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Περίληψη 

Αυτή η εργασία εξετάζει τη χρήση Αποκεντρωμένων Αναγνωριστικών (DIDs) στο 

Διαδίκτυο των Πραγμάτων. Συγκεκριμένα εξετάζουμε την χρήση τους για 

αυθεντικοποίηση δεδομένων που λαμβάνουμε από συσκευές. Στην καθημερινή μας ζωή 

βασιζόμαστε σε αναγνωριστικά, όπως διευθύνσεις email και ονόματα χρήστη, τα οποία 

εκδίδονται και ελέγχονται από εξωτερικές αρχές και δεν είναι υπό τον έλεγχό μας. Το 

Αποκεντρωμένο Αναγνωριστικό (DID) είναι ένας νέος τύπος αναγνωριστικού που 

επιτρέπει επαληθεύσιμες, αποκεντρωμένες ψηφιακές ταυτότητες, που μας δίνει πίσω τον 

έλεγχο στην ταυτότητά μας, καταργώντας την ανάγκη για μια συγκεντρωτική εξωτερική 

αρχή. Τα DIDs μπορούν επίσης να χρησιμοποιηθούν από συσκευές που αποτελούν μέρος 

του Διαδίκτυου των Πραγμάτων. Τα DIDs χρησιμοποιούνται σε διάφορες εφαρμογές 

ασφαλείας, με πιο σημαντική την αυθεντικοποίηση. 

Στην εργασία μας χρησιμοποιήσαμε μία μέθοδο δημιουργίας DIDs, τη μέθοδο did:self, 

που δημιουργήθηκε στο Οικονομικό Πανεπιστήμιο Αθηνών, ειδικά για το Διαδίκτυο των 

Πραγμάτων. Οι ιδιοκτήτες των did:self DIDs είναι υπεύθυνοι για τη δημιουργία και τη 

διάδοση των εγγράφων DID από μόνοι τους. 

Υπάρχουν πολλά εργαλεία που μπορούν να χρησιμοποιηθούν σε περιβάλλον IoT. Το 

πρωτόκολλο CoAP είναι σημαντικό γιατί είναι ιδανικό για χρήση σε περιβάλλοντα με 

περιορισμένους πόρους. Υπάρχουν πολλοί τρόποι για να τοποθετήσετε, να ρυθμίσετε τις 

συσκευές σας και να ενεργοποιήσετε την επικοινωνία μαζί τους. Τα περισσότερα από 

αυτά περιλαμβάνουν μια πύλη IoT, η οποία βρίσκεται ανάμεσα στις συσκευές και το 

Διαδίκτυο. Το RIOT είναι ένα λειτουργικό σύστημα, που δημιουργήθηκε ειδικά για την 

υποστήριξη του Διαδικτύου των Πραγμάτων. Προσφέρει πολλά πλεονεκτήματα στους 

προγραμματιστές και είναι αρκετά ελαφρύ ώστε να μπορεί να εκτελεστεί σε πολύ απλές 

συσκευές. Το χρησιμοποιούμε για την υλοποίηση DIDs με τη μέθοδο did:self. 

Η εργασία μας δείχνει ότι μπορούμε να χρησιμοποιήσουμε Αποκεντρωμένα 

Αναγνωριστικά, τα οποία δημιουργούνται και κοινοποιούνται από τις συσκευές στο IoT. 

Από το λειτουργικό σύστημα RIOT χρησιμοποιούνται διάφορες βιβλιοθήκες, που μας 

βοηθούν να εφαρμόσουμε τη μέθοδο did:self, γραμμένη σε γλώσσα προγραμματισμού C, 



  

στις συσκευές. Στα πλαίσια της εργασίας μας μεταφέρθηκαν πρόσθετες βιβλιοθήκες και 

κώδικας στο RIOT ώστε να μπορούμε να δημιουργούμε και να επαληθεύουμε 

αποκεντρωμένα αναγνωριστικά με βάση τη μέθοδο did:self. 

Προστέθηκε κώδικας που χρησιμοποιεί τις βιβλιοθήκες αυτές για να δημιουργήσουμε 

κλειδιά EdDSA, να υπογράψουμε δεδομένα με αυτά και να κωδικοποιήσουμε δεδομένα 

ως base64url. Επιπλέον, δημιουργήθηκαν οι κατάλληλες συναρτήσεις για την δημιουργία 

και αποθήκευση των DID Document και DID Proof στις συσκευές. Αυτά απαιτούνται για 

να αυθεντικοποιήσουμε πρώτα το DID Document και αργότερα με την χρήση αυτού, 

οποιαδήποτε δεδομένα λαμβάνουμε από τις συσκευές. Στον κώδικα μας επιβεβαιώνουμε 

την αυθεντικοποίηση των πόρων που λαμβάνουμε από τις συσκευές στο Gateway που 

δημιουργήσαμε. 

Επομένως, τα Αποκεντρωμένα Αναγνωριστικά (DIDs) βοηθούν με επιτυχία στην 

διασφάλιση της αυθεντικότητας των δεδομένων που λαμβάνουμε από τις συσκευές. Στο 

6ο κεφάλαιο δείχνουμε παραδείγματα της χρήσης τους στο RIOT, αναφέροντας τα 

αποτελέσματα που λαμβάνουμε. 

 

 

 

 

 

 

 

 

 

 

 



  

Abstract 

This thesis examines the use of Decentralized Identifiers (DIDs) in the Internet of Things. 

In particular we are examining their use for authenticating the data that we receive from 

devices. In our daily lives we rely on identifiers, such as email addresses and usernames, 

which are issued and controlled by external authorities and are not under our control. A 

Decentralized Identifier (DID) is a new type of identifier that enables verifiable, 

decentralized digital identities, giving us back control over our identity by removing the 

need for a centralized external authority. DIDs can also be used by devices that are part 

of the Internet of Things. DIDs are used in various security applications, the most 

important being authentication.  

In our work we used a method of generating DIDs, the did:self method, created at the 

Athens University of Economics and Business, specifically for the Internet of Things. 

Owners of did:self DIDs are responsible for creating and propagating DID documents 

themselves.  

There are many tools that can be used in an IoT environment. The CoAP protocol is 

important, because it is ideal for resource-constrained environments. There are many 

ways to setup and configure your IoT devices and enable communication with them. 

Most of them include an IoT gateway, placed between the devices and the Internet. RIOT 

is an operating system, built specifically to support the Internet of Things. It offers many 

advantages to developers and is lightweight enough to run on very simple devices. We 

use it to implement DIDs with the did:self method.  

Our work shows that we can use Decentralized Identifiers, which are generated and 

shared by the devices in the IoT. Various libraries are used by the RIOT OS, which help 

us implement the did:self method, written in C programming language, on the devices. 

As part of our work we ported additional libraries and code to RIOT so that we can create 

and verify decentralized IDs based on the did:self method. 

Added code that uses these libraries to generate EdDSA keys, sign data with them and to 

base64url encode data. In addition, the appropriate functions were made to create and 

store the DID Document and DID Proof on the devices. These are required to first 



  

authenticate the DID Document, and later using it, any data we receive from the devices. 

In our code we authenticate the resources we receive from the devices in the Gateway we 

created. 

Therefore, Decentralized Identifiers (DIDs) successfully help ensure the authenticity of 

the data we receive from the devices. In chapter 6 we show examples of their use in 

RIOT, reporting the results we obtain. 

 

Keywords: Decentralized Identifier (DID), did:self Method, Internet of Things (IoT), 

Constrained Application Protocol (CoAP), RIOT OS, C Programming Language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table of Contents 

 

1. Decentralized Identifiers (DIDs) .............................................................................................. 1 

1.1. A Simple Example ............................................................................................................ 2 

1.2. Design Goals .................................................................................................................... 2 

1.3. Architecture Overview..................................................................................................... 3 

1.4. Objections ........................................................................................................................ 4 

2. The did:self method ................................................................................................................ 6 

2.1. Key Properties ................................................................................................................. 6 

2.2. Design .............................................................................................................................. 6 

2.3. Data transfer with DIDs ................................................................................................... 8 

3. Internet of Things Architecture ............................................................................................. 10 

3.1. IoT Gateway ................................................................................................................... 10 

3.2. The Constrained Application Protocol (CoAP) ............................................................... 11 

3.2.1. Specifications and Features ................................................................................... 11 

3.2.2. CoAP Group Communication ................................................................................. 11 

3.2.3. HTTP and CoAP ...................................................................................................... 12 

3.3. IoT Device Setup ............................................................................................................ 13 

3.4. IoT Device Communication ............................................................................................ 14 

3.5. Decentralized Identifiers on IoT .................................................................................... 15 

4. The RIOT Operating System ................................................................................................... 16 

4.1. Introduction ................................................................................................................... 16 

4.2. Description .................................................................................................................... 16 

4.3. Features ......................................................................................................................... 18 

4.4. Comparison of IoT Operating Systems .......................................................................... 18 

5. Our Implementation .............................................................................................................. 19 



  

5.1. Objective ........................................................................................................................ 19 

5.2. Client & Gateway ........................................................................................................... 19 

5.3. IoT Device ...................................................................................................................... 20 

5.3.1. Modules ................................................................................................................. 20 

5.3.2. Functions & Resources .......................................................................................... 21 

5.4. Limitations & Challenges ............................................................................................... 22 

6. Results ................................................................................................................................... 23 

7. Conclusion & Future Work .................................................................................................... 28 

8. References ............................................................................................................................. 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table of Figures 

 

Figure 1: An example of a DID [1] .................................................................................................... 2 

Figure 2: Overview of DID architecture and relationships of its basic components [1] .................. 3 

Figure 3: A DID document example ................................................................................................. 7 

Figure 4: An example of IoT an Gateway connecting IoT devices and sensors to cloud-based 

computing and data processing [5] ............................................................................................... 10 

Figure 5: Differences of CoAP and HTTP [9] .................................................................................. 12 

Figure 6: Architecture of CoAP Environment [10] ......................................................................... 13 

Figure 7: Option 1 & 2 illustration of Device Set Up Communication ........................................... 14 

Figure 8: RIOT in the IoT realm [13] .............................................................................................. 17 

Figure 9: Key Characteristics of CONTIKI, TINYOS, LINUX AND RIOT [11] ..................................... 18 

Figure 10: Modules included in our project .................................................................................. 20 

Figure 11: Resources our coap server is offering .......................................................................... 21 

Figure 12: Get DID Document (No Whitespaces) .......................................................................... 23 

Figure 13: DID Document (JSON)................................................................................................... 23 

Figure 14: DID Proof (JSON) ........................................................................................................... 24 

Figure 15: DID Document (after decoding) ................................................................................... 25 

Figure 16: DID Proof Header (after decoding) ............................................................................... 26 

Figure 17: DID Proof Payload (after decoding) .............................................................................. 26 

Figure 18: Data received, verifiable by DID Document ................................................................. 27 

 

 

 

https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094901
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094902
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094903
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094904
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094904
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094905
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094906
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094907
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094908
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094909
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094910
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094911
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094912
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094913
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094914
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094915
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094916
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094917
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094918


 

1 
 

 

1. Decentralized Identifiers (DIDs) 

Individuals and organizations rely on identifiers such as email addresses, usernames and 

phone numbers on social media [1]. However, most identifiers are issued and controlled 

by external authorities, which ensure that they are globally unique. These authorities 

decide who or what these identifiers refer to and when they can be revoked. These 

identifiers are, therefore, not under our control. 

DIDs are a new type of identifier that enables verifiable, decentralized digital 

identities. DIDs can refer to persons, data models, organizations, things, or abstract 

entities, as determined by a DID ‘controller’. In contrast to typical identifiers, DIDs are 

designed so that they may be decoupled from centralized registries and identity providers. 

Specifically, the design allows the controller of a DID to prove control over it without 

requiring permission from any third party. Of course, third parties might be used to help 

enable the discovery of information related to a DID. 

The DID specification does not enforce any technology or cryptographic method for 

the generation, resolution, persistence, or interpretation of DIDs. Indeed, different DID 

instantiations, called methods, can be defined, specifying how the identifiers are 

generated and resolved. For example, to enable interworking, implementers can create 

DIDs based on identifiers registered in federated or centralized identity management 

systems. Indeed, the majority of identifier systems can add support for DIDs. This creates 

an interoperability bridge between centralized, federated, and decentralized identifiers. 

  

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
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1.1. A Simple Example 

A Decentralized Identifier is a plain text string consisting of three parts [1]:  

1) the did URI scheme identifier, 

2) the identifier of the DID method, and 

3) the method-specific identifier of the DID. 

The figure above shows an example of a DID, with its three components. DID URLs 

refer to a DID subject and resolve to DID Documents, which contain information 

associated with the DID, such as cryptographic public keys, services, and interactions. 

1.2. Design Goals 

The most important design goals for Decentralized Identifiers are [1]: 

• Decentralization: Abolish the requirement for centralized authorities and avoid 

single points of failure in identifier management, including the registration of 

globally unique identifiers, public verification keys, services, and other 

information. 

• Control: Give entities, both human and non-human, the power to directly control 

their digital identifiers without the need to rely on external authorities. 

• Privacy: Enable entities to control the privacy of their information, including 

minimal, selective, and progressive disclosure of attributes or other data. 

• Security: For their required level of assurance, enable requesting parties to 

depend on DID documents for sufficient security. 

• Proof-based: Allow DID controllers to provide cryptographic proof when 

interacting with other entities. 

Figure 1: An example of a DID [1] 

https://www.w3.org/TR/did-core/#dfn-did-methods
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1.3. Architecture Overview 

We provide below a basic overview of the major components of the Decentralized 

Identifier architecture [1], which are schematically depicted in the following figure. 

 

❖ DIDs and DID URLs: A Decentralized Identifier is a URI  composed of three 

parts: the “did” scheme, a method identifier, and a unique, method-specific 

identifier in the format specified by the DID method. A DID URL extends the 

syntax of a basic DID to include other standard URI components such as path, 

query, and fragment, in order to locate a particular resource. 

❖ DID subjects: The subject of a DID is, by definition, the entity identified by 

the DID. The DID subject might also be the DID controller, but this is not 

necessary. Anything can be the subject of a DID: a person, group, organization, 

thing, or concept. 

❖ DID controllers: The controller of a DID is the entity (person, organization, or 

autonomous software) that has the ability to make changes to a DID document, as 

defined by a DID method. The subject of the DID may delegate control of the 

DID to another entity, hence the differentiation between subject and controller. 

❖ Verifiable data registries: In order to be resolvable to DID documents, DIDs are 

typically recorded on an underlying system or network of some kind. Regardless 

Figure 2: Overview of DID architecture and relationships of its basic components [1] 

https://www.w3.org/TR/did-core/#dfn-uri
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-did-urls
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-uri
https://www.w3.org/TR/did-core/#dfn-resources
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-subjects
https://www.w3.org/TR/did-core/#dfn-did-controllers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-controller
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
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of the specific technology used, any system that supports recording DIDs and 

returning data necessary to produce DID documents is called a verifiable data 

registry. Examples include distributed ledgers, decentralized file systems, and 

databases of any kind. 

❖ DID documents: DID documents contain information associated with a DID. 

They typically express verification methods, such as cryptographic public keys, 

and services relevant for interactions with the DID subject. 

❖ DID methods: DID methods are the mechanism by which a particular type 

of DID and its associated DID document are created, resolved, updated, and 

deactivated. The method specifies how exactly the identifier of a DID is formed. 

❖ DID resolvers and DID resolution: A DID resolver is a system component that 

takes a DID as input and produces a conforming DID document as output. This 

process is called DID resolution. 

❖ DID URL dereferencers and DID URL dereferencing: A DID URL 

dereferencer is a system component that takes a DID URL as input and produces 

a resource as output. This process is called DID URL dereferencing. 

1.4. Objections 

DIDs are still in the ‘proposed recommendation’ status. There are many objections to 

releasing the standard, as stated to W3C [2]. The main objections are: 

1) Most DIDs cannot be easily memorized by humans; they are internet friendly 

but not human friendly. Many people memorize their social security number. 

There is no standardized way to turn such ‘human-manageable’ IDs to DIDs. 

2) The documented design goal for decentralization is to ‘eliminate the 

requirement for centralized authorities or single points of failure in identifier 

management’. Distributed ledger technology, like a blockchain, is the best 

technology for this purpose, providing superior levels of distribution, 

programmability, and resilience. The standard itself does not enforce 

decentralization on the verifiable data registry. The objection is that this 

violates the stated design goals. 

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-verifiable-data-registry
https://www.w3.org/TR/did-core/#dfn-verifiable-data-registry
https://www.w3.org/TR/did-core/#dfn-distributed-ledger-technology
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-verification-method
https://www.w3.org/TR/did-core/#dfn-service
https://www.w3.org/TR/did-core/#dfn-did-subjects
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-resolvers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-resolution
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencers
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencers
https://www.w3.org/TR/did-core/#dfn-did-urls
https://www.w3.org/TR/did-core/#dfn-resources
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencing
https://www.w3.org/TR/did-core/
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3) DID methods can be specified differently and implemented on various systems, so 

they are not interoperable. Standardization of the methods was taken out of 

scope for version 1.0 of the recommendation. The objection is that the 

proliferation of non-interoperable method specifications could drastically limit the 

practical use and adoption of DIDs. 

4) Blockchains, if used, can be environmentally harmful (not all are), which is 

against stated W3C principles. The objection is that the standard is not actively 

dealing with this issue. 
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2. The did:self method 

In this section we describe the DID method specified in “IoT Group Membership 

Management Using Decentralized Identifiers and Verifiable Credentials” [3], called 

did:self. The did:self method was created specifically for the Internet of Things and is the 

method we employ in this thesis. 

2.1. Key Properties 

As already mentioned, DID specifications allow DID method implementors to decide 

upon the information to be included in the DID documents of their method, as well as 

how an appropriate registry operates. These are left to individual DID instantiations, also 

referred to as DID methods. 

The key features of the did:self method are: 

• Owners of did:self DIDs are responsible for disseminating their DID documents 

by themselves, e.g., by directly transmitting them to interested parties, or by 

storing them in publicly accessible locations, such as a Web server. The did:self 

method ensures that a DID document can be verified to be correct, even if 

retrieved over an unsecured channel. 

• did:self allows multiple valid DID documents for a specific DID to co-exist. We 

can take advantage of this feature to allow each IoT device to be configured with 

a different DID document for the same did:self DID. 

2.2. Design 

A did:self based DID is a base64url encoded Ed22519 public key prefixed with the string 

“did:self :”. We can see an example below. 

 

did:self:ZlFJd-4wuc7M1_6hLQRinQ7-0K5hRTr95h72ujVVzNg 
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A DID document in did:self may include any of the properties defined by the DID 

specifications, encoded using JSON. It includes the following properties, some of them 

optional, with the corresponding purpose: 

1. id: The DID which the document concerns 

2. verificationMethod: A list of public keys, with each key in the list identified by 

an id. There cannot be two keys with the same id for the same did:self DID, even 

if these keys are defined in different DID documents. We can take advantage of 

this property to achieve efficient authentication key rotation and detect breaches 

of the private key used by an authentication method. These two security 

properties are achieved by following a “use the most recent key” principle. 

3. authentication: A list of public keys (or key identifiers) that can be used to 

authenticate the DID holder. The private key that corresponds to an authentication 

key is used for signing CoAP messages; hence, the corresponding public key is 

used for authenticating message senders. 

4. assertion: A list of public keys (or key identifiers) that can be used to verify 

digital signatures of Verifiable Credentials (VCs). The private key that 

corresponds to an assertion key is used in our system for signing issued VCs. 

Hence, the corresponding public key is used for verifying these signatures. In the 

image below we can see the use of the P-256 Digital Signature Algorithm. For our 

implementation we utilize ed25519 instead. 

Figure 3: A DID document example 
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A proof is associated with each DID document; it is a “compact serialization” of a JSON 

Web Signature (JWS), used to validate the binding between a DID document and the 

corresponding did:self DID.  

The payload of the proof includes the following claims: 

1. The proof’s header includes the following claims: 

• alg: The algorithm used for generating the proof 

• jwk: The JWK that can be used for verifying the proof 

2. The proof’s payload includes the following claims: 

• iat: The date and time of the proof’s generation 

• exp: An expiration time 

• s256: The base64url encoded hash of the DID document, calculated 

using SHA-256 

The signature of the proof is generated using the private key that corresponds to the 

did:self DID and the Edwards-curve Digital Signature Algorithm (EdDSA). 

Given a did:self DID, a DID document, and the document proof, any entity can 

trivially verify the binding between the DID and the document by executing the 

following steps: 

1) Verify that the identifier is equal to the thumbprint of the jwk field of the header 

of proof. 

2) Verify that the digest of the DID document is equal to s256 in the proof. 

3) Verify that the proof has not expired. 

4) Verify the proof using the jwk field of the header. 

2.3. Data transfer with DIDs 

DIDs can help with data authentication in many ways. In our scheme we send our data 

along with our DID, DID document and proof, all of which are base64url encoded. The 

process is explained right below: 

1) We verify the DID Document with the steps stated on the previous sub-chapter. 
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2) Finally, we verify the data’s signature signed with the DID Document’s JSON 

Web Key, utilizing the public key located there.  

By making those checks we can verify the authenticity of data received. In a later chapter 

we showcase this process with an example. 
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3. Internet of Things Architecture 

3.1. IoT Gateway 

A gateway is a piece of networking hardware or software used in telecommunications 

networks that allows data to flow from one discrete network to another [4]. Gateways are 

distinct from routers or switches in that they communicate using more than one protocol 

to connect multiple networks and can operate at any of the seven layers of the Open 

Systems Interconnection model (OSI). 

An Internet of Things (IoT) gateway provides a bridge (protocol converter) between 

IoT devices in the field, the cloud, and user equipment such as smartphones. The IoT 

gateway provides a communication link between the field and the cloud and may provide 

offline services and real-time control of devices in the field. 

Interconnected devices communicate using lightweight protocols that do not require 

extensive CPU resources. To achieve sustainable interoperability on the IoT ecosystem, 

the dominant architectures for data exchange protocols are MQTT and CoAP. 

Programming languages such as C, Java, Python are the preferred choices for IoT 

application developers. 

Figure 4: An example of IoT an Gateway connecting IoT devices and 
sensors to cloud-based computing and data processing [5] 
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3.2. The Constrained Application Protocol (CoAP) 

3.2.1. Specifications and Features 

The Constrained Application Protocol (CoAP) is a specialized Internet application 

protocol for constrained devices, as defined in RFC 7252 [6][7]. It enables constrained 

devices called "nodes" to communicate with the wider Internet using messages similar to, 

but simpler than, those of HTTP. CoAP is designed for use between devices on the same 

constrained network (e.g., low-power, lossy networks), between devices and general 

nodes on the Internet, and between devices on different constrained networks, both joined 

by an internet. The protocol is designed for machine-to-machine (M2M) applications 

such as smart energy and building automation. 

CoAP is a service layer protocol, intended for use in resource-constrained internet 

devices, such as wireless sensor network nodes. CoAP is designed to easily translate to 

HTTP for simplified integration with the web, achieving interworking between the two 

protocols, while also meeting specialized requirements such as multicast support, 

exceptionally low overhead, and simplicity. Those requirements are important for 

Internet of things (IoT) and machine-to-machine (M2M) communication, which tend to 

be deeply embedded and have much less memory and power resources than traditional 

internet devices. Therefore, efficiency is especially important. 

CoAP utilizes UDP as the underlying network protocol, DTLS for security and uses 

the same methods as HTTP (Get/Put/Post/Delete). 

3.2.2. CoAP Group Communication 

CoAP group communication plays a significant role in the IoT. In many CoAP 

application domains it is essential to have the ability to address several CoAP resources 

as a group, instead of addressing each resource individually (e.g., to turn on all the 

CoAP-enabled lights in a room with a single CoAP request triggered by toggling the light 

switch).  



12 
 

To address this need, the Internet Engineering Task Force (IETF) has developed an 

optional extension for CoAP in the form of an experimental RFC, Group Communication 

for CoAP - RFC 7390 [7][8]. This extension relies on IP multicast to deliver the CoAP 

request to all group members. Multicasting has certain benefits such as reducing the 

number of packets needed to deliver the request to the members. On the other hand, 

multicast also has its limitations, such as poor reliability and cache-unfriendliness.  

An alternative method for CoAP group communication that uses unicasts instead of 

multicasts, relies on having an intermediary, such as a Gateway, where the groups are 

created. Clients send their group requests to the intermediary, which in turn sends 

individual unicast requests to the group members, collects the replies from them, and 

sends back an aggregated reply to the client. The intermediary thus acts as a concentrator. 

3.2.3. HTTP and CoAP 

CoAP is intentionally similar to HTTP but modified to work with constrained devices. 

The following figure compares CoAP and HTTP. 

Figure 5: Differences of CoAP and HTTP [9] 
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The classic architecture of a CoAP system consists of a CoAP client, a CoAP server, a 

REST CoAP proxy, and the REST Internet. Data are sent from CoAP clients, such as 

smartphones or any IoT device, to the CoAP server, and the same message is routed to 

REST CoAP proxy. The REST CoAP proxy interacts with devices outside the CoAP 

environment and uploads the data over the REST Internet, after translating the response 

from CoAP to HTTP. This is shown in the following figure. 

3.3. IoT Device Setup 

There are multiple ways to set up your IoT device and establish a relationship with the 

Gateway. The main options are: 

1. The IoT device broadcasts a message informing of its installation to the network, 

including its IP address to the Gateway. 

2. The Gateway can broadcast a message requesting the IoT devices to inform it of 

their availability and give it their IP addresses. 

3. Directly submit the IP addresses of the devices to the Gateway. This is done with 

a request from a neutral resource, like a controller or client via a message. The IPs 

of the devices are not received from them directly. 

Figure 6: Architecture of CoAP Environment [10]  
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After the Gateway receives information about the Devices, it adds them to an IP multicast 

address, or saves them to an array, so as to be able to later send CoAP requests to them to 

fulfill a request it receives from the Internet. 

3.4. IoT Device Communication 

Here we provide an example of Group Communication, fulfilling a request received from 

the Internet, based on CoAP Group Communication. 

After receiving a Request from the Internet, the gateway can carry it out with: 

• A Multicast Communication 

[1] Sends a Multicast Request to devices based on resource requested. 

[2] Receives many Responses from devices. 

[3] Gathers data into one Response, via aggregation or other method. 

[4] Sends this Response to the entity that requested it, such as a web 

client, cloud, application. 

Figure 7: Option 1 & 2 illustration of Device Set Up Communication 
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• Many Unicast Communications 

[1] Sends many Unicast Requests, one for each device. 

[2] Receives many Responses from devices. 

[3] Gathers data into one Response, via aggregation or other method. 

[4] Sends this Response to the entity that requested it, such as a web 

client, cloud, application. 

3.5. Decentralized Identifiers on IoT 

Decentralized Identifiers (DIDs), received from the devices, can be used to: 

✓ Find services the devices are offering. 

✓ Authenticate the responses we receive. 

✓ Secure the transfer of resources. 

Specifically, did:self DIDs are created for each device, possibly by their owner. The 

corresponding DID Document needs to be altered only if its JSON Web Keys expire or if 

the services offered from the devices change. These DID documents can be directly 

transmitted to interested parties or stored in publicly accessible locations and can be 

verified as “correct” even if they are retrieved over an unsecured channel, as mentioned 

in a previous chapter, making them ideal for the IoT architecture. 
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4. The RIOT Operating System 

4.1. Introduction 

In our project we used the RIOT operating system to implement the did:self method in an 

actual IoT architecture. As we will explain in this chapter, the RIOT OS is a valuable tool 

for the Internet of Things. Fundamentally, an Operating System (OS) is characterized by 

a few key design aspects, such as the kernel and the programming model [11]. 

The kernel can either be 

i. a monolithic program, 

ii. follow a layered approach, or 

iii. implement the microkernel architecture. 

The programming model defines whether 

i. all tasks are executed within the same context and have no segmentation of 

the memory address space, or 

ii. each process can run in its own context and memory space. 

The programming model is also linked to the available programming languages for 

application developers. 

4.2. Description 

RIOT is an open-source microkernel-based operating system, designed to match the 

requirements of Internet of Things (IoT) devices and other embedded devices [11][12]. 

It is a small operating system for networked, memory-constrained systems with a focus 

on low-power wireless Internet of Things (IoT) devices. 

RIOT provides a microkernel, multiple network stacks, and utilities which include 

cryptographic libraries, data structures (bloom filters, hash tables, priority queues), a shell 

and more. A microkernel OS is structured as a tiny kernel that provides the minimal 

services used by a team of optional cooperating processes, which in turn utilize modules 

or libraries to provide higher-level OS functionality. The microkernel itself lacks 
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filesystems and many other services normally expected of an OS. Those services are 

provided by optional processes. 

The real goal in designing a microkernel OS is not simply to “make it small.”. Since 

all the services, like device drivers, memory management, communication, file 

management and others, must be built in user space, the microkernel will provide a layer 

where a minimum set of services reside. So, the microkernel architecture provides an 

abstraction for the hardware layer, so that it can be adapted to different hardware 

architectures, without changing the services offered to applications. 

Compared to other IoT operating systems, such as Contiki OS and Tiny OS, which 

are event-based and provide application development tools supporting a subset of the C 

language (contiki) and nestc (tinyos), RIOT fares better when it comes to memory usage 

and support. 

Figure 8: RIOT in the IoT realm [13] 
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4.3. Features 

In this section we mention a few features of RIOT OS: 

▪ RIOT offers a “traditional” threading and scheduling scheme, POSIX-compliance, 

thus supporting multi-threading with standard API. 

▪ RIOT offers C and (currently, partial) C++ language support, enabling powerful 

libraries. 

▪ RIOT provides a TCP/IP network stack (IP oriented stacks and High-level 

network protocols: CoAP, MQTT-SN, etc.) 

▪ RIOT can be extended with external packages; thus, features are provided as 

modules. The modular microkernel structure of RIOT makes it robust against 

bugs in single components. 

▪ RIOT is based on design objectives including energy-efficiency, small memory 

footprint, modularity, and uniform API access, independent of the underlying 

hardware. 

4.4. Comparison of IoT Operating Systems 

As we can see from the image below and based on the features we mentioned at the 

previous sub-chapter, the RIOT OS surpasses other IoT Operating Systems, integrating 

successfully the IoT design objectives. Consequently, it is ideal for developing concepts 

on the Internet of Things, such as the did:self method. 

  

Figure 9: Key Characteristics of CONTIKI, TINYOS, LINUX AND RIOT [11] 
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5. Our Implementation 

5.1. Objective 

The goal of our thesis is to implement decentralized identifiers on IoT devices, 

specifically on RIOT OS, and examine if the DIDs created with did:self method can be 

used for security purposes. In this chapter, we explain our setup and implementation, 

while in the next chapter, we show that we can receive a DID from a device, as well as 

the DID Document and Proof, and we can authenticate the data sent from each device 

using the verified DID Document.  

Our code implementation is saved on a GitHub  repository located at 

https://github.com/KonstBet/did-self-riot-os, which includes the CoAP server 

running on IoT devices, written for the RIOT OS in C programming language, and 

the proxy Gateway, written in python, which are utilized as server and client, with 

the CoAP protocol, to fulfill requests from a client to multiple IoT devices. 

5.2. Client & Gateway 

We used the coap-client tool at the ubuntu terminal to create CoAP requests. Those 

requests are made to the Gateway or Devices according to our debugging needs. Coap-

client is also used to display our examples in the next chapter. 

The Gateway is being utilized as a proxy. RIOT does not support yet the use of 

multicast in CoAP successfully. We added ourselves the devices’ ipv6 addresses, by 

making a request to add a new device. Then, the gateway can make multiple unicast 

requests to each device, to fulfill a request sent to a group. The Gateway successfully 

verifies the DID Document and Data we receive from each device. Most important 

though, and the subject of this paper, is the implementation of DIDs with the did:self 

method on the Internet of Things, which is explained in the next sub-chapter. 

https://github.com/KonstBet/did-self-riot-os
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5.3. IoT Device 

As we mentioned in the previous chapter, we are using the RIOT OS to develop our 

application. The testing for the DID implementation of did:self method, which we wrote 

in C programming language, was done on the Windows Subsystem for Linux (WSL). 

5.3.1. Modules 

We included various modules needed for implementing the did:self method and running a 

CoAP server, as we can see in the image below, from our Makefile. 

 

Specifically, the first ones are used for running the CoAP server and the last four for the 

implementation of the DIDs with the did:self method. 

• random module: Generation of random SSH private and public keys, which 

are used for DID Document and Proof verification. 

• hashes module: Utilization of sha256 hash algorithm. 

• base64url module: Encode data in string form. Both sha256 and base64url are 

used for verification purposes and secure network transfer. 

Figure 10: Modules included in our project 
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• c25519 module: In cryptography, Curve25519 is an elliptic curve used in 

elliptic-curve cryptography. More accurately, we used Ed25519, which is a 

public-key signature system. 

5.3.2. Functions & Resources 

The code was written in the C programming language. We created structures used for 

saving our DID Document and DID Proof variables. Utilizing the modules we stated 

above, we created functions for: 

• The generation of random ed25519 public/private key pairs, used in DID 

Document and Proof.  

• The signing of data with those SSH keys. 

• The creation and encoding of variables included in the DID Document and Proof. 

• The creation of the DID itself, the DID Document and the DID Proof, making use 

of the functions above, based on the did:self method. 

 The resources we are offering via the CoAP server, running on each device, can be seen 

in the following screenshot.  

 

Those, based on the request method are: 

❖ GET: 

▪ /riot/board: get board name (basic function). 

▪ /riot/did: get all information about did, including document and proof. 

Figure 11: Resources our coap server is offering 
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▪ /riot/did/document: get DID document. 

▪ /riot/did/proof: get DID id proof. 

▪ /riot/data: get data signed with the key in the DID Document. 

 

❖ PUT: 

▪ /riot/did: update the DID. 

The creation of the DID happens when we request it for the first time. The same DID is 

sent every time, until we update it with the PUT request. 

5.4. Limitations & Challenges 

During the implementation we faced certain challenges and hit certain barriers. We state 

them below. 

1. We could not utilize multicast addresses. As explained above, this is a RIOT 

limitation, which we bypassed by translating requests to a group to multiple 

unicast requests. 

2. There are no preexisting libraries for JSON Web Token handling, so we 

implemented JWT in the C programming language, based on their formal 

documentation. 

3. The application requires at least 218KB RAM on our microcontrollers. 
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6. Results 

In this chapter we show the responses received from the device via the coap-client. 

Verifications of the DID Document and any data we receive from the devices is done 

successfully at our implementation of a proxy Gateway, which verifies that the 

did:self method was implemented successfully on RIOT OS. 

The real responses are without whitespace as we see below. 

But for the purpose of showcasing our scheme, we will format the results. The first two 

resources are utilized only for debugging purposes. On production they should be 

removed. 

➢ GET DID DOCUMENT (JSON format – for debugging) 

Successfully returns the DID Document of the device. We need the DID Proof to 

authenticate it. 

Figure 13: DID Document (JSON) 

Figure 12: Get DID Document (No Whitespaces) 
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➢ GET DID PROOF (JSON format – for debugging) 

 

Signature of the proof, signed to the base64url encoding of the header and payload 

separated by a dot, is needed for DID verification, as explained previously. 

 

➢ PUT DID (UPDATE) 

The update request returns the message “DID Updated” signaling the refresh of the DID. 

If we request the decentralized identifier afterwards, we can observe that it has been 

altered. 

 

➢ GET DID (Document and Proof – base64url encoded) 

This request is the most important in our implementation. It returns the DID data we need 

to verify the Decentralized Identifier Document according to Chapter 2.2. Below, we 

have the response, which contains the information encoded in base64url. The RIOT OS 

has not implemented the addition of header parameters; therefore, we added the proof to 

the payload. The DID Document and DID Proof are separated by a space. Specifically, 

we have painted the Document blue, the Proof green, and the dots red. 

 

 

Figure 14: DID Proof (JSON) 
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eyJpZCI6ImRpZDpzZWxmOnFfRThFUVdJVllobDVIVnhwWWplNVpEZkUtTk11bE1

3aXZzYmJsaWlnc0kiLCJhdHRlc3RhdGlvbiI6eyJpZCI6IiNrZXkxIiwidHlwZSI6Ikpzb25

XZWJLZXkyMDIwIiwicHVibGljS2V5SndrIjp7Imt0eSI6Ik9LUCIsImNydiI6IkVkMjU1

MTkiLCJ4IjoiMEY2ZTFlTXJ6cDJOa3V0ODA4SjZxNURYWVB2aTZKZmZNRTlseV

pQU1NLMCJ9fX0 

eyJhbGciOiJFZERTQSIsImp3ayI6eyJrdHkiOiJPS1AiLCJjcnYiOiJFZDI1NTE5IiwieCI6

IjlwMEFhRDgwZUEzbHhOYzlROUJWWkx2WjJObVdBWVZzX0s3Wk1VbVVwSXci

fX0.eyJpYXQiOjE2NzE3Mjk1MjYsImV4cCI6MTcwMzI2NTUyNiwiczI1NiI6ImI2X2l

QX0h6cGJTZ3BXbURCOVdWMjhtZ3ZIVXhtNzg4UVk2VHZ1blFNWEUifQ.cuDvpP

eSWjtF5JnL4nXSvfGOR8v6xb-E-

p235g8NZffxsY6eM_E6YJ8j5etz2lY4RQxvyZUaUVNNo7m049f6Dw 

As we can see, all the information is base64url encoded based on the did:self method and 

to decrease payload size. Below, we will analyze each part of the response, giving the 

result after base64url decode. Segments are divided by the dots. 

• DID Document (Blue segment) 

This segment is the base64url encoded string of the DID Document. If we decode 

it, we receive the JSON we see below. 

Figure 15: DID Document (after decoding) 
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• DID Proof (Green Segment) 

The DID Proof has the design of a JSON Web Token. 

The first segment includes the header. 

 

The second segment includes the payload. 

 

Finally, the third segment is the signature of the header and payload separated by 

a dot, by the header’s JWT. 

 

The signatures are created according to the formal documentation to the base64url 

encoded strings of each data and not to the JSON string. 

In the end we can use this response to verify the Decentralized Identifier’s Document. 

We successfully verify the DID Documents on our implementation of a proxy Gateway, 

written in Python, following the instructions provided in Chapter 2.2, verifying that our 

implementation on RIOT OS is successful. 

 

Figure 16: DID Proof Header (after decoding) 

Figure 17: DID Proof Payload (after decoding) 
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➢ GET DATA (Verified by the included DID Document) 

The response includes the same information as GET DID, plus the data separated by a 

space. The data is represented as shown below. 

 

eyJ0ZW1wZXJhdHVyZSI6MjUsInNjYWxlIjoiQyJ9.helJL0c1-

_l4tfXL2nZoFEW8NFGSZ-nRRyUwhqgrG4WA31IQRFrSVSTMn20T9-

f7Yk07mxyH85Q8Lsdp2Q9CCQ 

 

First, we verify the DID Document using the Proof as explained in Chapter 2.2. 

In our base64url encoded string of the data, we have two segments separated by a dot. 

The first segment is the data we wish to transfer. In this case it is the JSON shown next, 

after base64url decode. 

 

The second segment is the signature of the base64url encoded string of our data, signed 

with the JWT created for the DID Document and verified to the client by the public key 

given in the DID Document. 

Finally, we observe that we can authenticate our data successfully using Decentralized 

Identifiers, as proven from our implementation of the python Gateway, which 

authenticates the data successfully, following the instructions in Chapter 2.3. 

 

 

 

 

Figure 18: Data received, 
verifiable by DID Document 
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7. Conclusion & Future Work 

This paper shows that we can use Decentralized Identifiers for the Internet of Things. 

Particularly, we can utilize the did:self method successfully on the RIOT Operating 

System, to fulfill our security needs and authenticate any data we receive from our 

devices. Future work is required to complete the IoT environment of our paper. 

The successful use of multicasting for communicating with a group of devices is an 

important part of the Internet of Things. Group communication with the verification of 

decentralized identifiers is a good step on completing the architecture. 

Research on the use of a HTTP-CoAP Gateway which is able to use multicast for 

specific groups of devices and verify the content with the did:self method, specifically, 

can be conducted. 

The CoAP server module on RIOT OS requires a lot of memory on the device, for the 

IoT realm, and research on using a network stack that requires the minimum system 

memory is essential. 

Finally, we could study diverse ways of using the Decentralized Identifier for 

security. Other forms of authentication, using the DID Document created from the 

method did:self, are also possible, and worth further research. 
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