ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

AtHENS UNIvVERsITY OF EconoMics aND BusiNgss, DEPT. or INFORMATICS
MasTER THESIS IN INFORMATION SYSTEMS: DEVELOPMENT AND SECURITY

Artifact Attestations

Georgiadis Eleftherios
ID £3312304

SUPERVISOR

Prof. Xylomenos Georgios

Athens University of Economics and Business

CO-SUPERVISOR

Fotiou Nikos

Athens University of Economics and Business

AcapeMic YEAR 2024 /2025

Additional resources
This thesis is based on a project hosted on GitHub.
This project is a monorepo (inludes infrastructure files) for three microservices, that
implement a very simple rest api about a car rental service.
The repo features pipelines for GH Actions to demonstrate artifact attestations.
Link to GitHub repository:

) lefosg/quarkus-rest-car-rental-service

https://github.com/lefosg/quarkus-rest-car-rental-service

Security is only as useful, as usable

Abstract

In today’s tech setting, the cloud has revolutionized the way we develop, build,
deploy and monitor our applications. Businesses "lift and shift" their
infrastructure to the cloud where their applications are hosted. Because of that,
the process of going from code to executable has somewhat changed. This
transition has a name, and that is Development and Operations (DevOps). In
DevOps, we have automated Continuous Integration/Continuous Delivery
(CI/CD) pipelines that build, test and deploy our code with minimal manual
effort required.

Though DevOps may be the most substantial part for some people, the attack
surface of the CI/CD pipelines is large enough. So, nowadays, the trend is
about Development, Security, and Operations (DevSecOps), which includes the
security aspect of DevOps as well. There is a plethora of attack vectors in the
Software Supply Chain, such as introducing malicious software in a
dependency, compromising the source code repository, and many more. So one
question that has raised, is, how can I know if the software I am currently
running, is indeed the one that was intended to be tested, built or distributed
(just to name a few steps in the chain)?

Artifact Attestations are a way of providing some confidence to the consumer
of an artifact, about some claims made for it. For example, to which commit
does this artifact correspond to, which build system built it, or, was the code
peer reviewed? This is done by providing an extra piece of information to the
consumet, an attestation. There are many types of attestation, such as provenance
attestation which provides proof about the build process of an artifact, the SPDX
attestation (or SBOM attestation) and many more.

In this thesis we explore how this is technically feasible through a CI/CD
platform, GitHub Actions, what are the security benefits, and limitations of
using artifact attestations. We will also dive into other technologies and
standards involved in the process such as Sigstore, Supply-chain Levels for
Software Artifacts (SLSA), in-toto, and others.

Hepiindn

Y10 onuepvo TeYVoLoYIXO TeptBdhhoy, To uToloyloTixd Végoc (cloud) €yel pépet
ENAVAC TAOT) GTOV TPOTO TOU AVATTOCGGOUUE, XATAOHEVALOUUE, OLOUVEULOUUE XAk TIOQOXOAOU-
Yolue tig epapuoyég pag. O emyetpioeig yetagépouy (“lift and shift") tic urodouéc
Toug oo cloud, émou grhoZevoivtar ol egapuoyés Toug. E€outiog autol, n Stobixacta
BLorvounic AoYIoUIX0U EEXVMVTAS AT TOV XOOXA UEYEL TO TEMXO EXTERETUIO EYEL 0N~
Aa&er onpoavTind. Auth 1 petdBaon €xet Ovopa, xa autod etvar Avdmtuén xou Aettoupyia
(Development and Operations - DevOps). Xto DevOps, éyouue autopatomnolrn-
uéveg dradixaoieg (pipelines) Xuveyoic Evoroinone/Xuveyoic Awovourc (Continu-
ous Integration/Continuous Delivery - CI/CD) nou xatooxeudlouv, doxydlouvy
X0l OLLVEOUY TOV XWOXE UOG AUTOUATOTONUEV, UE EASYLOTT AModTNOT) VLol YELROXLV-

NN ToEEpBao.

Av xou yio Toug TeptocdTepoug To DevOps unopet va eivon 1o o ouoLG TING Xou-
udt, nempdvela enideonc (attack surface) twv CI/CD pipelines eivou apxetd yeydin.
‘Etot mhéov, 1 tdom agopd tnv Avdmtuén, Acpdhieio xou Aettoupyia (Development,
Security, and Operations - DevSecOps), 10 0nolo eveoUaTdVEL oL TNV ac@IAEL 6TO
DevOps. Trdpyet tinddpa entdéoewy otny Ahucida Aoyiopxol (Software Supply
Chain), 6nwg 1 elooywyr xaxdBoukou Aoylouxold oe pa e€dptnor (dependency),
1 napaBioon Tou anodetnplov tnyaiou xMdxo (source code repository) xou Tohhd
o ‘Etol, éva epodtnuo mou €xel mpoxler elvon To e€nC: MW UTop® Vo YVopll
OTL TO ANOYIOUIXO TOL EXTEAG aUTY| TN oTLyUY ebval TEdyUoTt ouTo ToL TEOoEWLOTAY Vol
avantuyVel, doxipao Tel, va xataoxevaoTel 1) vo Stoveuniel (amhide Yo vor avopEpoupe
uepwxd Priwata Tng Sadixactog);

Ou BePorwoee Teyvoupynudtwv (Artifact Attestations) anoteholv évav tpémo
TOEOY NS EUTLO TOGUVNE OTOV XaTavaAwTH evoc artifact oyetind pe oplopévoug ioyvplo-
nolg mou yivovtow vt owtd. T mapddetypa, o moto commit avtiotouyel o artifact,
Tolo oot xotaoxeuric (build system) to dnuiopynoe, 1 oy 0 x@dixag uToBArinxe
oe éAeyyo and Tpltoug (peer review). Autd ETTUYYAVETAL UECK TNG TOROYNAC S
emmAéov TANpogoplag oTov xatavahwty, wog Belaiwong (attestation). Tmdeyouv
nohhol tomol Befadoewy, dnwe 1 Befaiwon mpoéheuone (provenance attestation),
Tou mapEyel amodellelg Yo T Sladxacio xATAOKELY G EVOS TEYVOLRYTLATOS, 1| Pe-
Baiwon SPDX (¥ SBOM attestation) xat moAAéC GAAeC.

X1y mopodoo BITAOUTIXY EpYAO(a, BLEPELYOUNE TS aUTO Elvol TEYVIXE EQPLXTO
uéow wog CI/CD mhatgopuacg, Tnv GitHub Actions, ol etvon o opéhn acpareiag,
xadde xan oL meploplopol Tne yerone Twy artifact attestations. Emmiéov, Yo e&-
ETACOUPE X GANES TEYVOROYIEC XU TEOTUTIAL TOU EUTAEXOVTOL TN DLadIXacid, OTKS
o Sigstore, ta Supply-chain Levels for Software Artifacts (SLSA), to in-toto xou
GAAa.

vi

Vil

Acknowledgments

For the completion of the present thesis, I want to thank my supervisors, Prof.
Xylomenos Georgios and Fotiou Nikos for their help and guidance throughout
the process.

Also, I would like to thank my professors Mr. Giakoymakis and Mr. Zafiris
who handed us the microservice project in the second semester of my master,

which is the use case of my thesis.

Finally, I want to thank my colleague Gregory who inspired me to setup my
own home lab and enhance my DevSecOps skills.

ix

Contents

Abstract v
epiindn vi
Acknowledgments viii
1 Introduction 1
1.1 Motivation and Problem Statement 1

1.2 ThesisStructure e 2

2 Background 5
2.1 Software Development LifeCycle 5
22 OpenlDConnect 6
23 Whatisan Artifact 7
24 Attestations 8
2.4.a Attestations vs Signatures L. 8

2.5 Dead Simple Signing Envelope (DSSE) 9

3 DevSecOps 11
31 WhatisDevOps o 11
32 CI/CDpipelines. 12
3.2.a CI/CDin practice (example) 13

3.2b Workload Identities., 16

3.3 Security in DevOps (DevSecOps) 17

4 Sigstore 21
41 WhatisSigstore L o 21
42 SystemDesign 0 . 23
42a Cosign 24

42b FulcioandRekor 25

5 Software Supply Chain Security 27
6 Artifact Attestations 31
6.1 In-toto. e 31
6.1.a Example Workflow 35

xi

xii

6.1.b in-toto attestation framework
6.2 Supply Chain Levels for Software Artifacts (SLSA)
6.2.a Provenance
6.2b HowSLSAworks
6.2.c SLSAPrinciples L L.
6.2.d SISA&in-toto
6.3 Verification of attestations

7 Use Case
7.1 Description

72 DevSecOpsapplied

8 Conclusion and Discussion

Bibliography
Acronyms

List of Figures
List of Tables

List of Algorithms

Introduction

1.1 Motivation and Problem Statement

In mundane computer use, many of us "average users" may find ourselves in a
situation where we have wondered: "How am I sure that this piece of software I
am currently running, is secure?”, or "Am I being exposed to any risks by using
this software?". And that, is indeed a common thought, since most of the times
we are software consumers, not producers/developers. On the other hand, soft-
ware engineers can similarly ask "how do I know that the software I develop
does not contain any malicious code?".

The process of going from source code to final product is well defined. Typi-
cally, a developer would manually build the source code locally using a build tool
(e.g., Maven) and upload the final software product in a repository/distribution
platform (e.g., an organization’s webpage, DockerHub, PyPI etc.). However, due
to the increase of DevOps’ popularity, a transition has been made from manually
executing the aformentioned steps, to creating CI/CD pipelines which automate
the build, test, package, delivery, deployment and monitoring process, speeding
up the Software Development Life Cycle (SDLC) as well. A build platform is
used to run these pipelines (e.g., Jenkins, GitHub Actions etc.), which can be
either self-hosted, or run on the cloud.

So now, creating the final software product is a well established procedure.
Anyone can view the pipeline - which is usually a simple script - and consider
its security aspects. But, the attack surface is just too vast. For example:

¢ A developer himself may be the adversary and insert malicious code

2 CHAPTER 1. INTRODUCTION

¢ A third party dependency imported into the source code may be malicious
¢ The build platform may be compromised

¢ The package registry used to upload the final product is compromised

The majority of these attack vectors fall under the category of Software Supply
Chain Security. Most of the attacks in Software Supply Chain aim in the injection
of malicious code into the software product [10]. A popular example is that of
SolarWinds, a tech company which provides tools for ICT infrastructure moni-
toring (i.e., highly privileged software). Their build system was compromised,
leading to the injection of malicious code in every new build of their software
product. When the product was distributed, it contained the malware intro-
duced by their builder, so customers who downloaded the specific versions, had
their systems infected with that malware.

It may be impossible to ultimately detect and prevent in real-time or on-time
such attacks, but there is a new method which helps us mitigate vulnerabilities
of the supply chain. Artifact Attestations provide some confidence about the au-
thenticity and integrity of an artifact. Specifically, provenance attestations, are
attestations which are created during the build process (amidst the pipeline).
Their purpose is to prove that an artifact was indeed produced by a specific
builder[14]. Attestations are verifiable too, and must be verified, otherwise their
security purpose is defeated. There are multiple underlying technologies that
help make artifact attestations a secure means of providing trust to the down-
stream consumers of an artifact.

In this thesis we explore how artifact attestations are technically feasible by
creating a CI/CD pipeline and running it on GitHub Actions. The use case is
about a Kubernetes cluster which hosts three microservices (a REST API about
a car rental service) and how attestations secure the process of deploying the
microservices in the cluster. We consider the levels of trust they provide, and
how an adversary can overcome the security benefits they provide.

1.2 Thesis Structure

Chapter 2
We start by referencing and analyzing background knowledge and
technologies required. Definitions for core concepts are provided.

Chapter 3

1.2. THESIS STRUCTURE 3

In this chapter we discuss the concept of DevSecOps. What is it, why does it fit
so well in the current cloud based model and why security matters in its case.

Chapter 4

In this chapter we showcase Sigstore, a universal artifact signing system. The
system design is explained, as well as its security benefits and limitations. Basic
knowledge of Sigstore is required, because GitHub Actions platform leverages
it to sign attestations (more on that on chapter 6.

Chapter 5
In this chapter we explore the software supply chain. What is it, and what are
the attack vectors it introduces.

Chapter 6

In this chapter we focus on artifact attestations, and how all the previous
chapters are connected. The use case is analyzed, meaning, the setup of the
CI/CD pipeline in GitHub Actions, the Kubernetes cluster architecture and
how artifact attestations fit in there.

Chapter 8
Finally, the thesis is concluded by expressing thoughts on artifact attestations.

Background

In this section, we define core concepts required to understand artifact attesta-
tions, DevSecOps, and Sigstore. The purpose is to build a holistic view of the
problem.

2.1 Software Development Life Cycle

Software is a "thing". It is something that "runs" on a machine, and makes our
life easier. Though software may not be "alive", there is term called Software
Development Life Cycle. How is software produced and consumed, from start
to end. From text which producers (developers) call code, to Os and 1s which end
users call file, executable and more. A general overview of the SDLC can be seen
in the following picture:

A & % 7 A

Producer Source Build Package Consumer

Figure 2.1: Software Development Life Cycle Overview (source: Where does your
software (really) come from? [15])

What matters the most to understand right now, is that software is not created
and distributed only once in its lifetime, but it needs to be maintained. And
that is an expensive procedure. It takes a lot of effort, man-hours and money to
efficiently maintain software.

6 CHAPTER 2. BACKGROUND

Let’s give a practical example of that. A developer is writing a Java application
on his computer, say, a calculator app for Windows, using Maven as a build tool.
The typical procedure would be:

. Write the Java code
. Write tests

1
2
3. Test, build and package using movn package
4. Use a tool to convert the jar file to .exe

5

. Upload the .exe file to a distribution platform (e.g., SourceForge)

As more features are installed, this procedure needs to be repeated again and
again, manually, on the developer’s end. A solution for that is automated build
systems (like the one in our use case, GitHub Actions), which automate this
process by running those commands after an event has been triggered. This will
be analyzed later on.

2.2 OpenlD Connect

Have you ever seen the "Log in or register with Google/Microsoft/Facebook"
button in a login or registration page? Chances are that the underlying mecha-
nism of it is OpenID Connect (OIDC). OpenID Connect is a delegated authentica-
tion protocol [3]. It enables services to authenticate to each other while handling
the identity management part of it as well. OIDC is the fundamental authenti-
cation mechanism of Sigstore, that’s why an explanation of it is done.

Suppose we have developed an application, and we want to have our clients
register to it, and log in later on. Storing and managing credentials is a risk. In
the event of a data breach, if the clients’ credentials are not securely stored in the
database, the result would be catastrophic both for the clients and the business
running the application. And even before that, there has to be a member in the
team with the expertise and knowledge to properly implement the best practices
for storing the credentials. So, instead of maintaining an in-house authentication
scheme, OIDC can be leveraged as an alternative. If a client can be successfully
authenticated by an Identity Provider (IdP) like Google or Microsoft, then we
consider this user authenticated to our application as well.

An OIDC flow results in the Relying Party (RP) - that is, our app’s backend
- receiving a token. That token is called ID Token. It contains metadata about
the authentication process (e.g., nonces, urls), and personal attributes about the

2.3. WHAT IS AN ARTIFACT 7

= @ | ' want to login using an IdP (e.g., Googls)
Sign in
or -

Log in with Google

[
>

0K, redirect google .com @

Redirect to RP, take the auth foken and validate it

Browser @
@ Authenticated,

take the foken

v

RP Backend

Authenticate to Google
with Google credentials @

Identity Provider

Figure 2.2: OIDC flow simplified

subject authenticated. If a subject gets authenticated with say with Google, to
an OIDC-enabled application, then the application would like to know some in-
formation about that specific subject like email address, name or phone number.
These attributes are included in the ID Token, and are called claims. The token
itself is a JSON Web Token (JWT), and is signed by the IdP. That implies that it
must be verified by the RP, otherwise its security purpose fails.

The last step (5) of the picture above can be slightly different depending on the
case, and the way a developer implemented the OIDC flow. The token can be
sent directly to the RP through back-channel (server to server communication),
meaning that the user agent i.e., the browser, will not be an intermediate. Gen-
erally, that is thought to be a secure means of sending the token. Another way is
to send a code instead of the token, and then the RP will exchange that code for
a token.

2.3 What is an Artifact

There are quite a few definitions in literature for the term artifact:

ISO/IEC 19506:2012 [6]:

8 CHAPTER 2. BACKGROUND

"An artifact is a tangible machine-readable document created
during software development. Examples are requirement
specification documents, design documents, source code and
executables."

SLSA Standard [11]:

"An immutable blob of data; primarily refers to software, but
SLSA can be used for any artifact e.g. a file, a git commit, a
directory of files (serialized in some way), a container image, a
firmware image."

GitHub [15, 17]:

"That final stage of metamorphosis, that something else that
source code becomes, is what we usually refer to as a “software
artifact,”and after their creation artifacts tend to spend a good
chunk of time at rest, waiting to be used" or, "a file or collection
of files produced during a workflow run."

All these definitions are slightly different, but identical in their core. Any
piece of bits and bytes can be more or less be called an artifact. From now on we
will rely on the term artifact instead of software product, executable or any similar
terms.

2.4 Attestations

An attestation is a signed document (e.g., JSON) which contains claims/meta-
data about a subject/artifact, created by an entity that can be verified [15]. It is
an assertion about a set of facts regarding an artifact. Why would there be a need
for artifact attestations? Because we want to verify it. Why verify? To gain trust.

2.4.a Attestations vs Signatures

A signature is the encrypted hash of an artifact. When a signature is verified,
the context transferred from producer to consumer is that this artifact’s integrity
and authenticity is valid. However, what this artifact is, how it is described and
other properties it may have are not visible through the signature verification.
This communication gap between producer and consumer is filled in by attes-
tations. Now, a producer can export a set of claims about an artifact and sign

2.5. DEAD SIMPLE SIGNING ENVELOPE (DSSE) 9

them. If the properties have been tampered for some reason, then the signature
verification would fail.

GitHub now supports artifact attestations through GitHub Actions. There are
premade actions in the marketplace which implement exactly this functional-
ity i.e., create artifact attestations. Sigstore is used as the underlying signing
mechanism.

2.5 Dead Simple Signing Envelope (DSSE)

The Dead Simple Signing Envelope (DSSE) is a data format which is used to sign
arbitrary data, not just JSON. It overcomes some problems which existing solu-
tions have such as JSON Web Signature (JWS) which has weak implementations,
or canonical JSON which poses a large attack surface [16]. Below we can see the
body of a DSSE:

{
"payload": "<Base64(SERIALIZED_BODY)>",
"payloadType": "<PAYLOAD_TYPE>",
"signatures": [{
"keyid": "<KEYID>",
"sig": "<Base64(SIGNATURE)>"
]

The fields payload and signatures are pretty much self explanatory. For pay-
loadType, it can either be a URI which should resolve to a human readable
description e.g. https://example.com/MyMessage/v1-json or MediaType e.g.
application/vnd.in-toto+json. In the last case, the MediaType should be an im-
plementation specific schema.

DSSE is used by in-toto and Sigstore, which will be explained on later in the
thesis.

DevSecOps

In this chapter we will discuss the notion of DevOps and DevSecOps. A defini-
tion will be given, some practical examples of how DevOps influences engineers,
and why security matters within this context.

3.1 What is DevOps

We will not focus too much on what DevOps is in theory, but since artifact attes-
tations are used in this context, we will briefly explain it.

Typically, a developer would write the code for an application, build and test
it, and call it a day. Then the operations team would take over, and deploy the
application. If any troubleshooting had to be done, the development and operations
teams would have to communicate in order to resolve the issue ("it works on my
machine", butnot in a deployment environment). That’s where the methodology
of DevOps comes into rescue. This methodology promotes the tight communi-
cation and collaboration of the development and operations teams - thus, DevOps

[7].

While, in theory, DevOps does not focus on tools and implementations, a
standardized way to achieve the aforementioned goal, is automation. Through
automation, we build CI/CD pipelines which speed up the software delivery
process, from source (i.e., what devs see) to deployment (i.e., what ops see) while
this comes especially handy in a cloud setting, where frequent releases are rolled
out [7].

11

12 CHAPTER 3. DEVSECOPS

. ok
Y"RA Q}glt (XA docker QWS

DC/0S

X.Confluence
CHEF

\

Maven S
6 S

@ Np

S%V @ ﬂagios‘ DATADOG

testRigor Jenkins splunk >

ANSIBLE

%
(&)

kubernetes

Figure 3.1: CI/CD steps and tools (source: What is CI/CD? [5])

3.2 CI/CD pipelines

CI/CD stands for Continuous Integration and Continuous Delivery, and is a
core concept of the DevOps methodology. CI/CD pipelines are what make the
process of building and distributing software products possible in an automated
manner. "By automating the process, the objective is to minimize human error
and maintain a consistent process for how software is released" as said by
RedHat [13]. Also, automation provides security benefits and confidence that
the result is as predictable as possible, while speeding up the SDLC. Assuming
that code is version controlled with a system like git, for a specific commit,
every developer should be able to execute the exact same pipeline and produce
identical results in each run.

CONTINUOUS CONTINUOUS CONTINUOUS
INTEGRATION DELIVERY DEPLOYMENT
[AUTOMATICALLY AUTOMATICALLY
| MERGE) RELEASE TO DEPLOY TO
REPOSITORY PRODUCTION
1 4 «
docker push ... kubectl apply -f ... s Too much

manual work...

Figure 3.2: Manual to automated

Continuous Integration (CI) refers to the building process of the software
product. That’s the "metamorphosis" of source code to a usable piece of soft-
ware e.g., a jar file, a container image etc. That includes setting up the required

3.2. CI/CD PIPELINES 13

runtime tools, compiling, testing and create the release of the software product.

Continuous Delivery (CD) (or sometimes called Continuous Deployment), is
about taking the output(s) of the CI process - meaning the software product -
and distributing it or deploying it straight to a dev/qa/production environment.
For example, a container image may have to be deployed to a Kubernetes cluster
right after it was built, because, a new feature for the corresponding service was
created. The following image showcases such a scenario:

O

GitHub
Develop app Commit Push to registry
pa—— @0
Visual Studio App repository GitHub Azure Ccmtamer
Code 3 % & Actions Registry
Anp coge Kubemetes Push
pe Manifest

= i

Deploy to _.
Kubernetes Azure Kubernetes

B Microsoft REVIOS
Azure

Figure 3.3: Sample CI/CD sketch (source: Apply software engineering systems [8])

3.2.a CI/CD in practice (example)

As discussed, the scope is to automate this procedure. We will better understand
how this happens by diving into the technicalities. We use GitHub Actions,
a CI/CD platform for executing such pipelines. Once a developer pushes a
commit, a workflow starts running. Let ci.yamlbe the following sample workflow
file, which builds a container image from Java source code, using Maven:

name: Build Image

on:
push:
branches: ["main"]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

14 CHAPTER 3. DEVSECOPS

jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'

- name: Maven Package
run: mvn clean package

- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3.7.1

- name: Log into registry
uses: docker/login-action@v3.3.0
with:
username: ${{ vars.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build and push Docker image
uses: docker/build-push-action@v6.9.0
with:

tags: myaccount/myimage:latest
file: ./Dockerfile
push: true

This is a YAML file which defines the steps for a CI/CD pipeline for GitHub
Actions. Uponreceiving a push event on branch main, GitHub spawns arunner - a
fresh Virtual Machine (VM) - and executes each step of the job build sequentially.
The author of the pipeline declares which actions should run. Those actions
are mainly written by other developers (there is an actions marketplace), so we
choose from there which fit our needs, with the uses keyword. The steps followed
are pretty much self explanatory:

1. The repository is cloned locally in the runner (actions/checkout action)

3.2. CI/CD PIPELINES 15

2. Java 17 is installed in the runner (actions/setup-java)

3. Maven is executed (it was installed in the previous step along with Java)
— the jar is produced and persisted temporarily in the runner

4. Docker buildx is set up (docker/setup-buildx-action)
5. Log in to DockerHub registry (docker/login-action)

6. A container image named myaccount/myimage:latest is created (docker /build-
push-action) — because push equals true, the image is sent to a container
registry as well (DockerHub by default, that's why there is a need for a
login step)

Because this job builds and pushes a container image to a registry, we can say
that it does the Continuous Integration and Delivery parts of the pipeline.

Similarly, there can be another workflow which defines the deployment of this
container image. The following example (let cd.yaml) pulls the image built from
the previous workflow, and pushes it to an Azure Kubernetes Service (AKS)
cluster:

10

11

12

13

14

15

16

17

18

19

20

21

22

name: Deploy Image To AKS (Azure Kubernetes Service)

on:
workflow_run: Build Image
types:
- completed
jobs:
deploy:
runs-on: ubuntu-latest
steps:

- name: Log into registry
uses: docker/login-action@v3.3.0
with:
username: ${{ vars.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Azure login
uses: azure/login@vl.4.6
with:
creds: ${{ secrets.AZURE_CREDENTIALS }}

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

16 CHAPTER 3. DEVSECOPS

- name: Set up kubelogin for non-interactive login
uses: azure/use-kubelogin@vl
with:
kubelogin-version: 'v0.0.25'

- name: Get K8s context
uses: azure/aks-set-context@v3
with:
resource-group: ${{ env.RESOURCE_GROUP }}
cluster-name: ${{ env.CLUSTER_NAME }}

- name: Deploys application
uses: Azure/k8s-deploy@v4
with:
action: deploy
manifests: ./k8s-manifests/mypod.yaml
images: myaccount/myimage:latest

Again, the steps are as simple as they can get:

1. Log into the DockerHub registry
Login to Azure

Set up kubelogin (to authenticate the kubectl client to AKS)

Ll

Get the K8S context in order to configure kubectl client to point to the AKS
K8s instance

5. Finally, deploy the image myaccount/myimage:latest using the manifest file
k8s-manifests/mypod.yaml

With minimal effort we have defined a way to automatically build, test, con-
tainerize, and deploy our application. Now, a ground truth for developers,
maintainers and stakeholders of a repository, are a set of CI/CD pipelines de-
fined for that repo.

3.2.b Workload Identities

At this point, it is important to note that the entity that executes the pipeline is
a workload identity i.e., the GitHub runner. A workload identity, is an identity
assigned to a software workload (e.g., container, VM, script) [22]. This is needed
because the running software needs to authenticate other services. As a result,

3.3. SECURITY IN DEVOPS (DEVSECOPS) 17

this entity can be authenticated, and thus get authorized to access external re-
sources. The GitHub runner that runs the pipeline provided in the example
above has a workload identity, and it is used to authenticate to services such as
Azure, DockerHub etc.

There are multiple security concerns about workload identities. In order to
authenticate to an external service it - most likely - needs to provide user/pass-
word credentials. Such cases pose a security issue. Think about a scenario where
malicious code was injected somehow in the pipeline, and its purpose it to steal
information stored locally in the runner, and sends it to an unknown IP address.
In reality, our build system is compromised. Is sensitive information stored in
the software? How is it stored? GitHub addresses those issues by using secrets,
OpenID Connect, and some other security hardening tips'.

3.3 Security in DevOps (DevSecOps)

Traditionally, security requires manual effort, meaning costly man-hours. For
instance:

¢ Security and quality code reviews (CVEs, CWEs, best practises)
Theat Modeling (TM)
Static Application Security Testing (SAST)

Dynamic Application Security Testing (DAST)

Software Composition Analysis (SCA)

Dependency checking

* Secure repository rules (e.g., branch security)

and many more, are procedures required to assure the security posture of an
application.

However, do these procedures fit in the context of DevOps? DevSecOps intro-
duces the notion of automating security procedures, as part of a pipeline. There
are quite some challenges and limitations in that field. Can all security aspects
be automated? Can they even be fully automated? If not, then at what degree?
For an organization, it is important to maintain the rapid software deployment
procedure - which is practically their functional requirement - while at the same

1https ://docs.github.com/en/actions/security-for-github-actions/
security-guides/security-hardening- for-github-actions

https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

18 CHAPTER 3. DEVSECOPS

time assuring the security quality of their product [12]. Such work exists. For
example, Van Landuyt et. al [21] have studied if, and, in what extent can threat
modeling get automated within the context of DevSecOps by examining avail-
able tools. So, it seems that DevSecOps engineers are somewhat dependent on
the tools that exist. Meaning that producers of the security tools are required
to extend the capabilities of their products, to fit the needs of their DevSecOps-
enabled customers.

In our use case, GitHub Actions provides predefined actions available on the
marketplace for security purposes. One of them is about artifact attestations,
and more specifically provenance attestation which will be discussed in detail
in chapter 6. Other actions may include other security measures, such as SAST,
container vulnerability scanning etc. Below, an example yaml script is provided
to demonstrate how DevSecOps could potentially work with GitHub Actions:

name: Build Image

on:
push:
branches: ["main"]

jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'

- name: Build with Maven and Analyze with Sonarqube
env:
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
SONAR_HOST_URL: ${{ secrets.SONAR_HOST_URL }}
run: mvn -B --file ./pom.xml verify
org.sonarsource.scanner.maven: sonar-maven-plugin:sonar
-Dsonar.projectKey=myproject

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

3.3. SECURITY IN DEVOPS (DEVSECOPS) 19

-Dsonar.projectName="myproject'

- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3.7.1

- name: Log into registry
uses: docker/login-action@v3.3.0
with:
username: ${{ vars.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build and push Docker image
uses: docker/build-push-action@v6.9.0
with:

tags: myaccount/myimage:latest
file: ./Dockerfile
push: true

- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@0.28.0
with:

image-ref: myaccount/myimage:latest

The steps are the same as with subsection 3.2.a, but two security measures
have been added.

1. One is scanning with Sonarqube ? and sending the results to a Sonarqube
server (variable SONAR_HOST_URL)

2. Second is scanning the container image produced for vulnerabilities, using
Trivy 3

In chapter 6, where artifact attestations are analyzed, we will demonstrate how
their are leveraged in GitHub Actions as well.

https://docs. sonarsource. com/sonarqube/latest/analyzing- source-code/
scanners/sonarscanner- for-maven/

3https ://github.com/aquasecurity/trivy-action

https://docs.sonarsource.com/sonarqube/latest/analyzing-source-code/scanners/sonarscanner-for-maven/
https://docs.sonarsource.com/sonarqube/latest/analyzing-source-code/scanners/sonarscanner-for-maven/
https://github.com/aquasecurity/trivy-action

Sigstore

In this chapter we will analyze Sigstore. It is used by GitHub Actions to sign the
artifact attestations we declare in our CI/CD pipelines and provides significant
security benefits.

4.1 What is Sigstore

Problem statement: how can I sign artifacts, but drop the need for managing
cryptographic material while at the same time tying the artifact to an OIDC
identity, in an auditable manner?

Let’s discuss this issue. In reality, any developer can write some code and
upload it to a package repository (e.g., PyPI, npm, maven central). Then this
package can be used as a dependency in another project. But no one asks about
the code’s underlying functionality or the identity of the publisher. The problem
lies exactly there. The software supply chain is vulnerable to attacks originating
from compromised packages. A mere dependency which contains malicious or
vulnerable code can have a major impact for multiple targets concurrently. Pack-
age signing, is a solution for this problem, nonetheless, it has seen minimum
adoption by its audience.

There are a few solid reasons as to why this happens. First of all, one must
manage the cryptographic keys needed to sign the package. Practically, this
poses an adoption burden. Keys have to be generated (probably manually),
then do the signing process, and lastly store the private key securely. Private
key compromised? Need to spend time to rotate. Secondly, one ought to be a
“trusted” entity in order to have their package downloaded. The Web of Trust

21

22 CHAPTER 4. SIGSTORE

model doesn't really define a reason as to why someone should trust a public
key uploaded on the Internet. Trust is built upon trust, that is, I trust someone
because that someone is trusted by other people I trust. Additionally, there has
to be some built-in functionality in the package manager that promotes pack-
age signing, and make it easier for end users to sign their code. Lastly, when
someone downloads a package which is signed, the signature must be verified
otherwise there was no reason to sign the package in the first place. Package
managers can also help in that, e.g., when executing an npm install command,
the signature can automatically get verified.

Into some statistics [9], a 2016 analysis of PyPI indicated that 4% of the repos
list a signature, while 0.07% of users downloaded the signature for verification.
Another study on RubyGems revealed that only 1.6% of the latest version of
packages are signed.

Sigstore is a general purpose artifact signing system, which aims in minimiz-
ing that adoption barrier, while boosting the security aspects of the signing flow
[9]. As an open source project, it has gained attention by the community, includ-
ing big tech players as well who contribute to its development and maintenance.

How does Sigstore manage to drop the need for managing keys? The solution
is very intuitive actually, it does that by deleting the private key after signing. If
there is no private key, then there is no need to fear about getting compromised.
Sigstore maintains two separate, immutable, publicly accessible and auditable
trancparency logs. One is named Rekor (the artifact log) and the other is Fulcio
(the identity log) which in reality are merkle trees. If one wants to sign an
artifact using Sigstore, first he needs to "log into Sigstore" via OIDC. Fulcio acts
as a Certificate Authority (CA) as well, apart from being a ledger. Three IdPs are
supported as of now

® Microsoft
e GitHub
¢ Google

That implies that one must posses credentials for one of these IdPs in order
to use Sigstore. After getting authenticated, Fulcio registers a record about the
identity authenticated. Then, the user generates a key-pair and sends the public
key to Fulcio. Fulcio, as a CA, generates a short-lived certificate (10 minutes),
sends it back to the client, and appends the log with the newly created certifi-
cate. The client signs the artifact, packs a special packet called envelope, sends

4.2. SYSTEM DESIGN 23

it to Rekor, and deletes the private key. Finally, Rekor creates a record which
contains the artifact signature, the public key, claims about the subject authenti-
cated and some other metadata about the artifact.

Now, whoever wants to verify the artifact signature can lookup to Rekor!,
find the record (e.g. search by artifact hash), download the signature and the
public key and verify. And that is a core point in Sigstore. Keys are ephemeral.
After signing an artifact, we only need to verify. If we need to sign again, we
re-run the flow with new keys. The authors of Sigstore also call this scheme
keyless signing. For the exact same reason, certificates are short-lived. We want
to ensure that only in a specific small time frame a private key is eligible to sign
an artifact.

4.2 System Design

The system design is best described by the following image:

I QIDC Challenge Stat—————>»

(2 0IDC Responsg—— 989

OIDC Provider

(B) Sign and publish Artifact Signer (B Sign and publish Artifact

3 Issuance Request

@) Signed Certificate Artifact

Repasitory

UUID: 5a88c7 P UUID: 5a88¢7 ; @Download the artfact
SAN: io.github.pytorch . : SAN: user@github.com
v P ¥
UUID: 7a40cf b UUID: 7a40cf
SAN: com.aws.xxx i1 | SAN:user2@github.com | ! @®update
. 4 P . 4 i Root of trust
UUID:b76141 - UUID:b76141 ;
SAN: devclientartifact | | SAN: user@name.io : Verifier
""""" Aditaciiog "] T Mdentity LogT T
(Rekor) (Fulcio) () Fetch Arlifact Signature

Figure 4.1: The Sigstore key issuance flow (source: Sigstore: Software Signing for
Everybody [9])

1https ://search.sigstore.dev/

https://search.sigstore.dev/

24 CHAPTER 4. SIGSTORE

A revisit of the steps in the picture:

1. In order to sign, Cosign2 client asks for OIDC authentication.

2. OIDC provider authenticates cosign.
3. Cosign generates key-pair and sends a certificate signing request to Fulcio.

4. Fulcio replies with a 10-minute valid certificate and appends the certificate
to its log.

5. Cosign signs the certificate, pushes the envelope to Rekor, and the artifact
to an artifact repository (e.g., a container image to DockerHub). Artifact
publishing could be a separate step in the image, since it is not done by
cosign.

6. In order to verify, the client updates Fulcio’s root of trust (we will not

analyze how Fulcio acts as a CA?).
7. Get the record from Rekor which corresponds to the artifact in question.

8. Get the artifact from its repository, verify the signature and compare the
hashes to check the authenticity and integrity.

4.2.a Cosign

Cosign is a simple tool to use:

cosign sign-blob ./sample.txt # sign a local artifact
cosign sign myaccount/myimage:latest # sign an image in a repo

cosign verify myaccount/myimage:latest
--certificate-oidc-issuer-regexp=.*
--certificate-identity-regexp=.%*

Cosign is what communicates with the other Sigstore services, that is Fulcio
and Rekor. In our use case, there are premade actions in the GitHub Actions
marketplace which integrate with our CI/CD pipeline. For example:

?Along with Fulcio and Rekor, a client has been implemented specifically for sigstore which
is called cosign. The "signer" in image 4.1 most likely runs the cosign client (we will refer to the
signer as "cosign")

®More on that here

https://github.com/sigstore/fulcio/blob/main/docs/how-certificate-issuing-works.md

10

11

12

13

14

15

16

17

18

19

4.2. SYSTEM DESIGN 25

name: Build Image

steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Install Cosign
uses: sigstore/cosign-installer@v3.7.0

- name: Build and push Docker image
uses: docker/build-push-action@v6.9.0
with:

tags: myaccount/myimage:latest
file: ./Dockerfile
push: true

- name: Check install!
run: cosign --yes sign myaccount/myimage:latest

4.2.b Fulcio and Rekor

As said before, both Fulcio and Rekor are transparency logs. Their scheme
resembles a lot the one of Certificate Transparency (CT), where certificates are
logged on a public ledger. Let’s explore their properties:

1. Those two logs are immutable, and cryptographically verifiable since their
data structure is a merkle tree.

2. They are both append-only

3. They are auditable, and actually there are parties within the community
that lookup the logs for potential malicious activity

4. There is a Sigstore Public Good Instance managed by OpenSSF [2], that’s
why its infrastructure (the two ledgers) are open and accessible by everyone

Fulcio is the identity log and a CA. Being a CA is a necessity for issuing the
short-lived certificates. Typically, when a certificate expires, it is decoupled from
the subject that it was tied to. For instance, when a web server’s public key
certificate expires, the public key is no longer supposed to be trustworthy. How-
ever, with Sigstore the opposite is true. We maintain the certificate in the log as

26 CHAPTER 4. SIGSTORE

proof of the authentication event and for audits.

Rekor is the artifact log. No artifact is actually uploaded on this log, meaning,
files, images or whatever else needs to be signed, does not exist in Rekor. The
artifacts are uploaded in artifact repositories such as DockerHub, Artifact Hub
etc. The records of Rekor link the artifact to a signature, its public key, and the
subject that signed it. Why the subject? Because authentication happens via
OIDC, as described in chapter 2, a set of claims is returned to the client (cosign).
Fulcio first uses these claims to issue the certificate. Rekor comes second to log
the subject’s information. Now, even if a bad actor signs an artifact he is "brought
in public auditable space" which speeds up forensic analysis if needed. At the
same time, this poses a privacy issue for all users. Rekor logs the email of the
cosign user. Since the ledger is immutable, what is written cannot be unwritten.

A scneario which showcases the previous statement, is a typosquatting attack.
If I authenticate with the email someone@gmail.com then an adversary can try to
login with the email somone@gmail.com and sign a different version of the same
artifact I sign. Also, for each record in Rekor, there should be a corresponding
one in Fulcio. Monitoring and running audits can capture this kind of activity.

It is important to note that Sigstore trades the key management problem
with the identity problem. "I can prove ownership because I am the holder of a
private key” vs”I can prove ownership because I can authenticate via OIDC”. The
authors of Sigstore ran same interviews [9] which uncovered that the trade
of key management problem for the identity problem is preferred. Package
managers such as npm have also made an attempt to integrate Sigstore into their
functionality.

5

Software Supply Chain Security

In this section we will study the concept of software supply chain, and describe
the attack surface.

SOURCE THREATS BUILD THREATS

N N T

Producer ——— Source —_— Build ;> Package ——>— Consumer

Dependencies

\ J
DEPENDENCY THREATS
SOURCE THREATS DEPENDENCY THREATS BUILD THREATS
A Submit unauthorized change D Use compromised dependency E Compromise build process
B Compromise source repo F Upload modified package
C Build from modified source G Compromise package registry

H Use compromised package

Figure 5.1: Supply Chain Threats (source: SLSA [11])

27

28 CHAPTER 5. SOFTWARE SUPPLY CHAIN SECURITY

Typically, the term supply chain refers to the logistics process of acquiring some
materials from a producer, process it to create a product, and distribute it to its
consumers. Similarly, in software supply chain a product owner will require
software (the "materials"), produce custom software, and distribute it so that it
reaches its clients. The problem is that this process can be disrupted by malicious
actors. Image 5.1 demonstrates the supply chain attack surface:

The following table contains an example case for each of the image’s threats:

Submit unauthorized

SushiSwap: Contractor with repository access pushed a

change (to source .. . —

repo) malicious commit redirecting cryptocurrency to themself.
Compromise source | PHP: Attacker compromised PHP’s self-hosted git server
repo and injected two malicious commits.

Build from modified
source (not matching
source repo)

Webmin: Attacker modified the build infrastructure to
use source files not matching source control.

Use compromised de-
pendency (i.e. A-H, re-
cursively)

event-stream: Attacker added an innocuous dependency
and then later updated the dependency to add malicious
behavior. The update did not match the code submitted
to GitHub (i.e. attack F).

SolarWinds: Attacker compromised the build platform

Compromise build and installed an implant that injected malicious behavior
process . .

during each build.
Upload modified | CodeCov: Attacker used leaked credentials to upload
package (not matching | a malicious artifact to a GCS bucket, from which users
build process) download directly.

Compromise package
registry

Attacks on Package Mirrors: Researcher ran mirrors for
several popular package registries, which could have been
used to serve malicious packages.

Use
package

compromised

Browserify typosquatting: Attacker uploaded a malicious
package with a similar name as the original.

Table 5.1: Real world attacks (source: SLSA [11])

Supply chain security is indeed a difficult security aspect to address since it
takes into consideration the whole SDLC. Developers embed dependencies into
their code to help them create the functionality they need, and most often those

29

dependencies are open source and maintained by people whose trustworthi-
ness is - or should be - questionable. Even though the Free and Open-Source
Software (FOSS) ecosystem promotes code reviews, they require a lot of manual
effort which poses an economic burden for many organizations. Code written by
developers itself may also not follow security best practices and thus, introduce
application-level vulnerabilities. Then comes the build system. As discussed in
chapter 3, code goes through a CI/CD pipeline in order to reach the end goal of
delivering and deploying software. What if, during the build step, a malicious
dependency tries to interact with the build system and read sensitive informa-
tion (e.g., credentials)? Or, what happens if the compiler is compromised?

In their work Enck & Williams [4] have pointed out 5 specific challenges in
supply chain security:

¢ updating vulnerable dependencies

* leveraging SBOMs

¢ choosing trusted supply chain dependencies
¢ securing the build process

¢ getting industry-wide participation

Say, the current version of a software contains a vulnerable dependency. The
developers patch it and release a new version of it which isn’t vulnerable. Is
there any guarantee that the new version is safer than the previous one? Is there
enough quality and functional testing done to ensure that the vulnerability is
eliminated, or did the developers introduce a new bug/vulnerability in the soft-
ware? Ideally, you will not want to be the first to update to a newer version, but
give it some time to verify that the dependency can be trusted again.

Some organizations are skeptical about the usage of SBOMs. On the one
hand, some believe that it is useless since vulnerabilities are context-specific.
Sharing the information that a vulnerable package version exists in a software
does not imply that it exploitable as well. On the other hand, it is argued that
the widespread adoption of SBOMs provides useful insights, confidence, trans-
parency, and paves the way to zero-trust security.

There is no real definition to being trusted, as trust cannot be quantified. Any
entity can claim to be trusted. Likewise, someone can vouch for a dependency’s
trustworthiness, but trust might as well be shared with the people that back
up this dependency. A repo can change maintainers through its life cycle, and

30 CHAPTER 5. SOFTWARE SUPPLY CHAIN SECURITY

some of them may be unreliable. Best practices state that one could fork the
official repo of a dependency and embed it in their version control system. That
way, there is more control over the code of the dependency, it can be reviewed,
cleaned, or modified. This is called vendoring [1].

For securing the build process itself, there is a standard called SLSA which
defines 4 levels of security for the build process. Lower levels can contain no
or just a few security measures such as generating provenance attestation, while
higher levels are more complicated using reproducible!, hermetic builds etc.
Reproducible builds provide bit-to-bit accuracy when trying to replay a build,
but considering the inherent non-determinism of the build process, it is a hard
goal to achieve.

Lastly, there is a need to raise awareness in the community. Supply chain
security will be on the edge of research for the next 10 years as said by Enck &
Williams [4]. There have been initiatives by the academic and industry sectors
to provide the community with tools and guidance on how to face supply chain
security. Examples of that is Sigstore, in-toto and SLSA.

So, the key takeaways for supply chain security are:

1. how do I bring in dependencies
2. how do I secure the build process

3. who do I consider to be trusted

!Effort has been initiated to dive deeper into reproducible builds, see here for more

https://reproducible builds.org

Artifact Attestations

In this chapter we will dive deep into artifact attestations by first looking at two
important specifications (in-toto and SLSA), and lastly provide an example use
case.

6.1 in-toto

in-toto is a framework which sets the baselines for supply chain security. It
describes how software should be developed, tested, built and packaged [20]. It
assures the client that the software in question has gone through integrity and
authenticity checks by looking at the supply chain. Through in-toto, the supply
chain processes have become transparent and can be audited by downstream
consumers of an artifact. The main goals of in-toto are:

1. verify that the software has gone through all the appropriate steps of the
supply chain

2. verify the software’s owner

Practically, in-toto enforces a software owner to create a layout (i.e., define an
order of steps in the chain), define the input (materials) and output (products)
for each step, and who is authorized to perform this step. That "who” is the
functionary in in-toto terminology. Each step produces a metadata file (link file)
which is the exact same file used by the client for verification. in-toto does not
prevent unauthorized or malicious action but rather cares about if all steps in
the chain where executed by the one(s) who must execute it, with the expected
input and output results. In other words, it protects the supply chain from ac-
tions other than the ones intended to run.

31

10

11

13

14

15

16

32 CHAPTER 6. ARTIFACT ATTESTATIONS

The three main components of in-toto are:

¢ atool used by the software owner to create supply chain layouts
* atool that functionaries can use to create link metadata about a step

* atool the clients can use to verify the final product

We will gain better understanding of those components by looking at the file
formats of in-toto. All of them are primarily JSON files'. Let’s begin with the
layout:

{

_type "layout",
"expires" : "<EXPIRES>",
"readme": "<README>",
"keys" : {
"<KEYID>" : "<PUBKEY_OBJECT>"
},
"steps" : [
"<STEP>",

1,
"inspect" : [
"<INSPECTION>",

The layout is signed by a trusted key which belongs to the software owner.
_type is the type of the file, in this case it’s "layout". Expires is the expiration
date of the layout. Readme is an optional field which contains human readable
text about the supply chain. Keys is a list of all the public keys used in the steps
section. Steps is a list of steps and restrictions that apply to them. It can also be
a sub-layout which contains multiple steps. Inspect is a list of suggested actions
and commands to run on the client side for verification.

The following is the steps file format:

{
"_type": "Step”,

! All of the following JSON files and example are taken from the in-toto specification [20]

10

11

12

13

14

15

16

17

18

6.1. IN-TOTO 33

"name": "<NAME>",
"threshold": "<THRESHOLD>",
"expected_materials": [

["<ARTIFACT_RULE>"],

1,
"expected_products": [
["<ARTIFACT_RULE>" 1],
1,
"pubkeys": [
"<KEYID>",

1,
"expected_command": "<COMMAND>"

In this case _type is set to "steps". Name is the name of the step e.g., build, test,
etc. Threshold is an integer which indicates how many link metadata file must
be used to verify this specific step (links will be showcased later in this section).
Expected materials defines what input must be passed into this step, for it to be
considered legitimate. In in-toto actually, there is a specific syntax for writing
rules about the aforementioned, but this is out of scope for this thesis. Expected
products similarly is a list of rules which define what the output of the step should
be. Pubkeys is a list of key ids which belong to the specific functionaries who are
authorized to run this step. Lastly, expected command is a list of commands that
was run to execute this step. Note that this should not be trusted for verification
purposes.

Then there is the inspection file:

{

"_type": "inspection",
"name": "<NAME>",
"expected_materials": [

["<ARTIFACT_RULE>"],
1,
"expected_products": [

["<ARTIFACT_RULE>"],

10

11

12

13

10

11

12

13

14

15

16

17

18

19

20

21

22

23

34 CHAPTER 6. ARTIFACT ATTESTATIONS

"run": "<COMMAND>"

Here, the consumer is in possession of the software product and reads the
inspection file to see what actions must be done to verify it. Name is a name for
the inspection. Expected materials and expected products are similar to the steps
file. Run contains the command to run.

Lastly, there is the link file:

{

"_type" : "link",

"name" : "<NAME>",

"command" : "<COMMAND>",

"materials": {

"<ARTIFACT_NAME>": "<HASH>",

1,

"products": {

"<ARTIFACT_NAME>": "<HASH>",

1,

"byproducts": {
"stderr": "",
"stdout": "",
"return-value": null

1,

"environment": {
"variables": "<ENV>",
"filesystem": "<FS>",
"workdir": "<CWD>"

}

}

A link file is produced in each step ran by the corresponding functionaries.
Name must be the same as with the step it relates to. Command is the command
ran by the functionary in this step, along with its arguments. Materials and
products are same as before, and are referenced by their hash. Byproducts are not

6.1. IN-TOTO 35

verified in reality by in-toto, but can provide useful insights while inspecting
the step (e.g., what was printed in the terminal when this step was executed?).
Environment contains information about the environment in which the step was
ran e.g., environment variables, working directory etc.

For tooling there is a cli tool? which can be used to sign, verify metadata, and
other actions as well.

6.1.a Example Workflow

We will now see how in-toto is practically used by providing a use case and some
exemplary JSON files. The example is taken as-is from in-toto specification [20].

In this case, Alice writes a Python script (foo.py) using her editor of choice.
Once this is done, she will provide the script to her friend, Bob, who will package
the script into a tarball (foo.tar.gz). This tarball will be sent to the client, Carl, as
part of the final product. When providing Carl with the tarball, Alice’s layout
tells Carl’s installation script that it must make sure of the following;:

¢ That the script was written by Alice herself
¢ That the packaging was done by Bob

¢ Finally, since Bob is sometimes sloppy when packaging, Carl must also
make sure that the script contained in the tarball matches the one that
Alice reported on the link metadata.

Steps
(executed by functionaries)

Inspection
(executed by user)

Software Supply Chain
Definition
(Layout signed by Alice)

write package untar

Evidence
(Step links are signed write.link | package.link untar.link

. TROBY T TPy T rgE T | R e ooy
by Diana and Bob) DORA 5 D OxA i 0xB i D OB A

R Y A MY

Figure 6.1: Supply chain pieces for this example (source: in-toto specification [20])

?Example use for cli tool can be found here and its documentation here

https://github.com/in-toto/demo
https://in-toto.readthedocs.io/en/latest/command-line-tools/in-toto-run.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

36

CHAPTER 6. ARTIFACT ATTESTATIONS

As a result of this, Alice’s layout would have two steps and one inspection. A
root.Jayout file that fulfills these requirements would look like this:

{

"signed" : {
"_type" : "layout",
"expires" : "<EXPIRES>",
"readme" : "<README>",
"keys" : {
"<BOBS_KEYID>" : "<BOBS_PUBKEY>",
"<ALICES_KEYID>": "<ALICES_PUBKEY>"
3,
"steps" : [
{ "_type": "step",
"name": "write-code",
"threshold": 1,
"expected_materials": [],
"expected_products": [
["CREATE", "foo.py"]
1,
"pubkeys": [
"<ALICES_KEYID>"
1,

"expected_command": ["vi"

{ "_type": "step",
"name": "package",
"threshold": 1,
"expected_materials": [
["MATCH", "foo.py", "WITH", "PRODUCTS",
"FROM", "write-code"]
1,
"expected_products": [
["CREATE", "foo.tar.gz"]
1,
"pubkeys": [
"<BOBS_KEYID>"
1,

"expected_command": ["tar", "zcvf", "foo.tar.

gz", "foo.py"]

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

6.1. IN-TOTO 37

1,
"inspect": [
{ "_type": "inspection",
"name": "inspect_tarball",
"expected_materials": [
["MATCH", "foo.tar.gz", "WITH", "PRODUCTS",
"FROM", "package"]
1,
"expected_products": [
["MATCH", "foo.py", "WITH", "PRODUCTS",
"FROM", "write-code"]
1,
"run": ["inspect_tarball.sh", "foo.tar.gz"]
3
]
1,
"signatures" : [
{ "keyid" : "<ALICES_KEYID>",
"sig" : "90d2a0®6c7a6c2a6a93a9f5771eb2e5ce®0c93dd580be. .. "
}
]

From this layout file, we can see that Alice is expected to create a foo.py
script using vi. The signed link metadata should be done with Alice’s key (for
simplicity, the same key is used to sign the layout and the first link metadata).
After this, Bob is expected to use "tar zcvf ..." to create a tarball, and ship it to Carl.
We assume that Carl’s machine already hosts an inspect_tarball.sh script, which
will be used to inspect the contents of the tarball. After both steps are performed,
we expect to see the following pieces of link metadata (let write-code.link and
package.link):

{ "signed" : {
"_type" : lllinkll ,

name":
"command" : ["vi", "foo.py"],

"materials": { },

"products": {

"foo.py": { "sha256": "2a0ffef5e9709e6164c629e8b31baedd..." }

"write-code",

3,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

10

11

12

13

14

15

16

17

18

19

20

21

38 CHAPTER 6. ARTIFACT ATTESTATIONS

"byproducts": {
"stderr": "",
"stdout": "",
"return-value": 0
3,
"environment": {
"variables": [""],
"filesystem" : "",
"workdir": ""
}
+,
"signatures" : [
{ "keyid" : "<ALICES_KEYID>",
"sig" : "94df84890d7ace3ae3736a698e082e12c300dfe5aee92e..."

}

{ "signed" : {
"_type" : "link",
"Name": "package",
"command" : ["tar", "zcvf", "foo.tar.gz", "foo.py"],
"materials": {
"foo.py": { "sha256": "2a0ffef5e9709e6164c629e8b31bael®d..."}
b,
"products": {
"foo.tar.gz": { "sha256": "78a73f2e55ef15930b137e43b%e..."}

3,

"byproducts": {
"stderr": "",
"stdout": "foo.py",
"return-value": 0

},

"environment": {
"variables": [""],

"filesystem" : ,
"workdir": ""

22

23

24

25

26

27

6.1. IN-TOTO 39

"signatures" : [
{ "keyid" : "<BOBS_KEYID>",
"sig" : "ae3aee92ea33a8f461f736a698e082e12c300dfe5022a..."
}
]
}

With these three pieces of metadata, along with foo.tar.gz, Carl can now
perform verification and install Alice’s foo.py script. When Carl is verifying, his
installer will perform the following checks:

1. The root.layout file exists and is signed with a trusted key (in this case,
Alice’s).

2. Every step in the layout has a corresponding [name].link metadata file
signed by the intended functionary.

3. All the artifact rules on every step match the rest of the [name]..link meta-
data files.

Finally, inspection steps are run on the client side. In this case, the tarball will
be extracted using inspect_tarball.sh and the contents will be checked against
the script that Alice reported in the link metadata. If all of these verifications
pass, then installation continues as usual.

6.1.b in-toto attestation framework

Up until now we have explained why in-toto adds transparency to the supply
chain, and provided a use case as well. Now we will introduce the attestation
framework of in-toto which is what matters to us. Note that the attestation
framework is a separate specification. "The in-toto Attestation Framework pro-
vides a specification for generating verifiable claims about any aspect of how a
piece of software is produced" as said by the authors [19]. Why is this different
from the core in-toto specification analyzed above? Now, with the attestation
framework the focus is on verifying artifacts produced amid the supply chain,
not on verifying the chain itself.

The attestation framework [19]

¢ defines a standard format for attestations which bind subjects, the artifacts
being described, to arbitrary authenticated metadata about the artifact

¢ provides a set of pre-defined predicates for communicating authenticated
metadata throughout and across software supply chains

40 CHAPTER 6. ARTIFACT ATTESTATIONS

This framework is intended to sign arbitrary artifact metadata so that any
policy engine can consume it. By standardizing the way in-toto attestation are
produced and consumed, we can leverage them in CI/CD pipelines for both
purposes i.e., create an attestation while running the pipeline, and verify before
consuming. To achieve this, the community has vetted for specific attestations
which are thought to be commonly used. Here is a list of some of them:

SLSA Provenance

Link

SCAI Report

Runtime Traces

SLSA Verification Summary

We can take for example the vulnerability scans. Frequently when creating a
container image, you may want to run a vulnerability scan on it e.g., with Trivy
(see chapter 3.3). There may be cases where you may want to attest that there
are no vulnerabilities of high or critical severity residing in this container. For
that a vulnerability scan attestation can be created. Now, let’s take a look at how
this attestation is formatted.

Attestations are primarily JSON files. In in-toto attestation framework, an
attestation is packaged in the following way:

6.1. IN-TOTO 41

in-toto sPe_c:iPicc\'t?on 1.0
Wttes S 3?‘thu(=.comﬁn-‘t oto/attestotion/releases/ tag/ V.0

(Envelope |DSSE v1.(m
payloadType: L application/vnd.in-toto+j son]
ayload: — .
Py Statement | BaseS4Encoded JSON 1
{
"_type": "https://in-toto.io/Statement/v1",
"subject": [
{
"name": "<NAME>",
"digest": {"<ALGORITHM>": "<HEX_VALUE>"}
+ —

1, .

"predicateType": "<URI>",

"predicate": { ... }

}
o _/
Example SPDX SBOM Predicate Example Subject
"predicateType": Ehttps : // spdx.dev/Document"| {
"predicate": { "name": @s.gcr.io/dasith—wijes/dem0123"
"SPDXID" : "SPDXRef-DOCUMENT", "digest™—{
"spdxVersion" : "SPDX-2.2", : ("124elfdee9ufe5c5£902beo ... ")
}

} }

Figure 6.2: Relationships between the envelope, statement and predicate layers (source:
in-toto attestation specification [19])

Attestations are packed as a DSSE (explained in 2.5) with payloadType being
"application/vnd.in-toto+json". If we decode from base64 the payload, then we
get a Statement. A Statement has the following format:

"_type": "https://in-toto.io/Statement/v1",
"subject": [
{
"name": "<NAME>",
"digest": {"<ALGORITHM>": "<HEX_VALUE>"}
1,

-

10

11

12

42 CHAPTER 6. ARTIFACT ATTESTATIONS

1,
"predicateType": "<URI>",
"predicate": { [:] }

}

For a Statement, the _type is "https:/ /in-toto.io/Statement/v1". The subject is
the artifact that it refers to, and is referenced by its digest. Then there is the pred-
icateType and predicate. The predicate is actually the body of the attestation, and
contains whatever information this attestations specifies, for instance, a vulnera-
bility scan attestation may have a filed named "results" and list the vulnerabilities
found. PredicateType is a URI which indicates the schema of the predicate. In the
aforementioned example, it would be "https:/ /in-toto.io/attestation/vulns", so
that the application knows how to interpret the predicate, and what fields to
expect.

There are multiple predefined predicate types in the specification which cor-
respond to common attestations. If a predicate type does not fit your needs, you
can always implement your own. Here are some notable ones [19]:

¢ CycloneDX or SPDX — for SBOM attestation
¢ SLSA Provenance — for provenance attestation

¢ SCAI Report — for evidence-b ased assertions about software artifact and
supply chain attributes or behavior

¢ Vulns — for results of vulnerability scans on artifacts

¢ Runtime Traces — for capturing runtime traces of software supply chain
operations

¢ Test Result — for expressing results of any type of tests (e.g. mvn test)

In the image below we see an example of a CI/CD pipeline, which depicts the
supply chain of a project.

10

11

12

13

14

15

16

6.1. IN-TOTO 43

9 Vulnerability Scan
Code Review & . ; . i
Submission git commit © mald) docker image Kubernetes
- itHub Actions
(GitHub) !

Y
Code Review & ' '
Submission submodules build tools
(GitHub)

Figure 6.3: Attestation supply chain (source: in-toto attestation documentation [18])

Of course, one can use the in-toto cli tool to verify that all the steps in the
supply chain were executed by the authorized functionaries, but now with in-
toto attestation framework in each step an attestation can be generated for a
specific artifact, and have it verified upon consuming it. We can have a code
review attestation, a provenance attestation, a vulnerability scan attestation and
a release attestation for this example. For simplicity we list one Statement of the
ones mentioned:

{

"predicateType": "https://example.com/VulnerabilityScan/v1",
"subject": [
{ "digest": {
"gitCommit": "859b387b985ea®f414e4e8099c9f874ach217b94"}
}
1,
"predicate": {
"timestamp": "2020-04-12T13:55:02Z",
"vulnerability_counts": {
"high": 0,
"medium": 1,
"low": 17

When the above Statement is packed into a DSSE, it is an attestation. That
is because attestations must contain a signature for integrity and authentica-
tion purposes. Now imagine, that we have more of these Statements, with
different predicate types such as, "https://example.com/CodeReview/v1" or

44 CHAPTER 6. ARTIFACT ATTESTATIONS

"https://example.com/Provenance/v1". This patent helps strengthen the se-
curity of the supply chain, and provide confidence to downstream consumers
of the software artifacts produced by it. At this point we need to highlight that
attestations should be stored in a (public) repository in order for them to be
discoverable and usable.

6.2 Supply Chain Levels for Software Artifacts (SLSA)

Supply Chain Levels for Software Artifacts or SLSA, is a set of "adoptable guide-
lines for supply chain security, established by industry consensus" [11], SLSA is
a specification which is separate from in-toto but they share some intersection
points (analyzed in subsection 6.2.d). SLSA is about protecting each step in the
supply chain by providing tamper-resistant proof (i.e., attestations). SLSA helps
protect against [11]:

¢ Code modification (by adding a tamper-evident “seal” to code after source
control)

¢ Uploaded artifacts that were not built by the expected CI/CD platform (by
marking artifacts with a factory “stamp” that shows which build platform
created it)

¢ Threats against the build platform (by providing “manufacturing facility”
best practices for build platform services)

While SLSA as a specification claims to protect the whole chain, practically
in the current version 1.0, it mainly focuses in the build process of the software
product. It works very tightly with CI/CD platforms which automate the build
process and make it easier to efficiently produce attestations.

SLSA can be used by three distinct parties. Software producers, software
consumers and infrastructure providers. Software producers want to generate
the tamper-proof evidence that their chain is secured by the three threats men-
tioned above. Software consumers want to verify this proof to evaluate their
trust against a software product. Infrastructure providers want to embed some
baseline security measures into their infrastructure - like CI/CD platforms -
which securely host the pipelines of the software producers. For infrastruc-
ture providers this is especially important since they act as the bridge between
software producers and consumers, and their services must be as trustworthy as
possible. This correlates to the concept of workload identities as mentioned in 3.2.b.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

6.2. SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 45

6.2.a Provenance

Provenance is a core concept of SLSA. The provenance of an artifact depicts
what system built it, what process was used and what where the inputs [11]. For
example, a provenance for a maven build would have a value for the property of
"system", say, "github runner" and for "inputs", say, "app.jar, commit a923f.." etc.
GitHub Actions has a premade action for generating provenance attestations.
Below we can see an example of it:

name: Build with provenance

on:
push:
branches: ["main"

jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4

- name: Set up JDK 17
uses: actions/setup-java@v4
with:
java-version: '17'

- name: Maven Package
run: mvn clean package

- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3.7.1

- name: Build and push Docker image
uses: docker/build-push-action@v6.9.0
with:

tags: myaccount/myimage:latest
file: ./Dockerfile
push: true

32

33

34

35

36

37

10

11

12

13

14

15

16

17

18

19

46 CHAPTER 6. ARTIFACT ATTESTATIONS

- name: Attest Build Provenance
uses: actions/attest-build-provenance@vl.4.3
with:
subject-name: docker.io/myaccount/myimage:latest
subject-digest: ${{steps.build-and-push.outputs.digest}}
push-to-registry: true

The above workflow is similar to the ones in chapter 3, but in the last step
we have added a provenance attestation. What this exactly does is, it collects
information about the build environment and the artifact in scope and crafts a
JSON file. This JSON file is in reality an in-toto attestation with a predicateType
of "https://slsa.dev/provenance/v1". Moreover, to sign this attestation the
specific GitHub Action leverages Sigstore as a signing system [14]. The identity
that signs the provenance attestation is the GitHub runner which is a workload
identity, and uses Sigstore with non-interactive OIDC authentication to sign
the document. Sigstore’s ephemeral keys are a great fit for this case because
the workload identity ceases to exist after the pipeline is executed. What is
the information gain from a provenance attestation? That a particular build
platform produced a set of artifacts [11]. Below we can see a sample provenance
attestation produced by this GitHub action:

{
"_type": "https://in-toto.io/Statement/v1",
"subject": [

{
"name": "docker.io/myaccount/myimage:latest",
"digest": {
"sha256": "2366a3df5da25590e07ecbc..."

3
1,
"predicateType": "https://slsa.dev/provenance/v1",
"predicate": {
"buildDefinition": {
"buildType": "https://actions.github.io/buildtypes

/workflow/v1",
"externalParameters": {
"workflow": {
"ref": "refs/heads/main",

"repository": "https://github.com/myaccount/myproject",

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

6.2. SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA)

47

"path": ".github/workflows/ci.yaml"
3
1,

"internalParameters": {
"github": {
"event_name": "push",
"repository_id": "123456789",
"repository_owner_id": "32165487",
"runner_environment": "github-hosted"
}
1,
"resolvedDependencies": [
{
"uri": "git+https://github.com/myaccount
/myproject@refs/heads/main",
"digest": {
"gitCommit": "3456cva5b3gfv9s8..."

]
3,
"runDetails": {
"builder": {
"id": "https://github.com/myaccount/myproject/.github
/workflows/ci.yaml@refs/heads/main"
1,
"metadata": {
"invocationId": "https://github.com/myaccount
/myproject/actions/runs/12345678912/attempts/1"

6.2.b How SLSA works

Now that we have a clear understanding of what provenance is for SLSA, let’s
see how SLSA itself works. SLSA works in tracks and levels. A track is an aspect
of the supply chain e.g., build process, and for each track there are incrementing

48 CHAPTER 6. ARTIFACT ATTESTATIONS

levels of security thatit provides. The higher the level, the more security practices
are implemented for this track. Currently, SLSA supports one track which is the
Build track and has four levels of security as seen in table 6.1. The build track’s
focus is oriented around the provenance of an artifact.

Track/Level| Requirements Focus

Build LO (none) (n/a)

Build .1 Proven?mce showing how the package Mlstakes, documenta-
was built tion

Build L2 Signed provenance, generated by a | Tampering after the
hosted build platform build

Build L3 Hardened build platform Eirirllgermg during the

Table 6.1: SLSA Build Levels and Tracks (source: SLSA [11])

Build Level 0 provides no guarantees and is intended for software builds
under the development phase where no evidence needs to be provided to a
downstream consumer.

Build Level 1 includes provenance of an artifact and can be used to avoid
trivial mistakes but is easy to tamper with. It is intended for organizations who
want to quickly get into SLSA and gain some benefits from provenance. These
benefits are:

* makes it easier to debug or analyze the build process by knowing exactly
what the build environment was

¢ with verification errors can be avoided such as building from a commit
that is not present in the upstream repo

¢ an inventory of software and build platforms is assembled

Level 1 provenance may not be signed or lack some fields in its document.
It is required by the software producer to have a consistent build process - i.e.,
have CI pipeline in place - so that stakeholders will know what to expect from a
typical build.

Build Level 2 states that hosted build platform must be used e.g., GitHub
Actions hosted runners, that generates and signs the provenance. The build plat-
form should run on dedicated infrastructure, not an individual’s workstation,

6.2. SUPPLY CHAIN LEVELS FOR SOFTWARE ARTIFACTS (SLSA) 49

and the provenance is tied to that infrastructure through the digital signature.
Since security levels are incremental, the Level 2 includes all Level 1 benefits
plus:

¢ prevents tampering after the build — logical since provenance is signed

¢ reduces attack surface by limiting builds to specific build platforms that
can be audited and hardened

¢ allows large-scale migration of teams to supported build platforms early
while

* deters adversaries who face legal or financial risk by evading security
controls, such as employees who face risk of getting fired

Build Level 3 is the upper level of security and is all about hardening the
build platform. Forging a provenance or evading verification requires exploiting
a vulnerability that is beyond the capabilities of most adversaries. That means
that the build platform itself must be resilient do prevent tampering during
the build. The build platform should implement strong controls to prevent
runs from influencing one another and prevent secret material used to sign
the provenance from being accessible to other user-defined build steps. To
correlate with the example yaml given in 6.2.a, the last point means that the key
generated by the step "Attest Build Provenance" must not be accessible by any
other following step (assuming there are following steps such as vulnerability
scans etc). Benefits gained from Level 3 are the ones accumulated from the levels
below, plus:

¢ prevents tampering during the build by insider threats, compromised cre-
dentials, or other tenants.

¢ greatly reduces the impact of compromised package upload credentials by
requiring attacker to perform a difficult exploit of the build process.

¢ provides strong confidence that the package was built from the official
source and build process

So what is left now, is to have build platform providers harden their sys-
tems, while at the same time encourage software producers to adopt a well-
implemented build platform, and apply SLSA provenance attestations.

6.2.c SLSA Principles

The fact that a build is required to run on a (hardened) platform implies that a
software producer trusts the infrastructure provider that the builder is honest

50 CHAPTER 6. ARTIFACT ATTESTATIONS

and won't act maliciously. That is logical because at some point one has to
place trust somewhere in order to get the job done. To generalize, SLSA has
highlighted three principles [11]:

¢ Trust platforms, verify artifacts
¢ Trust code, not individuals

e Prefer attestations over inferences

The first principle is safe to say that is quite reasonable and was explained
beforehand. Only a small number of build platforms should be trusted by soft-
ware producers. That is because the trust is put on the infrastructure provider. It
is preferable to trust an organization that is well-known for its security practices
- like GitHub - and use their services, rather than use any build platform with
questionable security implementations for their systems. On verification, it is
easy to check if the artifact was produced by one of those "trusted" platforms. If
the infrastructure does not belong to a third party, but it is on-prem, then it is
better to have all parties interested in running build on one shared dedicated en-
vironment and harden it, rather than having each party maintain their own ones.

The second principle is also logical. Source code is static and analyzable so
problems can be easily traced back to source. Individuals on the other hand
can be adversaries, or even if they aren't, they are prone to mistakes. Even if
that is not the case, they tend to ask for access here and there and end up being
authorized in services they shouldn’t be.

Lastly, it is said to prefer attestations over inferences. One can make assump-
tions about the security of a system by looking at its configurations. Is this
switch turned off? Who is allowed access here? Does the build step generate
provenance? And so on. Even an experienced person can skim a list with these
properties and indeed conclude that the system is safe, but this is just not ac-
ceptable. We need better means of inference, and SLSA promotes attestations
for that. With that, only authorized entities can make changes to artifacts that
are being attested.

6.2.d SLSA & in-toto

SLSA and in-toto may be very similar at first glance but serve different purposes.
Nonetheless, there are intersection points.

6.3. VERIFICATION OF ATTESTATIONS 51

SLSA is a specification that states what levels of security can be achieved for
specific tracks of the supply chain, for example, what security measurements
can be taken to protect and prevent from malicious action during and/or after
the build process. It is a set of guidelines for infrastructure providers, devops
engineers, security engineers and other roles, to have in mind when trying to
implement security solutions in their supply chain.

in-toto is a specification for making the supply chain transparent, and making
sure that no unauthorized functionaries attempt to run a step they shouldn't.
Additionally, attestations have been introduced in in-toto which help verify the
authenticity and integrity of artifacts produced in the chain. The framework has
also standardized the format for these attestations. There are multiple attesta-
tions types such as CycloneDX, Vulns and SLSA Provenance.

What SLSA gets from in-toto is the standardized way of producing attestations
in a specific format. On the other side, what in-toto gets from SLSA, is the pred-
icate and predicateType of SLSA provenance. As said, in in-toto the community
vets for predicate types to be added in the specification, and SLSA provenance
is one of them, along with SLSA verification summary attestation.

6.3 Verification of attestations

SLSA sets some guidelines about verifying artifacts which are all about checking
specific fields on provenance attestation. The steps to do that are the following
[11]:

1. Check SLSA Build level

2. Check expectations

3. (Optional) Check dependencies recursively

52 CHAPTER 6. ARTIFACT ATTESTATIONS

Check expectations Step 2 Step 1 check SLSA Build level

6 68 & 8

Producer —— Source —— Build —_—— Package ——>— Consumer

Check dependencies Step 3
(recursively) Dependencies

SOURCE THREATS DEPENDENCY THREATS BUILD THREATS
D Use compromised dependency E Compromise build process
F Upload modified package
C Build from modified source G Compromise package registry

H Use compromised package

Figure 6.4: Protection of each step in the chain after verification (source: SLSA [11])

We briefly explain the steps. In step 1 we check that the build level actually ap-
plies to the artifact by checking the provenance. At the same time, the builder’s
trust is evaluated (not all build platforms are/should be trusted). The predicate
type must be "https:/ /slsa.dev/provenance/v1", the subject must match the ar-
tifact being verified and the attestation must be successfully verified. Not all
levels defend against all the steps in the chain in image® 6.4.

In step 2 the verifier can set some expectations about the provenance of an
artifact. That is because, in step 1 not all fields of the attestation are verified. In
this step, a consumer could set an expectation for the source repository, that is,
to see whether the repository in the attestation matches the expected one (i.e.,
the real one) and there has not been a typo-squatting attack. At this point, the
verifier is supposed to have a predefined set of meaningful expected values to
verify, according to a specific threat model. Within the context of a predefined
policy, a verification can fail or succeed.

In step 3 the resolved Dependencies* field of the provenance is recursively checked.

3For more detail, see here

*resolvedDependencies is a field in provenance which contains a collection of artifacts needed
at build time

https://slsa.dev/spec/v1.0/verifying-artifacts

6.3. VERIFICATION OF ATTESTATIONS 53

Until now we have seen the SLSA way of verifying attestations which tells us
what to check during verification. GitHub proposes its own cli tool to verify [14].
When an attestation is created with GitHub Actions, it is stored in a temporary
storage location (a URL for that is provided when the action is executed). When
having possession of the artifact we can run the following command to verify:

$ gh attestation verify my-artifact.tar.gz -o my-organization

An alternative proposed is to download the attestation document, not the
artifact itself, and pass the attestation to a policy engine like Open Policy Agent
(OPA), and let the policy engine inference the authenticity of the artifact. A
policy engine like OPA contains policies which are written by individuals, and
have expected values hard-coded in them. This can be done using the cli ad-hoc
as well:

$ gh attestation verify -R github/example --format json myfile.zip | \
opa eval --stdin-input -f raw \
-d policy.rego "data.attestation.slsal.allow == true"

Use Case

7.1 Description

In our use case, we have a Java Quarkus application which is implements a REST
API for car rental service'. This is not a monolithic application, but it is split in
three microservices running in a Kubernetes cluster:

e Fleet microservice
e User microservice

e Rent microservice

Each microservice is responsible for different functionalities of the application.
Fleet microservice manages the vehicles that each company rents e.g., a new ve-
hicle can be added for a company. User microservice does user management e.g.,
registration. Rent microservice executes mostly application logic e.g., by accepting
requests for car rentals by customers, accepting payments etc. Each microservice
has its own H2 database. In the image below we can see the topology of the
cluster:

!Project can be found here. It started as a monolithic app, but later on changed to microservices

55

https://github.com/lefosg/quarkus-rest-car-rental-service

56 CHAPTER 7. USE CASE

Azure
Kubernetes
Service < >

service/fleet-service pod/fleet-msvc

incoming
requests
e R e

NGINX service/user-service pod/user-msvc
Ingress \

Controller
@ @

service/rent-service pod/rent-msvc

Figure 7.1: Kubernetes cluster topology

NGINX is used as an Ingress Controller for the cluster. It accepts requests and
forwards the to the corresponding service. Note that this application was not
built with security in mind, so we do not care about application-level or API-
level security aspects. Terraform is used to provision the infrastructure needed,
while within the Kubernetes cluster there are multiple other services running
like Istio, OPA, and telemetry services such as Jaeger and Prometheus. Those
services are out of scope since we want to explore artifact attestations, but are
mentioned for completeness.

7.2 DevSecOps applied

This project has adopted DevSecOps principles and uses GitHub Actions as a
build platform to test, build, and distribute its containers, and later on deploy
the containers. GitHub container registry is used for storing the containers,
and GitHub artifact registry for storing the attestations. After the CI pipeline
is executed, the CD pipeline takes place which is a push-based deployment to
AKS. A high level overview of the pipeline is depicted in the following image:

7.2. DEVSECOPS APPLIED

O

commit workflow
cl.yami cd.yami

L
[.r'ff*;] oo

github github
artifact container
registry registry

&

b
Memame v
i
Azure
Kubemetes
Service R e
/ service/fleet-service podifleet-msve
@
NGINX senvice/user-service pod/user-msvc
Ingress \

Controller

By
|
O

servicerent-service podirent-msvc

Figure 7.2: Project pipeline

The actions the CI process incorporates are:

checkout and install prerequisites (java, maven etc)

* testing

code quality scanning with Sonarqube

building
* packaging

creating the container

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

58 CHAPTER 7. USE CASE

* attest its provenance
¢ generate and attest the SBOM

¢ vulnerability scan with Trivy (no attestation is done here)

Let’s assume that the pipeline runs for the fleet microservice. We would have
a yaml file looking like this one (for simplicity we skip steps that have been
mentioned multiple times until now):

name: Build Fleet Microservice

on:
push:
branches: ["main"

jobs:
build:

runs-on: ubuntu-latest

permissions:
contents: write
packages: write
id-token: write
attestations: write

steps:

checkout, install java & maven

- name: Build and analyze
env:
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN_FLEET }}
SONAR_HOST_URL: ${{ secrets.SONAR_HOST_URL }}
run: mvn -B --file ./FleetMicroservice/pom.xml verify
org.sonarsource.scanner.maven: sonar-maven-plugin:sonar
-Dmaven. test.skip=true
-Dsonar.projectKey=quarkus-rest-car-rental-service-fleet
-Dsonar.projectName="'quarkus-rest-car-rental-service-fleet'

build & push container image

- name: Attest Build Provenance

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

7.2. DEVSECOPS APPLIED 59

uses: actions/attest-build-provenance@vl.4.3
with:
subject-name: ghcr.io/lefosg
/quarkus-rent-car-rental-service/fleet:latest
subject-digest: ${{steps.build-and-push.outputs.digest}}
push-to-registry: true

name: Generate SBOM
uses: anchore/sbom-action@v®
with:
image: ghcr.io/lefosg
/quarkus-rent-car-rental-service/fleet:latest
output-file: fleet.sbom.json
format: 'cyclonedx-json'
upload-artifact: false

name: Attest SBOM

uses: actions/attest-sbom@vl

with:
subject-name: ghcr.io/lefosg

/quarkus-rent-car-rental-service/fleet

subject-digest: ${{steps.build-and-push.outputs.digest}}
sbom-path: fleet.sbom.json
push-to-registry: true

name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@0.28.0
with:
image-ref: ghcr.io/lefosg
/quarkus-rent-car-rentl-service/fleet:latest
format: 'table'
ignore-unfixed: true
vuln-type: 'os,library’'
output: fleet.trivy

The first security step that appears in the pipeline is the SAST scanning with
Sonarqube. This step takes as input our code, analyses it, and sends a report to a
specified Sonarqube server defined in the secret variable secrets. SONAR_HOST_URL.
There, we can see a full report of the code quality, for example if there are any

1

2

3

60 CHAPTER 7. USE CASE

known vulnerabilities in our code e.g., SQL injection.

Next, there is the action actions/attest-build-provenance which is the one that gen-
erates the build provenance. The container is already uploaded in the GitHub
container registry. As explained in 6.2.a, the signing happens via Sigstore, and
once the process is done, the artifact attestation is uploaded to GitHub’s artifact
registry. After the workflow is done running a URL is provided to access the
document. Same happens with SBOM attestation. First we have to generate the
SBOM by running the actions/attest-sbom action and the create its correspond-
ing attestation. The action actions/attest-sbom takes as input a JSON file which
contains the SBOM, and generates its attestation by signing it. Afterwards, the
SBOM is uploaded to GitHub’s artifact registry and similarly to the provenance
attestation, it is accessible by a URL provided.

Lastly, the action aquasecurity/trivy-action runs the Trivy vulnerability scanner
on the microservice container. It looks for vulnerabilities in the container image,
misconfigurations, files and secrets. It outputs a file in the format specified, in
our case table.

Note, that in the permissions of the job in the yaml we have set packages: write
and attestations: write. We specifically need these two permissions to be able
to upload the container image to the GitHub packages service, and upload the
artifact attestation to the artifact registry.

Now, we will have a look at the CD pipeline. The steps are fairly simple:

¢ checkout the repository

¢ verify the provenance attestation of the container about to be deployed
¢ login to Azure

¢ configure the Kubernetes context

¢ apply the yaml that includes the corresponding container image (push-
based deployment)

Again, let’s assume that we are talking about the Fleet microservice pipeline.
Here is a demo yaml file:

name: Deploy Fleet Microservice

on:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

7.2. DEVSECOPS APPLIED

61

workflow_run:

workflows: ["Build Fleet Microservice"]

types:
- completed

jobs:

deploy-fleet:
permissions:
actions: read
contents: read
id-token: write
runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v4

- name: Log into registry ghcr.io
uses: docker/login-action@v3.3.0
with:

registry: 'ghcr.io'
username: ${{ github.actor }}

password: ${{ secrets.GITHUB_TOKEN }}

- name: Verify Rent Container Attestation
run: gh attestation verify oci://lefosg

/quarkus-rest-car-rental-service/fleet --owner github

Logs in with your Azure credentials
- name: Azure login

uses: azure/login@vl1.4.6

with:

creds: ${{ secrets.AZURE_CREDENTIALS }}

Use kubelogin to configure kubeconfig
- name: Set up kubelogin for non-interactive login

uses: azure/use-kubelogin@vl
with:

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62 CHAPTER 7. USE CASE

kubelogin-version: 'v0.0.25'

Retrieves AKS cluster's kubeconfig file
- name: Get K8s context
uses: azure/aks-set-context@v3
with:
resource-group: 'car-rental-serice-rg'
cluster-name: 'car-rental-service-cluster'
admin: 'false'
use-kubelogin: 'true'

Deploys Fleet Microservice
- name: Deploys application
uses: Azure/k8s-deploy@v4
with:
action: deploy
manifests: ${{ github.workspace }}/k8s/fleet-msvc.yaml
images: ghcr.io/lefosg/quarkus-rest-car-rental-service
/fleet:latest

The steps are pretty much self explanatory. Login to GitHub container reg-
istry and Azure, configure the kubectl client to point to AKS, and apply the
yaml file in the last step. The one step that is of most interest is the one that
runs the gh attestation verify command. This command runs some checks prede-
fined by the gh cli tool, like checking that the repository is indeed the correct one.

In the Kubernetes cloud-native environment attestations can be verified in a
"Kubernetes-like way". We can always run the gh attestation verify command
to manually verify the container image attestation, but in reality, we can in-
stall a specific Kubernetes Admission Controller which knows how to verify
attestations, based on a custom-written policy that the Kubernetes administra-
tor composes and applies. GitHub has its own Admission Controller [23]. It
combines two Helm charts which are installed in our Kubernetes cluster. All we
have to do is write a yaml file which is the ClusterImagePolicy file provided by
the trust-policy helm chart. This yaml is our policy definition, and whenever a
change is applied to the cluster, say, a new container is entering the cluster, the
Kubernetes Admission Controller pulls the attestation from GitHub and runs
the checks specified in our custom ClusterImagePolicy yaml.

Conclusion and Discussion

To conclude, in this thesis we discussed various topics. From the fundamentals
of DevSecOps, up until artifact attestations and their supporting frameworks.
DevSecOps is an important concept, and it is crucial for organizations who do
DevOps engineering to understand the risks of the supply chain and embed se-
curity practices in their workflows. As for artifact attestations, the specifications
of in-toto and SLSA are indeed a good headway to lay the foundations of supply
chain security but they still need time and effort to grow to mature specifications.
The same goes for existing technical tools. in-toto has implemented a cli tool for
its purposes however there is a need for more streamlined solutions. Other tools
like policy engines and CI/CD platforms need to be "supply-chain aware" and
integrate with upcoming solutions.

63

Bibliography

4]

URL: https://cloud.google.com/software-supply-chain-security/
docs/dependencies.

Evan Anderson. Running Sigstore as a Managed Service: A Tour of Sigstore’s
Public Good Instance. Oct. 2024. urL: https://openssf.org/blog/2023/
10 /03 /running - sigstore - as - a - managed - service - a - tour - of -
sigstores-public-good-instance/.

Krebs Bruno. The OpenID Connect Handbook. Tech. rep. AuthQ. urL: https:
//assets.ctfassets.net/2ntc334xpx65/2yRtkzYHiiBLLSguFsnQs9/
419405cee8bd0a7b8f70e20cef22c190/The-openid-connect-handbook-
vl.pdf.

William Enck and Laurie Williams. “Top Five Challenges in Software
Supply Chain Security: Observations From 30 Industry and Government
Organizations”. In: IEEE Security Privacy 20.2 (2022), pp. 96-100. por:
10.1109/MSEC.2022.3142338.

Artem Golubev. What Is CI/CD? Expedite The Software Development Life
Cycle - testRigor. June 2022. urL: https://testrigor.com/blog/what-is-
cicd/.

Information technology — Object Management Group Architecture-Driven Mod-
ernization (ADM) — Knowledge Discovery Meta-Model (KDM). Standard.
Geneva, CH: International Organization for Standardization, 2012. uUrr:
https://www.iso.org/standard/32625.html.

Ramtin Jabbari et al. “What is DevOps? A Systematic Mapping Study on
Definitions and Practices”. In: Proceedings of the Scientific Workshop Pro-
ceedings of XP2016. XP "16 Workshops. Edinburgh, Scotland, UK: Associa-

65

https://cloud.google.com/software-supply-chain-security/docs/dependencies
https://cloud.google.com/software-supply-chain-security/docs/dependencies
https://openssf.org/blog/2023/10/03/running-sigstore-as-a-managed-service-a-tour-of-sigstores-public-good-instance/
https://openssf.org/blog/2023/10/03/running-sigstore-as-a-managed-service-a-tour-of-sigstores-public-good-instance/
https://openssf.org/blog/2023/10/03/running-sigstore-as-a-managed-service-a-tour-of-sigstores-public-good-instance/
https://assets.ctfassets.net/2ntc334xpx65/2yRtkzYHiiBLLSguFsnQs9/419405cee8bd0a7b8f70e20cef22c190/The-openid-connect-handbook-v1.pdf
https://assets.ctfassets.net/2ntc334xpx65/2yRtkzYHiiBLLSguFsnQs9/419405cee8bd0a7b8f70e20cef22c190/The-openid-connect-handbook-v1.pdf
https://assets.ctfassets.net/2ntc334xpx65/2yRtkzYHiiBLLSguFsnQs9/419405cee8bd0a7b8f70e20cef22c190/The-openid-connect-handbook-v1.pdf
https://assets.ctfassets.net/2ntc334xpx65/2yRtkzYHiiBLLSguFsnQs9/419405cee8bd0a7b8f70e20cef22c190/The-openid-connect-handbook-v1.pdf
https://doi.org/10.1109/MSEC.2022.3142338
https://testrigor.com/blog/what-is-cicd/
https://testrigor.com/blog/what-is-cicd/
https://www.iso.org/standard/32625.html

66

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

tion for Computing Machinery, 2016. 1sBn: 9781450341349. por: 10.1145/
2962695.2962707. urL: https://doi.org/10.1145/2962695.2962707.

Julia Kulla-Mader and Chuck Lantz. Apply software engineering systems.
July 2024. urL: https : //learn . microsoft . com/en-us/platform-
engineering/engineering-systems.

Zachary Newman, John Speed Meyers, and Santiago Torres-Arias. “Sig-
store: Software Signing for Everybody”. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. CCS "22. Los
Angeles, CA, USA: Association for Computing Machinery, 2022, pp. 2353—
2367. 1sBN: 9781450394505. por: 10.1145/3548606.3560596. URL: https:
//doi.org/10.1145/3548606.3560596

Marc Ohm et al. “Backstabber’s Knife Collection: A Review of Open Source
Software Supply Chain Attacks”. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. Ed. by Clémentine Maurice et al. Cham: Springer
International Publishing, 2020, pp. 23—43. 1sBNn: 978-3-030-52683-2. por: 10.
1007/978-3-030-52683-2_2.

OpenSSEFE. Supply-chain Levels for Software Artifacts. 2022. urL: https: //
slsa.dev/.

Roshan N. Rajapakse et al. “Challenges and solutions when adopting De-
vSecOps: A systematic review”. In: Information and Software Technology 141
(2022), p. 106700. 1ssn: 0950-5849. por: https://doi.org/10.1016/ 7.
infsof.2021.106700. urRL: https://www.sciencedirect.com/science/
article/pii/S0950584921001543.

RedHat. What is a CI/CD pipeline? May 2022. urL: https://www.redhat.
com/en/topics/devops/what-cicd-pipeline.

Trevor Rosen. “Blocked Page”. In: github.blog (2024). urL: https://github.
blog/news-insights/product-news/introducing-artifact-attestations-
now-in-public-beta/.

Trevor Rosen. “Where does your software (really) come from?” In: The

GitHub Blog (Apr. 2024). urL: https://github.blog/security/supply-
chain-security/where-does-your-software-really-come-from/.

secure-systems-lab. dsse/envelope.md at v1.0.0 - secure-systems-lab/dsse. 2020.
URL: https://github.com/secure-systems-1lab/dsse/blob/v1.0.0/
envelope.md.

Storing and sharing data from a workflow. 2024. urL: https://docs.github.
com/en/actions/writing-workflows/choosing-what-your-workflow-
does/storing-and-sharing-data-from-a-workflow.

https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://learn.microsoft.com/en-us/platform-engineering/engineering-systems
https://learn.microsoft.com/en-us/platform-engineering/engineering-systems
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1145/3548606.3560596
https://doi.org/10.1007/978-3-030-52683-2_2
https://doi.org/10.1007/978-3-030-52683-2_2
https://slsa.dev/
https://slsa.dev/
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106700
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106700
https://www.sciencedirect.com/science/article/pii/S0950584921001543
https://www.sciencedirect.com/science/article/pii/S0950584921001543
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://github.blog/news-insights/product-news/introducing-artifact-attestations-now-in-public-beta/
https://github.blog/news-insights/product-news/introducing-artifact-attestations-now-in-public-beta/
https://github.blog/news-insights/product-news/introducing-artifact-attestations-now-in-public-beta/
https://github.blog/security/supply-chain-security/where-does-your-software-really-come-from/
https://github.blog/security/supply-chain-security/where-does-your-software-really-come-from/
https://github.com/secure-systems-lab/dsse/blob/v1.0.0/envelope.md
https://github.com/secure-systems-lab/dsse/blob/v1.0.0/envelope.md
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/storing-and-sharing-data-from-a-workflow
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/storing-and-sharing-data-from-a-workflow
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/storing-and-sharing-data-from-a-workflow

BIBLIOGRAPHY

67

[18]

[19]

[20]

[21]

[22]

[23]

in-toto. attestation/docs/README.md at main - in-toto/attestation. 2021. URL:
https://github.com/in-toto/attestation/blob/main/docs/README.
md.

in-toto. attestation/spec/vl1.0/README.md at v1.0 - in-toto/attestation. 2021.
URL: https://github.com/in-toto/attestation/blob/v1.0/spec/vl.
0/READVME. md.

in-toto. specification/in-toto-spec.md at v1.0 - in-toto/specification. 2024. URL:
https://github.com/in-toto/specification/blob/v1.0/in-toto-
spec.md.

Dimitri Van Landuyt et al. From automation to CI/CD: a comparative evaluation
of threat modeling tools. 2024-07-23.

Ryan Wike et al. Workload identities - Microsoft Entra Workload ID. Oct.
2023. urL: https://learn.microsoft.com/en-us/entra/workload-
id/workload-identities-overview.

April Yoho. Configure GitHub Artifact Attestations for secure cloud-native de-
livery. July 2024. urL: https://github.blog/security/supply-chain-
security/configure-github-artifact-attestations- for- secure-
cloud-native-delivery/.

https://github.com/in-toto/attestation/blob/main/docs/README.md
https://github.com/in-toto/attestation/blob/main/docs/README.md
https://github.com/in-toto/attestation/blob/v1.0/spec/v1.0/README.md
https://github.com/in-toto/attestation/blob/v1.0/spec/v1.0/README.md
https://github.com/in-toto/specification/blob/v1.0/in-toto-spec.md
https://github.com/in-toto/specification/blob/v1.0/in-toto-spec.md
https://learn.microsoft.com/en-us/entra/workload-id/workload-identities-overview
https://learn.microsoft.com/en-us/entra/workload-id/workload-identities-overview
https://github.blog/security/supply-chain-security/configure-github-artifact-attestations-for-secure-cloud-native-delivery/
https://github.blog/security/supply-chain-security/configure-github-artifact-attestations-for-secure-cloud-native-delivery/
https://github.blog/security/supply-chain-security/configure-github-artifact-attestations-for-secure-cloud-native-delivery/

Acronyms

AKS Azure Kubernetes Service. 15, 56

CA Certificate Authority. 22

CD Continuous Delivery. 13, 56, 60

CI Continuous Integration. 12, 56, 57

CI/CD Continuous Integration/Continuous Delivery. v, 1, 2, 29, 63

CT Certificate Transparency. 25

DAST Dynamic Application Security Testing. 17
DevOps Development and Operations. v, 1, 11, 12, 63
DevSecOps Development, Security, and Operations. v, 17, 56, 63

DSSE Dead Simple Signing Envelope. 9, 41
FOSS Free and Open-Source Software. 29
IdP Identity Provider. 6

JWS JSON Web Signature. 9

JWT JSON Web Token. 7

OIDC OpenlD Connect. 6, 21, 22

69

70 Acronyms

OPA Open Policy Agent. 53, 56
RP Relying Party. 6

SAST Static Application Security Testing. 17
SCA Software Composition Analysis. 17
SDLC Software Development Life Cycle. 1, 5, 12, 28

SLSA Supply-chain Levels for Software Artifacts. v, 30, 63
TM Theat Modeling. 17

VM Virtual Machine. 14

List of Figures

2.1

2.2

3.1
3.2
3.3

4.1

51

6.1

6.2

6.3

6.4

7.1
7.2

Software Development Life Cycle Overview (source: Where does
your software (really) come from? [15])
OIDC flow simplified

CI/CD steps and tools (source: Whatis CI/CD?[5])
Manual toautomated o o o o oL
Sample CI/CD sketch (source: Apply software engineering sys-
tems [8])

The Sigstore key issuance flow (source: Sigstore: Software Signing
for Everybody [9]) oo

Supply Chain Threats (source: SLSA[11])

Supply chain pieces for this example (source: in-toto specification
[20]) . . . e
Relationships between the envelope, statement and predicate lay-
ers (source: in-toto attestation specification [19])
Attestation supply chain (source: in-toto attestation documenta-
ton[18])
Protection of each step in the chain after verification (source: SLSA

[I1]) « o e e e e e e e

Kubernetes cluster topology
Projectpipeline

71

List of Tables

5.1 Real world attacks (source: SLSA[11])

6.1 SLSA Build Levels and Tracks (source: SLSA [11])

73

- List of Algorithms

75

	Abstract
	Περίληψη
	Acknowledgments
	Introduction
	Motivation and Problem Statement
	Thesis Structure

	Background
	Software Development Life Cycle
	OpenID Connect
	What is an Artifact
	Attestations
	Attestations vs Signatures

	Dead Simple Signing Envelope (DSSE)

	DevSecOps
	What is DevOps
	CI/CD pipelines
	CI/CD in practice (example)
	Workload Identities

	Security in DevOps (DevSecOps)

	Sigstore
	What is Sigstore
	System Design
	Cosign
	Fulcio and Rekor

	Software Supply Chain Security
	Artifact Attestations
	in-toto
	Example Workflow
	in-toto attestation framework

	Supply Chain Levels for Software Artifacts (SLSA)
	Provenance
	How SLSA works
	SLSA Principles
	SLSA & in-toto

	Verification of attestations

	Use Case
	Description
	DevSecOps applied

	Conclusion and Discussion
	Bibliography
	Acronyms
	List of Figures
	List of Tables
	List of Algorithms

