

DECENTRALIZED IDENTIFIERS FOR

THE INTERNET OF THINGS

Konstantinos Betchavas

Supervisors: Prof. George Xylomenos, Dr. Nikos Fotiou

Master’s Thesis

Athens University of Economics and Business

2022

Περίληψη

Αυτή η εργασία εξετάζει τη χρήση Αποκεντρωμένων Αναγνωριστικών (DIDs) στο

Διαδίκτυο των Πραγμάτων. Συγκεκριμένα εξετάζουμε την χρήση τους για

αυθεντικοποίηση δεδομένων που λαμβάνουμε από συσκευές. Στην καθημερινή μας ζωή

βασιζόμαστε σε αναγνωριστικά, όπως διευθύνσεις email και ονόματα χρήστη, τα οποία

εκδίδονται και ελέγχονται από εξωτερικές αρχές και δεν είναι υπό τον έλεγχό μας. Το

Αποκεντρωμένο Αναγνωριστικό (DID) είναι ένας νέος τύπος αναγνωριστικού που

επιτρέπει επαληθεύσιμες, αποκεντρωμένες ψηφιακές ταυτότητες, που μας δίνει πίσω τον

έλεγχο στην ταυτότητά μας, καταργώντας την ανάγκη για μια συγκεντρωτική εξωτερική

αρχή. Τα DIDs μπορούν επίσης να χρησιμοποιηθούν από συσκευές που αποτελούν μέρος

του Διαδίκτυου των Πραγμάτων. Τα DIDs χρησιμοποιούνται σε διάφορες εφαρμογές

ασφαλείας, με πιο σημαντική την αυθεντικοποίηση.

Στην εργασία μας χρησιμοποιήσαμε μία μέθοδο δημιουργίας DIDs, τη μέθοδο did:self,

που δημιουργήθηκε στο Οικονομικό Πανεπιστήμιο Αθηνών, ειδικά για το Διαδίκτυο των

Πραγμάτων. Οι ιδιοκτήτες των did:self DIDs είναι υπεύθυνοι για τη δημιουργία και τη

διάδοση των εγγράφων DID από μόνοι τους.

Υπάρχουν πολλά εργαλεία που μπορούν να χρησιμοποιηθούν σε περιβάλλον IoT. Το

πρωτόκολλο CoAP είναι σημαντικό γιατί είναι ιδανικό για χρήση σε περιβάλλοντα με

περιορισμένους πόρους. Υπάρχουν πολλοί τρόποι για να τοποθετήσετε, να ρυθμίσετε τις

συσκευές σας και να ενεργοποιήσετε την επικοινωνία μαζί τους. Τα περισσότερα από

αυτά περιλαμβάνουν μια πύλη IoT, η οποία βρίσκεται ανάμεσα στις συσκευές και το

Διαδίκτυο. Το RIOT είναι ένα λειτουργικό σύστημα, που δημιουργήθηκε ειδικά για την

υποστήριξη του Διαδικτύου των Πραγμάτων. Προσφέρει πολλά πλεονεκτήματα στους

προγραμματιστές και είναι αρκετά ελαφρύ ώστε να μπορεί να εκτελεστεί σε πολύ απλές

συσκευές. Το χρησιμοποιούμε για την υλοποίηση DIDs με τη μέθοδο did:self.

Η εργασία μας δείχνει ότι μπορούμε να χρησιμοποιήσουμε Αποκεντρωμένα

Αναγνωριστικά, τα οποία δημιουργούνται και κοινοποιούνται από τις συσκευές στο IoT.

Από το λειτουργικό σύστημα RIOT χρησιμοποιούνται διάφορες βιβλιοθήκες, που μας

βοηθούν να εφαρμόσουμε τη μέθοδο did:self, γραμμένη σε γλώσσα προγραμματισμού C,

στις συσκευές. Στα πλαίσια της εργασίας μας μεταφέρθηκαν πρόσθετες βιβλιοθήκες και

κώδικας στο RIOT ώστε να μπορούμε να δημιουργούμε και να επαληθεύουμε

αποκεντρωμένα αναγνωριστικά με βάση τη μέθοδο did:self.

Προστέθηκε κώδικας που χρησιμοποιεί τις βιβλιοθήκες αυτές για να δημιουργήσουμε

κλειδιά EdDSA, να υπογράψουμε δεδομένα με αυτά και να κωδικοποιήσουμε δεδομένα

ως base64url. Επιπλέον, δημιουργήθηκαν οι κατάλληλες συναρτήσεις για την δημιουργία

και αποθήκευση των DID Document και DID Proof στις συσκευές. Αυτά απαιτούνται για

να αυθεντικοποιήσουμε πρώτα το DID Document και αργότερα με την χρήση αυτού,

οποιαδήποτε δεδομένα λαμβάνουμε από τις συσκευές. Στον κώδικα μας επιβεβαιώνουμε

την αυθεντικοποίηση των πόρων που λαμβάνουμε από τις συσκευές στο Gateway που

δημιουργήσαμε.

Επομένως, τα Αποκεντρωμένα Αναγνωριστικά (DIDs) βοηθούν με επιτυχία στην

διασφάλιση της αυθεντικότητας των δεδομένων που λαμβάνουμε από τις συσκευές. Στο

6ο κεφάλαιο δείχνουμε παραδείγματα της χρήσης τους στο RIOT, αναφέροντας τα

αποτελέσματα που λαμβάνουμε.

Abstract

This thesis examines the use of Decentralized Identifiers (DIDs) in the Internet of Things.

In particular we are examining their use for authenticating the data that we receive from

devices. In our daily lives we rely on identifiers, such as email addresses and usernames,

which are issued and controlled by external authorities and are not under our control. A

Decentralized Identifier (DID) is a new type of identifier that enables verifiable,

decentralized digital identities, giving us back control over our identity by removing the

need for a centralized external authority. DIDs can also be used by devices that are part

of the Internet of Things. DIDs are used in various security applications, the most

important being authentication.

In our work we used a method of generating DIDs, the did:self method, created at the

Athens University of Economics and Business, specifically for the Internet of Things.

Owners of did:self DIDs are responsible for creating and propagating DID documents

themselves.

There are many tools that can be used in an IoT environment. The CoAP protocol is

important, because it is ideal for resource-constrained environments. There are many

ways to setup and configure your IoT devices and enable communication with them.

Most of them include an IoT gateway, placed between the devices and the Internet. RIOT

is an operating system, built specifically to support the Internet of Things. It offers many

advantages to developers and is lightweight enough to run on very simple devices. We

use it to implement DIDs with the did:self method.

Our work shows that we can use Decentralized Identifiers, which are generated and

shared by the devices in the IoT. Various libraries are used by the RIOT OS, which help

us implement the did:self method, written in C programming language, on the devices.

As part of our work we ported additional libraries and code to RIOT so that we can create

and verify decentralized IDs based on the did:self method.

Added code that uses these libraries to generate EdDSA keys, sign data with them and to

base64url encode data. In addition, the appropriate functions were made to create and

store the DID Document and DID Proof on the devices. These are required to first

authenticate the DID Document, and later using it, any data we receive from the devices.

In our code we authenticate the resources we receive from the devices in the Gateway we

created.

Therefore, Decentralized Identifiers (DIDs) successfully help ensure the authenticity of

the data we receive from the devices. In chapter 6 we show examples of their use in

RIOT, reporting the results we obtain.

Keywords: Decentralized Identifier (DID), did:self Method, Internet of Things (IoT),

Constrained Application Protocol (CoAP), RIOT OS, C Programming Language.

Table of Contents

1. Decentralized Identifiers (DIDs) .. 1

1.1. A Simple Example .. 2

1.2. Design Goals .. 2

1.3. Architecture Overview... 3

1.4. Objections .. 4

2. The did:self method .. 6

2.1. Key Properties ... 6

2.2. Design .. 6

2.3. Data transfer with DIDs ... 8

3. Internet of Things Architecture ... 10

3.1. IoT Gateway ... 10

3.2. The Constrained Application Protocol (CoAP) ... 11

3.2.1. Specifications and Features ... 11

3.2.2. CoAP Group Communication ... 11

3.2.3. HTTP and CoAP .. 12

3.3. IoT Device Setup .. 13

3.4. IoT Device Communication .. 14

3.5. Decentralized Identifiers on IoT .. 15

4. The RIOT Operating System ... 16

4.1. Introduction ... 16

4.2. Description .. 16

4.3. Features ... 18

4.4. Comparison of IoT Operating Systems .. 18

5. Our Implementation .. 19

5.1. Objective .. 19

5.2. Client & Gateway ... 19

5.3. IoT Device .. 20

5.3.1. Modules ... 20

5.3.2. Functions & Resources .. 21

5.4. Limitations & Challenges ... 22

6. Results ... 23

7. Conclusion & Future Work .. 28

8. References ... 29

Table of Figures

Figure 1: An example of a DID [1] .. 2

Figure 2: Overview of DID architecture and relationships of its basic components [1] 3

Figure 3: A DID document example ... 7

Figure 4: An example of IoT an Gateway connecting IoT devices and sensors to cloud-based

computing and data processing [5] ... 10

Figure 5: Differences of CoAP and HTTP [9] .. 12

Figure 6: Architecture of CoAP Environment [10] ... 13

Figure 7: Option 1 & 2 illustration of Device Set Up Communication ... 14

Figure 8: RIOT in the IoT realm [13] .. 17

Figure 9: Key Characteristics of CONTIKI, TINYOS, LINUX AND RIOT [11] 18

Figure 10: Modules included in our project .. 20

Figure 11: Resources our coap server is offering .. 21

Figure 12: Get DID Document (No Whitespaces) .. 23

Figure 13: DID Document (JSON)... 23

Figure 14: DID Proof (JSON) ... 24

Figure 15: DID Document (after decoding) ... 25

Figure 16: DID Proof Header (after decoding) ... 26

Figure 17: DID Proof Payload (after decoding) .. 26

Figure 18: Data received, verifiable by DID Document ... 27

https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094901
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094902
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094903
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094904
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094904
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094905
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094906
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094907
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094908
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094909
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094910
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094911
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094912
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094913
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094914
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094915
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094916
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094917
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094918

1

1. Decentralized Identifiers (DIDs)

Individuals and organizations rely on identifiers such as email addresses, usernames and

phone numbers on social media [1]. However, most identifiers are issued and controlled

by external authorities, which ensure that they are globally unique. These authorities

decide who or what these identifiers refer to and when they can be revoked. These

identifiers are, therefore, not under our control.

DIDs are a new type of identifier that enables verifiable, decentralized digital

identities. DIDs can refer to persons, data models, organizations, things, or abstract

entities, as determined by a DID ‘controller’. In contrast to typical identifiers, DIDs are

designed so that they may be decoupled from centralized registries and identity providers.

Specifically, the design allows the controller of a DID to prove control over it without

requiring permission from any third party. Of course, third parties might be used to help

enable the discovery of information related to a DID.

The DID specification does not enforce any technology or cryptographic method for

the generation, resolution, persistence, or interpretation of DIDs. Indeed, different DID

instantiations, called methods, can be defined, specifying how the identifiers are

generated and resolved. For example, to enable interworking, implementers can create

DIDs based on identifiers registered in federated or centralized identity management

systems. Indeed, the majority of identifier systems can add support for DIDs. This creates

an interoperability bridge between centralized, federated, and decentralized identifiers.

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers

2

1.1. A Simple Example

A Decentralized Identifier is a plain text string consisting of three parts [1]:

1) the did URI scheme identifier,

2) the identifier of the DID method, and

3) the method-specific identifier of the DID.

The figure above shows an example of a DID, with its three components. DID URLs

refer to a DID subject and resolve to DID Documents, which contain information

associated with the DID, such as cryptographic public keys, services, and interactions.

1.2. Design Goals

The most important design goals for Decentralized Identifiers are [1]:

• Decentralization: Abolish the requirement for centralized authorities and avoid

single points of failure in identifier management, including the registration of

globally unique identifiers, public verification keys, services, and other

information.

• Control: Give entities, both human and non-human, the power to directly control

their digital identifiers without the need to rely on external authorities.

• Privacy: Enable entities to control the privacy of their information, including

minimal, selective, and progressive disclosure of attributes or other data.

• Security: For their required level of assurance, enable requesting parties to

depend on DID documents for sufficient security.

• Proof-based: Allow DID controllers to provide cryptographic proof when

interacting with other entities.

Figure 1: An example of a DID [1]

https://www.w3.org/TR/did-core/#dfn-did-methods

3

1.3. Architecture Overview

We provide below a basic overview of the major components of the Decentralized

Identifier architecture [1], which are schematically depicted in the following figure.

❖ DIDs and DID URLs: A Decentralized Identifier is a URI composed of three

parts: the “did” scheme, a method identifier, and a unique, method-specific

identifier in the format specified by the DID method. A DID URL extends the

syntax of a basic DID to include other standard URI components such as path,

query, and fragment, in order to locate a particular resource.

❖ DID subjects: The subject of a DID is, by definition, the entity identified by

the DID. The DID subject might also be the DID controller, but this is not

necessary. Anything can be the subject of a DID: a person, group, organization,

thing, or concept.

❖ DID controllers: The controller of a DID is the entity (person, organization, or

autonomous software) that has the ability to make changes to a DID document, as

defined by a DID method. The subject of the DID may delegate control of the

DID to another entity, hence the differentiation between subject and controller.

❖ Verifiable data registries: In order to be resolvable to DID documents, DIDs are

typically recorded on an underlying system or network of some kind. Regardless

Figure 2: Overview of DID architecture and relationships of its basic components [1]

https://www.w3.org/TR/did-core/#dfn-uri
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-did-urls
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-uri
https://www.w3.org/TR/did-core/#dfn-resources
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-subjects
https://www.w3.org/TR/did-core/#dfn-did-controllers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-controller
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers

4

of the specific technology used, any system that supports recording DIDs and

returning data necessary to produce DID documents is called a verifiable data

registry. Examples include distributed ledgers, decentralized file systems, and

databases of any kind.

❖ DID documents: DID documents contain information associated with a DID.

They typically express verification methods, such as cryptographic public keys,

and services relevant for interactions with the DID subject.

❖ DID methods: DID methods are the mechanism by which a particular type

of DID and its associated DID document are created, resolved, updated, and

deactivated. The method specifies how exactly the identifier of a DID is formed.

❖ DID resolvers and DID resolution: A DID resolver is a system component that

takes a DID as input and produces a conforming DID document as output. This

process is called DID resolution.

❖ DID URL dereferencers and DID URL dereferencing: A DID URL

dereferencer is a system component that takes a DID URL as input and produces

a resource as output. This process is called DID URL dereferencing.

1.4. Objections

DIDs are still in the ‘proposed recommendation’ status. There are many objections to

releasing the standard, as stated to W3C [2]. The main objections are:

1) Most DIDs cannot be easily memorized by humans; they are internet friendly

but not human friendly. Many people memorize their social security number.

There is no standardized way to turn such ‘human-manageable’ IDs to DIDs.

2) The documented design goal for decentralization is to ‘eliminate the

requirement for centralized authorities or single points of failure in identifier

management’. Distributed ledger technology, like a blockchain, is the best

technology for this purpose, providing superior levels of distribution,

programmability, and resilience. The standard itself does not enforce

decentralization on the verifiable data registry. The objection is that this

violates the stated design goals.

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-verifiable-data-registry
https://www.w3.org/TR/did-core/#dfn-verifiable-data-registry
https://www.w3.org/TR/did-core/#dfn-distributed-ledger-technology
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-verification-method
https://www.w3.org/TR/did-core/#dfn-service
https://www.w3.org/TR/did-core/#dfn-did-subjects
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-resolvers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-resolution
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencers
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencers
https://www.w3.org/TR/did-core/#dfn-did-urls
https://www.w3.org/TR/did-core/#dfn-resources
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencing
https://www.w3.org/TR/did-core/

5

3) DID methods can be specified differently and implemented on various systems, so

they are not interoperable. Standardization of the methods was taken out of

scope for version 1.0 of the recommendation. The objection is that the

proliferation of non-interoperable method specifications could drastically limit the

practical use and adoption of DIDs.

4) Blockchains, if used, can be environmentally harmful (not all are), which is

against stated W3C principles. The objection is that the standard is not actively

dealing with this issue.

6

2. The did:self method

In this section we describe the DID method specified in “IoT Group Membership

Management Using Decentralized Identifiers and Verifiable Credentials” [3], called

did:self. The did:self method was created specifically for the Internet of Things and is the

method we employ in this thesis.

2.1. Key Properties

As already mentioned, DID specifications allow DID method implementors to decide

upon the information to be included in the DID documents of their method, as well as

how an appropriate registry operates. These are left to individual DID instantiations, also

referred to as DID methods.

The key features of the did:self method are:

• Owners of did:self DIDs are responsible for disseminating their DID documents

by themselves, e.g., by directly transmitting them to interested parties, or by

storing them in publicly accessible locations, such as a Web server. The did:self

method ensures that a DID document can be verified to be correct, even if

retrieved over an unsecured channel.

• did:self allows multiple valid DID documents for a specific DID to co-exist. We

can take advantage of this feature to allow each IoT device to be configured with

a different DID document for the same did:self DID.

2.2. Design

A did:self based DID is a base64url encoded Ed22519 public key prefixed with the string

“did:self :”. We can see an example below.

did:self:ZlFJd-4wuc7M1_6hLQRinQ7-0K5hRTr95h72ujVVzNg

7

A DID document in did:self may include any of the properties defined by the DID

specifications, encoded using JSON. It includes the following properties, some of them

optional, with the corresponding purpose:

1. id: The DID which the document concerns

2. verificationMethod: A list of public keys, with each key in the list identified by

an id. There cannot be two keys with the same id for the same did:self DID, even

if these keys are defined in different DID documents. We can take advantage of

this property to achieve efficient authentication key rotation and detect breaches

of the private key used by an authentication method. These two security

properties are achieved by following a “use the most recent key” principle.

3. authentication: A list of public keys (or key identifiers) that can be used to

authenticate the DID holder. The private key that corresponds to an authentication

key is used for signing CoAP messages; hence, the corresponding public key is

used for authenticating message senders.

4. assertion: A list of public keys (or key identifiers) that can be used to verify

digital signatures of Verifiable Credentials (VCs). The private key that

corresponds to an assertion key is used in our system for signing issued VCs.

Hence, the corresponding public key is used for verifying these signatures. In the

image below we can see the use of the P-256 Digital Signature Algorithm. For our

implementation we utilize ed25519 instead.

Figure 3: A DID document example

8

A proof is associated with each DID document; it is a “compact serialization” of a JSON

Web Signature (JWS), used to validate the binding between a DID document and the

corresponding did:self DID.

The payload of the proof includes the following claims:

1. The proof’s header includes the following claims:

• alg: The algorithm used for generating the proof

• jwk: The JWK that can be used for verifying the proof

2. The proof’s payload includes the following claims:

• iat: The date and time of the proof’s generation

• exp: An expiration time

• s256: The base64url encoded hash of the DID document, calculated

using SHA-256

The signature of the proof is generated using the private key that corresponds to the

did:self DID and the Edwards-curve Digital Signature Algorithm (EdDSA).

Given a did:self DID, a DID document, and the document proof, any entity can

trivially verify the binding between the DID and the document by executing the

following steps:

1) Verify that the identifier is equal to the thumbprint of the jwk field of the header

of proof.

2) Verify that the digest of the DID document is equal to s256 in the proof.

3) Verify that the proof has not expired.

4) Verify the proof using the jwk field of the header.

2.3. Data transfer with DIDs

DIDs can help with data authentication in many ways. In our scheme we send our data

along with our DID, DID document and proof, all of which are base64url encoded. The

process is explained right below:

1) We verify the DID Document with the steps stated on the previous sub-chapter.

9

2) Finally, we verify the data’s signature signed with the DID Document’s JSON

Web Key, utilizing the public key located there.

By making those checks we can verify the authenticity of data received. In a later chapter

we showcase this process with an example.

10

3. Internet of Things Architecture

3.1. IoT Gateway

A gateway is a piece of networking hardware or software used in telecommunications

networks that allows data to flow from one discrete network to another [4]. Gateways are

distinct from routers or switches in that they communicate using more than one protocol

to connect multiple networks and can operate at any of the seven layers of the Open

Systems Interconnection model (OSI).

An Internet of Things (IoT) gateway provides a bridge (protocol converter) between

IoT devices in the field, the cloud, and user equipment such as smartphones. The IoT

gateway provides a communication link between the field and the cloud and may provide

offline services and real-time control of devices in the field.

Interconnected devices communicate using lightweight protocols that do not require

extensive CPU resources. To achieve sustainable interoperability on the IoT ecosystem,

the dominant architectures for data exchange protocols are MQTT and CoAP.

Programming languages such as C, Java, Python are the preferred choices for IoT

application developers.

Figure 4: An example of IoT an Gateway connecting IoT devices and
sensors to cloud-based computing and data processing [5]

11

3.2. The Constrained Application Protocol (CoAP)

3.2.1. Specifications and Features

The Constrained Application Protocol (CoAP) is a specialized Internet application

protocol for constrained devices, as defined in RFC 7252 [6][7]. It enables constrained

devices called "nodes" to communicate with the wider Internet using messages similar to,

but simpler than, those of HTTP. CoAP is designed for use between devices on the same

constrained network (e.g., low-power, lossy networks), between devices and general

nodes on the Internet, and between devices on different constrained networks, both joined

by an internet. The protocol is designed for machine-to-machine (M2M) applications

such as smart energy and building automation.

CoAP is a service layer protocol, intended for use in resource-constrained internet

devices, such as wireless sensor network nodes. CoAP is designed to easily translate to

HTTP for simplified integration with the web, achieving interworking between the two

protocols, while also meeting specialized requirements such as multicast support,

exceptionally low overhead, and simplicity. Those requirements are important for

Internet of things (IoT) and machine-to-machine (M2M) communication, which tend to

be deeply embedded and have much less memory and power resources than traditional

internet devices. Therefore, efficiency is especially important.

CoAP utilizes UDP as the underlying network protocol, DTLS for security and uses

the same methods as HTTP (Get/Put/Post/Delete).

3.2.2. CoAP Group Communication

CoAP group communication plays a significant role in the IoT. In many CoAP

application domains it is essential to have the ability to address several CoAP resources

as a group, instead of addressing each resource individually (e.g., to turn on all the

CoAP-enabled lights in a room with a single CoAP request triggered by toggling the light

switch).

12

To address this need, the Internet Engineering Task Force (IETF) has developed an

optional extension for CoAP in the form of an experimental RFC, Group Communication

for CoAP - RFC 7390 [7][8]. This extension relies on IP multicast to deliver the CoAP

request to all group members. Multicasting has certain benefits such as reducing the

number of packets needed to deliver the request to the members. On the other hand,

multicast also has its limitations, such as poor reliability and cache-unfriendliness.

An alternative method for CoAP group communication that uses unicasts instead of

multicasts, relies on having an intermediary, such as a Gateway, where the groups are

created. Clients send their group requests to the intermediary, which in turn sends

individual unicast requests to the group members, collects the replies from them, and

sends back an aggregated reply to the client. The intermediary thus acts as a concentrator.

3.2.3. HTTP and CoAP

CoAP is intentionally similar to HTTP but modified to work with constrained devices.

The following figure compares CoAP and HTTP.

Figure 5: Differences of CoAP and HTTP [9]

13

The classic architecture of a CoAP system consists of a CoAP client, a CoAP server, a

REST CoAP proxy, and the REST Internet. Data are sent from CoAP clients, such as

smartphones or any IoT device, to the CoAP server, and the same message is routed to

REST CoAP proxy. The REST CoAP proxy interacts with devices outside the CoAP

environment and uploads the data over the REST Internet, after translating the response

from CoAP to HTTP. This is shown in the following figure.

3.3. IoT Device Setup

There are multiple ways to set up your IoT device and establish a relationship with the

Gateway. The main options are:

1. The IoT device broadcasts a message informing of its installation to the network,

including its IP address to the Gateway.

2. The Gateway can broadcast a message requesting the IoT devices to inform it of

their availability and give it their IP addresses.

3. Directly submit the IP addresses of the devices to the Gateway. This is done with

a request from a neutral resource, like a controller or client via a message. The IPs

of the devices are not received from them directly.

Figure 6: Architecture of CoAP Environment [10]

14

After the Gateway receives information about the Devices, it adds them to an IP multicast

address, or saves them to an array, so as to be able to later send CoAP requests to them to

fulfill a request it receives from the Internet.

3.4. IoT Device Communication

Here we provide an example of Group Communication, fulfilling a request received from

the Internet, based on CoAP Group Communication.

After receiving a Request from the Internet, the gateway can carry it out with:

• A Multicast Communication

[1] Sends a Multicast Request to devices based on resource requested.

[2] Receives many Responses from devices.

[3] Gathers data into one Response, via aggregation or other method.

[4] Sends this Response to the entity that requested it, such as a web

client, cloud, application.

Figure 7: Option 1 & 2 illustration of Device Set Up Communication

15

• Many Unicast Communications

[1] Sends many Unicast Requests, one for each device.

[2] Receives many Responses from devices.

[3] Gathers data into one Response, via aggregation or other method.

[4] Sends this Response to the entity that requested it, such as a web

client, cloud, application.

3.5. Decentralized Identifiers on IoT

Decentralized Identifiers (DIDs), received from the devices, can be used to:

✓ Find services the devices are offering.

✓ Authenticate the responses we receive.

✓ Secure the transfer of resources.

Specifically, did:self DIDs are created for each device, possibly by their owner. The

corresponding DID Document needs to be altered only if its JSON Web Keys expire or if

the services offered from the devices change. These DID documents can be directly

transmitted to interested parties or stored in publicly accessible locations and can be

verified as “correct” even if they are retrieved over an unsecured channel, as mentioned

in a previous chapter, making them ideal for the IoT architecture.

16

4. The RIOT Operating System

4.1. Introduction

In our project we used the RIOT operating system to implement the did:self method in an

actual IoT architecture. As we will explain in this chapter, the RIOT OS is a valuable tool

for the Internet of Things. Fundamentally, an Operating System (OS) is characterized by

a few key design aspects, such as the kernel and the programming model [11].

The kernel can either be

i. a monolithic program,

ii. follow a layered approach, or

iii. implement the microkernel architecture.

The programming model defines whether

i. all tasks are executed within the same context and have no segmentation of

the memory address space, or

ii. each process can run in its own context and memory space.

The programming model is also linked to the available programming languages for

application developers.

4.2. Description

RIOT is an open-source microkernel-based operating system, designed to match the

requirements of Internet of Things (IoT) devices and other embedded devices [11][12].

It is a small operating system for networked, memory-constrained systems with a focus

on low-power wireless Internet of Things (IoT) devices.

RIOT provides a microkernel, multiple network stacks, and utilities which include

cryptographic libraries, data structures (bloom filters, hash tables, priority queues), a shell

and more. A microkernel OS is structured as a tiny kernel that provides the minimal

services used by a team of optional cooperating processes, which in turn utilize modules

or libraries to provide higher-level OS functionality. The microkernel itself lacks

17

filesystems and many other services normally expected of an OS. Those services are

provided by optional processes.

The real goal in designing a microkernel OS is not simply to “make it small.”. Since

all the services, like device drivers, memory management, communication, file

management and others, must be built in user space, the microkernel will provide a layer

where a minimum set of services reside. So, the microkernel architecture provides an

abstraction for the hardware layer, so that it can be adapted to different hardware

architectures, without changing the services offered to applications.

Compared to other IoT operating systems, such as Contiki OS and Tiny OS, which

are event-based and provide application development tools supporting a subset of the C

language (contiki) and nestc (tinyos), RIOT fares better when it comes to memory usage

and support.

Figure 8: RIOT in the IoT realm [13]

18

4.3. Features

In this section we mention a few features of RIOT OS:

▪ RIOT offers a “traditional” threading and scheduling scheme, POSIX-compliance,

thus supporting multi-threading with standard API.

▪ RIOT offers C and (currently, partial) C++ language support, enabling powerful

libraries.

▪ RIOT provides a TCP/IP network stack (IP oriented stacks and High-level

network protocols: CoAP, MQTT-SN, etc.)

▪ RIOT can be extended with external packages; thus, features are provided as

modules. The modular microkernel structure of RIOT makes it robust against

bugs in single components.

▪ RIOT is based on design objectives including energy-efficiency, small memory

footprint, modularity, and uniform API access, independent of the underlying

hardware.

4.4. Comparison of IoT Operating Systems

As we can see from the image below and based on the features we mentioned at the

previous sub-chapter, the RIOT OS surpasses other IoT Operating Systems, integrating

successfully the IoT design objectives. Consequently, it is ideal for developing concepts

on the Internet of Things, such as the did:self method.

Figure 9: Key Characteristics of CONTIKI, TINYOS, LINUX AND RIOT [11]

19

5. Our Implementation

5.1. Objective

The goal of our thesis is to implement decentralized identifiers on IoT devices,

specifically on RIOT OS, and examine if the DIDs created with did:self method can be

used for security purposes. In this chapter, we explain our setup and implementation,

while in the next chapter, we show that we can receive a DID from a device, as well as

the DID Document and Proof, and we can authenticate the data sent from each device

using the verified DID Document.

Our code implementation is saved on a GitHub repository located at

https://github.com/KonstBet/did-self-riot-os, which includes the CoAP server

running on IoT devices, written for the RIOT OS in C programming language, and

the proxy Gateway, written in python, which are utilized as server and client, with

the CoAP protocol, to fulfill requests from a client to multiple IoT devices.

5.2. Client & Gateway

We used the coap-client tool at the ubuntu terminal to create CoAP requests. Those

requests are made to the Gateway or Devices according to our debugging needs. Coap-

client is also used to display our examples in the next chapter.

The Gateway is being utilized as a proxy. RIOT does not support yet the use of

multicast in CoAP successfully. We added ourselves the devices’ ipv6 addresses, by

making a request to add a new device. Then, the gateway can make multiple unicast

requests to each device, to fulfill a request sent to a group. The Gateway successfully

verifies the DID Document and Data we receive from each device. Most important

though, and the subject of this paper, is the implementation of DIDs with the did:self

method on the Internet of Things, which is explained in the next sub-chapter.

https://github.com/KonstBet/did-self-riot-os

20

5.3. IoT Device

As we mentioned in the previous chapter, we are using the RIOT OS to develop our

application. The testing for the DID implementation of did:self method, which we wrote

in C programming language, was done on the Windows Subsystem for Linux (WSL).

5.3.1. Modules

We included various modules needed for implementing the did:self method and running a

CoAP server, as we can see in the image below, from our Makefile.

Specifically, the first ones are used for running the CoAP server and the last four for the

implementation of the DIDs with the did:self method.

• random module: Generation of random SSH private and public keys, which

are used for DID Document and Proof verification.

• hashes module: Utilization of sha256 hash algorithm.

• base64url module: Encode data in string form. Both sha256 and base64url are

used for verification purposes and secure network transfer.

Figure 10: Modules included in our project

21

• c25519 module: In cryptography, Curve25519 is an elliptic curve used in

elliptic-curve cryptography. More accurately, we used Ed25519, which is a

public-key signature system.

5.3.2. Functions & Resources

The code was written in the C programming language. We created structures used for

saving our DID Document and DID Proof variables. Utilizing the modules we stated

above, we created functions for:

• The generation of random ed25519 public/private key pairs, used in DID

Document and Proof.

• The signing of data with those SSH keys.

• The creation and encoding of variables included in the DID Document and Proof.

• The creation of the DID itself, the DID Document and the DID Proof, making use

of the functions above, based on the did:self method.

 The resources we are offering via the CoAP server, running on each device, can be seen

in the following screenshot.

Those, based on the request method are:

❖ GET:

▪ /riot/board: get board name (basic function).

▪ /riot/did: get all information about did, including document and proof.

Figure 11: Resources our coap server is offering

22

▪ /riot/did/document: get DID document.

▪ /riot/did/proof: get DID id proof.

▪ /riot/data: get data signed with the key in the DID Document.

❖ PUT:

▪ /riot/did: update the DID.

The creation of the DID happens when we request it for the first time. The same DID is

sent every time, until we update it with the PUT request.

5.4. Limitations & Challenges

During the implementation we faced certain challenges and hit certain barriers. We state

them below.

1. We could not utilize multicast addresses. As explained above, this is a RIOT

limitation, which we bypassed by translating requests to a group to multiple

unicast requests.

2. There are no preexisting libraries for JSON Web Token handling, so we

implemented JWT in the C programming language, based on their formal

documentation.

3. The application requires at least 218KB RAM on our microcontrollers.

23

6. Results

In this chapter we show the responses received from the device via the coap-client.

Verifications of the DID Document and any data we receive from the devices is done

successfully at our implementation of a proxy Gateway, which verifies that the

did:self method was implemented successfully on RIOT OS.

The real responses are without whitespace as we see below.

But for the purpose of showcasing our scheme, we will format the results. The first two

resources are utilized only for debugging purposes. On production they should be

removed.

➢ GET DID DOCUMENT (JSON format – for debugging)

Successfully returns the DID Document of the device. We need the DID Proof to

authenticate it.

Figure 13: DID Document (JSON)

Figure 12: Get DID Document (No Whitespaces)

24

➢ GET DID PROOF (JSON format – for debugging)

Signature of the proof, signed to the base64url encoding of the header and payload

separated by a dot, is needed for DID verification, as explained previously.

➢ PUT DID (UPDATE)

The update request returns the message “DID Updated” signaling the refresh of the DID.

If we request the decentralized identifier afterwards, we can observe that it has been

altered.

➢ GET DID (Document and Proof – base64url encoded)

This request is the most important in our implementation. It returns the DID data we need

to verify the Decentralized Identifier Document according to Chapter 2.2. Below, we

have the response, which contains the information encoded in base64url. The RIOT OS

has not implemented the addition of header parameters; therefore, we added the proof to

the payload. The DID Document and DID Proof are separated by a space. Specifically,

we have painted the Document blue, the Proof green, and the dots red.

Figure 14: DID Proof (JSON)

25

eyJpZCI6ImRpZDpzZWxmOnFfRThFUVdJVllobDVIVnhwWWplNVpEZkUtTk11bE1

3aXZzYmJsaWlnc0kiLCJhdHRlc3RhdGlvbiI6eyJpZCI6IiNrZXkxIiwidHlwZSI6Ikpzb25

XZWJLZXkyMDIwIiwicHVibGljS2V5SndrIjp7Imt0eSI6Ik9LUCIsImNydiI6IkVkMjU1

MTkiLCJ4IjoiMEY2ZTFlTXJ6cDJOa3V0ODA4SjZxNURYWVB2aTZKZmZNRTlseV

pQU1NLMCJ9fX0

eyJhbGciOiJFZERTQSIsImp3ayI6eyJrdHkiOiJPS1AiLCJjcnYiOiJFZDI1NTE5IiwieCI6

IjlwMEFhRDgwZUEzbHhOYzlROUJWWkx2WjJObVdBWVZzX0s3Wk1VbVVwSXci

fX0.eyJpYXQiOjE2NzE3Mjk1MjYsImV4cCI6MTcwMzI2NTUyNiwiczI1NiI6ImI2X2l

QX0h6cGJTZ3BXbURCOVdWMjhtZ3ZIVXhtNzg4UVk2VHZ1blFNWEUifQ.cuDvpP

eSWjtF5JnL4nXSvfGOR8v6xb-E-

p235g8NZffxsY6eM_E6YJ8j5etz2lY4RQxvyZUaUVNNo7m049f6Dw

As we can see, all the information is base64url encoded based on the did:self method and

to decrease payload size. Below, we will analyze each part of the response, giving the

result after base64url decode. Segments are divided by the dots.

• DID Document (Blue segment)

This segment is the base64url encoded string of the DID Document. If we decode

it, we receive the JSON we see below.

Figure 15: DID Document (after decoding)

26

• DID Proof (Green Segment)

The DID Proof has the design of a JSON Web Token.

The first segment includes the header.

The second segment includes the payload.

Finally, the third segment is the signature of the header and payload separated by

a dot, by the header’s JWT.

The signatures are created according to the formal documentation to the base64url

encoded strings of each data and not to the JSON string.

In the end we can use this response to verify the Decentralized Identifier’s Document.

We successfully verify the DID Documents on our implementation of a proxy Gateway,

written in Python, following the instructions provided in Chapter 2.2, verifying that our

implementation on RIOT OS is successful.

Figure 16: DID Proof Header (after decoding)

Figure 17: DID Proof Payload (after decoding)

27

➢ GET DATA (Verified by the included DID Document)

The response includes the same information as GET DID, plus the data separated by a

space. The data is represented as shown below.

eyJ0ZW1wZXJhdHVyZSI6MjUsInNjYWxlIjoiQyJ9.helJL0c1-

_l4tfXL2nZoFEW8NFGSZ-nRRyUwhqgrG4WA31IQRFrSVSTMn20T9-

f7Yk07mxyH85Q8Lsdp2Q9CCQ

First, we verify the DID Document using the Proof as explained in Chapter 2.2.

In our base64url encoded string of the data, we have two segments separated by a dot.

The first segment is the data we wish to transfer. In this case it is the JSON shown next,

after base64url decode.

The second segment is the signature of the base64url encoded string of our data, signed

with the JWT created for the DID Document and verified to the client by the public key

given in the DID Document.

Finally, we observe that we can authenticate our data successfully using Decentralized

Identifiers, as proven from our implementation of the python Gateway, which

authenticates the data successfully, following the instructions in Chapter 2.3.

Figure 18: Data received,
verifiable by DID Document

28

7. Conclusion & Future Work

This paper shows that we can use Decentralized Identifiers for the Internet of Things.

Particularly, we can utilize the did:self method successfully on the RIOT Operating

System, to fulfill our security needs and authenticate any data we receive from our

devices. Future work is required to complete the IoT environment of our paper.

The successful use of multicasting for communicating with a group of devices is an

important part of the Internet of Things. Group communication with the verification of

decentralized identifiers is a good step on completing the architecture.

Research on the use of a HTTP-CoAP Gateway which is able to use multicast for

specific groups of devices and verify the content with the did:self method, specifically,

can be conducted.

The CoAP server module on RIOT OS requires a lot of memory on the device, for the

IoT realm, and research on using a network stack that requires the minimum system

memory is essential.

Finally, we could study diverse ways of using the Decentralized Identifier for

security. Other forms of authentication, using the DID Document created from the

method did:self, are also possible, and worth further research.

29

8. References

[1] W3C, “Decentralized Identifiers (DIDs) v1.0”. (2022), Available at:

https://www.w3.org/TR/did-core/.

[2] W3C, “DID Formal Objection FAQ”. (2021), Available at:

https://www.w3.org/2019/did-wg/faqs/2021-formal-objections/

[3] Nikos Fotiou, Vasilios A. Siris, George Xylomenos and George C. Polyzos, “IoT

Group Membership Management Using Decentralized Identifiers and Verifiable

Credentials”, Future Internet (2022), Available at: https://www.mdpi.com/1999-

5903/14/6/173

[4] Wikipedia, “Gateway (telecommunications)”. (2022), Available at:

https://en.wikipedia.org/wiki/Gateway_(telecommunications)

[5] SimpleSoft, “SimpleIoTSimulator”, (2022), Available at:

https://www.simplesoft.com/SimpleIoTSimulator.html

[6] IETF, RFC, “The Constrained Application Protocol (CoAP)”. (2014), Available at:

https://www.rfc-editor.org/rfc/rfc7252

[7] Wikipedia, “Constrained Application Protocol”. (2022), Available at:

https://en.wikipedia.org/wiki/Constrained_Application_Protocol

[8] IETF, RFC, “Group Communication for the Constrained Application Protocol

(CoAP)”. (2014), Available at: https://www.rfc-editor.org/rfc/rfc7390

[9] RF Wireless World, “CoAP vs HTTP”. Available at: https://www.rfwireless-

world.com/Terminology/Difference-between-CoAP-and-HTTP.html

[10] Javatpoint, “IoT Session Layer Protocols”, Available at:

https://www.javatpoint.com/iot-session-layer-protocols.

[11] Emmanuel Baccelli, Oliver Hahm et al, “RIOT OS: Towards an OS for the Internet

of Things”. (2013), Available at: https://hal.inria.fr/hal-00945122/document

[12] RIOT OS TEAM, “RIOT Documentation”. (2022), Available at: https://doc.riot-

os.org/

[13] RIOT OS, “Content of the course (Introduction)”. See https://riot-os.github.io/riot-

course/slides/01-introduction/#1

https://www.w3.org/TR/did-core/
https://www.w3.org/2019/did-wg/faqs/2021-formal-objections/
https://www.mdpi.com/1999-5903/14/6/173
https://www.mdpi.com/1999-5903/14/6/173
https://en.wikipedia.org/wiki/Gateway_(telecommunications)
https://www.simplesoft.com/SimpleIoTSimulator.html
https://www.rfc-editor.org/rfc/rfc7252
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://www.rfc-editor.org/rfc/rfc7390
https://www.rfwireless-world.com/Terminology/Difference-between-CoAP-and-HTTP.html
https://www.rfwireless-world.com/Terminology/Difference-between-CoAP-and-HTTP.html
https://www.javatpoint.com/iot-session-layer-protocols
https://hal.inria.fr/hal-00945122/document
https://doc.riot-os.org/
https://doc.riot-os.org/
https://riot-os.github.io/riot-course/slides/01-introduction/#1
https://riot-os.github.io/riot-course/slides/01-introduction/#1

