
1400 4 1.344123 0.004028 | 0.013965 0.005734 | 0.001179 | 300 | 1200 | O 3360 | 13440 8% 2499.771
1400 5 1.34371 0.005408 | 0.014408 0.007562 | 0.00153 300 | 1500 | O 3360 | 16800 30% 2500.54
1400 5 1.343959 0.005628 | 0.017488 0.008127 | 0.001814 | 300 | 1500 | O 3360 | 16800 7% 2500.076
1400 5 1.343981 0.005452 | 0.045238 0.010536 | 0.00683 300 | 1500 | O 3360 | 16800 30% 2500.035
1400 6 1.343847 0.007583 | 0.025876 0.014642 | 0.005074 | 300 | 1800 | O 3360 | 20160 39% 2500.285
1400 6 1.3439 0.007504 | 0.019039 0.010621 | 0.002581 | 300 | 1800 | O 3360 | 20160 27% 2500.186
1400 6 1.343989 0.008191 | 0.02831 0.018174 | 0.004183 | 300 | 1800 | O 3360 | 20160 71% 2500.02
1400 7 1.344106 0.009795 | 0.248936 0.126561 | 0.069747 | 300 | 2100 | O 3360 | 23520 506% | 2499.803
1400 7 1.343896 0.009225 | 0.319847 0.197948 | 0.082656 | 300 | 2100 | O 3360 | 23520 56% 2500.193
1400 7 1.345989 0.009179 | 0.202395 0.102403 | 0.051119 | 300 | 2100 | O 3360 | 23520 48% 2496.306
1400 8 1.343551 0.008522 | 0.411645 0.199867 | 0.111314 | 300 | 2400 | O 3360 | 26880 95% 2500.835
1400 8 1.34395 0.011341 | 0.351202 0.168951 | 0.098837 | 300 | 2400 | O 3360 | 26880 15% 2500.093
1400 8 1.344007 0.010203 | 0.403061 0.213429 | 0.109685 | 300 | 2400 | O 3360 | 26880 26% 2499987
1400 9 1.343893 0.012035 | 0.754314 0.373421 | 0.215317 | 300 | 2700 | O 3360 | 30240 75% 2500.199
1400 9 1.344121 0.009325 | 0.654079 0.338185 | 0.189101 | 300 | 2700 | O 3360 | 30240 9% 2499775
1400 9 1.344001 0.0117 0.647287 0.334027 | 0.179859 | 300 | 2700 | O 3360 | 30240 1% 2499998
1400 10 1.343783 0.012828 | 0.84396 0.422706 | 0.242778 | 300 | 3000 | O 3360 | 33600 27% 2500.404
1400 10 1.343705 0.016222 | 0.920747 0.489616 | 0.261245 | 300 | 3000 | O 3360 | 33600 16% 2500.549
1400 10 1.344053 0.013295 | 0.83519 0.426454 | 0.24396 300 | 3000 | O 3360 | 33600 13% 2499.901
1400 11 1.344045 0.015992 | 1.161713 0.613042 | 0.333556 | 300 | 3300 | O 3360 | 36960 | 44% 2499.916
1400 11 1.344026 0.010544 | 1.131568 0.588351 | 0.326693 | 300 | 3300 | O 3360 | 36960 A% 2499.952
1400 11 1.344094 0.015664 | 1.046544 0.545159 | 0.294937 | 300 | 3300 | O 3360 | 36960 7% 2499825
Table 14 : Extended results for user space SFU at 2.5 Mbps
Pkt Size Count | Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol Vol Out | AAvg True BR
Pkts | Pkts In (KB) Dly vs
(KB) Prev
1400 1 1.330182 0.019233 | 2.137533 | 1.15143 0.645071 | 300 110 | 190 | 3360 | 1232 2525.97
1400 1 1.339242 0.014899 | 1.931699 | 1.015033 | 0.588386 | 300 121 179 | 3360 | 1355.2 | -12% | 2508.882
1400 1 1.34403 0.020327 | 1.508451 | 0.92097 0.452034 | 300 114 | 186 | 3360 | 1276.8 | -9% 2499.944
Table 15 : Extended results for P4-based SFU at 0.15 Mbps
Pkt Size Count Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol VolOut | AAvg True BR
Pkts | Pkts In (KB) Dly vs
(KB) Prev

1400 1 22.400506 | 0.001029 0.015707 0.001585 0.000927 300 300 0 3360 | 3360 149.997
1400 1 22.399612 | 0.001031 0.00492 0.001893 0.000724 300 300 0 3360 | 3360 19% 150.003

49

1400

-

22.399861

0.000964

0.005231

0.00221

0.000655

300

300

0 3360 | 3360 17% 150.001
1400 2 22.39976 0.001927 0.007938 | 0.003156 | 0.000858 | 300 600 0 3360 | 6720 43% 150.002
1400 2 22.40057 0.001719 0.010157 | 0.002644 | 0.000702 | 300 600 0 3360 | 6720 16% 149.996
1400 2 22.400514 | 0.001782 0.009993 | 0.003114 | 0.001094 | 300 600 0 3360 | 6720 18% 149.997
1400 3 22.399682 | 0.003073 0.014717 | 0.004684 | 0.001243 | 300 900 0 3360 | 10080 50% 150.002
1400 3 22.400249 | 0.002554 0.018129 | 0.004042 | 0.001197 | 300 900 0 3360 | 10080 14% 149.998
1400 3 22.40024 0.002804 0.010309 | 0.004479 | 0.001188 | 300 900 0 3360 | 10080 11% 149.998
1400 4 22.39976 0.004294 0.00984 0.005565 | 0.001062 | 300 1200 | O 3360 | 13440 24% 150.002
1400 4 22.400215 | 0.003754 0.028455 | 0.006352 | 0.00196 300 1200 | O 3360 | 13440 14% 149.999
1400 4 22.400494 | 0.003417 0.011303 | 0.00439 0.000963 | 300 1200 | O 3360 | 13440 31% 149.997
1400 5 22.400057 | 0.005825 0.014765 | 0.00846 0.001638 | 300 1500 | O 3360 | 16800 93% 150
1400 5 22.400579 | 0.004376 0.019494 | 0.007372 | 0.001775 | 300 1500 | O 3360 | 16800 13% 149.996
1400 5 22.40018 0.004075 0.025499 | 0.00863 0.002207 | 300 1500 | O 3360 | 16800 17% 149.999
1400 6 22.399738 | 0.004998 0.016827 | 0.009739 | 0.002596 | 300 1800 | O 3360 | 20160 13% 150.002
1400 6 22.400354 | 0.00686 0.0241 0.010435 | 0.002072 | 300 1800 | O 3360 | 20160 7% 149.998
1400 6 22.4002 0.006818 0.017986 | 0.009419 | 0.001994 | 300 1800 | O 3360 | 20160 10% 149.999
1400 7 22.39999 0.005958 0.015997 | 0.009212 | 0.001231 300 2100 | O 3360 | 23520 2% 150
1400 7 22.400026 | 0.00622 0.012608 | 0.00764 0.00102 300 2100 | O 3360 | 23520 7% 150
1400 7 22.400707 | 0.007159 0.017037 | 0.009307 | 0.001156 | 300 2100 | O 3360 | 23520 2204 149.995
1400 8 22.399991 | 0.006463 0.025187 | 0.009014 | 0.001465 | 300 2400 | O 3360 | 26880 3% 150
1400 8 22.400142 | 0.007568 0.023983 | 0.009314 | 0.002099 | 300 2400 | O 3360 | 26880 2% 149.999
1400 8 22.400562 | 0.009309 0.020557 | 0.01532 0.001931 300 2400 | O 3360 | 26880 64% 149.996
1400 9 22.40013 0.009987 0.033649 | 0.012938 | 0.002747 | 300 2700 | O 3360 | 30240 16% 149.999
1400 9 22.400146 | 0.008239 0.025736 | 0.014057 | 0.001398 | 300 2700 | O 3360 | 30240 9% 149.999
1400 9 22.400089 | 0.010653 0.025961 0.013207 | 0.001433 | 300 2700 | O 3360 | 30240 6% 149.999
1400 10 22.399376 | 0.0121 0.030791 0.01675 0.002713 | 300 3000 | O 3360 | 33600 27% 150.004
1400 10 22.400346 | 0.008936 0.040953 | 0.011783 | 0.002937 | 300 3000 | O 3360 | 33600 -30% 149.998
1400 10 22.400384 | 0.008776 0.03326 0.015171 0.003872 | 300 3000 | O 3360 | 33600 20% 149.997
1400 11 22.399801 | 0.011837 0.029221 0.016807 | 0.002678 | 300 3300 | O 3360 | 36960 11% 150.001
1400 11 22.400286 | 0.009499 0.029708 | 0.011299 | 0.001678 | 300 3300 | O 3360 | 36960 -33% 149.998
1400 11 22.400307 | 0.009693 0.018843 | 0.011259 | 0.001268 | 300 3300 | O 3360 | 36960 0% 149.998
1400 12 22.39976 0.012765 0.03196 0.015754 | 0.002184 | 300 3600 | O 3360 | 40320 0% 150.002
1400 12 22.400857 | 0.01326 0.040122 | 0.017322 | 0.002853 | 300 3600 | O 3360 | 40320 10% 149.994
1400 12 22.400519 | 0.010649 0.036846 | 0.013288 | 0.003018 | 300 3600 | O 3360 | 40320 23% 149.997
1400 13 22.400112 | 0.011838 0.035258 | 0.019487 | 0.00434 300 3900 | O 3360 | 43680 7% 149.999
1400 13 22.400216 | 0.013133 0.056409 | 0.019133 | 0.004328 | 300 3900 | O 3360 | 43680 2% 149.999
1400 13 22.400114 | 0.014373 0.030406 | 0.017578 | 0.002133 | 300 3900 | O 3360 | 43680 8% 149.999
1400 14 22.400126 | 0.012522 0.033831 0.020037 | 0.003391 300 4200 | O 3360 | 47040 14% 149.999
1400 14 22.400376 | 0.013133 0.02688 0.015223 | 0.001636 | 300 4200 | O 3360 | 47040 24% 149.997
1400 14 22.400468 | 0.015909 0.055912 | 0.019466 | 0.003297 | 300 4200 | O 3360 | 47040 28% 149.997
1400 15 22.400328 | 0.011456 0.036355 | 0.01676 0.003123 | 300 4500 | O 3360 | 50400 14% 149.998
1400 15 22.400077 | 0.017162 0.034448 | 0.022485 | 0.002817 | 300 4500 | O 3360 | 50400 34% 149.999
1400 15 22.4002 0.0188 0.034235 | 0.023225 | 0.002255 | 300 4500 | O 3360 | 50400 3% 149.999

50

1400 16 22.400285 | 0.017274 0.049815 0.021449 0.004298 300 4800 | O 3360 | 53760 8% 149.998
1400 16 22.40038 0.012733 0.027686 0.015544 0.001722 300 4800 | O 3360 | 53760 28% 149.997
1400 16 22.400141 | 0.017838 0.028648 0.021481 0.001865 300 4800 | O 3360 | 53760 38% 149.999
1400 17 22.400764 | 0.020101 0.053912 | 0.024739 | 0.002699 | 300 | 5100 | O 3360 | 57120 15% 149.995
1400 17 22.400275 | 0.014798 0.041645 | 0.02151 0.003364 | 300 | 5100 | O 3360 | 57120 13% 149.998
1400 17 22.399803 | 0.018964 0.030999 | 0.023131 | 0.002253 | 300 | 5100 | O 3360 | 57120 8% 150.001
1400 18 22.399578 | 0.014973 0.044334 | 0.021219 | 0.004416 | 300 | 5400 | O 3360 | 60480 8% 150.003
1400 18 22.399991 | 0.015136 0.041333 | 0.017306 | 0.002223 | 300 | 5400 | O 3360 | 60480 18% 150
1400 18 22.39972 0.016365 0.029889 | 0.018355 | 0.001448 | 300 | 5400 | O 3360 | 60480 6% 150.002
1400 19 22.400193 | 0.023391 0.054291 | 0.026669 | 0.002211 | 300 | 5700 | O 3360 | 63840 45% 149.999
1400 19 22.400452 | 0.018484 0.035099 | 0.024751 | 0.002151 | 300 | 5700 | O 3360 | 63840 7% 149.997
1400 19 22.400587 | 0.019661 0.04165 0.024074 | 0.003135 | 300 | 5700 | O 3360 | 63840 3% 149.996
Table 16 : Extended results for user space SFU at 0.15 Mbps

Pkt Size Count Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol Vol Out | AAvg True BR

Pkts | Pkts In (KB) Dly vs

(KB) Prev
1400 1 22.39895 | 0.006369 0.115196 | 0.017813 | 0.013591 | 300 | 300 0 3360 | 3360 150.007
1400 1 22.40008 | 0.006625 1.28837 0.129964 | 0.291336 | 300 | 300 0 3360 | 3360 630% 149.999
1400 1 22.3992 0.005123 0.125861 | 0.016994 | 0.012024 | 300 | 300 0 3360 | 3360 -87% 150.005
1400 2 22.3999 0.023196 0.084656 | 0.038583 | 0.007834 | 300 | 600 0 3360 | 6720 127% 150.001
1400 2 22.40018 | 0.024368 0.13127 0.041267 | 0.014045 | 300 | 600 0 3360 | 6720 7% 149.999
1400 2 22.40004 | 0.024231 1.509373 | 0.492517 | 0.468573 | 300 | 600 0 3360 | 6720 1093% | 150
1400 3 22.39849 | 0.040572 0.099385 | 0.059301 | 0.009889 | 300 | 900 0 3360 | 10080 -88% 150.01
1400 3 22.40019 | 0.034977 2.024044 | 0.624032 | 0.646067 | 300 | 858 14 3360 | 9609.6 952% 149.999
1400 3 22.39976 | 0.060372 1.470605 | 0.866771 | 0.332394 | 300 | 873 9 3360 | 9777.6 39% 150.002
1400 4 22.10087 | 0.09177 4.668077 | 2.899843 | 1.328683 | 300 | 624 144 | 3360 | 6988.8 235% 152.03
1400 4 22.32499 | 0.371676 10.07809 | 5.300483 | 2.786777 | 300 | 424 194 | 3360 | 4748.8 83% 150.504
1400 4 22.40009 | 0.065941 1.351698 | 0.880172 | 0.291353 | 300 | 1132 | 17 3360 | 12678.4 | -83% 149.999
1400 5 22.25033 | 0.204385 12.10951 | 6.589234 | 3.493264 | 300 | 445 211 3360 | 4984 649% 151.009
1400 5 22.32449 | 0.140442 3.544215 | 2.761273 | 0.768513 | 300 | 745 151 3360 | 8344 -58% 150.507
1400 5 22.39985 | 0.106272 4.013508 | 2.599424 | 1.07944 300 | 790 142 | 3360 | 8848 -6% 150.001
Table 17 : Extended results for P4-based SFU at 0.076 Mbps

Pkt Size Count Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol Vol Out | AAvg True

Pkts | Pkts In (KB) Dly vs | BR

(KB) Prev

1400 1 44.21117 | 0.00093 0.023949 | 0.002139 | 0.001757 | 300 300 0 3360 | 3360 75.999
1400 1 44.21076 | 0.000954 0.012079 | 0.001812 | 0.001053 | 300 300 0 3360 | 3360 -15% 76
1400 1 44.21137 | 0.000947 0.005219 0.001479 0.00047 300 300 0 3360 | 3360 -18% 75.999
1400 2 44.21078 0.001754 0.013946 0.003696 0.001878 300 600 0 3360 | 6720 150% 76
1400 2 44.21107 | 0.00182 0.021029 0.002865 0.001259 300 600 0 3360 | 6720 -22% 75.999
1400 2 44.21101 0.001972 0.010475 0.003139 0.000772 300 600 0 3360 | 6720 10% 75.999

51

1400 3 44.21059 | 0.002545 0.018789 | 0.003614 | 0.001663 | 300 | 900 0 3360 | 10080 15% 76
1400 3 44.21077 | 0.002636 0.026238 | 0.004238 | 0.001949 | 300 | 900 0 3360 | 10080 17% 76
1400 3 44.2114 0.002622 0.0098 0.004118 0.001082 300 900 0 3360 | 10080 -3% 75.999
1400 4 44.2108 0.003376 0.010722 0.005629 0.001602 300 1200 | O 3360 | 13440 37% 76
1400 4 44.21179 | 0.003406 0.023085 0.0068 0.002222 300 1200 | O 3360 | 13440 21% 75.998
1400 4 44.21337 | 0.003671 0.01672 0.006081 0.001542 300 1200 | O 3360 | 13440 -11% 75.995
1400 5 44.21089 | 0.004462 0.013618 0.006111 0.001142 300 1500 | O 3360 | 16800 0% 75.999
1400 5 44.21139 | 0.004112 0.011649 0.005707 0.00089 300 1500 | O 3360 | 16800 -7% 75.999
1400 5 44.21113 | 0.005651 0.033264 0.007497 0.002113 300 1500 | O 3360 | 16800 31% 75.999
1400 6 44.21111 | 0.005673 0.019904 0.009105 0.002109 300 1800 | O 3360 | 20160 21% 75.999
1400 6 44.21101 | 0.005401 0.020137 0.007864 0.002281 300 1800 | O 3360 | 20160 -14% 75.999
1400 6 44.21076 | 0.005485 0.018895 0.006786 0.000947 300 1800 | O 3360 | 20160 -14% 76
1400 7 44.21114 | 0.006105 0.016446 0.00872 0.002478 300 2100 | O 3360 | 23520 28% 75.999
1400 7 44.2108 0.005733 0.027613 0.00856 0.002888 300 2100 | O 3360 | 23520 -2% 76
1400 7 44.21094 | 0.006044 0.014063 0.008518 0.001469 300 2100 | O 3360 | 23520 0% 75.999
Table 18 : Extended results for user space SFU at 0.076 Mbps
Pkt Size Count Duration Min Dly Max Dly Avg Dly Std Dly In Out Lost | Vol Vol Out | AAvg True BR
Pkts | Pkts In (KB) Dly vs
(KB) Prev

1400 1 44.21075 | 0.005578 0.156753 | 0.024095 | 0.018905 300 300 0 3360 | 3360 76
1400 1 44.21151 0.007197 1.041137 | 0.136729 | 0.209705 300 300 0 3360 | 3360 467% 75.998
1400 1 44.21134 | 0.006911 0.178627 | 0.02254 0.01828 300 300 0 3360 | 3360 -84% 75.999
1400 2 44.21073 | 0.025192 2.071009 | 0.319533 | 0.534744 300 600 0 3360 | 6720 1318% | 76
1400 2 44.21118 | 0.024309 0.673604 | 0.08331 0.077961 300 600 0 3360 | 6720 -74% 75.999
1400 2 44.21186 | 0.024322 0.815612 | 0.061015 | 0.085271 300 600 0 3360 | 6720 -27% 75.998
1400 3 44.21073 | 0.037442 0.237537 | 0.063082 | 0.02078 300 900 0 3360 | 10080 3% 76
1400 3 44.21194 | 0.039187 4.173761 | 0.806754 | 1.058233 300 858 14 3360 | 9609.6 1179% | 75.998
1400 3 44.21086 | 0.040904 0.720326 | 0.092436 | 0.109044 300 900 0 3360 | 10080 -89% 75.999
1400 4 44.21109 | 0.074786 7.401644 | 1.211373 | 1.904699 300 1032 | 42 3360 | 11558.4 1210% | 75.999
1400 4 44.21053 | 0.060191 3.725779 | 0.839468 | 0.946395 300 1148 | 13 3360 | 12857.6 | -31% 76
1400 4 44.21083 | 0.122301 5.67269 2.165471 | 1.163101 300 1032 | 42 3360 | 11558.4 158% 75.999
1400 5 44.06366 | 0.382107 4.772319 | 2.53085 0.884308 300 1115 | 77 3360 | 12488 17% 76.253
1400 5 44.21306 | 0.072576 2.029597 | 0.386494 | 0.520847 300 1490 | 2 3360 | 16688 -85% 75.996
1400 5 44.21177 | 0.08645 2.099591 | 0.569434 | 0.677838 300 1460 | 8 3360 | 16352 47% 75.998
1400 6 44.21115 | 0.107365 1.127771 | 0.835818 | 0.274181 300 1800 | O 3360 | 20160 47% 75.999
1400 6 44.06373 | 0.140572 10.86721 | 3.931793 | 2.944413 300 1008 | 132 3360 | 11289.6 | 370% 76.253
1400 6 44.2108 0.180738 14.35274 | 6.682551 | 3.978296 300 816 164 3360 | 9139.2 70% 76
1400 7 44.06281 0.159478 5.412468 | 2.598091 | 1.471099 300 1372 | 104 3360 | 15366.4 | -61% 76.255
1400 7 44.21106 | 0.113907 2.561131 | 0.75908 | 0.710777 | 300 | 1967 | 19 3360 | 22030.4 | -71% 75.999
1400 7 44.06381 | 0.238525 6.157235 | 2.634861 | 1.16702 300 | 1316 | 112 | 3360 | 14739.2 | 247% 76.253

52

7. References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU, G.114 One-way
transmission time, Geneva: INTERNATIONAL TELECOMMUNICATION UNION, 2003.

E. Andre, N. Le Breton, A. Lemesle, L. Roux and A. Gouaillard, "Comparative study of
webrtc open source sfus for video conferencing," 2078 Principles, Systems and
Applications of IP Telecommunications (IPTComm), pp. 1-8, 2018.

B. GROZEV, Efficient and Scalable Video Conferences With Selective Forwarding Units
and WebRTC, Ph.D. dissertation, Strasbourg: Université de Strasbourg, 2019.

J. Wei and S. Bojja Venkatakrishnan, "DecVi: Adaptive Video Conferencing on open peer-
to-peer networks," in Proceedings of the 24th International Conference on Distributed
Computing and Networking, 2023.

M. Willebeek-LeMair, D. Kandlur and Z.-Y. Shae, "On multipoint control units for
videoconferencing," in Proceedings of 19th Conference on Local Computer Networks,
Minneapolis, MN, USA, 1994.

A. Eleftheriadis, M. R. Civanlar and O. Shapiro, "Multipoint videoconferencing with
Scalable Video coding," Journal of Zhejiang University-SCIENCE A, vol. 7, no. 5, pp. 696-
705, 2006.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D.
Talayco, A. Vahdat, G. Varghese and D. Walker, "P4: Programming Protocol-
Independent,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87-
95, 2014.

F. Hauser, M. Haberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger, R. Frank and M.
Menth, "A survey on Data Plane Programming with P4: Fundamentals, advances, and
Applied Research," Journal of Network and Computer Applications, vol. 212, 2023.

The P4.org Architecture Working Group, "P416 Portable Switch Architecture (PSA)
version 1.2," 22 December 2022. [Online]. Available: https://p4.org/wp-
content/uploads/sites/53/p4-spec/docs/PSA-v1.2.pdf. [Accessed 14 December 2025].

53

[10] P4.org APl Working Group, "P4Runtime Specification, Version 1.2.0," P4.org, 6 July 2020.
[Online]. Available: https://p4.org/wp-content/uploads/sites/53/p4-
spec/p4runtime/v1.2.0/P4Runtime-Spec.pdf. [Accessed 13 December 2025].

[11] The P4 Language Consortium, "P416 Language Specification version 1.2.5," 11 10 2024.
[Online]. Available: https://p4.org/wp-content/uploads/sites/53/2024/10/P4-16-spec-
v1.2.5.pdf. [Accessed 17 12 2025].

[12] D. Merling, S. Lindner and M. Menth, "P4-based implementation of bier and bier-FRR for
Scalable and Resilient Multicast," Journal of Network and Computer Applications, vol.
169, p. 102764, 2020.

[13] P. Tsikrikas and G. Xylomenos, "A Selective Forwarding Unit Implementation in P4,"' 2024
IEEE Conference on Standards for Communications and Networking (CSCN), 2024.

[14] A. Bas and A. Fingerhut, "The BMv2 Simple Switch target," 19 January 2021. [Online].
Available: https://github.com/p4lang/behavioral-
model/blob/d52ac6257bb3a58606383d03b31ed89671504791/docs/simple_switch.md.
[Accessed 17 December 2025].

[15] P. Biondi, "Introduction," The Scapy community, [Online]. Available:
https://scapy.readthedocs.io/en/latest/introduction.html. [Accessed 12 December
2015].

[16] A. Fingerhut, "p4 tutorials Git Hub," [Online]. Available:
https://github.com/p4lang/tutorials. [Accessed 29 11 2025].

[17] B. Lantz, B. Heller and N. McKeown, "ANetwork in a Laptop: Rapid Prototyping for
Software-Defined Networks," Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, pp. 1-6, 2010.

[18] F. Klassen, "Tcpreplay - Pcap editing and replaying utilities," appneta.com, [Online].
Available: https://tcpreplay.appneta.com. [Accessed 18 Desember 2025].

[19] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J.
Stringer, P. Shelar, K. Amidon and M. Casado, "The Design and Implementation of Open
vSwitch," in 72th USENIX Symposium on Networked Systems, Oakland, 2015.

[20] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, RTP: A transport protocol for
real-time applications, The Internet Society, 2003.

54

[21] "Prepare your organization's network for Teams - Microsoft Teams | Microsoft Learn,"
[Online]. Available: https://learn.microsoft.com/en-us/microsoftteams/prepare-
network#bandwidth-requirements. [Accessed 29 11 2025].

[22] "Accessing meeting and phone statistics," Zoom, [Online]. Available:
https://support.zoom.com/hc/en/article?id=zm_kb&sysparm_article=KB0070504.
[Accessed 1 December 2025].

[23] O. Michel, S. Sengupta, H. Kim, R. Netravali and J. Rexford, "Scalable Video
Conferencing using SDN principles," Proceedings of the ACM SIGCOMM 2025
Conference, pp. 1213-1231, 2025.

55

