
Retrieval Success Rate with Optimistic Provide

in IPFS

Fotis Bistas

Advisor: George Xylomenos

Athens University of Economics and Business

March 2023

Contents

1 Introduction 1
1.1 The IPFS network and CIDs . 1
1.2 Content provision and provider records 1
1.3 Hydra boosters . 3
1.4 Optimistic Provide . 4
1.5 The Ipfs-cid-hoarder tool . 5
1.6 Contributions to Ipfs-cid-hoarder 7
1.7 Goals of the report . 8

2 Methodology 9

3 Results 12
3.1 First experiment: 600 CIDs/JSON 13
3.2 Second experiment: 600 CIDs/JSON 18
3.3 Third experiment: 1000 CIDs/JSON 24
3.4 Fourth experiment: 1000 CIDs/JSON 30
3.5 Fifth experiment: 1500 CIDs/JSON 36
3.6 Sixth experiment: 2000 CIDs/JSON 39

4 Conclusions 43

1

Abstract

The aim of this report is to examine the retrievability of the provider records that
were provided to the IPFS network by using the Optimistic Provide algorithm [1]
and assess whether it is comparable to that of the standard IPFS algorithm.
This is evaluated by executing a series of experiments with the ipfs-cid-hoarder
tool [2] tool, which has been expanded with a new set of features, contained in
the following pull request [3].

Chapter 1

Introduction

1.1 The IPFS network and CIDs

The InterPlanetary File System (IPFS) is a peer-to-peer protocol for storing and
sharing hypermedia in the form of a distributed file system. The IPFS network is
an instantiation of IPFS. IPFS was initially designed by Juan Benet, and is now
an open-source project. It aims to make the web faster, safer, and more open
by replacing the traditional, centralized model of the web with a decentralized
system. Along with that, IPFS aims to offer a distributed alternative to the
existing, centralized, content routing systems.

In IPFS, each file and all of the blocks within it are given a unique fingerprint
called a cryptographic hash; these cryptographic hashes are referred to as CIDs
(content identifiers) and are used to match files and blocks with IPFS nodes.
As a result, IPFS stores and retrieves files and blocks based on their content
(which is used to calculate the CIDs), rather than their location. This allows for
a more resilient and permanent web, as the data are distributed across multiple
nodes and can be accessed even if some of the nodes are down. It is important
to emphasize that by data, we do not mean the actual content, but rather links
to the content and the peer node that provides it.

CIDs use the SHA-256 hashing algorithm by default, although many other
algorithms are supported. This ensures that any changes in the content will
produce different CIDs; therefore, if the same content is added to two different
nodes with the same settings, it will product the same CID. Conversely, if the
content is changed, its CID changes along with it [4].

1.2 Content provision and provider records

In a distributed peer-to-peer system like the IPFS network, communication
between nodes occurs in a more elegant and decentralized manner compared
to a centralized network where a central server facilitates communication. It
is crucial for peers in a distributed network to have the ability to locate each

1

other, as new nodes join and existing nodes leave the system. To facilitate the
exchange of data between nodes, IPFS utilizes a Distributed Hash Table (DHT).
The DHT functions as both a catalog and a navigation system for the IPFS
nodes, allowing them to map keys to values and, eventually, nodes.

Figure 1.1: The three key-values pairings stored in the IPFS DHT. The IPNS
values are not relevant to this study [4].

IPFS uses an implementation of the Kademlia DHT, which ensures:

• The unique identification of peers, using an address space of [0, 2256 − 1].

• A peer ordering in the address space from smallest to largest. This is
achieved using the SHA-256 hash of the peer’s ID and interpreting it as
an integer between [0, 2256 − 1].

• A projection that assists in calculating a position in the address space
where a record key should be stored at. This is done using the SHA-256
hash of the record key.

To help locate peer nodes (and, thus, record keys), each peer maintains a
skip-list with the peers that are at a distance of approximately 1, 2, 4, 8, ...,
hops away (inversely common prefix); since the address space is much larger
than the number of peers, there is no guarantee that a peer will exist at these
exact distances. The distance/hops is calculated as a XOR operation between
the addresses of two peers. At the same time, due to the node churn in the IPFS
network, that is, the constant addition and removal of peer nodes, we cannot
rely on a single pointer to maintain routing; instead, a peer stores K links for
each distance, with K = 20.

For example, for the distance of 128, it stores K = 20 links to nodes that lie
somewhere in the 65 (26 + 1) to 128 range. These are called k-buckets. As the

2

address space is 2256, each node maintains 256 k-buckets [4]. These K-buckets
are the IPFS routing table of each node, containing 256 rows, each corresponding
to one K-bucket. Peers are inserted into this list when a peer connects to another
peer. Deciding which nodes should be inserted to the routing table is left up to
the Kademlia implementation.

When a peer desires to provide content into the network, it does a lookup
into the DHT to retrieve the K closest peers, measured in XOR distance (this
is the Kademlia closeness metric), to the CID of the content. In order for the
peer to successfully advertise that it has the content, it must add a Provider
Record (PR) to these peers. The PR is essentially a pointer to the peer that
provides the content.

To add the PR, we use the ADD PROVIDER RPC of the Kademlia DHT.
This notifies the remote peer that it is in the set of closest peers to the content
provided. If the PR is actually inserted into the remote peer, the target peer
is added to the provider store of the peer providing the content. The provider
also locally stores the PR, in case some peer contacts it directly.

An important property of PRs which is crucial for this study, is that they
are only kept alive in the IPFS network for 24 hours. This means that after the
24 hour mark, the peers will no longer share the PRs. If the provider wants to
keep the content accessible, it is suggested that it republishes the PRevery 12
hours, adapting the content to the rapidly changing network conditions [5]. In
this manner, peers who are no longer the closest ones to the CID, automatically
drop the PR, while the now closest peers will start storing it.

1.3 Hydra boosters

To accelerate content routing, the IPFS network may include some Hydra nodes.
Hydras are essentially performing a non-malicious Sybil attack on the network,
using multiple peer IDs distributed in the address space [6]; each of these peer
IDs are one of the Hydra’s heads. Hydras influence the way the network behaves;
due to their multiple IDs, nodes will likely contact them to complete IPFS
functionalities [7].

Hydras receive ADD PROVIDER RPCs from nodes that want to advertise
content in the network and they proceed to store them in a large database. The
Hydra heads can then access the database, when a GET PROVIDERS RPC is
received and serve the RPC; essentially, a Hydra node can make large jumps in
the address space due to its multiple Peer IDs. If a Hydra does not contain the
PR, it proactively searches the network in order to store it [7].

Currently Hydras have been dialed down in the network, to determine their
impact. This implies that the Hydras’ database does not serve any requests.
The initial provide operation may insert a PR in a Hydra node, but as a result
of the dial down, the Hydra nodes will not respond back with that PR. As a
result, it is expected that the total online peer average will be higher than the
received PR average.

3

1.4 Optimistic Provide

The process of providing content in the IPFS network is notoriously slow com-
pared to discovering content, since providing content requires locating all K
peers, while discovering content requires locating just one of them. Discovering
content in the network in most cases takes about 1.5 s, while providing content
can take sometimes up to 60 s. This in turn makes content provision a non-user
friendly experience [8].

Locating all the closest peers to a CID is further complicated by the fact
that due to node churn, some of the peers in the node’s routing tables may
have left the network, leading to timeouts. Also, peers need to limit the amount
of resources they assign to each connection, thus some connection attempts
might fail due to the fact that remote peers have reached their resource limit.
Additionally, since the peers are sparsely distributed in the ID space, peers close
to the XOR distance or those that share high number of common prefix bits, of
the peer’s own ID will likely not be as available as others, simply because there
are not that many stable peers to begin with in close distances [5]. A helpful
visualization is given in Figure 1.2.

Figure 1.2: A visualization of the available peers in the Kademlia address space.
Each grey circle is its own K-bucket and the original node is the black one [9].

Optimistic provide is an algorithm that aims to decrease the time that it
takes for content to be published in the IPFS network. Optimistic provide
achieves that using an “optimistic” approach when publishing content. Using
an estimate of the network size and calculating the XOR distance of the CID
we want to store to the identifier of a peer that we are already in contact with,
we can guess if that peer is appropriate for storing a PR, without performing
a detailed search. The goal here is to exploit as far as possible peers that we
know about, instead of trying to locate new ones.

To explain how this works, consider a candidate Peer ID P , a CID to store
C and an IPFS network with size N . Taking the XOR distance of the Peer ID
and the CID, normalizing it to the [0, 1] range and multiplying by the network
size we get µ = ||P − C|| ∗N , which is the number of peers that we expect to
lie between P and C. If µ is less than K = 20 we store the provider record
at peer P , as with high certainty the peer is truly in the list of the K closest

4

peers. The normed XOR distance is produced by dividing a distance with the
maximum value in the address space, which is 2256 − 1. To understand this,
one can think of the normed XOR distance as a percentage. For example, if the
normed XOR distance is µ = ||P −C|| = 0.1% and the network size N is 7000,
following the above formula it is safe to say that around 7 peers are closer to
C than P [1]. More in depth analysis of the theoretical modeling can be found
in [10]. As Figure 1.3 shows, this can significantly decrease the time to provide
content; the maximum time of optimistic provide is around 30 seconds while
the max time of the standard provide is around 50 seconds.

(a) Optimistic provide. (b) Normal provide.

Figure 1.3: Distribution of content provisioning time.

1.5 The Ipfs-cid-hoarder tool

In order to gather metrics about PRs, a tool that pings the providers and
analyzes their responses is needed. The IPFS-cid-hoarder tool stores relevant
information about the content in a database and then proceeds to ping the
peers holding each PR. During this process, metrics about the responses (does
the peer have a PR, what is the content of the PR, which user agent is used by
the peer, etc.) are added to the database for further analysis [11]. The hoarder
uses multiple lookup methods in order to gather metrics about the providers.
Specifically, it calls concurrently:

• DHT.LookupForProviders(context, CID): this checks if the net-
work can still route the requesting peer to the peer hosting the content,
using a full DHT walk. If successful, it assigns a true value to the isRe-
trievable flag in the database. This flag is used to create the at least
one peer provides graphs.

1 // re turns the prov ide r s f o r a s p e c i f i c CID using a DHT walk
2 prov ider s , e r r := p . host .DHT. LookupForProviders (ctxT , c .CID)
3 // i t e r through the prov ide r s to see i f i t matches with the

hos t ’ s peerID
4 f o r , paddrs := range p rov ide r s {
5 i f paddrs . ID == c . Creator {
6 i sR e t r i e v ab l e = true
7 }
8 }

5

• hoarder.PingPRHolder(individual PR holder): after connecting
to a peer, this retrieves all the PRs from the peer. This is not a libp2p
library call, but rather a custom function which performs the libp2p call
DHT.GetProvidersFromPeer(context, peerID, CID), which al-
lows one to request the PRs of a single peer for a given CID. If we suc-
cessfully connect to the peer, the isActive flag in the database will be set
to true; this flag is used for the active peer graphs. If the creator peer
of the CID is in the set of providers, the hasRecords flag is set to true;
this is used to create the retrievability graphs. Note that this scheme
does not perform a DHT walk: the individual PR holders are pinged using
their peer IDs and the DHT table is not searched to find the PR holders.

1 // i f the connect ion was suc c e s s f u l , r e que s t whether i t has
the records or not

2 i sAc t i v e=true
3 connError = p2p . NoConnError
4 provs , , e r r := p inger . host .DHT. GetProvidersFromPeer (p inger .

ctx , pAddr . ID , c .CID . Hash ())
5 // i t e r through the prov ide r s to see i f i t matches with the

hos t ’ s peerID
6 f o r , paddrs := range provs {
7 i f paddrs . ID == c . Creator {
8 hasRecords = true
9 }

10 }

• DHT.GetClosestPeers(context, CID): this is the full DHT walk
(using the standard lookup scheme) to retrieve the closest peers and, while
retrieving them, store some useful additional data (hops etc.). This aids
in calculating the very important In-degree ratio, which is the number
of peers with the isActive flag set to true, that are also in the set of the
K-closest peers throughout the study:

1 // re turns the c l o s e s t peers cu r r en t l y a v a i l a b l e to a g iven CID
2 c l o s e s tPe e r s , lookupMetr ics , e r r := p . host .DHT. GetClosestPeers

(ctxT , s t r i n g (c .CID . Hash ()))
3 f o r , peer := range c l o s e s tP e e r s {
4 cidFetchRes . AddClosestPeer (peer)
5 }

To summarize and point out some additional details, the above are used for the
following use cases:

• The results of DHT.LookupForProviders are used to ensure that,
using a full DHT walk we can retrieve the PRs from at least one peer,
implying that at least one peer chosen by optimistic provide is in the K-
closest peers set. This is important, as the peers initially chosen might not
be in the K-closest peers set, or some new peers might join the network
that are closer to the ones that we initially chose. The graphs created by
this method (for example, Figure 3.9), exploit the isRetrievable flag.

6

• The results of the hoarder.PingPRHolder, which are depicted in the
retrievability graphs (for example, Figure 3.3) and the online graphs (for
example, Figure 3.2), are not based on the full DHT walk. This means that
even though the hasRecords/isActive flag may be set to true, these
peers might not be in the K-closest peers set, so the content cannot be
retrieved using a normal DHT walk. To assess whether Optimistic Provide
has chosen “good” peers (in the K-closest peers set), the in In-degree ratio
is compared to the online average. To ensure that the peers chosen are
indeed in the K-closest peers set and the content can be retrieved using a
walk, the isRetrievable flag is used to create graphs like Figure 3.10.

• The results of the DHT.GetClosestPeers(context, CID), which is
the full DHT walk, are used to create the In-degree ratio graphs (see
Figure 3.4) that describe how many of the initially chosen peers remain
in the K-closest peers set during the experiments.

1.6 Contributions to Ipfs-cid-hoarder

The tool was initially created to publish purely random CIDs, proceed to ping
them and extract information about how the IPFS network treats PRs as a
whole. The functionality that was needed to complete this study was to add
CIDs to the hoarder that had already been inserted to the IPFS network via the
Optimistic Provide algorithm; then, the hoarder continued with the operations
mentioned above.

To achieve, this I created two approaches: a HTTP server approach and a
JSON file approach.

• The JSON file approach reads the PRs through a JSON file, parses them
and inserts them into the database to be further analyzed by the hoarder.
The JSON file approach is only used for small sample sizes.

• The HTTP approach publishes the PRs to an HTTP server (running lo-
cally), retrieves them from the server, parses them and then inserts into
the database to be further analyzed by the hoarder. This is used for large
sample sizes.

The goal was to create a general toolkit that can be used for analyzing network
utilities/algorithms, that concern PR retrievability, even for future usage. The
above methods can indeed be used for future work, but they might need some
tuning to be as descriptive and functional as the initial method.

7

1.7 Goals of the report

This report attempts to answer the following questions.

1. Does the optimistic provide algorithm work properly? We assess this by
by checking whether the peers chosen are appropriate peers for the PRs.
This can be quantified by pinging them, checking if they actually keep the
PRs for a desirable amount of time and then checking the In-degree ratio.

2. What is the percentage of PRs that can be retrieved from the network,
compared to the online percentage of the PR holders? This establishes
whether the content is retrievable and whether it offers the same level of
retrievability as the standard IPFS provide algorithm.

3. Can we always find at least one peer that returns the PRs during the
study? This is the basic requirement from IPFS.

8

Chapter 2

Methodology

We have created a libp2p node which generates CIDs and publishes them using
the Optimistic Provide algorithm in the actual IPFS network. Before publishing,
the routing table of the libp2p node is refreshed, so as to contain the most recent
data from the network. The CIDs are random cryptographic hashes that do not
contain any meaningful content. After an ADD PROVIDER success message
is received, which means a PR was successfully added to a remote peer, some
properties of the PR are stored in JSON form, as shown in Figure 2.1. These
properties include:

• The multiaddresses of the PR.

• The peer’s unique identifier.

• The peer’s agent type (hydra, go-ipfs etc.).

• The creator of the peer.

• The time it took to provide the CID (provide time)

• The publication timestamp of the CID.

• The CID that the PR is saved for.

9

Figure 2.1: Example JSON PR created for the hoarder.

These JSON records, which are inserted in the hoarder’s database, are not
actual PR; they are just a helpful way of representing them. We then extract
the peer IDs from the database and ping them to check whether the actual PRs
can be retrieved. This is achieved in one of two ways:

• If the sample size is small, a JSON file is created with all the records,
and the file is later inserted into the hoarder. This means that we cannot
start pinging any peers until all PRs are inserted. As insertion takes time,
this means that a long time may pass between inserting the first PRs and
pinging the peers storing them.

• If the sample size is large, creating a single file would cost pinging rounds
and CID “aliveness” in the network. Instead, the CIDs are published in
one machine, sent through HTTP to another machine and inserted into
the hoarder. This avoids presenting huge amounts of traffic to the local
network by publishing and pinging at the same time.

The ipfs-cid-hoarder is configured by the command line tool to create a study
lasting 48 hours with a ping interval of 30 minutes. Note that the PRs are not
republished after their initial publication. The 48 hour study accounts for the
aliveness functionality of IPFS: after the 24 hour mark, we should observe that
peers are not sharing the PR with us, as they have not been refreshed/re-
published. The 30 minute ping interval was chosen since peers do not accept
constant connection requests.

The hoarder gathers results in a PostgreSQL database consisting of the fol-
lowing tables:

• cid info: contains the basic information about a CID.

10

• k closest peers: contains the K-closest peers for each CID and for each
ping round.

• fetch results: contains the summary of all the requests done for a given
CID on a fetch round.

• peer info: has the basic info of a peer chosen as a PR Holder

• ping results: contains the result of the individual ping of a PR Holder.

• pr holders: helper table connecting different tables of database.

The peer can respond with the PRs in a variety of ways, containing the multi-
address of the peer + the peer ID, containing only the peer ID or not respond
at all. The hoarder accounts for that by also keeping a log file.

The PostgreSQL dump file and the log file are sent to a local machine using
SCP. Then, the results are visualized using jupyter notebook, by reproducing
the database in PG Admin and querying it. This visualization also includes the
analysis of the log files.

11

Chapter 3

Results

To determine the effectiveness of retrieving PRs in the IPFS network, we need
to examine the number of peers that were online during the study and the
number of those peers that responded with the PRs. If the online average is
similar or close to the retrievability average, it indicates that our goal has been
achieved. Furthermore, we must analyze the results of the DHT walk and check
whether the PRs can be retrieved using the DHT. Additionally, it is important
to consider the number of peers that were successfully saved during the provide
process, or how many “put provider” RPCs were successful. Note that only
the successful PRs are inserted into the hoarder. This implies that the online
average should be around the successful PR holder average.

We performed a total of eight experiments. The first four experiments were
designed as pairs: the first and second experiment published 600 CIDs at dif-
ferent times, while the third and fourth published 1000 CIDs at different times,
in all cases using the JSON file method to control the experiment. All these
experiments were performed in the same period, one after the other.

The next four experiments were performed at a later period (with different
IPFS network conditions), increasing the number of CIDs and moving from the
JSON file to the HTTP server method. The fifth experiment published 1500
CIDs using the JSON file method, the sixth and seventh experiment published
2000 CIDs, first with the JSON file and then with the HTTP server method,
and the eighth experiment published 3500 CIDs with the HTTP server method.
We’ll only display the JSON file ones.

The graphs are a series of boxplots, with each boxplot corresponding to a
ping round (30m). The yellow line is the median, the boxes extend between
the 1st and 3rd quartile of the distribution (25% to 75% of the results), the
whiskers extend to 1.5 times the IQR (inter-quartile distance), and the dots
indicate results outside the whiskers.

12

3.1 First experiment: 600 CIDs/JSON

Figure 3.1 shows the distribution of successful PR holders during the publication
process. The largest number of CIDs were stored in 10 nodes, but there were a
few CIDs that were stored at less than 5 nodes.

Figure 3.1: Distribution of successful PR holders during publication.

Figure 3.2 shows the average number of online peers over time, while Fig-
ure 3.3 shows the average number of peers sharing the PRs. Both these graphs
are based on directly pinging the peers known to hold the PRs by the hoarder.
To reiterate, this is not part of a DHT walk, but rather a direct ping from the
database. We see that for an average of 8-10 online peers, 5-7.5 of them will
share the PRs, dropping down to 0 around the 24h mark, when the PRs expire.

Figure 3.2: Average number of online peers.

13

Figure 3.3: Average number of peers sharing the PRs.

To assess how many of these peers remain in the K-closest peers set over
the experiment, Figure 3.4 shows the average In-degree ratio per CID, that is,
the number of initially chosen peers by the Optimistic Provide process that are
among the K closest to the CID. We can observe that 7-10 of those peers remain
in the K-closest peers set.

Figure 3.4: Average in-degree ratio.

Figure 3.5 shows the number of non-Hydra peers online, while Figure 3.6
shows the number of those peers sharing the PRs. We can see that we can
retrieve almost all provider records from non-Hydra peers.

14

Figure 3.5: Average number of online non-Hydra peers.

Figure 3.6: Average number of non-Hydra peers sharing the PRs.

15

Figure 3.7: Average number of online Hydra peers.

Figure 3.8: Average number of Hydra peers sharing the PRs.

Figure 3.7 shows the average number of Hydra peers online, while Figure 3.8
shows the number of those peers sharing the PRs. We can see that Hydras did
not share the PRs with us, which causes the total retrievability average to drop.
The sharing during the first hour is attributed to the hoarder initializing data.

We now turn to the basic requirement for IPFS, that at least one peer shares
the PRs, before they expire. This is achieved by performing a full DHT walk,
which is what an actual retrieval request would do. Figure 3.9 shows that at
least one peer shares the PRs with us, during the study before the 24h mark.
Note that after the 24h mark the provider records are still shared with us until
even the 49h mark.

16

Figure 3.9: Liveness of the PRs.

Figure 3.10 shows the average number of peers responding to a DHT lookup.
Note that even after the 24h mark (here the pings are counted, so around 48
pings) some peers might still respond back with the PRs up until 92 pings.

Figure 3.10: Average number of peers responding to a DHT lookup.

Finally, Figure 3.11 shows the results of the DHT lookup. As mentioned
before the peers can respond in a variety of ways. It is important to point out
that even when the peers hold a PR, they may not respond (e.g., due to the
resource manager blocking us out). Again, we can see that even after the 24h
mark (here the pings are counted so around 48 pings) some peers might still
respond back. In most cases, we either receive only the Peer ID or no response
at all.

17

Figure 3.11: Results of a DHT lookup.

3.2 Second experiment: 600 CIDs/JSON

This experiment is a repetition of the first one, at a slightly later date. Fig-
ure 3.12 shows the distribution of successful PR holders during the publication
process. It can be observed that most of the successful PR holder are in the
8-12 range, but there were a few CIDs that were stored at less than 5 nodes.

Figure 3.12: Distribution of successful PR holders during publication.

Figure 3.13 shows the average number of online peers over time, while Fig-
ure 3.14 shows the average number of peers sharing the PRs. We see that for

18

an average of 8-10 online peers, 5-6 of them will share the PRs, dropping down
to 0 around the 24h mark, when the PRs expire; this is slightly lower than in
the first experiment.

Figure 3.13: Average number of online peers.

Figure 3.14: Average number of peers sharing the PRs.

To assess how many of these peers remain in the K-closest peers set during
the study, Figure 3.15 shows the average (n-degree ratio per CID. We can observe
that 6-10 peers remain in the K-closest peers set, similar to the first experiment.

19

Figure 3.15: Average in-degree ratio.

Figure 3.16 shows the number of non-Hydra peers online, while Figure 3.17
shows the number of those peers sharing the PRs. Again, we can see that we
can retrieve almost all provider records from non-Hydra peers.

Figure 3.16: Average number of online non-Hydra peers.

20

Figure 3.17: Average number of non-Hydra peers sharing the PRs.

Figure 3.18: Average number of online Hydra peers.

21

Figure 3.19: Average number of Hydra peers sharing the PRs.

Figure 3.18 shows the average number of Hydra peers online, while Fig-
ure 3.19 shows the number of those peers sharing the PRs. We can see that
Hydras did not share the PRs with us. Again, sharing during the first hour is
attributed to the hoarder initializing data.

We now turn to the basic requirement for IPFS, that at least one peer shares
the PRs, before they expire. Figure 3.20 shows that at least one peer shares the
PRs with us, during the study before the 24h mark. Note that after the 24h
mark the provider records are still shared with us until even the 49h mark.

Figure 3.20: Liveness of the PRs.

Figure 3.21 shows the average number of peers responding to a DHT lookup.
Note that even after the 24h mark (here the pings are counted, so around 48
pings) some peers might still respond back with the PRs up until 97 pings.

22

Figure 3.21: Average number of peers responding to a DHT lookup.

Finally, Figure 3.22 shows the results of the DHT lookup. Again, we can see
that even after the 24h mark (here the pings are counted so around 48 pings)
some peers might still respond back. In most cases, we either receive only the
Peer ID or no response at all.

23

Figure 3.22: Results of a DHT lookup.

3.3 Third experiment: 1000 CIDs/JSON

The third experiment uses the same setup as the previous two, but with a higher
number of CIDs (1000 instead of 600). Figure 3.23 shows the distribution of
successful PR holders during the publication process. It can be observed that
most of the successful PR holders are around 10, but there were a few CIDs
that were stored at less than 5 nodes.

Figure 3.23: Distribution of successful PR holders during publication.

Figure 3.24 shows the average number of online peers over time, while Fig-

24

ure 3.25 shows the average number of peers sharing the PRs. We see that for
an average of 9-10 online peers, 5-7 of them will share the PRs, dropping down
to 0 around the 24h mark, when the PRs expire.

Figure 3.24: Average number of online peers.

Figure 3.25: Average number of peers sharing the PRs.

To assess how many of these peers remain in the K-closest peers over the
duration of the study, Figure 3.26 shows the average In-degree ratio per CID.
We can observe that 7-8 peers remain in the K-closest peers set.

25

Figure 3.26: Average in-degree ratio.

Figure 3.27 shows the number of non-Hydra peers online, while Figure 3.28
shows the number of those peers sharing the PRs. We can see that we can
retrieve almost all provider records from non-Hydra peers. Results are similar
to the 600 CID experiments.

Figure 3.27: Average number of online non-Hydra peers.

26

Figure 3.28: Average number of non-Hydra peers sharing the PRs.

Figure 3.29: Average number of online Hydra peers.

27

Figure 3.30: Average number of Hydra peers sharing the PRs.

Figure 3.29 shows the average number of Hydra peers online, while Fig-
ure 3.30 shows the number of those peers sharing the PRs. Results are again
similar to the 600 CID experiments.

We now turn to the basic requirement for IPFS, that at least one peer shares
the PRs, before they expire. Figure 3.31 shows that at least one peer shares the
PRs with us, during the study before the 24h mark. Note that after the 24h
mark the provider records are still shared with us until even the 49h mark.

Figure 3.31: Liveness of the PRs.

Figure 3.29 shows the average number of peers responding to a DHT lookup.
Note that even after the 24h mark (here the pings are counted, so around 48
pings) some peers might still respond back with the PRs up until 97 pings, 2
days after publication time.

28

Figure 3.32: Average number of peers responding to a DHT lookup.

Finally, Figure 3.33 shows the results of the DHT lookup. It is important to
point out that even when the peers hold a PR, they may not respond (e.g., due
to the resource manager blocking us out). Again, we can see that even after
the 24h mark (here the pings are counted so around 48 pings) some peers might
still respond back.

29

Figure 3.33: Results of a DHT lookup.

3.4 Fourth experiment: 1000 CIDs/JSON

The fourth experiment is the same as the third one, but performed at slightly
later time. Figure 3.34 shows the distribution of successful PR holders during
the publication process. It can be observed that most of the successful PR
holder are in range of 8-12, but there were a few CIDs that were stored at less
than 5 nodes.

Figure 3.34: Distribution of successful PR holders during publication.

Figure 3.35 shows the average number of online peers over time, while Fig-

30

ure 3.36 shows the average number of peers sharing the PRs. Both these graphs
are based on directly pinging the peers known to hold the PRs by the hoarder.
We see that for an average of 9-10 online peers, 5-6 of them will share the PRs,
dropping down to 0 around the 24h mark, when the PRs expire.

Figure 3.35: Average number of online peers.

Figure 3.36: Average number of peers sharing the PRs.

To assess how many of these peers remain in the K-closest peers set over the
duration of the study, Figure 3.37 shows the average In-degree ratio per CID,
that is, the number of initially chosen peers by the optimistic provide process
that are among the k closest to the CID. We can observe that a 7-8 peers remain
in the K-closest peers set.

31

Figure 3.37: Average in-degree ratio.

Figure 3.38 shows the number of non-Hydra peers online, while Figure 3.39
shows the number of those peers sharing the PRs. Results are similar to the
previous experiments.

Figure 3.38: Average number of online non-Hydra peers.

32

Figure 3.39: Average number of non-Hydra peers sharing the PRs.

Figure 3.40: Average number of online Hydra peers.

33

Figure 3.41: Average number of Hydra peers sharing the PRs.

Figure 3.40 shows the average number of Hydra peers online, while Fig-
ure 3.41 shows the number of those peers sharing the PRs. Results are again
similar to the previous experiments.

We now turn to the basic requirement for IPFS, that at least one peer shares
the PRs, before they expire. Figure 3.42 shows that at least one peer shares the
PRs with us, during the study before the 24h mark. Note that after the 24h
mark the provider records are still shared with us until even the 49h mark.

Figure 3.42: Liveness of the PRs.

Figure 3.40 shows the average number of peers responding to a DHT lookup.
Note that even after the 24h mark (here the pings are counted, so around 48
pings) some peers might still respond back with the PRs up until 97 pings, 2
days after publication time.

34

Figure 3.43: Average number of peers responding to a DHT lookup.

Finally, Figure 3.44 shows the results of the DHT lookup. It is important to
point out that even when the peers hold a PR, they may not respond (e.g., due
to the resource manager blocking us out). Again, we can see that even after
the 24h mark (here the pings are counted so around 48 pings) some peers might
still respond back.

35

Figure 3.44: Results of a DHT lookup.

3.5 Fifth experiment: 1500 CIDs/JSON

The next four experiments were performed at a later date, when the network
seemed to be in a better state than it was when the first four experiments were
conducted. The number of CIDs was also gradually increased. For brevity, the
graphs involving online nodes, retrievability and in-degree ratio are not shown,
as they are similar to the previous ones, but with slightly higher values.

Figure 3.45 shows the distribution of successful PR holders during the pub-
lication process. In this (better) network state, there seems to be an increase in
the successful put provider RPCs, as the highest numbers of CIDs are stored in
12-15 peers.

36

Figure 3.45: Distribution of successful PR holders during publication.

Regarding the basic requirement for IPFS, that at least one peer shares the
PRs, before they expire, Figure 3.46 shows that results are almost the same as
in the previous experiments, but there are some outliers that are not retrievable
before the 24h mark. A peculiar finding is that all of the outliers can be retrieved
afterwards, well into 38 hours. This indicates that this is either a hoarder issue
or a network issue; for example, the cause might be that the hoarder cannot
lookup forever for a specific key, a timeout is set after 2 mins (magic number)
and the operation is timed out. This should be further analyzed in future work,
in case this assumption is wrong.

Figure 3.46: Liveness of the PRs.

Running the following query into the database can help further analyze the
data:

1 SELECT ∗ FROM f e t c h r e s u l t s WHERE i s r e t r i e v a b l e = FALSE AND
ping round > 0 ORDER BY ping round DESC;

As Figure 3.47 shows, the outliers can be retrieved by subsequent ping
rounds, pointing to the fact that specific DHT walks failed and that the CIDs
can be indeed retrieved before 24h.

37

Figure 3.47: Output of query.

Running the following query into the database can help determine the per-
centage of failed DHT walks:

1 SELECT
2 nega t i v e s . c id ,
3 nega t i v e s . coun ,
4 t o t a l . c id ,
5 t o t a l . coun ,
6 (nega t i v e s . coun : :NUMERIC/ t o t a l . coun : :NUMERIC) as percentage FROM
7 (
8 SELECT c id hash as cid , count (∗) as coun
9 FROM f e t c h r e s u l t s

10 WHERE
11 ping round > 0 AND i s r e t r i e v a b l e=Fal se
12 GROUP BY(c id)
13) AS nega t i v e s
14 JOIN (
15 SELECT c id hash as cid , count (∗) as coun
16 FROM f e t c h r e s u l t s
17 WHERE ping round > 0
18 GROUP BY(c id)
19) AS t o t a l ON nega t i v e s . c id = t o t a l . c id ;

38

Figure 3.48: Output of query.

As Figure 3.48 shows, the percentage of failed DHT walks for each specific
CID before the 24h mark.

3.6 Sixth experiment: 2000 CIDs/JSON

Figure 3.49 shows the distribution of successful PR holders during the publica-
tion process. In this (better) network state, there seems to be an increase in the
successful put provider RPCs, as the highest numbers of CIDs are stored in 12
peers.

39

Figure 3.49: Distribution of successful PR holders during publication.

Figure 3.50 shows whether the PRs were retrievable. After the 21h mark
some CIDS are not retrievable. This is likely attributed to the fact that the
publish time of the CIDs is different and we are inserting the PRs using a JSON
file, which may cause us to miss some ping rounds. This is further supported by
the query we are doing for the database later. There are some outliers before
the 24h mark, but this can attributed to other reasons rather than Optimistic
Provide, due to the small number of outliers.

Figure 3.50: Liveness of the PRs.

Running the following query into the database can help further analyze the
data:

1 SELECT ∗ FROM f e t c h r e s u l t s WHERE i s r e t r i e v a b l e = FALSE AND
ping round > 0 ORDER BY ping round DESC;

As Figure 3.51 shows, except for some outliers which are retrievable in later
rounds, all of the CIDs are retrievable before the 24h mark (ping round 48). For
round 1 two CIDs are not retrievable but then are retrievable and for round 32
one CID is not retrievable but then it also becomes retrievable.

40

Figure 3.51: Output of query.

Running the following query into the database can help determine the per-
centage of failed DHT walks:

1 SELECT
2 nega t i v e s . c id ,
3 nega t i v e s . coun ,
4 t o t a l . c id ,
5 t o t a l . coun ,
6 (nega t i v e s . coun : :NUMERIC/ t o t a l . coun : :NUMERIC) as percentage FROM
7 (
8 SELECT c id hash as cid , count (∗) as coun
9 FROM f e t c h r e s u l t s

10 WHERE
11 ping round > 0 AND ping round <= 48 AND i s r e t r i e v a b l e=False
12 GROUP BY(c id)
13) AS nega t i v e s
14 JOIN (
15 SELECT c id hash as cid , count (∗) as coun
16 FROM f e t c h r e s u l t s
17 WHERE ping round > 0 AND ping round <= 48
18 GROUP BY(c id)
19) AS t o t a l ON nega t i v e s . c id = t o t a l . c id ORDER BY percentage DESC;

41

Figure 3.52: Output of query.

As Figure 3.52 shows, the percentage of failed DHT walks for each specific
CID before the 24h mark.

42

Chapter 4

Conclusions

The results of this study indicate that the Optimistic Provide algorithm main-
tains the initial guarantees of the standard provide algorithm that come along
with content provision, while being much faster and lightweight. It ensures
that the requesting node still receives the requested content from a sufficient
number of peers and at least one peer can always be found, even though the
second set of results casts some doubts about this, and requires further study. It
therefore seems, especially from the first set of results, that Optimistic Provide
is a promising solution for improving the provide time without sacrificing the
reliability and robustness of the system.

It is important to note that in our study of optimistic provide we only con-
sidered successful put provider RPCs, while other studies using the CID hoarder
have looked at both failed put provider RPCs and successful put provider RPCs.
This is an important distinction to make, as including failed put provider RPCs
would likely lead to higher In-degree ratios and higher online averages.

Our findings suggest that the Optimistic Provide algorithm can be further
improved by increasing the number of successful initially selected peers. While
the algorithm was able to retrieve PR holders from the peers, we observed that
the number of successful peers was not as high as the standard provide algorithm
which is around 15. The findings from the second set of experiments, reflect-
ing a different network state, indicate that the algorithm manages to choose on
average more successful peers. By increasing the number of successful peers,
we believe that the algorithm can achieve even greater success in retrieving PR
holders. This improvement can potentially enhance the overall performance of
the algorithm and reduce the time it takes to retrieve PR holders from the net-
work. Therefore, it seems that an important future step for optimistic provide
would be to increase the number of successful put provider RPCs.

Moreover, our analysis indicates that the Optimistic Provide algorithm main-
tains a consistently high average In-degree ratio compared to the online average.
This is an important finding, as a high In-degree ratio is crucial for ensuring
that the requested data can be quickly and reliably retrieved from the network.

Another important fact is that the Hydra dial down has a significant impact

43

on the performance of the Optimistic Provide algorithm and the overall network.
This is because Hydras are selected as initial PR holders by the algorithm, and
the dial down affects their ability to serve as reliable providers. There are some
outlier hydras that seem to share the provider records with us. This is probably,
because there are hydras running outside of the known dialed down ones. The
dialed down hydras cause the general retrievability average of Optimistic Provide
to drop. Therefore, it is crucial to consider the impact of Hydra dial down
when implementing and evaluating the performance of the Optimistic Provide
algorithm. Further research is needed to explore ways to mitigate this impact
and improve the algorithm’s ability to select reliable initial providers, and avoid
unreliable ones.

A very peculiar finding that is not necessarily related to Optimistic Provide
is that some PRs can still be retrieved even after the 24-hour mark, up until the
48-hour mark. This suggests that the information sharing among peers does not
completely stop after the initial 24 hours. Some new implementations of DHT
have increased the PR deletion up until 48h. What we are observing is probably
that most IPFS peers are running the new implementations , while there are
others which are running on older versions.This means that the provider record
holders keep the PRs even after the 24 hour mark and share them.

44

Acknowledgements

I would like to extend my deepest appreciation to my thesis advisor, Professor
George Xylomenos, for his invaluable guidance, support, and his initiative to
introduce me to the Probe Lab team. His knowledge, expertise, and experience
have been instrumental in the successful completion of this work. I would also
like to thank my colleagues at Probe Lab for their helpful insights and sugges-
tions. In particular, I would like to thank Mikel Cortes and Dennis Trautwein,
who provided valuable assistance with the project. Their patience and guidance
was most crucial for completing this project. I hope that in the future, if the
circumstances permit it, I will be able to see the completion of the Optimistic
Provide algorithm. Furthermore working with the Probe Lab team was a incred-
ible learning experience that made understand how to work in the demanding
market of programming / computer science, while actually being rewarding and
pleasant to work for.

45

Bibliography

[1] D. Trautwein. (2022) Optimistic provide. https://github.com/dennis-tra/
optimistic-provide.

[2] M. Cortes. (2022) Ipfs cid hoarder. https://github.com/cortze/
ipfs-cid-hoarder.

[3] F. Bistas. (2022) Hoarder pull request. https://github.com/cortze/
ipfs-cid-hoarder/pull/11.

[4] Anon. (2020) Ipfs documentation. https://docs.ipfs.tech/concepts/.

[5] D. Trautwein, Y. Psaras, M. Cortes, and M. Guillaume. (2022) Rfm17.
https://github.com/protocol/network-measurements/blob/master/
results/rfm17-provider-record-liveness.md.

[6] Anon. Sybil attack. https://en.wikipedia.org/wiki/Sybil attack.

[7] D. Trautwein. (2022) Hydra talk. https://www.youtube.com/watch?v=
zhzxJGoLTg0&t=281s.

[8] web3-dev team. (2021) Improve ipfs content providing proposal.
https://github.com/protocol/web3-dev-team/blob/main/proposals/
ipfs-content-providing.md.

[9] Anon. (2022) Kademlia. https://en.wikipedia.org/wiki/Kademlia.

[10] D. Trautwein. (2022) op modeling. https://www.notion.so/pl-strflt/
Network-Size-Estimation-4ab2c52083ed4e88968f629d1fa47eb7.

[11] F. Bistas and M. Cortes. (2022) Ipfs cid hoarder fork. https://github.com/
FotiosBistas/ipfs-cid-hoarder#readme.

46

https://github.com/dennis-tra/optimistic-provide
https://github.com/dennis-tra/optimistic-provide
https://github.com/cortze/ipfs-cid-hoarder
https://github.com/cortze/ipfs-cid-hoarder
https://github.com/cortze/ipfs-cid-hoarder/pull/11
https://github.com/cortze/ipfs-cid-hoarder/pull/11
https://docs.ipfs.tech/concepts/
https://github.com/protocol/network-measurements/blob/master/results/rfm17-provider-record-liveness.md
https://github.com/protocol/network-measurements/blob/master/results/rfm17-provider-record-liveness.md
https://en.wikipedia.org/wiki/Sybil_attack
https://www.youtube.com/watch?v=zhzxJGoLTg0&t=281s
https://www.youtube.com/watch?v=zhzxJGoLTg0&t=281s
https://github.com/protocol/web3-dev-team/blob/main/proposals/ipfs-content-providing.md
https://github.com/protocol/web3-dev-team/blob/main/proposals/ipfs-content-providing.md
https://en.wikipedia.org/wiki/Kademlia
https://www.notion.so/pl-strflt/Network-Size-Estimation-4ab2c52083ed4e88968f629d1fa47eb7
https://www.notion.so/pl-strflt/Network-Size-Estimation-4ab2c52083ed4e88968f629d1fa47eb7
https://github.com/FotiosBistas/ipfs-cid-hoarder#readme
https://github.com/FotiosBistas/ipfs-cid-hoarder#readme

	Introduction
	The IPFS network and CIDs
	Content provision and provider records
	Hydra boosters
	Optimistic Provide
	The Ipfs-cid-hoarder tool
	Contributions to Ipfs-cid-hoarder
	Goals of the report

	Methodology
	Results
	First experiment: 600 CIDs/JSON
	Second experiment: 600 CIDs/JSON
	Third experiment: 1000 CIDs/JSON
	Fourth experiment: 1000 CIDs/JSON
	Fifth experiment: 1500 CIDs/JSON
	Sixth experiment: 2000 CIDs/JSON

	Conclusions

