
School of Information Sciences and Technology

Department of Informatics

Athens, Greece

Master Thesis
in

Computer Science

Verifiable Credentials Selective Disclosure,
Challenges and Solutions

Vasilis Kalos

Supervisor: Prof. George C. Polyzos
Department of Informatics

Athens University of Economics and Business

Committee: Prof. Vasilios A. Siris
Department of Informatics

Athens University of Economics and Business

Asst. Prof. Spyridon Voulgaris
Department of Informatics

Athens University of Economics and Business

October 2021



Vasilis Kalos

Veri�able Credentials Selective Disclosure, Challenges and Solutions

October 2021
Supervisor: Prof. George C. Polyzos

Athens University of Economics and Business

School of Information Sciences and Technology
Department of Informatics
Mobile Multimedia Laboratory
Athens, Greece



Abstract

Veri�able Credentials (VCs) provide a way for entities (users, applications, devices etc.) to
prove claims, like a user’s name and occupation, a device’s manufacturer, an applications
security level etc. In the VCs ecosystem, there are three main entities; the Issuer that
creates the VC (e.g., an airline company that issues a ticket), the Holder that controls the
VC (e.g., a traveler that bought the ticket) and the Veri�er that checks the validity of that
VC (e.g., the airport that validates the ticket).

Although VCs have been met with great enthusiasm, there are still some open problems
that need to be addressed. The biggest of those issues is the disclosure of the user’s private
information to anyone they send their VC. Credentials are likely to contain information
that the Holders will want to keep private, like their place of residence, medical records
etc. Most of the current implementations however, use traditional digital signatures that
require the disclosure of the entire VC to the Veri�er, limiting this way the usability of
Veri�able Credentials. To earn the trust of the users and make Credentials widely accepted
and secure, the use of BBS+ signatures has been proposed. BBS+ signatures provide the
means to selectively disclose only part of a VC. This way, the Holder can provide the
Veri�er with the information they need, while at the same time keeping their private
information hidden.

The use of BBS+ signatures with Veri�able Credentials has drawn a lot of attention
lately, with many implementations adopting the BBS+ linked data proof spec, a proposed
speci�cation by the W3C Veri�able Credential’s working group. In this work we will
present two new security vulnerabilities of that speci�cation, along with some proposed
solutions. Both Vulnerabilities have been presented and discussed with the W3C working
group, while some of the proposed solutions have already started to be implemented.
Next, we will propose an alternative, more e�cient way, of using BBS+ with Veri�able
Credentials, that avoids those problems and allow us to prove the end-to-end security of
our scheme, something that has not been done for the existing speci�cation. Our solution
uses the more standard JSON representations (compliant with the JSON Encryption (JOSE)
family of specs), that allow us to construct a mathematical modeling of a credential, we
will eventually use for our security proofs. In addition, we evaluated the e�ciency of both

iii



the current “normalization” algorithm (the algorithm responsible with transforming the
credential to the appropriate format before it is signed with BBS+, see Section 3.2.1) and
the one we propose. As we will see, our algorithm is 5 to 25× times faster than the one
currently used.

iv



Περίληψη

Τα επαληϑεύσιµα διαπιστευτήρια (Veri�able Credentials) παρέχουν έναν τρόπο σε
οντότητες όπως χρήστες, εφαρµογές, συσϰευές ϰ.λπ., να αποδειϰνύουν την εγϰυρότητα
διάφορων ισχυρισµών, όπως το όνοµα ενός χρήστη, το επάγγελµα του, τον ϰατασϰευαστή
µιας συσϰευής, το επίπεδο εξουσιοδότησης ενός υπαλλήλου ϰ.λπ. Οι ισχυρισµοί αυτοί
επαληϑεύονται ϰαι ϰατασϰευάζονται από τον Εϰδότη του διαπιστευτηρίου (π.χ. µια
αεροποριϰή εταιρεία που εϰδίδει ένα εισιτήριο). Στη συνέχεια, µετά την ϰατασϰευή
του, το διαπιστευτήριο αποστέλλεται από τον Εϰδότη στον Κάτοχο, ο οποίος είναι ϰαι
υπεύϑυνος να αποϑηϰεύει ϰαι να ελέγχει το διαπιστευτήριο (π.χ. ο ταξιδιώτης που
αγοράζει το εισιτήριο). Τέλος, ο Κάτοχος µπορεί να στείλει το διαπιστευτήριο στον
Ελεγϰτή, ο οποίος ϑα εξετάσει την εγϰυρότητά του (π.χ. ο υπάλληλος του αεροδροµίου
που ϑα επιϰυρώσει το εισιτήριο). Εφόσον ο Ελεγϰτής αποδεχτεί την εγϰυρότητα του
διαπιστευτηρίου, το οποίο πετυχαίνεται µέσω ϰρυπτογραφιϰών αποδείξεων (που
συµπεριλαµβάνονται στο διαπιστευτήριο από τον Εϰδότη ϰαι τον Κάτοχο του), µπορεί
να εµπιστεύεται τους αντίστοιχους ισχυρισµούς, στο βαϑµό που εµπιστεύεται τον Εϰδότη.

Παρόλο που τα Veri�able Credentials έχουν γίνει αποδεχτά µε µεγάλο ενϑουσιασµό,
εξαϰολουϑούν να υπάρχουν ορισµένα προβλήµατα τα οποία απαιτούν περαιτέρω
εξερεύνηση. Το µεγαλύτερο από αυτά είναι η αποϰάλυψη των ιδιωτιϰών πληροφοριών
του χρήστη. Για πολλές εφαρµογές, τα εν λόγω διαπιστευτήρια είναι πιϑανό να
περιέχουν πληροφορίες που οι Κάτοχοι τους ϑα ϑέλουν να ϰρατήσουν µυστιϰές, όπως ο
τόπος διαµονής τους, στοιχεία επιϰοινωνίας, νοµιϰά στοιχεία, το ιατριϰό ιστοριϰό τους
ϰ.λπ. Οι περισσότερες από τις υπάρχουσες εφαρµογές όµως χρησιµοποιούν
παραδοσιαϰές ϰρυπτογραφιϰές µεϑόδους (ψηφιαϰές υπογραφές), οι οποίες απαιτούν
από τον Κάτοχο να στείλει ολόϰληρο το διαπιστευτήριο στον Ελεγϰτή. ΄Ετσι ϰαι ο
Ελεγϰτής, αλλά ϰαι οποιοσδήποτε επιτιϑέµενος που µπορεί να παραϰολουϑεί την
επιϰοινωνία µεταξύ του Κατόχου ϰαι του Ελεγϰτή, ϑα λάβουν πρόσβαση σε όλες τις
πληροφορίες που περιέχονται σε αυτό το διαπιστευτήριο, είτε ο Ελεγϰτής τις
χρειάζεται είτε όχι.

Προϰειµένου να αντιµετωπιστεί το παραπάνω πρόβληµα, ώστε να προστατευτεί η
ασφάλεια των χρηστών ϰαι να ϰερδηϑεί η εµπιστοσύνη τους, έχει προταϑεί η χρήση

v



ϰρυπτογραφιϰών υπογραφών BBS+. Οι υπογραφές BBS+ παρέχουν τα µέσα για
επιλεϰτιϰή αποϰάλυψη µόνο ενός µέρους του διαπιστευτηρίου. Με αυτόν τον τρόπο, ο
Κάτοχος µπορεί να παρέχει στον Ελεγϰτή τις πληροφορίες που χρειάζονται,
διατηρώντας ταυτόχρονα ϰρυφά τα προσωπιϰά του στοιχεία. Τελευταία, η χρήση των
υπογραφών BBS+ έχει τραβήξει µεγάλο µέρος της προσοχής, µε πολλές εφαρµογές να
υιοϑετούν τα αντίστοιχα πρωτόϰολλα που ορίζονται από την υπεύϑυνη οµάδα της W3C.
Σε αυτήν την εργασία ϑα παρουσιάσουµε δύο νέα ϰενά ασφάλειας αυτών των
πρωτοϰόλλων, µαζί µε µεριϰές προτεινόµενες λύσεις. Και τα δύο αυτά προβλήµατα
παρουσιάστηϰαν ϰαι συζητήϑηϰαν µε την αρµόδια οµάδα της W3C, ενώ ορισµένες από
τις προτεινόµενες λύσεις έχουν ήδη αρχίσει να εφαρµόζονται. Στη συνέχεια, ϑα
προτείνουµε έναν εναλλαϰτιϰό, πιο αποτελεσµατιϰό αλγόριϑµο, για τη χρήση των BBS+
υπογραφών µε σϰοπό την ασφάλιση των διαπιστευτηρίων, που αποφεύγει αυτά τα
προβλήµατα ϰαι µας επιτρέπει να αποδείξουµε την ασφάλεια των ανάλογων πρωτοϰόλλων.
Η πρόταση µας βασίζεται στη χρήση των JSON αρχείων, για τα οποία προτείνουµε µια
µοντελοποίηση, η οποία µας επιτρέπει να ϰατασϰευάζουµε αποδείξεις ασφάλειας,
ανάγοντας απλά στις ανάλογες ιδιότητες των BBS+. Επιπλέων, όπως ϑα δούµε, ο αλ-
γόριϑµός που προτείνουµε για την ϰανονιϰοποίηση ενόςVeri�able Credential (διαδιϰασία
που το φέρνει στην ϰατάλληλη µορφή ώστε να υπογραφτεί µε BBS+) είναι από 5 έως ϰαι
25 φορές ταχύτερος από αυτόν που χρησιµοποιείται στην πράξη.

vi



Acknowledgements

First of all, I would like to thank my thesis supervisor, prof. Gerogios Polyzos, for their
invaluable guidance and patience. I would also like to extend my gratitude to prof. Vasilios
Siris and senior researchers Nikos Fotiou as well as the rest of the Mobile Multimedia
Laboratory members for their constant input and guidance. Lastly Ι would like to thank
my sister and my good friend and colleague Thomas Tsouparopoulos for their priceless
help and guidance as well the rest of my friends and family for their support and patience.

vii





Contents

Abstract vi

Acknowledgements vii

1 Introduction 1
1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5
2.1 Veri�able Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Life-cycle Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 BBS+ Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Public Data and Key Generation . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Signing and Verifying . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Selective Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Linked Data Signatures 17
3.1 Linked Data Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 LD BBS+ Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Linked Data Canonicalization . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Holder Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Protocol Exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 URDNA2015 Security Vulnerability . . . . . . . . . . . . . . . . . . 23
3.3.2 Holder Authentication Security Vulnerability . . . . . . . . . . . . 28

4 JSON BBS+ Signatures 33
4.1 Modeling JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Signing JSON Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Benchmarking Results . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions 43

Bibliography 45

List of Acronyms 48

List of Figures 49

List of Tables 50

List of Algorithms 51

Appendix A 52

Appendix B 54

x



1Introduction

Veri�able Credentials (VCs) are a W3C speci�cation [SLC19a] that provides a way for
entities (users, applications, devices etc.) to prove claims about a subject. In general, a VC
is a �le, usually either in JSON or JSON Linked Data (see Section 3), containing various
metadata and the claims as key/value pairs, like,

{”name” = ”JoeDoe”,

”age” = 30}

The easiest way for VCs to be understood is to draw comparisons between them and
real life "paper" credentials, like passports and driver licenses. Much like their physical
counterparts, VCs are meant to be used to prove statements about the subject of that
credential. The main di�erence however is that Veri�able Credentials are in machine-
readable form, allowing for much more convenient and e�cient interactions.

1.1 Applications

The �rst applications for VCs that could come to mind are as a complete replacement
of paper credentials like government IDs, licenses, and degrees [Ott+19]. Even in cases
where there is a digital equivalent of a paper credential, like airplane tickets, using VCs
to represent them ensures interoperability, ease of use and security. One of the main
advantages of VCs is the ability to use the same credential for di�erent applications. For
example, a government issued VC can be used to open a bank account from home, for
remote voting, for easily paying taxes etc. A VC given to a student could be used to
get access to the Universities Wi-Fi network, take a test remotely, or prove that they
are entitled to a discount given only to students. Similarly, a security badge given to a
data-center’s employee could be used to prove to a guard that they have the right to enter
the area and can also be used to prove that they have the right to log-in to one of the
servers.

Veri�able Credentials can also be used to secure existing infrastructures. For example, a
lot of security risks in 5G arise from the fact that when a device initially connects to a
network, it has no-way of knowing if it is communicating with a legitimate base station or
not [PM19]. VCs could be used from the network provider to secure this communication,

1



by con�guring the base station to send a VC to a new connected device. The device then by
validating that credential can check the validity of the base-station it communicates with
(analogous to how a user will verify the security of a Web Site using a Web certi�cate).

Other applications include smart home or IoT device management. For example, each
device can have their own credential and the resident of the smart home or the operator
of the IoT network will have its own. The user can then assign permissions that indicate
which devices can communicate with each other, based on those credentials. Moreover,
the IoT device manufacturers or the Certi�cations Testing Lab could assign their own
credentials to a device. Then the user or another device could check those credentials, both
during installation of the device and periodically, to ensure the security of the network.
Lastly, if the user wants to update the software of the device, the device can ensure that
only authorized updates will be installed and that only the authorized user will install
those updates.

1.2 Motivation and Problem Statement

An important problem concerns the disclosure of the user’s private data. For example, if the
cryptographic proofs contained in a credential are created with Rivest–Shamir–Adleman
(RSA) signatures [RSA78], the entire credential must be presented to the Veri�er for the
signature to be validated. As a result, anyone could gain access to all the information in
that VC, something that can be proven to reduce the usability and �exibility of credentials
at best or be quite dangerous at worst. As an example, one can consider VCs that contain
personal information like age and address, medical records, or security information like
passwords, bank account numbers etc. Consider for example again a VC for a security
badge given to an employee of a data-center that contains an ID proving authorization
to enter the road gate and an adminID used to allow the employee to log-in to a server.
Most likely, the data-center would not want their employees showing their adminID’s to
the guard on the road gate. From these use cases emerges the need to hide personal or
sensitive information from the VC and still be able to convince a relying party regarding
the ownership, correctness, and integrity of the revealed information.

Another issue is the correlation of the user through unique information (like IDs) contained
in the credential. Generally, we want VCs to be secure against non-trusted authorities,
their coalition and even adversaries that through di�erent attacks (like Man-in-the-Middle
attacks) can monitor the use of the user’s credential. If the user reveals elements in their VC
that are unique (like their public cryptographic key or the Issuer’s signature), an adversary
can correlate all the di�erent uses of that VC, deriving potentially private information
and dangerous metadata. For example, if a student has a Veri�able Credential from their
University, even if their place of resident is not mentioned to that VC, if they use it to get

2 Chapter 1 Introduction



some discount from a local cinema, library etc., an adversary, through the credentials ID,
can monitor the uses of that VC and narrow down the student’s location.

In this thesis we will provide ways to both allow a user to choose what information they
want to reveal from their credential and to use their credential without needing unique
ID’s or other correlatable information.

1.3 Contributions

In the following we give a short description of the contributions we made with this thesis
in the area of privacy preserving Veri�able Credentials.

Discovered Exploits The �rst of our contributions are two discovered protocol exploits
of the proposed by the W3C working group speci�cation for using BBS+ with Veri�-
able Credentials. By taking advantage of the �rst vulnerability, an adversary could
reveal information the Holder wants to keep secret (something that we managed
to reproduce), while the second exploit gives the ability to the adversary to forge
a credential with any claims they want. We reported both vulnerabilities to the
working group, and we discussed possible solutions, which we will also present
here.

Alternative pipeline We designed and implemented an alternative solution based on the
JSON representation of Veri�able Credentials using BBS+ cryptographic signatures.
The simplicity of our scheme allows for well-de�ned security properties, which we
also prove mathematically (something not done for the current speci�cations), while
also improving performance.

Evaluation and Benchmarking Finally, through a series of benchmarks, we evaluated
the performance of our construction compared to the algorithms proposed by the
W3C speci�cation for BBS+ signatures with Veri�able Credentials (which are also
used in practice).

1.4 Thesis Structure

Chapter 2

In the second chapter we will give the necessary background on the Veri�able Credentials
ecosystem and data model, as well as for the BBS+ signatures. We will also give an overview
of the related work in the area of privacy preserving identity management on the Web.

1.3 Contributions 3



Chapter 3

In the third chapter we will look at the linked data Veri�able Credentials and signatures
proposal. We will also present the two vulnerabilities we discovered in the corresponding
proposed speci�cation.

Chapter 4

In this chapter we will present and evaluate our proposal for privacy preserving Veri�able
Credentials, based on the JSON representation.

Chapter 5

In the �nal chapter we conclude our work and propose some future work in the area.

4 Chapter 1 Introduction



2Background and Related Work

2.1 Verifiable Credentials

2.1.1 Ecosystem

An overview of the Veri�able Credentials Ecosystem [SLC19b] is shown in Figure 2.1. The
four main entities are the Issuer, the Holder, the Subject, and the Veri�er. In the following,
these entities and their roles are discussed in more detail,

Fig. 2.1: The Veri�able Credential’s Ecosystem. Figure taken from: https://www.w3.org/TR/vc-
data-model/

Subject The Subject is the entity for which claims in a Veri�able Credential are made. A
VC can contain claims about one or more subjects. A subject could be a Human, a
thing, like an application, a resource etc.

Issuer The Issuer is the entity that will originally create the credential by combining
claims about one or more Subjects. The Issuer will also act as the guarantor of
the integrity and truthfulness of these claims. As a result, they will be commonly
tasked with authenticating the Holder/Subject and creating the necessary (usually
cryptographic) proofs (see Section 2.1.2). Examples of entities that could act as
an Issuer are governments creating citizen ID’s and passports, universities issuing
student ID’s, or companies issuing employee security badges, all in the form of a
Veri�able Credential. Examples of proofs are RSA digital signatures, or message
authentication codes (MACs) combined with the Issuer’s cryptographic key [KBC97].

5



Holder The Holder is the designated (by the Issuer) controller of the credential. They are
responsible for safely storing and presenting the VC. When presenting a credential,
the role of the Holder is to prove integrity of the claims and the protected metadata,
prove that they are the rightful controller of the VC and prove that the designated
Issuer created the credential. To do that the Holder, like the Issuer, must generate
their own cryptographic proofs. Note that in many cases the Holder and the Subject
will be the same entity (e.g., a undergraduate in possession of a student’s ID, is both
the Subject and the Holder of that credential). However, this is not always the case.
For example, the Holder could be a parent in control of a credential for one of their
children, or a manufacturer in control of a VC for one of their devices. In those
cases, the proofs created by the Holder, must also prove that they have the right to
represent the Subject.

Verifier The last recipient of the Veri�able Credential is the Veri�er. The Veri�er will
receive the credential from the Holder along with all the necessary cryptographic
material and proofs. These proofs will typically include the ones created by the
Holder, but it is not necessary to also include the ones created by the Issuer (like in
the case of BBS+ signatures, see Section 2.2). In any case, the Veri�er must be able
to validate the integrity of the presented claims and metadata, to con�rm who is
the Issuer of the credential and to authenticate the Subject and the Holder. Example
of Veri�ers include airport personal receiving tickets as VCs, bookstores receiving
student ID’s etc.

Aside from the aforementioned entities, many implementations, as well as the W3C
speci�cation, also include a veri�able data registry as part of the ecosystem. That entity is
usually responsible with maintaining identi�ers (e.g., Issuer/Holder ID’s, decentralized
identi�ers etc.), credential schemas, revocation registries, metadata like expiration dates
etc. Example data registries include decentralized ledgers, trusted databases (like private
enterprise databases), government ID databases etc. The reason that we do not include
the veri�able data registry as a main part of the ecosystem is that their use and utilization
varies among applications, with many use-cases using multiple types (like government
databases to store o�cial ID’s and decentralized ledgers to store revocation lists) while
others may not use them at all (like veri�able credentials using BBS+ signatures).

From the above we can conclude that there are only two trust relationships necessary
for the ecosystem to function; The Issuer must trust the Holder and the Veri�er must
trust the Issuer. If the ecosystem also includes a veri�able data registry, all other entities
(Issuer, Holder, Veri�er) should also trust that registry. The above trust model is one of
the big advantages of Veri�able Credentials. In contrast with other “certi�cate authority”
trust models [Mye+99] or systems like Open ID Connect [Sak+14], there is no central
third-party authority that establishes trust between the entities of the ecosystem. That is

6 Chapter 2 Background and Related Work



not to say that these authorities will not be useful in some cases where is not possible to
establish one of the necessary trust relationships otherwise. That being said, in the VCs
ecosystem, these central authorities are optional and not a main part of the speci�cation,
while in many use cases may even be obsolete. For example, most likely any Veri�er will
trust a passport issued by a government, a client (Veri�er) will trust a receipt issued by
a manufacturer (Issuer), or a company will trust the security badge of an employee (The
company here is both the Issuer and the Veri�er).

2.1.2 Data Model

At a high level, the veri�able credential’s data model, seen in Figure 2.2, consists of three
main parts, the claims, the metadata, and the proofs. In the following we discuss each of
them.

Fig. 2.2: The Veri�able Credential’s Data Model. Figure adapted from: https://www.w3.org/TR/vc-
data-model/

Claims Claims are usually represented as key/value pairs like <"�rst name": Joe> and
<"age": 20>. More generally, claims represent statements about a subject and can
be modeled as a subject-property-value relationship. To model a set of more than
one claims, a popular and widely used approach (proposed by the W3C VC spec), is
to merge them together in a common “knowledge graph”. This approach seems to
be especially useful -or even necessary- when using linked data to represent VCs
(Section 3.1). As an example, the knowledge graph of Figure 2.3, corresponds to the
claims that Pat (the subject) is alumni (the property) of AUEB (the value), and also
knows Sam who is a professor (notice how each edge and node in the knowledge
graph has a label).

Metadata Metadata are highly application dependent; however, some common occur-
rences include the credential’s Issuer identi�er, the issuance and expiration dates,
cryptographic material etc. Those metadata may also be signed by the Issuer. An
important part of the metadata is the context of the credential. The context is used
to map human readable keys and values to longer Resource Identi�ers or objects,
containing machine readable information about those keys and values. That infor-

2.1 Verifiable Credentials 7



Fig. 2.3: A set of claims as a knowledge graph. Figure adapted from: https://www.w3.org/TR/vc-
data-model/

mation could for example, be a URL mapping to a schema.org page (e.g., "name":
"https://schema.org/givenName"), or an object specifying the version, value, type etc.,
of a term. Contexts have many uses apart from making long URLs human readable.
They allow linking complex structured information with a single term, giving the
ability to easily create arbitrary large knowledge graphs. They also give the ability
to update the de�nition of a term in a credential, without needing to update every
credential with that term. That last advantage, however, could also be the cause of
various security risks.

Proofs The purpose of the proofs in a VC may vary, but at least they always should
provide proof of the integrity of the claims (and the protected metadata, if those
exists). They must also provide insurance about the creator of the proof. As an
example, a proof could be created by the Issuer of a credential using RSA Digital
Signatures. Then anyone could use the Issuer’s public key to verify the integrity of
the claims. An important distinction to make here is between proofs provided by
the Issuer and proofs provided by the Holder. In addition to the base requirements,
the Issuer’s proof should identify them as the creator of the credential. On the other
hand, proofs provided by the Holder should designate them as the rightful controller
of the VC.

2.1.3 Life-cycle Example

The following is a simple example of using a veri�able credential as an airplane ticket.
The necessary proofs are created using RSA digital signatures. The credential itself is
encoded using JSON. Figure 2.4, shows the veri�able credential originally created by the
airline company (Issuer), containing all the necessary claims and information regarding
the traveler (Holder). The airline also wants to authenticate the Holder. For that purpose,
they require from the traveler to create a public/private RSA key pair. After the airline
creates the JSON �le, they sign it using RSA digital signatures using the company’s RSA
private key, creating the JSON �le of Figure 2.5. That is also the �le that the company
will send to the traveler. Note that one of the signed claims is the public RSA key of the

8 Chapter 2 Background and Related Work



Fig. 2.4: An airline ticket represented as a Veri�able Credential.

traveler. In the airport, when the traveler is required to present their ticket, they will also
use their RSA private key to sign the credential, creating the JSON �le of Figure 2.6.

Fig. 2.5: The VC from Figure 2.4 signed by the Issuer/ Airline (green part).

After the airport sta� (Veri�er) receive the credential, they will have to �rst validate the
Issuer’s proof and next the Holder’s. To verify the Issuer’s proof, the airport will contact
their private database containing all the airline companies registered to �y though the
airport and their cryptographic public keys. Using the Issuer �eld from the credential, the
airport will retrieve the airline’s RSA public key and verify the Issuer’s signature. Verifying
that signature proves that the speci�c airline company truly created that ticket, and that
the claims it contains (travel information and Holder’s public RSA key) are correct. Next
the airport will use the Holder’s public RSA key contained in the credential, to verify the
Holder’s signature. If that signature is legitimate, it means that the traveler is in possession

2.1 Verifiable Credentials 9



of the secret key corresponding to the public RSA key, inserted in the credential by the
Issuer. As a result, the traveler must be the rightful owner of that ticket. In the end, the
airport personnel can be sure that the ticket is authentic and that the traveler is its rightful
owner.

Fig. 2.6: The VC from Figure 2.5 also signed by the Holder (green part).

2.2 BBS+ Digital Signatures

BBS+ signatures were originally proposed as a group signatures protocol by Boneh, Boyen,
and Shachum [BBS04] (from where they take their name) and have been re�ned by Au Man
Ho et.al. [Ho+12] and later by Jan Camenisch, Manu Drijvers and Anja Lehmann [CDL16]
(where the + comes from). BBS+ signatures have many advantages, having keys and
signature sizes of 4-12 times shorter than RSA and only 2 times larger than ECDSA, while
at the same time being as e�cient as ECDSA (one of the more e�cient digital signature
protocols [DK18]). Furthermore, in contrast with many cryptosystems, like RSA, that work
by encrypting a single message (byte array), BBS+ works on a list of messages, giving the
ability to create proofs of knowledge, use selective disclosure and keep a zero-knowledge
property all at the same time (we will discuss those terms in more detail below).

2.2.1 Mathematical Preliminaries

The basic mathematical constructions used in BBS+ are �nite algebraic groups and pairings
between those groups. A �nite group is a �nite set of elements, on which an operation is

10 Chapter 2 Background and Related Work



well de�ned (usually either addition or multiplication) and has certain properties. More
speci�cally, the operation in a �nite group must be associative, have an identity element
(in the group) and for each element of the group its inverse must also be an element of
the group. We will denote a �nite group as (G, f), where f the operation of the group G.
Examples include the additive group of integers modulo n; (Zn.+), and the permutation
group of length n; (Sn, ◦) with group operation the composition of such permutations.

In a �nite group (G, f), an element or a set of elements are said to “generate” the group
G, if every element of that group can be expressed as a combination (using the group’s
operation f ) of the generators or their inverses. In this work we will mainly consider
groups of prime cardinality (order) p. Those groups have only one generator and every
element can be considered as one.

For �nite groups G1,G2 and GT , a pairing is a function, e : G1 ×G2 → GT so that two
properties hold,

Bi-linearity : ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, e(xa, yb) = e(x, y)ab (2.1)

Non-degeneracy : e 6= 1 (2.2)

Pairings, initially used as an “attack” against a large variety of cryptosystem, have been
proven to have many interesting functions and uses in cryptography. See Appendix A for
more information on pairings in cryptography.

BBS+ are also based on the q-strong Di�e-Helman assumption for their security properties.
That assumption states that given two �nite groups G1 and G2 of prime cardinality
p, and elements g0 ∈ G1 and h0 ∈ G2, it is hard to �nd an algorithm that on input
g0, h0, h

x
0 , h

x2
0 , ..., h

xq
0 produces an output (A, x) such that A

1
x+c = g0 for some c ∈ Zp.

BBS+ signatures base their security on the truth of that assumption.

2.2.2 Security Notions

As already mentioned, aside from e�ciency, the biggest advantage of BBS+ signatures is
that they provide three very strong privacy preserving security properties; zero knowledge,
proof of knowledge and selective disclosure.

Zero knowledge refers to the inability of an adversary to gain any information regarding
a plain text or a secret cryptographic key from the corresponding cipher text. In other
words, an adversary trying to extract the plain text or the secret key from a cipher
text, cannot �nd a better method than brute force. Commonly, a protocol is said to be
zero knowledge if there is a way to “simulate” the cipher texts, meaning that without

2.2 BBS+ Digital Signatures 11



knowledge of the secret key or the plain text, there is a way to produce cipher texts
of the same probability distribution as the ones produced when a legitimate plain
text and secret key are used. Under those conditions, an adversary observing the
cipher texts will gain the same amount of knowledge regarding the plain-text and
secret key from both the “true” cipher-text and the simulated one. In the second
case though, there is no knowledge of those elements to be gained and as a result,
neither in the �rst.

Proof of Knowledge means that through the completion of the protocol, the Veri�er
can be convinced that the Prover is in possession of a secret. The challenge is
of-course to keep the zero-knowledge property, meaning that the Veri�er will still
gain no information about that secret. To do that, the protocol must be shown to
have an “extractor”, meaning a hypothetical machine with special capabilities (like
rewinding the Prover to a previous state), that can interact with the Prover. If the
Prover manages to complete the protocol successfully, the extractor must be able to
derive the Prover’s secret information (plain-text or keys). The protocol is then said
to provide “proof of knowledge”, in that on completion, the Veri�er can be sure that
the Prover knows the secret, since if they didn’t, the extractor would not succeed
and as a result, the protocol should also have failed.

Selective disclosure is the ability to only reveal parts of a secret to a Veri�er, and still
be able to prove integrity and possession of the revealed information, as well that
the revealed information is part of the original larger secret. In the case of VCs, there
are two types of information that the Holder would not want to disclose. The �rst is
values from the credential itself, like their age or address, to protect their private
data. The second is the signature of the Issuer, the reason being that through that
signature, since it will most likely be unique, the user could be correlated and tracked.
Additionally, revealing the Issuer’s signature, gives an adversary an advantage when
trying to brute-force the hidden claims of the credential, breaking that way the
zero-knowledge property.

2.2.3 Public Data and Key Generation

The public data of the BBS+ public key infrastructure (PKI) contain the �nite groups G1,
G2 and GT of prime order p, a common pairing e : G1 × G2− > GT and elements,
g0, g1, ... ∈ G1 and h0, h1, ... ∈ G2. The number of those elements is arbitrary and
depends on the Issuer. Also h0, h1, h2, ... can either be considered as part of the public
key or as public data. Furthermore, we will reserve the elements g1 and h0 as the “base”
generators of G1, G2, or more generally, we will consider G1 as the group generated from

12 Chapter 2 Background and Related Work



g1 and G2 as the group generated from h0. To create the keys, the Issuer chooses a random
x ∈R Zp. The Issuer’s secret key (SK) and public key (PK) are,

SKIssuer = x (2.3)

PKIssuer = hx0 (2.4)

The choice of G1, G2 and GT is very important as it a�ects both security and performance.
The BBS+ PKI uses groups or subgroups of elliptic curves and more speci�cally of the
BLS12-381 elliptic curve family [Bow17]. For more information see Appendix B.

2.2.4 Signing and Verifying

As already mentioned, BBS+ signatures create signatures for a list of messages (bit arrays).
To sign a block of messages, m1,m2, ...,mL the Issuer chooses random ε, s ∈R Zp and
then computes the messages "credential" A as, e

A = [g1h
s
0h
m1
1 hm2

2 · · · hmLL ]
1
ε+x (2.5)

The signature then on m1,m2, ...,mL is σ = (A, ε, s). To verify the signature a Veri�er
only needs to check the equality,

e(A,PKIssuer · hε0) = e(g1h
s
0h
m1
1 hm2

2 · · · hmLL , h0) (2.6)

where e the public pairing. That equality is a direct result of the bi-linearity property of
pairings (meaning that e(xa, yb) = e(x, y)ab) since,

e(A,PKIssuer · hε0) = e([g1h
s
0h
m1
1 hm2

2 · · · hmLL ]
1
ε+x , hx0h

ε
0) =

= e([g1h
s
0h
m1
1 hm2

2 · · · hmLL ], h0)
1
ε+x (ε+x) =

= e(g1h
s
0h
m1
1 hm2

2 · · · hmLL , h0)

(2.7)

The signature can be proven to be secure under adaptive chosen message attacks.

2.2.5 Selective Disclosure

Let the Holder be in possession of the messages m1,m2, ...,mL and a BBS+ signature on
those messages σ = (A, ε, s), created by the Issuer. For the Holder to prove possession
of the signature σ in zero knowledge, while only disclosing a subset of the messages
{mi}i∈D , where D the indexes of the disclosed messages, there are two high level steps.
First, randomize the values of the signature σ to “blind” them (we don’t want to reveal
σ). Second, follow a zero knowledge proof of knowledge protocol to prove some relations

2.2 BBS+ Digital Signatures 13



between the blinded and un-blinded signature as well as between the disclosed and un-
disclosed messages (while of course only revealing the blinded signature and the disclosed
messages).

More formally, the Holder chooses random values r1, r2 ∈R Zp and sets r3 = 1
r1

and
s′ = s− r2r3. Then they calculate A′ = Ar1 , Ā = A′−εbr1 and d = br1h−r2

0 where,
b = g1h

s
0h
m1
1 hm2

2 · · · hmLL . The elements (A′, Ā, d) are the blinded elements of the BBS+
signature σ. Let π be a zero knowledge proof (using any suitable zero knowledge protocol)
that the following hold,

Ā/d = A′−εhr2
0

g1
∏
i∈D

hmii = dr3h−s
′

0
∏
i/∈D

h−mii
(2.8)

The derived proof of knowledge that the Holder will send to the Veri�er is (A′, Ā, d, π).
Note that the left parts of the above equations can be computed by the Veri�er but not the
right ones. A rough intuition about the equations 2.8 is that they have two purposes. First,
to allow the Holder to prove that they posses an element A that has the “correct” form,
meaning thatA = b

1
ε+x and b = g1h

s
0

∏
i∈{1,2,...,L} h

mi
i , without revealing any information

about A or b. Secondly, that D ⊆ {1, 2, ..., L} meaning that the disclosed messages are
part of the originally signed (by the Issuer) messages. Both of these requirements can be
met by proving the two equations below,

A′ = Ar1 = b
r1
ε+x

b = g1 · hs0 ·
∏
i∈D

hmii ·
∏

i∈{1,2,...,L}\D
hmii

(2.9)

By using these equations for A′ and b, and moving all the elements that the Holder will
reveal at the left side while keeping all the secret elements to the right, we can see that the
equations (2.9) are equivalent to the equations of (2.8).

The Veri�er now must verify π and that the equality, e(A′, PKIssuer) = e(Ā, h0) holds.
As already mentioned, proving the two equations 2.8 (meaning verifying π) proves that
(A′, Ā, d) have been created using elements of a BBS+ signature, while checking that
e(A′, PKIssuer) = e(Ā, g2), binds the signature to the Issuer’s public key.

2.3 Related Work

Perhaps the most notable example of identity management on the Web are single sign on
systems like Open ID Connect (OIDC) [Sak+14], which is still used by more than a million
web sites today [Sim21]. OIDC enables the use of a single identity, provided by an identity
authority, improving this way security (for example by allowing 2 factor authentication),

14 Chapter 2 Background and Related Work



e�ciency, by neutralizing the need to manage di�erent passwords etc. That being said,
OIDC has a lot of drawbacks. Each of the user’s logins to a reliable party requires the
communication between that party and the identity provider. These interactions allow
the tracking of the user by the identity provider, leading to concerns about their privacy
[Bra07]. Furthermore, the identity provider must always be online for the process to be
successful. As a result, only “tech giants” like Google or Amazon can realistically act as
identity providers, while it is harder for other organizations like smaller companies or
universities to be trusted with this responsibility.

The answer to the above limitations are anonymous credentials ([NQ21], [PZ13], [Zhi+21],
[CL04]), that decouple the “identity issuance” procedure from the veri�cation process.
These kinds of credentials usually use an Issuer-Holder-Veri�er ecosystem, like the one
proposed by the W3C speci�cation and with similar functionalities (Section 2.1.1). There are
various proposals and implementations of anonymous credentials which present di�erent
trade-o�s. For example, some of the solutions like Microsoft’s Azure Active Directory
Credentials and Decentralized Identity with ION [NQ21] use popular standards (like RSA)
but do not support selective disclosure or tracking protection. Others may support selective
disclosure but will also introduce some other trade-o�. For example, Microsoft’s U-Proove
[PZ13] o�ers the ability to revoke a credential at any time, but to do so, it inserts to the
credential correlatable elements. On the other hand, El-Passo [Zhi+21] o�ers two factor
authentication and protection from the tracking of the user’s activity on di�erent reliant
parties but not from the same one (i.e., if a Holder sends the same credential multiple times
to the same Veri�er, those uses could be correlated). Additionally, many of those proposals
do not strictly apply any speci�cation and for that reason end-up (in various degrees) to be
application speci�c. As a result, they are su�ering from poor interoperability and limited
functionalities, which is counter intuitive to the use of selective disclosure.

Furthermore, most of the anonymous credential proposals supporting selective disclosure
([BBC08], [PZ13], [Zhi+21]), consider the credentials as already a set of attributes that can
be signed with a supporting cryptographic scheme (like BBS+). However, in practice those
credentials will be in some structured format like JSON or XML. Turning these formats
to a list of attributes is not trivial (see Section 3.3.1). As a result, many implementations
and standards will use over-complicated or insecure algorithms (like the URDNA2015
algorithm [AL20], see Section 3.2.1), or they will make over-simpli�cations, for example
by only considering the most "outer" attributes in the credential and not give the ability to
use selective disclosure on nested values [MW21].

In this work, we will look at the most recent and complete proposal of the W3C BBS+
linked data proofs spec [LS21], for credentials that follow the W3C speci�cation and
allow selective disclosure and user correlation protection. We will examine their proposed
algorithm for extracting a list of attributes from a credential and authenticating the Holder.
Then we will analyze some security vulnerabilities and exploits of those algorithms. Finally,

2.3 Related Work 15



we will propose our own algorithm for extracting the list of attributes and show that it
o�ers enhanced security and performance.

16 Chapter 2 Background and Related Work



3Linked Data Signatures

Currently, the state-of-the-art in using and signing Veri�able Credentials, is to use the
JSON Linked Data (JSON LD) format [Spo+20]. The use of JSON LD is recommended by
the W3C speci�cation, which itself is highly focused on the linked data functionalities
instead of the simple JSON format (e.g the use of contexts, id links etc). Furthermore,
many Veri�able Credential’s implementations1 have opted for the use of JSON LD formats.
Similarly, the only W3C standardization body and speci�cation for the use of BBS+ with
Veri�able Credentials until now is targeted exclusively to linked data signatures [LS21].
That being said, a lot of criticism against the standard has stemmed from worries regarding
the security of the linked data approach [Har20]. Up until now however, these worries
were mainly based on the apparent complexity of some of the linked data processing
algorithms, and not on some known security vulnerability. In this chapter, we will discuss
the advantages that made linked data the format of choice and some of the algorithms
used in practice. Finally, we will present two discovered security vulnerabilities of the
linked data BBS+ proposed speci�cation.

3.1 Linked Data Introduction

Linked data is a standards-based way to use structured interlinked machine-readable data
on the Web [SAM15]. The basic idea is that every resource, piece of data or “thing” will
be bound to a Uniform Resource Identi�er (URI). Other pieces of structured data can use
these URIs to mention (or link to) other resources, creating a large graph of linked data.
The whole process is analogous to the use of URLs in the Web. Instead however, of users
“clicking” on URLs to fetch Web Sites that contain links to other Web Sites etc., machines
and applications can use resources that link to machine readable structured data (which
then themselves may contain links to other resources etc.).

Linked data are in the core of the Semantic Web vision, �rst proposed by W3C [BHL01].
In the Semantic Web, the entirety of the World Wide Web and the Internet will act as a
big -machine readable- database. The �rst big advantage of linked data and the Semantic
Web is that machines will be able to “semantically query” a linked data graph (like the

1Examples of companies adopting the Linked Data approach for VCs;
Mattr: https://mattr.global/
DigitalBazzaar: https://www.digitalbazaar.com/
Transmute: https://www.transmute.industries/

17



Semantic Web), to get and semantically analyze the information they need. Another big
advantage of linked data is their updatability. In most cases, the URI associated with a
resource will remain constant even if something in this resource changes or is updated. As
a result, other resources “connected” to the updated resource through that URI, will not
need to also be updated.

To use linked data with VCs, the dominant approach is to use JSON LD (JSON linked data)
to represent the credential. JSON LD are essentially JSON �les, meaning they follow the
same rules and syntax, but with some additional functionalities. In a JSON LD �le, the value
corresponding to a key starting with “@” will be considered as a link to some other resource
(e.g. {“@WebSite”: “https://www.myWebSite.com”}). Additionally, keys themselves can be
links to other resources containing (mostly) semantic information about that key/value
pair. For example {“https://schema.org/familyName”: “Joe”} will associate the name “Joe”
with the semantic information available at “https://schema.org/familyName”, meaning
that a machine parsing that credential will “know” that “Joe” is a text value, is associated
with a “Person” item etc.

3.2 LD BBS+ Proofs

As we mentioned in Section 2.2, BBS+ signatures work on lists of bit arrays (messages).
However, it is not trivial to convert a JSON �le, and especially a JSON LD �le, in a list of
messages. Since our ultimate goal is to give the Holder at each time the ability to choose
the parts of their credential they want to reveal, each message (or set of messages) should
correspond to a claim in the credential. Given that, JSON LD credentials are modeled
using knowledge graphs (e.g., Figure 2.3 in Section 2.1.2), the speci�cation uses the edges
of those graphs as the messages signed with BBS+. Then the Holder can reveal any part
of the knowledge graph they want, with di�erent parts of the graph corresponding to
di�erent claims.

Fig. 3.1: An example of a Veri�able Credential in JSON LD format.

A problem that rises is that not all nodes in a linked data graph have a label with which
to represent them when creating the list of all the edges. To see how those un-named, or

18 Chapter 3 Linked Data Signatures



-blank- nodes, may appear in a knowledge graph, let’s consider the following example. The
JSON LD credential of Figure 3.1 has the corresponding knowledge graph of Figure 3.2.
It is easy to check that both the JSON LD and the graph representation convey exactly

Fig. 3.2: The corresponding Knowledge Graph of the credential from Figure 3.1.

the same information. Note that in the JSON LD credential, each value, either a nested
object or a literal, are mapped to a node in the knowledge graph. If the value is a literal
(e.g., “Jane”, “213” etc.), then the node will get that value as a name. If the value is a nested
object however, in most cases, there is not a way to immediately name the corresponding
node and it will be represented as a blank node in the knowledge graph.

3.2.1 Linked Data Canonicalization

To label the blank nodes of the knowledge graph of a JSON LD credential, the best known
algorithm is the Uni�ed RDF Canonicalization algorithm (URDNA2015) [AL20]. The
URDNA2015 algorithm was �rst proposed as a way to check if two knowledge graphs were
isomorphic (meaning they would convey the same information), a problem also hard if the
two graphs contained un-labeled nodes. The algorithm produces “canonical” labels for
each blank node, meaning labels that will remain the same between two isomorphic graphs.
Then, if the two graphs were truly isomorphic, their lists of edges should be identical. The
same functionality is clearly useful in the case of JSON LD BBS+ signatures. For those
reasons, along with its surprisingly good performance and the fact that the algorithm was
already used by many (for other applications), the URDNA2015 algorithm became ideal to
be used with BBS+. In the following, we will give an short overview of the URDNA2015
algorithm.

The basic idea of the algorithm is to create labels for each blank node using the information
that is linked with that node in the knowledge graph. To do that, the algorithm will call its
“First-Degree-Hash” sub-algorithm that checks the information that is directly linked to the
node (meaning its neighbors in the graph). If there are blank nodes in the graph that cannot
be characterized from only their neighbors, the algorithm will call the “N-degree-Hash”
sub-algorithm to label them. Bellow follows a discussion on both.

3.2 LD BBS+ Proofs 19



First-Degree-Hash

The First-Degree-Hash algorithm is called for every blank node in the knowledge graph.
For each node that the algorithm visits, it gives to that node the temporal label “_:a” and
to every other blank node the temporal label “_:z”. Then the algorithm will create a set of
all the neighbors (both in and out, the knowledge graphs are directed) of that node, called
reference set. To represent the edges of the graph a special format is used called “n-quad” or
just “quad”, that also includes the label (or type) of the edge (predicate) and is of the form;
{Node1, Edge Label, Node2}. In practice, the graph itself will be represented as a collection
of quads called Resource Description Framework (RDF) [CWL14]. Quads will most likely
also contain additional information aside the Object (i.e., Node1), Predicate (i.e., Edge Label)
and Subject (i.e., Node2), like value types, graph names etc., but that simpli�cation will
su�ce here.

After the First-Degree-Hash algorithm constructs the reference sets of each blank node,
it will calculate the cryptographic hash of the concatenated elements of each reference
set separately. That hash, called the “�rst-degree-hash” of that blank node, essentially
“encodes” in one number the information directly linked to each blank node. Finally, it will
assign labels to the blank nodes with a unique �rst-degree-hash, in the same succession as
the alphabetical order of the base64 representation of those hashes. All the blank node
labels will have the pre�x “_:c14n”, added to an integer indicating the order of that label.
For example, the blank node with the smallest (alphabetically) �rst-degree-hash (the hash
of its reference set) will get the label “_:c14n0”, the one with the second smallest (unique)
�rst-degree-hash will get the label “_:c14n1” etc.

N-Degree-Hash

The N-Degree-Hash sub-algorithm is called when there are blank nodes in the graph that
have the same �rst-degree-hash. The algorithm will start traversing the graph, searching
for information that will distinguish those blank nodes from each other. As a result, the
“N-Degree-Hash” algorithm is the most demanding when it comes to performance.

3.2.2 Holder Authentication

We have mentioned in Section 2.1.2, that the proof created by the Issuer must identify
them as the author of the credential, prove the integrity of the claims and provide a way
for the Holder to prove ownership of that VC. BBS+, like any other digital signature, can
give an answer to the �rst two requirements. However, up until now we haven’t tackled
the last one. Since anyone in possession of a VC and a BBS+ signature on that VC could
create a Holder’s zero knowledge proof of knowledge to send to any Veri�er, the question
that rises is “How do we bind a Veri�able Credential to only one designated Holder?”.

20 Chapter 3 Linked Data Signatures



Commonly, in cryptographic applications binding a “thing” to a “person” means binding
that thing to the person’s public/private key pair. This will also be our goal in order to
answer the above question. A �rst solution, applied with other cryptographic schemes like
RSA, is to include the public key of the Holder as part of the credential that will later be
signed by the Issuer (See proofs paragraph in the 2.1.2 Section). An important drawback
of the above method is that a public key is most likely unique, meaning it could be used to
correlate the Holder and the use of their credential. Using BBS+ signatures we can avoid
including correlatable components to authenticate the Holder, by taking advantage of the
commitments mechanic.

Commitments

A commitment is essentially a Holder’s supplied message to be signed by the Issuer,
without them (the Issuer) knowing what that message is. There are many commitment
cryptographic protocols. The one used in the case of BBS+ is a simpli�cation of the
Pedersen’s commitment scheme that is also a zero-knowledge protocol [Ped91], meaning
that the Issuer will not be able to get any information about the Holder’s committed
message. Let m1,m2, ...,mn be the messages that the Issuer would sign normally and mc

be the message that the Holder wants to commit. To create the committed message, they
will calculate the commitment C as,

C = hmcn+1 (3.1)

With no commitment from the Holder, the BBS+ signature would be (A, e, s) with A =
b

1
e+x and b = g0h

s
0h
m1
1 hm2

2 · · · hmnn (Section 2.2.5). To include the Holder’s commitment
C , the Issuer instead of A = b

1
e+x will calculate Ac = (C · b)

1
e+x . From the equation 3.1

and the formula of A above we get the following,

Ac = (C · b)
1
e+x = (hmcn+1g0h

s
0h
m1
1 hm2

2 · · · hmnn )
1
e+x =>

=> Ac = (g0h
s
0h
m1
1 hm2

2 · · · hmnn hmcn+1)
1
e+x

(3.2)

It is straightforward now to check that σc = (Ac, e, s) is a valid BBS+ signature on the
messages m1,m2, ...,mn and mc (note that Ac is of the exact same form as A in equation
2.5).

Another key aspect of the BBS+ signatures is that when the Holder wants to generate their
proof for the Veri�er (ZKP POK) they must know all the messages that were originally
signed by the Issuer. Observe that the equations 2.8 in Section 2.2.5, that the Holder must
use to apply selective disclosure, include all the messages, not just the ones disclosed.
Based on the above, the basic idea of the Holder’s authentication mechanism is to create
a secret message and submit a commitment to that message to the Issuer. The Issuer
will sign it along with the other claims of the VC and return the signature to the Holder.

3.2 LD BBS+ Proofs 21



Then, if the Holder wants to create a proof, they must know all the signed messages,
meaning they must also know the secret message they committed to the Issuer. Anyone
else that does not possess that secret message will not be able to create a valid proof for
that credential, essentially, authenticating the Holder. A drawback of the above method is
that we essentially allow the Holder to “insert” any message they want to the signature,
something obviously problematic.

Message Indexes

Το circumvent that problem, we will draw again attention to the selective disclosure
Section 2.2.5 and more precisely to the Equations 2.8. As we have mentioned there, the
Veri�er will receive the proof (A′, Ā, d, π) and the messages {mi}i∈D whereD the indexes
of the disclosed messages. Then they will attempt to verify the Equations 2.8 by validating
the proof π. To do that, �rst the Veri�er will calculate the parts of the two equations 2.8
that contain the elements known to them. More precisely, the Veri�er will calculate V1

and V2 where,

V1 =Ā/d

V2 =g1
∏
i∈D

hmii
(3.3)

Then using π, they should con�rm if the equations 2.8 hold or not, or more speci�cally, if
the following equations hold,

V1 =A′−εhr2
0

V2 =dr3h−s
′

0
∏
i/∈D

h−mii
(3.4)

The key observation here is that the Veri�er will not receive the value V2 (equations 3.3)
but they would calculate it themselves. To do that correctly however, they should know
the exact mapping between the elements hi and the messages mi for i ∈ D so that they
can compute hmii . That mapping will be also supplied by the Holder.

Authentication Method

Going back to the problem of the Holder been able to submit and have signed any message
they want as part of their authentication process, the basic idea of the solution is to reserve
an element gauth in G1 and force the Holder to submit their secret message mauth using
only gauth (meaning that the Holder’s commitment can be only of the form C = gmauthauth ).
Then, since the Veri�er must always know the mapping between the messages mi and
the elements they will raise to the power of mi, we could warn them (e.g., make it part of
the spec) to not accept any messages that are mapped to that reserved for the Holder’s
authentication element gauth. What we achieve with this approach, is that even though

22 Chapter 3 Linked Data Signatures



the Holder could choose whatever message mauth they want to be committed and signed,
they can’t take advantage of it, since if they try to reveal it and map it to the element gauth
the Veri�er will dismiss the proof and if they map it to a di�erent element the proof’s
validation will fail.

The last missing piece of the solution is a way to force the Holder to use gauth, or more
precisely, a way for the Issuer to verify that the commitment C they received from the
Holder, is made using gauth. There are many cryptographic protocols that could be used
here, however perhaps the most e�cient way (proposed by the BBS+ LD proofs spec)
is to use cryptographic BLS keys and signatures [BLS01]. The basic concept is to use a
public BLS key (gmauthauth ) as the commitment, with the secret message mauth being the
corresponding secret key. The Holder, besides the commitment C will also send a random
message r signed with their private BLS key mauth. The Issuer will verify the signature
on r assuming that the Holder used gauth to create the commitment. The signature will
be successfully validated, only if the Holder truly used gauth to create their commitment
(public BLS key).

3.3 Protocol Exploits

As already mentioned, we managed to discover two security vulnerabilities in the speci�ca-
tion of the linked data based BBS+ proofs for Veri�able Credentials. The �rst vulnerability
is in the URDNA2015 canonicalization algorithm used to “break” a credential to a list of
messages (see section 3.2.1). The second is in the proposed Holder authentication procedure
(section 3.2.2). Both vulnerabilities were presented in the W3C working group of the BBS+
LD proofs spec. Here we will also present some of the solutions that we discussed with the
members of the working group as well with some implementers of the spec, some of which
have already been implemented, after we presented the two vulnerabilities below.

3.3.1 URDNA2015 Security Vulnerability

Up until now, any criticism exercised on the URDNA2015 algorithm was mainly the result
of the algorithm’s complexity and there were not any known security vulnerabilities. Here,
we will show that when the Holder uses selective disclosure to hide some of the claims
on a credential, an adversary under certain conditions could take advantage of the blank
node labels produced by the URDNA2015 algorithm to either reduce the possible range
for some of the Holder’s hidden claims or, in some cases, even reveal them completely.
Furthermore, the adversary in this attack is completely passive, meaning that they only
need to observe the credential and not interact with either the Holder or the Issuer in any

3.3 Protocol Exploits 23



way. After we managed to reproduce the exploit for various examples2, we presented the
vulnerability to the W3C working group3.

Let’s assume that the Holder has a Credential in their possession which they want to send
to a Veri�er. However, they only want to disclose some of the claims on that credential and
keep others private. To create a proof of knowledge, the Holder will use the URDNA2015
algorithm to calculate the blank node labels and retrieve the edges of the graph as the
messages to use to create the proof (the ones also signed by the Issuer). Observe that this
procedure is possible because the knowledge graph corresponding to the credential signed
by the Issuer and the knowledge graph of the credential that the Holder possesses are
isomorphic, meaning that the URDNA2015 algorithm will assign the same blank node
labels to both (clearly both the Issuer and the Holder must get the same messages from
the VC).

The graph of the credential that the Veri�er will receive on the other hand will not be
isomorphic to either one of the Holder’s or Issuer’s knowledge graphs. That is because the
Holder will use selective disclosure, meaning that in the credential the Veri�er will get,
some of the claims it originally had, will be missing (kept secret by the Holder). As a result,
the Holder should inform the Veri�er about the blank node labels they computed, since the
Veri�er will not be able to compute them themselves. That information will be entered in
the VC in the form of “id’s” in the nested objects corresponding to the blank nodes which
the Holder wants to “publish” their labels. As an example consider the following credential
and the corresponding knowledge graph of Figure 3.3. Figure 3.4 shows the credential and
knowledge graph the Veri�er would receive, if the Holder hides their �rst name.

Fig. 3.3: JSON LD credential example and corresponding knowledge graph.

Fig. 3.4: JSON LD credential and corresponding knowledge graph the Veri�er will receive if the
Holder uses selective disclosure to hide their "�rstName" from their credential of Figure 3.3

2Three examples of our exploit, in node.js: https://github.com/BasileiosKal/CanonizeVulnerability
3URDNA2015 exploit report: https://github.com/w3c-ccg/ldp-bbs2020/issues/60

24 Chapter 3 Linked Data Signatures



The messages that the Issuer and the Holder will get from the credential of Figure 3.3 as
well as the messages that the Veri�er will get from the credential they will receive from
the Holder (Figure 3.4) are shown in Table 3.1.

Messages Returned from URDNA2015
Holder/Issuer Veri�er

< _:c14n1> <�rstName> <Kaiya> < _:c14n0> <address> <_c14n1>
<_:c14n1> <address> <_c14n0> <_:c14n1> <postalAdress> <6096>
<_:c14n0> <postalAdress> <6096>

Tab. 3.1: Messages returned from the URDNA2015 algorithm when is used from the Holder/Issuer
and the Veri�er with the credential of Figure 3.3 and Figure 3.4 correspondingly

Notice that the messages the Veri�er will get from URDNA2015 are di�erent than the ones
the Issuer and the Holder had. The result of that miss-match will be that the veri�cation
process will fail, since the Veri�er will try to validate a signature on messages that are
not signed by the Issuer. To solve that problem, instead of the credential of Figure 3.4, the
Holder will send to the Veri�er the credential of Figure 3.5 (notice the addition of the “id”
�elds). The Veri�er, seen that “id”, will know which is the correct blank node label they
should use (for example that the blank node label of the "address" nested object is “_:c14n0”
and not “_:c14n1”).

Fig. 3.5: JSON LD credential example and corresponding knowledge graph.

As already mentioned, the order of those labels corresponds to the order of the “�rst-
degree-hashes” of the blank nodes in the graph. Let h(Q) be the �rst-degree-hash of the
reference set Q (neighbors of a blank node), where h is a cryptographic hash function
(usually sha256). Each �rst-degree-hash encodes the information directly linked with a
blank node which may contain claims that the Holder wants to keep private. If that hash
or some information about that hash is revealed, it could lead to information about the
hidden claim being leaked ass well (note that the whole procedure was supposed to be
zero-knowledge). Of course, the “�rst-degree-hash” h(Q) itself will not be completely
revealed when the Holder conceals some of the claims included in the corresponding
reference set Q. If however the Holder reveals some of the canonical blank node labels, as
in the example above, they could also reveal the order of that “�rst-degree-hash”, relevant
to some other known value (e.g., another “�rst-degree-hash” that the claims in its reference
set are revealed, meaning that the hash will be known). This fact, combined with the

3.3 Protocol Exploits 25



commonly very small range of possible claims (e.g., �rst names, ages etc.) and some
additional external knowledge an adversary may possess about the credential (e.g., that it
contains the Subject’s �rst name, without knowing that name), leads to the vulnerability.

Reference Sets Elements

Q1
< _:a, �rstName, Kaiya>,

<_:a, address, _:z>

Q2
<_:z, address, _:a>,

<_:a, postalAddress, "6096">
Tab. 3.2: Reference sets Q1 and Q2.

As an example, consider again the credential of Figure 3.3. The reference sets of each blank
node are shown in Table 3.2. Observe that the �rst reference set Q1 is only de�ned from
the �rst claim {“�rstName”: “Kaiya”} while the second set Q2 is only de�ned from the
second claim {“postalAddress”: “6096”}. Let’s also assume that the adversary will know that
the credential contains the subjects �rst name (in many cases in practice the credential’s
structure will be known, like government IDs, student IDs, passports etc.). Let Q1(name)
be the �rst reference set as a function of the name (Q1(Kaiya) = Q1 of Table 3.2). Since
we assume that the Holder will reveal only their address and not their �rst name, the
Veri�er will receive the credential of Figure 3.5. From that they will learn that address =
6096 which will reveal all the elements of the reference set Q2 of Table 3.2. As a result, the
Veri�er (or any adversary observing the credential of Figure 3.5) will be able to compute the
“�rst-degree-hash” of the second blank node; h(Q2). Since the adversary doesn’t know the
Subject’s �rst name, they will not know all the elements of Q1 meaning they can’t directly
compute the “�rst-degree-hash” of the �rst blank node. They can observe however that the
second blank node’s label is “_:c14n0” from the “id” �eld inserted in the “address” object of
the credential (Figure 3.5). From that, although they can’t calculate the “�rst-degree-hash”
of the �rst blank node h(Q1) directly, they can deduce that whatever the “name” of the
subject is, it must be one so that h(Q1(name)) > h(Q2) holds.

From there it is relatively trivial for the adversary to check all the possible English names
to �nd the ones for which h(Q1(name)) is larger than h(Q2). That search took only 0.18
seconds on an Intel i5 with 3.2 GHz of clock speed and 16GB of RAM. For our example,
the only name for which that inequality holds is the name “Kayia”, which means that even
though the Holder wanted to keep their �rst name private, the adversary will manage to
reveal it completely.

In the above example we assumed that the adversary would have some information about
the structure of the credential. There are many ways someone could obtain this kind
of information. First, the credential’s structure is likely to be standard and known (e.g.,
government IDs, passports etc.) or revealed from other users that use a similar credential.

26 Chapter 3 Linked Data Signatures



Additionally, even if there is no way to get any information about the credential’s structure,
there is still information being leaked. In the previous example, if the adversary didn’t
know that the secret claim was the Subject’s �rst name, they would still get the information
that h(Q1) > h(Q2) where Q1 contains -some- secret claims, which breaks the advertised
zero-knowledge property. Lastly, up-until now we have assumed that the adversary is
passive. However, that may not always be the case and by interacting with the Holder
or the Issuer in some way, an adversary could get the necessary information about the
structure of the credential. For example, consider the following credential of Figure 3.6,
which contains the names and ages of the Holder’s two children. Assume a situation,
where the Holder wants to reveal the name and age of their oldest child (Ioanna) (perhaps
to attend Ioanna’s Thesis presentation) but also wants to keep secret the name and age of
their youngest child (Kale). From the message indexes (see Section 3.2.2) the adversary will
know that there are two claims in the credential that are not revealed (and where those
claims would go in the JSON LD structure). If from some other source or by interacting
with the Holder they learn that the Holder has two kids, the same method could be used
to completely reveal both the name and the age of the Holder’s youngest child.

Fig. 3.6: JSON LD credential example. If the Holder wants to keep the name and age of their
youngest kid the adversary will be able to unveil them

The above examples examine the case where the adversary will be able to completely
reveal some of the Holder’s secrets. Of course, that will not always be possible. In the �rst
example, if the Holder’s postal address was “2513” instead of “6069”, there is not only one
�rst English name for which h(Q1(name) > h(Q2). However, there is still a leak. In that
example, the adversary will still be able to reduce the space of possible English names to
only 18 (from 19.000). Additionally, as noted by Mr. Dave Longley, (CTO at DigitalBazzat
and author in the JSON-LD W3C Speci�cation), the above method will most likely reveal
the hidden claim if the corresponding value is Boolean. In general, the smaller the values
range of the un-disclosed claims are, the better the method will work.

3.3 Protocol Exploits 27



Proposed Solution

The best solution thus far, proposed by the W3C working group members, is to randomize
the blank node labels. That can be done in various ways. After we presented the vul-
nerability to the W3C working group, Mattr (on of the main implements of BBS+ and
authors of the speci�cation) implemented an initial mitigation by adding a random value
(nonce) in the outer level of the credential4. The e�ect of that nonce is to randomize
some of the blank node labels, which will result in shu�ing the order of the rest. One
random value however is not enough, and in large credentials there will be the need for
additional randomness. To achieve this, we proposed to use the nonce already added as
a seed to generate random values that will be added in every nested object. Essentially,
we will add a random neighbor to each blank node in the graph, e�ectively randomizing
the reference sets and hence the “�rst-degree-hashes”. Considering again the example
of Figure 3.3, now Q1(name) will also contain a random unknown value, meaning that
the adversary will not be able to calculate h(Q1(name)) by simply iterating through the
di�erent names. Another discussed solution is to calculate the labels in the usual way and
pass them through an irreversible randomization function, e�ectively hiding them.

3.3.2 Holder Authentication Security Vulnerability

The second vulnerability is concerning the proposed Holder Authentication method. That
vulnerability does not lie to the basic method as presented in Section 3.2.2. It rises however,
from the proposed implementation of that method, from the BBS+ LD proofs spec. That
proposal is to use one common PKI for both the BBS+ and the BLS signatures. There are
many reasons to use a common PKI. First, the two signature schemes are very similar,
with both using the same BLS12-381 elliptic curves, calculating public/private keys in the
same way, using pairings to validate a signature etc. As a result, a common PKI would
extremely simplify any implementation. Additionally, using the same PKI mutes the need
for separate speci�cations, reviews etc. For these reasons, the BBS+ spec proposed to
use the same base generator of the �nite group G1 (the �rst BLS12-381 elliptic curve) for
both creating BBS+ signatures and the BLS public key (creating the common PKI). Doing
this however, violates the -implicit- assumptions under which the BBS+ signatures have
proven to be unforgeable against adaptive plain-text attacks. In the following we present
a method (that we also reported to W3C 5) to forge a BBS+ signature, taking advantage
of the fact that both PKI’s use the same base generator for G1. Again, that method could
work with a passive adversary.

Notice from Section 2.2.4 and equation 2.5 that given the groups G1, the base generator
g1 of G1, the messages {m1,m2, ...,mL} and a signature on those messages (A, e, s), the

4URDNA2015 �x: https://github.com/mattrglobal/jsonld-signatures-bbs/tree/tl/blank-node-determinism-�x
5Holder authentication exploit report: https://github.com/w3c-ccg/ldp-bbs2020/issues/37

28 Chapter 3 Linked Data Signatures



correct form for A has g1 raised only to the power of 1. Lets assume that to authenticate
the Holder, we use BLS keys in G1 with the same base generator g1. Then, for a BLS secret
key BLSSK the corresponding public key will be BLSPK = gBLSSK1 . Remember from
section 3.2.2, that the BLSPK will become a commitment which the Issuer will include
to the signature, treating the committed message (in this case the BLSSK ) as any other
signed claim. The new signature (with the commitment) (Ac, ec, sc) will have ec = e,
sc = s and,

Ac = [g1h
s
0 g

BLSSK
1 hm1

1 hm2
2 · · · hmLL ]

1
e+x (3.5)

Note that in the equation 3.5 forAc, g1 appears twice, once to the power of 1 as before, and
once to the power ofBLSSK . However, that itself does not make the signature (Ac, ec, sc)
invalid, since, the veri�cation Equation 2.6 from Section 2.2.4 continuous to hold.

Lets assume that an adversary observes the messages {m1,m2, ...,mL} and the signature
(Ac, ec, sc). Let the adversary choose a k 6= 1 ∈ Zp. We can see that by calculating Akc the
attacker can get a forged BBS+ signature since,

Akc = ([g1h
s
0 g

BLSSK
1 hm1

1 hm2
2 · · · hmLL ]

1
e+x )k =

= [gk1hk·s0 gk·BLSSK1 hk·m1
1 hk·m2

2 · · · hk·mLL ]
1
e+x =

= [g1g
k−1
1 hk·s0 gk·BLSSK1 hk·m1

1 hk·m2
2 · · · hk·mLL ]

1
e+x =>

=> Akc = [g1h
k·s
0 gk·BLSSK+k−1

1 hk·m1
1 hk·m2

2 · · · hk·mLL ]
1
e+x

(3.6)

Observe from the above equation 3.6 that we can write Akc as

Akc = [g1h
s′
0 g

BLS′
SK

1 h
m′

1
1 h

m′
2

2 · · · hkm
′
L

L ]
1
e+x (3.7)

Then Akc has the same form as Ac from the equation 3.5 for,

m′i = k ·mi,

BLS′SK = k ·BLSSK + k − 1,

s′c = k · sc

(3.8)

As a result, if (Ac, ec, sc) is a valid signature on the messages {mi}i∈{1,2,...,L} and the BLS
keyBLSSK , then (Akc , ec, s′c) is also a valid signature on the messages {m′i}i∈{1,2,...,L} and
the secret BLS key BLS′SK . We can formally prove the above by noticing that, assuming
(Ac, ec, sc) is valid for the messages {mi}i∈{1,2,...,L} and the BLS key BLSSK , it holds
that e(Ac, PKIssuer h

ec
0 ) = e(g1h

sc
0 g

BLSSK
1

∏
i∈{1,2,..,L} h

mi
i , h0) which means that,

e(Akc , PKIssuer h
ec
0 ) = e(Ac, PKIssuer h

ec
0 )k =

= e(g1h
sc
0 g

BLSSK
1

∏
i∈{1,2,..,L}

hmii , h0)k = e((g1h
sc
0 g

BLSSK
1

∏
i∈{1,2,..,L}

hmii )k, h0)

=> e(Akc , PKIssuer h
ec
0 ) = e(g1h

s′
c

0 g
BLS′

SK
1

∏
i∈{1,2,..,L}

h
m′
i

i , h0)

(3.9)

3.3 Protocol Exploits 29



Which proves that (Akc , ec, k ·sc) is a valid BBS+ signature on the messages {m′i}i∈{1,2,...,L}
with the committed secret BLS′SK . Since m′i = k ·mi 6= mi, we have achieved a forgery
of a BBS+ signature.

The intuition for the above is that, after Ac is raised to the power of k, all elements of
the signature -including g1- are subsequently also raised to the power of k. Since, A in
a correct BBS+ signature (see Equation 3.1 in Section 2.2.4) contains g1 raised only to
the power of 1, Ak = (gk1 · hk·s0 · h

k·m1
1 ...)(1/(e+x)) will not be a valid signature normally.

However, if commitments are allowed to be made using g1 (like the BLS key pairs), an
adversary could just break gk1 to g1 and gk−1

1 . Then they could use the �rst part (g1) as the
standard part of the signature and the second part (gk−1

1 ) as a commitment to k − 1 (since
we allow commitments to use g1). As a result, raising Ac to any power k produces a valid
-forged- signature.

Note also, that in the beginning k was chosen arbitrarily. As a result, the adversary
can choose di�erent integers k to get di�erent forged BBS+ signatures on the messages
m′i = k ·mi. For example assume that the adversary wants to get a BBS+ signature on
the message madv , that was not originally signed by the Issuer (madv /∈ {mi}i∈{1,2,..,L}).
All they need to do is to �nd a message ms ∈ {mi}i∈{1,2,..,L} that was signed by the
Issuer, and a integer k ∈ Zp so that madv = k ·ms. This can be done by using the binary
Extended Euclidean algorithm to calculate m−1

s (the inverse of ms), which runs in time
linear to log2(p) (the number of bits of the message ms). Then the adversary can simply
set k = madv ·m−1

s ∈ Zp and calculate Akc to get a valid forged BBS+ signature for the
message madv .

Proposed Solution

As already mentioned, the vulnerability is caused by the fact that using a BLS public key
that was created using the base generator g1 of G1, we allow g1 to appear multiple times in
the equation of A of a BBS+ signature: (A, e, s). That being said, we don’t want to dismiss
the use of BLS keys to authenticate the Holder, since there are use cases where binding
a VC to a public BLS key is useful, for example, a Holder could have purchased a device
with a burned BLS key for which they want a credential or they want to use a second
device in a 2-factors authentication scheme. To achieve a secure binding of a BLS key to a
credential we propose to reserve a di�erent generator g′1 to be used with the BLS PKI. This
essentially decouples the BBS+ and BLS PKI’s, which means that we could face a greater
implementation complexity, but we believe it will only be a minor inconvenience, since
the only thing that changes is the base generator of the �nite groups. Another solution
could be to use as a commitment the BLS signature on a random message r; H(r)BLSSK ,
that the Holder sends to the Issuer to prove possession of the BLSSK . Note that this
way, we are still binding the credential to a BLS key pair. That being said, it may still be

30 Chapter 3 Linked Data Signatures



best practice to use di�erent PKIs for the two digital signature protocols, to avoid other
potential vulnerabilities.

3.3 Protocol Exploits 31





4JSON BBS+ Signatures

In the previous chapters we considered the current state-of-the-art for privacy preserving
Veri�able Credentials and the current implementations and speci�cations which are focused
on the linked data approach. Αs we saw in previous chapters, linked data are su�ering from
various security and privacy issues. Aside from the security vulnerabilities we pointed
out (Section 3.2.1 and 3.2.2), there are still worries regarding various parts of the existing
speci�cation. Furthermore, even the solutions we proposed for the protocol exploits we
discovered, are essentially “patches” and they do not guarantee that there will not be
any other security vulnerability. For those reasons we propose an alternative pipeline
for signing Veri�able Credentials with BBS+. The main di�erence is that instead of using
JSON LD (Linked Data) to represent a credential, we will use a standard JSON format. This
will allow us to create a mathematical modeling of the JSON representation with which we
can prove the end-to-end security of our scheme. Finally, we will show that we can get an
improved performance with our algorithm for breaking a credential to a list of messages
(to be signed with BBS+) compared to the one used thus far (URDNA2015).

4.1 Modeling JSON

When considering JSON LD credentials, the modeling was mainly done using graphs and
more speci�cally, the knowledge graph representing the claims of the VC. Cryptographic
signature protocols however, mainly work on a bit-array that represents the message being
signed (or in the case of BBS+ a set of bit-arrays) and not on graphs. This mismatch can
cause not only various security vulnerabilities, like the URDNA2015 exploit we discovered
(Section 3.3.1), but also makes it very hard to create provable secure protocols. The goal of
our modeling is to represent the credential in a way closer to the one expected from the
BBS+ algorithms, i.e., as a set of bit-arrays. To do that, instead of graphs we will use �nite
functions, that can be naturally (i.e., by de�nition) transformed into a set.

The basic concept of our modeling is the observation that a JSON representation is com-
prised from two things: the Structure and the Values. We will model those two separately
and consider a JSON data-structure to be a combination of both. As a public parameter we
will �rst de�ne a non-zero positive integer n ∈ N. Let [n] = {1, 2, ..., n}, be the set of all
integers from 1 to n.

33



Structure

Let K be the set of all possible “keys” that can appear in the JSON �le and P(K) be the set
of �nite sets with elements from K . We de�ne the structure of a JSON �le to be K along
with an injective function φ,

φ(x) : [n]− > P(K) (4.1)

Values

Similarly, we de�ne the values of a credential as a set V of all the possible literal values
that can appear in the JSON �le, along with a function g,

g(x) : [n]− > V (4.2)

Note that we make no assumptions for g, in contrast with φ that we de�ne to be injective.
We now end up on the following de�nition for a JSON data-structure.

De�nition 1. We de�ne a JSON data-structure J to be J = (K,V, n, φ, g), or sinceK and
V can be as extensive as we want, for simplicity we will de�ne a JSON �le as J = (n, φ, g).

The intuition behind the proposed modeling is that [n] will map each place in the JSON
data-structure where a literal value could appear to an integer. Then φ will use those
integers to map each position in the JSON with a literal value to the set of keys that will
lead to that literal value and g will map each literal value position to that literal value. For
example, consider the credential of Figure 4.1 with each place that a literal value can go
mapped to an integer in [6] = {1, 2, ..., 6}.

Fig. 4.1: Modeling a JSON data-structure example.

The values of the φ and g functions can be seen at Table 4.1. Observe that ∀i0, i1 ∈
[6],with i0 6= i1 => φ(i0) 6= φ(i1), while g(3) = g(6) and g(4) = g(5).

34 Chapter 4 JSON BBS+ Signatures



n φ g

1 (name) John Doe
2 (email) JahnDoe@bestMail.com
3 (Ticket, Leaving, From) New York
4 (Ticket, Leaving, To) Honk Kong
5 (Ticket, Returning, From) Honk Kong
6 (Ticket, Returning, To) New York

Tab. 4.1: Values of the φ and g functions of the Credential 4.1

From the example above it can be seen that the order with which we map each literal
value position in the JSON to an integer, should not matter. For example, we could map
the “name” �eld to the integer 2 and the “email” �eld to the integer 1 and still have the
same JSON �le. For that reason, we de�ne the equality between two JSON data-structures
as following

De�nition 2. Let J1 = (n1, φ1, g1) and J2 = (n2, φ2, g2) be two JSON data-structures.
We de�ne that J1 = J2 if and only if n1 = n2 = n and there is a permutation σ of [n],
such that φ1 = φ2(σ) and g1 = g2(σ).

An important part in the De�nition 1 of JSON is that the function φ is injective. However,
from the De�nition 2 above, it may seem that this is not always the case if the JSON �le
contains a list. For example, consider the JSON of Figure 2.4. We can observe that if we
calculate the φ function as in the example JSON of Figure 4.1, we may get φ(3) = φ(5) =
(credentialSubject, escorts, name). For this reason, in cases that there is a list on the JSON,
we consider the index of the list’s elements as a key as well. We essentially, transform
the list into a map between the list index and corresponding element. As a result, for
the JSON of Figure 2.4 we will get that φ(3) = (credentialSubject, escorts, 1, name) and
φ(5) = (credentialSubject, escorts, 2, name), essentially making φ again injective.

A drawback of our modeling is that following De�nitions 1 and 2, if the JSON �le contains
a list and we change the order of the elements in that list we will get a di�erent JSON
�le (per the De�nition 2 of equality). Although that caveat does not seem to have any
signi�cance in practice, especially for cryptographic applications where the �le should not
be able to change in any way, additional work could be done to extend the above modeling
to also account for that case (de�ning broader classes of equality etc.). For our applications
however, those de�nitions will su�ce.

Notice also that our modeling does not directly work with JSON LD. If for example
we consider the credential of Figure 3.1, we can observe that, if we map the position
of the value “did:example:abc12345” with the integer 3, we could de�ne the structure
with a function φ1 with φ1(3) = (Subject, @id) or with function φ2 with φ2(3) =

4.1 Modeling JSON 35



(Subject, residence, @owner). Notice though that there is not a permutation σ so that
φ1 = φ2(σ) meaning that per our modeling φ1 and φ2 would lead to two di�erent creden-
tials. From the corresponding knowledge graph of Figure 3.2 we can see that the problem
lies on the fact that there are two di�erent paths leading to the value “did:example:abc12345”.
In a JSON credential, which in a graph representation will be a tree graph, something
like that is not possible. That being said, we believe that our de�nitions could easily be
extended to the case of linked data as well, by considering only the shortest paths or with
some additional de�nitions, but that is out of scope for this work.

Continuing, we will prove that each JSON can also be de�ned as a set of di�erent values
by proving an alternative de�nition of equality. We will use this alternative de�nition
(equivalent to De�nition 2) later to sign a JSON �le.

Lemma 1. Given J1 = (n1, φ1, g1) and J2 = (n2, φ2, g2), J1 = J2 if and only if n1 =
n2 = n and {(φ1(i), g1(i))| i ∈ [n]} = {(φ2(i), g2(i))| i ∈ [n]}.

Proof. Lets assume that n1 = n2 and that {(φ1(i), g1(i))}i∈[n] = {(φ2(i), g2(i))}i∈[n].
Since {(φ1(i), g1(i))}i∈[n] = {(φ2(i), g2(i))}i∈[n], ∀i ∈ [n] ∃i′ ∈ [n] so that φ1(i) =
φ2(i′) Lets consider a function σ : [n]− > [n] with σ(i) = i′ <=> φ1(i) = φ2(i′). We
will show that σ is a permutation.

1) Let i0, i1 ∈ [n] and i′0, i′1 ∈ [n] with φ1(i0) = φ2(i′0) and φ1(i1) = φ2(i′1). If i0 =
i1 => φ1(i0) = φ1(i1) = φ2(i′0) = φ2(i′1) => i′0 = i′1 since φ2 injective. As a result σ is
a function.

2) Let now i0 6= i1. Lets assume σ(i0) = σ(i1) => i′0 = i′1 meaning that φ2(i′0) =
φ2(i′1) => φ1(i0) = φ1(i1) => i0 = i1 since φ1 is injective. We arrived in a contradiction
and as a result, σ is injective.

3) Let an i ∈ [n]. Since {(φ1(i), g1(i))}i∈[n] = {(φ2(i), g2(i))}i∈[n] we can conclude
that ∃i′ ∈ [n] so that (φ2(i), g2(i)) = (φ1(i′), g1(i′)) and as a result φ1(i′) = φ2(i) =>
σ(i′) = i. As a result, the σ function is also bijective. We conclude then that σ is a
permutation.

From the de�nition of the σ permutation it is easy to see that φ1(i) = φ2(σ(i)) and that
g1(i) = g2(σ(i)) which means that J1 = J2.

The opposite direction, meaning that if J1 = J2 then n1 = n2 = n and
{(φ1(i), g1(i))}i∈[n] = {(φ2(i), g2(i))}i∈[n] is trivial.

36 Chapter 4 JSON BBS+ Signatures



4.2 Signing JSON Credentials

We can now easily de�ne a BBS+ signature on a JSON credential using the proposed
modeling. Let J = (n, φ, g) be a credential in JSON form. Let also SIGNBBS+ to be the
signing algorithm of the BBS+ signatures (Section 2.2.4). We de�ne a BBS+ signature on
that credential to be,

Credential BBS+ Signature = Jsign = SIGNBBS+({(φ(i), g(i))}i∈[n]) (4.3)

Similarly, if POKBBS+ is a proof of knowledge (PoK) algorithm of the BBS+ schema
(Section 2.2.5) then we de�ne a PoK for J and the BBS+ signature Jsign as,

Credential BBS+ POK = Jpok = POKBBS+(Jsign, {(φ(i), g(i))}i∈[n]) (4.4)

Using the de�nitions above and the JSON modeling we proposed (Section 4.1), we can
easily prove that a BBS+ signature on a credential Jsign is unforgeable and that a proof
of knowledge Jpok is a zero-knowledge proof of knowledge, by simply reducing those
properties to the corresponding properties of BBS+. Next, we will prove the unforgeability
property under adaptive plain-text attacks. The zero-knowledge proof-of-knowledge is
very similar and almost trivial.

Lemma 2. JSON BBS+ signatures are unforgeable under adaptive plain-text attacks.

Proof. Let an adversary that through an adaptive plain-text attack has acquire q JSON
BBS+ signatures for the JSON �les J1, J2, ..., Jq . From 4.3, we can see that essentially the
adversary will have q BBS+ signatures Jksign on the messagesMk = {(φk(i), gK(i))}i∈[nk]

for k = {1, 2, ..., q}. Lets assume that using those signatures they can forge a signature
Jforgesign for a (forged) JSON �le Jforge 6= Jk ∀k ∈ {1, 2, ..., q}. The Jforgesign will be a BBS+
signature on the messages Mf = {(φf (i), gf (i))}i∈[nf ]. Consider the following two cases,

First let the messages Mf not be part of the messages {Mk}k∈{1,2,..,q} (the ones signed by
the Issuer). Then the adversary will have achieved a forgery of a BBS+ signature on the
messages Mf , that are not previously signed by the Issuer using an adaptive plain-text
attack, which is a contradiction.

Assume next thatMf ∈ {Mk}k∈{1,2,...,q}. Then ∃k0 ∈ {1, 2, ..., 1} so thatMf = Mk0 and
nf = nk0 . From Lemma 1 we conclude that Jforged = Jk0 , which also is a contradiction.

4.2 Signing JSON Credentials 37



4.3 Experimental Results

The following results showcase the performance di�erence between dissecting a JSON-LD
credential using a canonicalization algorithm, and a JSON credential using the proposed
JSONdissect algorithm (Algorithm 1). As dissecting, we denote the mapping of a credential
(either in JSON or JSON-LD form) to a list of messages that will later be signed with a BBS+
signature1. To dissect JSON-LD Veri�able Credentials (VCs), we used the URDNA2015
canonicalization algorithm. As already mentioned that algorithm is considered the state-
of-the-art for dissecting JSON-LD VCs. For dissecting a JSON VC, we used the JSONdissect
function, shown in Algorithm 1 below2, that returns the set of values {(φ(i), g(i))|i ∈ [n]},
in compliance with the modeling we proposed in Section 4.1.

Algorithm 1 Dissect a JSON credential
function JSONdissect(V C)

Messages← []
Claim← None
procedure recurse(V C)

for key ∈ V C do . If VC is a list, the keys will be the indexes of its elements.
if typeof V C[key] == JSONobj then

Claim← Claim+ ”key.”
recurse(V C[key])

else
Claim← Claim+ ”_V C[key]”
Messages.push(Claim)
Claim← None

return Messages

4.3.1 Set Up

To benchmark the two di�erent algorithms, we generated credentials with various numbers
of blank nodes, key/value pairs (which we will denote simply as claims) and maximum
depth. More speci�cally, each �gure below corresponds to a speci�c credential core (of set
max depth and number of blank nodes) with an increasing number of claims. Each claim is
randomly generated with a length of 40 bytes (20 bytes key with 20 bytes value). After the
credentials are generated, we run the same benchmarking procedure for both algorithms
and compared the results. The benchmarking procedure is as follows,

1. Each algorithm is executed as many times as possible for a duration of 50 msec.

2. During each run, the duration of the algorithm’s execution is measured.

1The terms ’normalization’ or ’canonicalization’ are not used in the case of JSON credentials, since those
terms entail additional meaning in the linked data context.

2Our implementation (node.js) and the benchmarking code: https://github.com/BasileiosKal/json-bbs

38 Chapter 4 JSON BBS+ Signatures



3. Finally, the mean duration is returned.

The above procedure was executed in a personal computer using an Intel i5 with 3.2 GHz
clock speed and 16 GBs of RAM. Also note the following,

1. A JSON-LD credential before is canonicalized, it must �rst be expanded. The expan-
sion process essentially brings the credential to the proper form, so it can be later
turned to an RDF dataset (knowledge graph representation) and be canonicalized. In
the results below, we don’t include the expansion algorithm as part of the process of
dissecting a JSON-LD VC (all the credentials were already expanded). The reason was
to get a more accurate performance measurement of just the URDNA2015 algorithm.
In practice, however, the expansion algorithm will most likely be used, and it will
add an overhead of ∼ 0.2− 1.4 msec to the JSON-LD dissecting performance.

2. It is obvious that the performance of the JSONdissect algorithm depends on the max
depth of the credential. On the other hand, the performance of the URDNA2015
algorithm depends on two separate conditions. First, in the number of blank nodes
in the credential. Second, the place of these blank nodes in the knowledge graph.
More speci�cally, the most expensive operation of the URDNA2015 algorithm is the
N-degrees-hash sub-algorithm. That algorithm is called when there are blank nodes
in the JSON-LD graph that cannot be distinguished from each other, by using only
the information that is directly linked to them. For that reason, we performed the
benchmarking twice. First, using credentials with a modest max depth. Then, using
credentials speci�cally made to have a large max depth, that do not require from the
URDNA2015 algorithm to call the N-degrees-hash procedure. That way, the results
of the second benchmark correspond to a best-case scenario for URDNA2015 and a
worst-case scenario for Algorithm 1.

3. The total size of the resulting claims in bytes (meaning the input of the BBS+ signing
algorithm) are almost the same for both algorithms, with the JSONdissect algorithm
(Algorithm 1) having a slight advantage in this regard.

4.3.2 Benchmarking Results

First Benchmarking Results

For the �rst benchmarking procedure, we generated credentials of max depth 1, 2 and 3
with 2, 3, 8 and 16 blank nodes. The results are shown in Figure 4.2 Note that Algorithm 1
runs 6× to 25× times faster than the URDNA2015 algorithm.

4.3 Experimental Results 39



Fig. 4.2: First benchmarking results comparing the URDNA2015 for JSON LD to JSONdissect
(Algorithm 1) for JSON. The credentials used have a modest depth, corresponding to more
common use-cases.

Second Benchmarking

For the second benchmarking procedure, we generated credentials of max depth 2, 4, 8
and 16. Correspondingly the blank nodes are 2, 4, 8 and 16. We can observe from Figure
4.3, that even in the best-case scenario in favor of URDNA2015, JSONdissect runs 5× to
9× faster.

40 Chapter 4 JSON BBS+ Signatures



Fig. 4.3: Second benchmarking results comparing the URDNA2015 for JSON LD to JSONdissect
(Algorithm 1) for JSON. The credentials used have large depth and blank nodes arranged
in a way that will give the URDNA2015 algorithm the advantage and a handicap to the
JSONdissect algorithm.

4.3 Experimental Results 41





5Conclusions

In this work we examined the current proposals for e�cient privacy preserving manage-
ment of a user’s identity and their proposed trade-o�s. We closely looked at the case of
linked data veri�able credentials and their advantages. We also identi�ed some vulnerabili-
ties of the proposed speci�cations. Although there are already some proposed solutions for
these exploits, there are worries that the resulting complexity of those algorithms may start
to threaten implementability. As an answer, we proposed the use of a simpler and more
limiting format (JSON instead of JSON Linked Data), for which we can create much simpler
and e�cient (not to mention secure) algorithms. To do that we propose a new mathematical
modeling of the JSON format. We believe that, our proposed trade-o� between e�ciency,
security and data extensibility and upgradeability is well suited for cryptographic and
security/privacy applications and especially for the Veri�able Credential’s use cases.

Although we discussed the basic operations of signing and creating proofs for a Veri�able
Credential, most applications will need additional functionalities on top of the main ones,
that we only alluded to here. Examples include mechanisms to revoke a credential, to
retrieve the identity of a misbehaving user etc. As a future work, we plan to enrich our
JSON VCs solution with these capabilities, in a privacy preserving manner (i.e., without
introducing correlation elements etc.). We also plan to expand our current code-base and
create samples and demos with which to further illustrate and evaluate the usability and
e�ciency of our approach.

43





Bibliography

[AL20] Rachel Arnold and Dave Longley. RDF Dataset Canonicalization. 2020. url: https://
lists.w3.org/Archives/Public/public-credentials/2021Mar/

att-0220/RDFDatasetCanonicalization-2020-10-09.pdf (vis-
ited on Sept. 11, 2021).

[BBC08] David Bauer, Douglas M Blough, and David Cash. “Minimal Information Disclosure with
E�ciently Veri�able Credentials”. In: Proceedings of the 4th ACM workshop on Digital

Identity Management. 2008, pp. 15–24.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Gignatures”. In: Annual
International Cryptology Conference. Springer. 2004, pp. 41–55.

[BHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web”. In: Scienti�c
American 284.5 (2001), pp. 34–43.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil Pairing”.
In: International Conference on the Theory and Application of Cryptology and Information

Security. Springer. 2001, pp. 514–532.

[Bow17] Sean Bowe. BLS12-381: New ZK-SNARK Elliptic Curve Construction. 2017. url: https:
//electriccoin.co/blog/new-snark-curve/ (visited on Sept. 11,
2021).

[Bra07] Stefan Brands. The problem(s) with OpenID. 2007. url: https://web.archive.
org/web/20110516013258/http://www.untrusted.ca/cache/

openid.html (visited on Sept. 15, 2021).

[CDL16] Jan Camenisch, Manu Drijvers, and Anja Lehmann. “Anonymous Attestation Using the
Strong Di�e-Hellman Assumption Revisited”. In: International Conference on Trust and

Trustworthy Computing. Springer. 2016, pp. 1–20.

[CL04] Jan Camenisch and Anna Lysyanskaya. “Signature Schemes and Anonymous Credentials
from Bilinear Maps”. In: Annual International Cryptology Conference. Springer. 2004,
pp. 56–72.

45

https://lists.w3.org/Archives/Public/public-credentials/2021Mar/att-0220/RDFDatasetCanonicalization-2020-10-09.pdf
https://lists.w3.org/Archives/Public/public-credentials/2021Mar/att-0220/RDFDatasetCanonicalization-2020-10-09.pdf
https://lists.w3.org/Archives/Public/public-credentials/2021Mar/att-0220/RDFDatasetCanonicalization-2020-10-09.pdf
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://web.archive.org/web/20110516013258/http://www.untrusted.ca/cache/openid.html
https://web.archive.org/web/20110516013258/http://www.untrusted.ca/cache/openid.html
https://web.archive.org/web/20110516013258/http://www.untrusted.ca/cache/openid.html


[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and Abstract
Syntax. 2014. url: https://www.w3.org/TR/rdf11-concepts/ (visited
on Sept. 11, 2021).

[DK18] Mahto Dindayal and Yadav Dilip Kumar. “Performance Analysis of RSA and Elliptic
Curve Cryptography.” In: nternational Journal of Network Security 20.4 (2018), pp. 625–
635.

[Har20] Halpin Harry. “A Critique of Immunity Passports and W3C Decentralized Identi�ers”.
In: arXiv preprint arXiv:2012.00136 (2020).

[Ho+12] Au Man Ho, Willy Susilo, Yi Mu, and Chow Sherman S. M. “Constant-Size Dynamic
K-Times Anonymous Authentication”. In: IEEE Systems Journal 7.2 (2012), pp. 249–261.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message

Authentication. RFC 2104. RFC Editor, 1997.

[LS21] Tobias Looker and Orie Steele. BBS+ Signatures 2020. 2021. url: https://w3c-
ccg.github.io/ldp-bbs2020/ (visited on Sept. 11, 2021).

[MW21] Jeremie Miller and David Waite. JSONWeb Proof. 2021. url: https://hackmd.io/
@quartzjer/JSON_Web_Proof (visited on Sept. 15, 2021).

[Mye+99] Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Carlisle Adams. X.
509 Internet Public key Infrastructure Online Certi�cate Status Protocol-OCSP. RFC 2560.
RFC Editor, 1999.

[NQ21] Barclay Neira and Caleb Queern. Introduction to Azure Active Directory Veri�able Cre-

dentials. 2021. url: https://docs.microsoft.com/en-us/azure/
active-directory/verifiable-credentials/decentralized-

identifier-overview (visited on Sept. 15, 2021).

[Ott+19] Nate Otto, Sunny Lee, Brian Sletten, et al. Veri�able Credentials Use Cases. 2019. url:
https://www.w3.org/TR/vc-use-cases/ (visited on Sept. 11, 2021).

[Ped91] Torben Pryds Pedersen. “Non-Interactive and Information-Theoretic Secure Veri�able
Secret Sharing”. In: Annual International Cryptology Conference. Springer. 1991, pp. 129–
140.

[PM19] Roger Jover Piqueras and Vuk Marojevic. “Security and Protocol Exploit Analysis of the
5G Speci�cations”. In: IEEE Access 7 (2019), pp. 24956–24963.

[PZ13] Christian Paquin and Greg Zaverucha. U-Prove Cryptographic Speci�cation V1.1. Revi-

sion 3. 2013. url: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.

1.pdf (visited on Sept. 15, 2021).

46 Bibliography

https://www.w3.org/TR/rdf11-concepts/
https://w3c-ccg.github.io/ldp-bbs2020/
https://w3c-ccg.github.io/ldp-bbs2020/
https://hackmd.io/@quartzjer/JSON_Web_Proof
https://hackmd.io/@quartzjer/JSON_Web_Proof
https://docs.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://docs.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://docs.microsoft.com/en-us/azure/active-directory/verifiable-credentials/decentralized-identifier-overview
https://www.w3.org/TR/vc-use-cases/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.1.pdf


[RSA78] Ronald Rivest, Adi Shamir, and Leonard Adleman. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”. In: Communications of the ACM 21.2 (1978),
pp. 120–126.

[Sak+14] Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and Chuck Morti-
more. “Openid connect core 1.0”. In: The OpenID Foundation (2014), S3.

[SAM15] Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform 1.0. 2015. url:
https://www.w3.org/TR/ldp/ (visited on Sept. 15, 2021).

[Sim21] Similartech.com. OpenID. Market Share & Web usage Statistics. 2021. url: https:
//www.similartech.com/technologies/openid (visited on Sept. 15,
2021).

[SLC19a] Manu Sporny, Dave Longley, and David Chadwick. Veri�able Credentials Data Model 1.0.
2019. url: https://www.w3.org/TR/vc-data-model/ (visited on Sept. 13,
2021).

[SLC19b] Manu Sporny, Dave Longley, and David Chadwick. Veri�able Credentials Ecosystem
Overview. 2019. url: https://www.w3.org/TR/vc- data- model/
#ecosystem-overview (visited on Sept. 13, 2021).

[Spo+20] Manu Sporny, Dave Longley, Gregg Kellogg, et al. JSON-LD 1.1. 2020. url: https:
//www.w3.org/TR/json-ld11/ (visited on Sept. 15, 2021).

[Zhi+21] Zhang Zhiyi, Król Michal, Sonnino Alberto, Zhang Lixia, and Rivière Etienne. “EL
PASSO: E�cient and Lightweight Privacy-Preserving Single Sign On.” In: 2. Sciendo.
2021, pp. 70–87.

Bibliography 47

https://www.w3.org/TR/ldp/
https://www.similartech.com/technologies/openid
https://www.similartech.com/technologies/openid
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/#ecosystem-overview
https://www.w3.org/TR/vc-data-model/#ecosystem-overview
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/


List of Acronyms

PKI Public Key Infrastructure

VC Veri�able Credential

LD Linked Data

JSON JavaScript Object Notation

RSA Rivest–Shamir–Adleman Digital Signatures

POK Proof of Knowledge

ZKP Zero Knowledge Proof

48



List of Figures

2.1 The Veri�able Credential’s Ecosystem. Figure taken from: https://www.w3.org/TR/vc-
data-model/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Veri�able Credential’s Data Model. Figure adapted from: https://www.w3.org/TR/vc-
data-model/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A set of claims as a knowledge graph. Figure adapted from: https://www.w3.org/TR/vc-
data-model/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 An airline ticket represented as a Veri�able Credential. . . . . . . . . . . . . 9
2.5 The VC from Figure 2.4 signed by the Issuer/ Airline (green part). . . . . . . 9
2.6 The VC from Figure 2.5 also signed by the Holder (green part). . . . . . . . . 10

3.1 An example of a Veri�able Credential in JSON LD format. . . . . . . . . . . . 18
3.2 The corresponding Knowledge Graph of the credential from Figure 3.1. . . . 19
3.3 JSON LD credential example and corresponding knowledge graph. . . . . . . 24
3.4 JSON LD credential and corresponding knowledge graph the Veri�er will

receive if the Holder uses selective disclosure to hide their "�rstName" from
their credential of Figure 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 JSON LD credential example and corresponding knowledge graph. . . . . . . 25
3.6 JSON LD credential example. If the Holder wants to keep the name and age

of their youngest kid the adversary will be able to unveil them . . . . . . . . 27

4.1 Modeling a JSON data-structure example. . . . . . . . . . . . . . . . . . . . . 34
4.2 First benchmarking results comparing the URDNA2015 for JSON LD to

JSONdissect (Algorithm 1) for JSON. The credentials used have a modest
depth, corresponding to more common use-cases. . . . . . . . . . . . . . . . 40

4.3 Second benchmarking results comparing the URDNA2015 for JSON LD to
JSONdissect (Algorithm 1) for JSON. The credentials used have large depth
and blank nodes arranged in a way that will give the URDNA2015 algorithm
the advantage and a handicap to the JSONdissect algorithm. . . . . . . . . . 41

49



List of Tables

3.1 Messages returned from the URDNA2015 algorithm when is used from the
Holder/Issuer and the Veri�er with the credential of Figure 3.3 and Figure 3.4
correspondingly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Reference sets Q1 and Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Values of the φ and g functions of the Credential 4.1 . . . . . . . . . . . . . . 35

50



List of Algorithms

1 Dissect a JSON credential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

51



Appendix A

Pairings have many very interesting properties and uses. However before continuing we
will need some additional de�nitions of the discreet logarithm (DL) problem, the decision
Di�e-Hellman (DDH) problem and the computational Di�e-Hellman (CDH) problem, in
a group G.

• DL problem. The DL (discreet logarithm) problem is the following. Given two
elements g, h ∈ G, if it exits, �nd an integer n such that h = gn.

• CDH problem. The CDH (computational Di�e-Hellman) problem is de�ned a
following. Given three group elements g, ga, gb ∈ G, compute an element h of G
such that h = gab.

• DDHproblem. The DDH (decision Di�e-Hellman) problem is the following. Given
four group elements g, ga, gb, gc ∈ G, return true if c = ab modulo the order of g
and false otherwise.

These three problems are assumed to be hard (on various degrees and under certain
conditions) and on this hardness allot of cryptosystems have based their security. Note
that DDH is no harder than the CDH problem and CDH is no harder than the DL problem.
Interestingly, pairings �rst use in cryptography was to attack cryptosystems based on the
DL problem. That is because, using their bi-linearity property, pairings could reduce the
DL problem from a large group G where the problem was hard, to a smaller group GT
where the DL problem was easier to solve. Another interesting fact is that if an easily
computed pairing exists between a group G and another group GT , the DDH problem
becomes easy on G. Indeed, for given elements g, ga, gb, gc ∈ G and a pairing e, it holds
that e(g, gc) = e(g, g)c and e(ga, gb) = e(g, g)ab. As a result to check if c = ab, one can
simply check if e(g, gc) = e(ga, gb), solving that way the DDH problem. Because of those
two reasons, initially pairings were treated as something to avoid, since they compromised
the security of allot of cryptosystems that were based on the DL and DDH problems.

52



Since then however, pairings have been shown to be very useful in creating a variety of
di�erent cryptographic protocols. Those systems typically work on a speci�c type of �nite
groups called gap groups, where it exists an easily computed pairing meaning that the
DDH problem is easy while the CDH and DL problems are equivalent and presumably
hard. Usually, pairing based cryptosystems take advantage of the ease of solving the DDH
problem, by employing it as part of the decryption or key/signature veri�cation process.
For example, given g, ga, gb, gc ∈ G, where a, b and c some secrets, those systems will use
the fact that it easy to decide if c = ab or not as part of the veri�cation process, and the
fact that it is hard to actually calculate c, a or b (since CDH and DL are hard) to guarantee
security.

BBS+ signatures work similarly, but instead of being based on the CDH or DL problem they
use the more general and stronger q-Strong Di�e-Helman assumption. That assumption
states that given two �nite groupsG1 andG2 of prime cardinality p, and elements g0 ∈ G1

and h0 ∈ G2, it is hard to �nd an algorithm that on input g0, h0, h
x
0 , h

x2
0 , ..., h

xq
0 produces

an output (A, x) such thatA
1
x+c = g0 for some c ∈ Zp. BBS+ signatures base their security

on the truth of that assumption.

List of Algorithms 53



Appendix B

Groups of a very large order will have strong security properties (since exhaustive search
in them will be hard) but will also have large elements, or time consuming operations,
which will result on poor performance. Up until now, the �nite groups to provide the best
balance between performance and security are elliptic curves over �nite �elds. Elliptic
curves over �nite �elds (E(Fp)) are collection of points (x, y) with y = x3 +ax+ b, where
x takes values in the �nite group Fp. In general, the advantage of elliptic curves is that
there are strong evidence that the DL problem in them is hard for relatively small p (?the
best known attacks will take exponential time?). On the other hand, most operations take
place in Fp where (if p is relatively small) they are really e�cient.

In the case of BBS+ however we have the additional requirement that there needs to be
an e�ciently computed pairing between the groups we choose. Pairing-friendly elliptic
curves that continue to have the desired security and e�ciency properties are relatively
rare and must be speci�cally constructed. Until today, perhaps the best pair of elliptic
curves to satisfy all of these requirements are the BLS12-381 curves. Those curves are
de�ned over Fq and Fq2 , where q is an 381 bits prime, and have the following equations,

• E(Fq) with E : y2 = x3 + 4

• E(Fq2) with E : y2 = x3 + 4(1 + i)

The reasons these two speci�c pairings friendly elliptic curves where chosen are out of
scope of this work, since they include various technical trade-o�s between security and
e�ciency. Finally, the groups chosen are G1 ⊂ E(Fq), G2 ⊂ E(Fq2) and GT ⊂ Fq12 .

54


	Titlepage
	Abstract
	Abstract
	Acknowledgements
	Acknowledgements
	1 Introduction
	1.1 Applications
	1.2 Motivation and Problem Statement
	1.3 Contributions
	1.4 Thesis Structure

	2 Background and Related Work
	2.1 Verifiable Credentials
	2.1.1 Ecosystem
	2.1.2 Data Model
	2.1.3 Life-cycle Example

	2.2 BBS+ Digital Signatures
	2.2.1 Mathematical Preliminaries
	2.2.2 Security Notions
	2.2.3 Public Data and Key Generation
	2.2.4 Signing and Verifying
	2.2.5 Selective Disclosure

	2.3 Related Work

	3 Linked Data Signatures
	3.1 Linked Data Introduction
	3.2 LD BBS+ Proofs
	3.2.1 Linked Data Canonicalization
	3.2.2 Holder Authentication

	3.3 Protocol Exploits
	3.3.1 URDNA2015 Security Vulnerability
	3.3.2 Holder Authentication Security Vulnerability


	4 JSON BBS+ Signatures
	4.1 Modeling JSON
	4.2 Signing JSON Credentials
	4.3 Experimental Results
	4.3.1 Set Up
	4.3.2 Benchmarking Results


	5 Conclusions
	Bibliography
	Acronym
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Appendix
	Appendix A
	Appendix
	Appendix B

