OIKONOMIKO ATHENS UNIVERSITY
MANENIETHMIO OF ECONOMICS
AOHNAON AND BUSINESS

DECENTRALIZED IDENTIFIERS FOR
THE INTERNET OF THINGS

Konstantinos Betchavas

Supervisors: Prof. George Xylomenos, Dr. Nikos Fotiou

Master’s Thesis

Athens University of Economics and Business

2022

Iepiinyn

Avti n epyooia e€etdlel ™ ypnon Amokevipopévov Avayvopiotikov (DIDsS) oto
Awdiktvo tov Tlpaypdtov. XZvykekpyévo e€etdlovpe TV YpHon TOLG Yo
avbeviikomoinon dedouEVeV Tov AAUPAVOLLE amd GLOKELES. TNV Kadnuepivn pog (on
Boo1lopaote e avayvoploTika, onmg devbovoelg email kon ovopata yprotn, ta omoia
exdidovtar kot eEAEyyovtarl amd eEmTepkég apyEs Kot dev givar vtd tov Edeyyxd poc. To
Amoxkevipouévo Avayvopiotiké (DID) eivar évag véog TOTOG OVOYVOPIGTIKOD 7OV
eMUTPENEL ENAANDEVGLES, OMOKEVTIPMOUEVES YNOLAKES TOVTOTNTESG, TOV LaG Oivel Tiow TovV
ELEYYO OTNV TAVTOTNTA WOG, KOTAUPYMVTOG TNV OVAYKN Y10 O CUYKEVTIPOTIKY EEOTEPIKN
apyn. Ta DIDs pmopovv eniong va xpnoipnomoinfodyv amd GUGKELES TOL ATOTEAOVY UEPOG
tov Awdiktvov tov [payudtov. Ta DIDs ypnoylonoovviar ce 018popes eQoproYEG

acQOAEiaG, LLE TO GNUAVTIKY] TV avdeviikomoinon.

Ymv gpyooia pag ypnowonomoape pio pébodo dnuovpyiag DIDs, ™ pébodo did:self,
mov onovpyninke oto Owkovopko Iavemomuio AGnvav, gdikd yio 1o Aladiktvo TV
[payudtov. O wokmreg tov did:self DIDs givar vrevbuvot yio T dnuovpyio Kot)

dwadoon tav gyypdowv DID and pévor toug.

Yndpyovv mordd epyareio mov pmopovv va ypnoyoromBodv ce mepipdiiov 10T. To
tp®TOKoAA0 COAP glvar onuoavtikd yoti givor Wavikd yio xprion o€ mepipdArovia pe
ePLopIopEVous Topovs. Ydpyovv moArol tpdmot yia va tomobetnoete, va puBuicete Tig
OLOKEVEG OOG KO VO EVEPYOTOoETE TNV emtkowvmvia pali tovg. Ta mepiocodTep amd
avtd meptrappdvouv por moAn 10T, n omoia BpiokeTor avAIESH GTIG CLOKEVEG KOL TO
Awdiktvo. To RIOT etvar éva Aettovpyikd cvotnpa, Tov dnuovpynonke W0Kd yio Tnv
vrootpiEn tov Awdiktoov tev [payudtov. TIpoceépel TOAAG TAEOVEKTHUOTO GTOVG
TPOYPOUUOTIOTEG Kot Elval apKeTd AP OOTE Vo, LTOPEL Vo EKTELECTEL GE TOAD OTAEC

ovokevéc. To ypnoiporolovpe yio v vAoroinon DIDs pe) pébodo did:self.

H epyacia pag Osiyver 011 pmopovpe vo YPNCUOTOMGOVUE ATOKEVIPOUEVO.
AvayvopioTikd, o ooio, ONHovpyouvIoL Kot KOVOTOoUVTIoL oo TIG GLOKEVEC oTo l0T.
Amo 1o Acttovpykd cvotua RIOT ypnowomotovvror dtdpopeg PiAtodnkeg, mov pog

Bonbovv va epappdcovpe ™ uébodo did:self, ypaupévn ce yhdooao mpoypoppaticpod C,

OTIG CLGKEVEG. XTO TAGCIO TG Epyaciog Hog petapépOnkay tpdcbetec PifAtodnkeg kot
kodwog oto RIOT dote vo umopovpe va onuovpyodue Kol vo, emaAnfegvovue

QTOKEVTPMUEVA OVAYVOPIOTIKA pe Pdon ™ pébodo did:self.

[Tpootébnke kddwog mov ypnoiponotel T PPA0ONKEG AVTEG Yoo Vo ONULOVPYHGOVUE
KA1 EADSA, va vroypdyovpe dedopéva pe antd Kol Vo, KOSIKOTOGoVUE dedouéval
o¢ base64url. EmmAéov, dnpovpyndnkav ot KatdAANAES GLVOPTAGELS VIO TNV dNovPYia
kot amodnkevon tov DID Document kot DID Proof otic cuckevés. Avtd amattovvto yio,
va avBevtikoromcovpe mpwto to DID Document kot apydtepa pe v ypnon owtov,
0mo100NOTE OEOUEVA AUUPAVOVLLE OO TIG GUOKEVES. LTOV KMOKA Hog EmPBERatdVOLULE

v avbeviikomoinon tov mopwv mov Aapupdvovpe and Tic cvokevég oto Gateway mov
ONUOVPYNGOLLE.

Emopévag, 1o Amokevipouéva Avoyvopiotikd (DIDS) Ponbodv pe emtvyio otnv
SoPAMON TG ALOEVTIKOTNTOG TV SEOOUEVMDV TOV AOUPAVOVLE OO TIC CLGKEVEG. XTO
6° xepdroo oeiyvouue mapoadeiypata e ypnong tovg oto RIOT, avagépovrog ta

OTOTEAEGLOTO TTOL ACUPAVOLLE.

Abstract

This thesis examines the use of Decentralized Identifiers (DIDs) in the Internet of Things.
In particular we are examining their use for authenticating the data that we receive from
devices. In our daily lives we rely on identifiers, such as email addresses and usernames,
which are issued and controlled by external authorities and are not under our control. A
Decentralized ldentifier (DID) is a new type of identifier that enables verifiable,
decentralized digital identities, giving us back control over our identity by removing the
need for a centralized external authority. DIDs can also be used by devices that are part
of the Internet of Things. DIDs are used in various security applications, the most

important being authentication.

In our work we used a method of generating DIDs, the did:self method, created at the
Athens University of Economics and Business, specifically for the Internet of Things.
Owners of did:self DIDs are responsible for creating and propagating DID documents

themselves.

There are many tools that can be used in an 10T environment. The CoAP protocol is
important, because it is ideal for resource-constrained environments. There are many
ways to setup and configure your 10T devices and enable communication with them.
Most of them include an 10T gateway, placed between the devices and the Internet. RIOT
is an operating system, built specifically to support the Internet of Things. It offers many
advantages to developers and is lightweight enough to run on very simple devices. We

use it to implement DIDs with the did:self method.

Our work shows that we can use Decentralized ldentifiers, which are generated and
shared by the devices in the 10T. Various libraries are used by the RIOT OS, which help
us implement the did:self method, written in C programming language, on the devices.
As part of our work we ported additional libraries and code to RIOT so that we can create

and verify decentralized IDs based on the did:self method.

Added code that uses these libraries to generate EADSA keys, sign data with them and to
base64url encode data. In addition, the appropriate functions were made to create and

store the DID Document and DID Proof on the devices. These are required to first

authenticate the DID Document, and later using it, any data we receive from the devices.
In our code we authenticate the resources we receive from the devices in the Gateway we

created.

Therefore, Decentralized Identifiers (DIDs) successfully help ensure the authenticity of
the data we receive from the devices. In chapter 6 we show examples of their use in

RIOT, reporting the results we obtain.

Keywords: Decentralized Identifier (DID), did:self Method, Internet of Things (loT),
Constrained Application Protocol (CoAP), RIOT OS, C Programming Language.

1.

5.

Table of Contents

Decentralized 1dentifiers (DIDS)c.eecceeeciieeieeesieeeeeesteesteeeseeesteestee e sareesseessnseesnseeesnseens 1
1.1, A SIMPIE EXAMPIE ceeiiiiiiie ettt s e e s e e et ee e e e e e e e e e e bae e e e arees 2
O D 1T 1 I G = [PRSPPI 2
1.3, ArchiteCture OVEIVIEW. ...cc.i ittt s sttt e b e s s 3
R S 0 o Y=ot 4o o[- SRR 4

The did:Self METNOM .c..eeeiiiee ettt e s 6
2.1, K@Y PrOPEITIES ceeeeiiiiiieiiiiteee ettt e s e sttt e e e e e s s sabtaee e e e s s sssanbeaeaeeesssannnnns 6
2.2, DS N e, 6
2.3, Data transfer With DIDScccceoiiiiieieeeeniesee ettt st sttt e e s s e 8

Internet of Things ArChit@CIUIEciieviii i e 10
2% N o B I C - €= 1YY - 1Y SRR P PP PPPPPPPPPPPPPPPPPPRE 10
3.2. The Constrained Application Protocol (COAP).......cccueiiiiiiieeeecee ettt e 11

3.2.1. Specifications anNd FEATUIES........cccuiii ittt 11

3.2.2. COAP Group CoOmMMUNICAtION . .ciiiiiiiiiiiiiitee e e erciireee e e e e e sitreeee e s s s ssierereeeeeessnnanens 11

3.2.3. HTTP @Nd COAP ..ttt s s s e 12
0 T o B I 1= Tt =B =1 o U o PP 13
3.4. 10T Device COmMMUNICAtION.....c.uiiiiiiiieeeeee e e 14
3.5. Decentralized Identifiers 0N 10Tc..cooviiiiriieiieneene et 15

The RIOT Operating SYSTEM.......uciiiiiiieecciiee ettt e e e sae e e e e aree e e e aba e e e e abee e e enres 16
N [0 o o [¥ ot o] o DTS P VTR STOPRTPRPTOPR 16
A I T =YYl o) [o 16
4.3, FEATUIES...eiiiiiiiiic i 18
4.4. Comparison of [0T Operating SYSteMSuviiiiiiee e 18

(O TUT e [y oY o] 1= 4 V=Y o - | Lo o [SRR 19

6.

7.

8.

LT I O] o] =T o V7RSS 19

LI O [=Y o} R R T 1 =LV 1Y PSP 19
oIS TR (o 1 I B L1 ol PRSPPI 20
5.3.1. IMIOTUIBS ..ttt et ettt st e b e e st e e bt e e s b e e sabeeesabeesneeas 20
5.3.2. FUNCLIONS & RESOUICESeoiviiiiiiieiiiiecieeee et 21
5.4. Limitations & Chall@NgEScccuuiiiieciiie ettt e e ree e e aaae e e 22
RESUIES ettt ettt et s bt e ettt e sab e e sabe e s bb e e sabe e e abeesabeeebbeesabeeereeas 23
CoNClUSION & FULUIE WOTK ...eeiiiiiiiiiieiie ettt ettt sttt et esbe e e e s 28
REFEIENCES ..ttt ettt e b e bt st et et e bt e s bt e sate st e be e beenreas 29

Table of Figures

Figure 1: An eXample 0f @ DID [L].cuueiiiiiiie ettt e et e e et e e s aa e e e enaae e e ennaeee s 2
Figure 2: Overview of DID architecture and relationships of its basic components [1].................. 3
Figure 3: A DID dOCUMENT @XAMPIE...iiii ittt et e e eae e e e aa e e e eaabe e e e anaeeean 7

Figure 4: An example of loT an Gateway connecting loT devices and sensors to cloud-based

computing and data ProCeSSING [5]...ccuuiiiiiiiiee ittt e et e e e ebrr e e e ebre e e e eraeeeeaans 10
Figure 5: Differences of COAP and HTTP [9]uuiiiiiiiiieecee ettt et 12
Figure 6: Architecture of COAP ENVironment [10]......cceeeiiiieiiiiieeee e eeecirreee e e e e e e arraeees 13
Figure 7: Option 1 & 2 illustration of Device Set Up Communication........cccccceveevvciieeiniieeecnnnen, 14
Figure 8: RIOT in the 10T realm [13] ..ottt eetrbre e e e e e e e e starae e e e e e e e eanssaaeeas 17
Figure 9: Key Characteristics of CONTIKI, TINYOS, LINUX AND RIOT [11]..cccoviiveeeriiieeeeieee e 18
Figure 10: Modules included in OUr ProjECtuiiiciiiiiiiiiecccee e 20
Figure 11: Resources our coap Server is Offeringcccvveeeicoiiiieccee e 21
Figure 12: Get DID Document (NO WhiIt@SPaCES)eevvuiieiiiieeieeeciieeereeeite et estre e sre e evae e s 23
Figure 13: DID DOCUMENT (JSON).....uuiiieeiiiie et ettt e e e et e e et e e e e e are e e e eabee e e eareeeeenreeeeennes 23
Figure 14: DID Proof (JSON)......uuii ettt ettt e e tte e e e tae e e s etae e e e e abaeesennseeeeenntaeesenreeaeennsens 24
Figure 15: DID Document (after decoding)oeeeciiiieeciiiieeecee et et 25
Figure 16: DID Proof Header (after deCOdinNg)......ccccuueieeiiuieieecieee ettt et 26
Figure 17: DID Proof Payload (after decoding).......ccueeeeciiiieeciieieeciee e 26

Figure 18: Data received, verifiable by DID DOCUMENTccccuuiieeiiieeeeciee et 27

https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094901
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094902
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094903
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094904
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094904
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094905
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094906
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094907
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094908
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094909
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094910
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094911
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094912
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094913
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094914
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094915
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094916
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094917
https://auebgr-my.sharepoint.com/personal/xgeorge_aueb_gr/Documents/Betchavas%20Thesis/thesis.docx#_Toc124094918

1. Decentralized Identifiers (DIDs)

Individuals and organizations rely on identifiers such as email addresses, usernames and
phone numbers on social media [1]. However, most identifiers are issued and controlled
by external authorities, which ensure that they are globally unique. These authorities
decide who or what these identifiers refer to and when they can be revoked. These

identifiers are, therefore, not under our control.

DIDs are a new type of identifier that enables verifiable, decentralized digital
identities. DIDs can refer to persons, data models, organizations, things, or abstract
entities, as determined by a DID ‘controller’. In contrast to typical identifiers, DIDs are
designed so that they may be decoupled from centralized registries and identity providers.
Specifically, the design allows the controller of a DID to prove control over it without
requiring permission from any third party. Of course, third parties might be used to help

enable the discovery of information related to a DID.

The DID specification does not enforce any technology or cryptographic method for
the generation, resolution, persistence, or interpretation of DIDs. Indeed, different DID
instantiations, called methods, can be defined, specifying how the identifiers are
generated and resolved. For example, to enable interworking, implementers can create
DIDs based on identifiers registered in federated or centralized identity management
systems. Indeed, the majority of identifier systems can add support for DIDs. This creates

an interoperability bridge between centralized, federated, and decentralized identifiers.

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers

1.1.

A Simple Example

A Decentralized Identifier is a plain text string consisting of three parts [1]:

1) the did URI scheme identifier,
2) the identifier of the DID method, and
3) the method-specific identifier of the DID.

Scheme

e
did:example:123456789%9abcdefghi

Y Y
DID Method DID Method-Specific Identifier

Figure 1: An example of a DID [1]

The figure above shows an example of a DID, with its three components. DID URLS

refer to a DID subject and resolve to DID Documents, which contain information

associated with the DID, such as cryptographic public keys, services, and interactions.

1.2.

Design Goals

The most important design goals for Decentralized Identifiers are [1]:

Decentralization: Abolish the requirement for centralized authorities and avoid
single points of failure in identifier management, including the registration of
globally unique identifiers, public verification keys, services, and other
information.

Control: Give entities, both human and non-human, the power to directly control
their digital identifiers without the need to rely on external authorities.

Privacy: Enable entities to control the privacy of their information, including
minimal, selective, and progressive disclosure of attributes or other data.

Security: For their required level of assurance, enable requesting parties to
depend on DID documents for sufficient security.

Proof-based: Allow DID controllers to provide cryptographic proof when
interacting with other entities.

https://www.w3.org/TR/did-core/#dfn-did-methods

1.3. Architecture Overview

We provide below a basic overview of the major components of the Decentralized

Identifier architecture [1], which are schematically depicted in the following figure.

DI_D refers to DID
SUb]eCt did:example:123

resolves to

recorded on
contains
DID URL Verifiable
did:exgample:123/path/to/zszc Data
Registry

refers, and
dereferences, to

DID controls DID document
controller

recorded on

h 4

Figure 2: Overview of DID architecture and relationships of its basic components [1]

DIDs and DID URLs: A Decentralized Identifier is a URI composed of three
parts: the “did” scheme, a method identifier, and a unique, method-specific
identifier in the format specified by the DID method. A DID URL extends the
syntax of a basic DID to include other standard URI components such as path,
query, and fragment, in order to locate a particular resource.

DID subjects: The subject of a DID is, by definition, the entity identified by
the DID. The DID subject might also be the DID controller, but this is not
necessary. Anything can be the subject of a DID: a person, group, organization,
thing, or concept.

DID controllers: The controller of a DID is the entity (person, organization, or
autonomous software) that has the ability to make changes to a DID document, as
defined by a DID method. The subject of the DID may delegate control of the
DID to another entity, hence the differentiation between subject and controller.
Verifiable data registries: In order to be resolvable to DID documents, DIDs are

typically recorded on an underlying system or network of some kind. Regardless

3

https://www.w3.org/TR/did-core/#dfn-uri
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-did-urls
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-uri
https://www.w3.org/TR/did-core/#dfn-resources
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-subjects
https://www.w3.org/TR/did-core/#dfn-did-controllers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-controller
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers

R/
A X4

1.4.

of the specific technology used, any system that supports recording DIDs and
returning data necessary to produce DID documents is called a verifiable data
registry. Examples include distributed ledgers, decentralized file systems, and
databases of any kind.

DID documents: DID documents contain information associated with a DID.
They typically express verification methods, such as cryptographic public keys,
and services relevant for interactions with the DID subject.

DID methods: DID methods are the mechanism by which a particular type
of DID and its associated DID document are created, resolved, updated, and
deactivated. The method specifies how exactly the identifier of a DID is formed.
DID resolvers and DID resolution: A DID resolver is a system component that
takes a DID as input and produces a conforming DID document as output. This
process is called DID resolution.

DID URL dereferencers and DID URL dereferencing: ADID URL
dereferencer is a system component that takes a DID URL as input and produces
a resource as output. This process is called DID URL dereferencing.

Objections

DIDs are still in the ‘proposed recommendation’ status. There are many objections to

releasing the standard, as stated to W3C [2]. The main objections are:

1)

2)

Most DIDs cannot be easily memorized by humans; they are internet friendly
but not human friendly. Many people memorize their social security number.
There is no standardized way to turn such ‘human-manageable’ IDs to DIDs.

The documented design goal for decentralization is to ‘eliminate the
requirement for centralized authorities or single points of failure in identifier
management’. Distributed ledger technology, like a blockchain, is the best
technology for this purpose, providing superior levels of distribution,
programmability, and resilience. The standard itself does not enforce
decentralization on the verifiable data registry. The objection is that this
violates the stated design goals.

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-verifiable-data-registry
https://www.w3.org/TR/did-core/#dfn-verifiable-data-registry
https://www.w3.org/TR/did-core/#dfn-distributed-ledger-technology
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-verification-method
https://www.w3.org/TR/did-core/#dfn-service
https://www.w3.org/TR/did-core/#dfn-did-subjects
https://www.w3.org/TR/did-core/#dfn-did-methods
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-resolvers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-did-documents
https://www.w3.org/TR/did-core/#dfn-did-resolution
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencers
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencers
https://www.w3.org/TR/did-core/#dfn-did-urls
https://www.w3.org/TR/did-core/#dfn-resources
https://www.w3.org/TR/did-core/#dfn-did-url-dereferencing
https://www.w3.org/TR/did-core/

3)

4)

DID methods can be specified differently and implemented on various systems, so
they are not interoperable. Standardization of the methods was taken out of
scope for version 1.0 of the recommendation. The objection is that the
proliferation of non-interoperable method specifications could drastically limit the
practical use and adoption of DIDs.

Blockchains, if used, can be environmentally harmful (not all are), which is
against stated W3C principles. The objection is that the standard is not actively

dealing with this issue.

2. The did:self method

In this section we describe the DID method specified in “loT Group Membership
Management Using Decentralized Identifiers and Verifiable Credentials” [3], called
did:self. The did:self method was created specifically for the Internet of Things and is the

method we employ in this thesis.

2.1. Key Properties

As already mentioned, DID specifications allow DID method implementors to decide
upon the information to be included in the DID documents of their method, as well as
how an appropriate registry operates. These are left to individual DID instantiations, also

referred to as DID methods.
The key features of the did:self method are:

e Owners of did:self DIDs are responsible for disseminating their DID documents
by themselves, e.g., by directly transmitting them to interested parties, or by
storing them in publicly accessible locations, such as a Web server. The did:self
method ensures that a DID document can be verified to be correct, even if
retrieved over an unsecured channel.

e did:self allows multiple valid DID documents for a specific DID to co-exist. We
can take advantage of this feature to allow each 10T device to be configured with
a different DID document for the same did:self DID.

2.2. Design

A did:self based DID is a base64url encoded Ed22519 public key prefixed with the string

“did:self :”. We can see an example below.

did:self:

A DID document in did:self may include any of the properties defined by the DID

specifications, encoded using JSON. It includes the following properties, some of them

optional, with the corresponding purpose:

1. id: The DID which the document concerns

2. verificationMethod: A list of public keys, with each key in the list identified by
an id. There cannot be two keys with the same id for the same did:self DID, even
if these keys are defined in different DID documents. We can take advantage of
this property to achieve efficient authentication key rotation and detect breaches
of the private key used by an authentication method. These two security
properties are achieved by following a “use the most recent key” principle.

3. authentication: A list of public keys (or key identifiers) that can be used to
authenticate the DID holder. The private key that corresponds to an authentication
key is used for signing CoAP messages; hence, the corresponding public key is
used for authenticating message senders.

4. assertion: A list of public keys (or key identifiers) that can be used to verify
digital signatures of Verifiable Credentials (VCs). The private key that
corresponds to an assertion key is used in our system for signing issued VCs.
Hence, the corresponding public key is used for verifying these signatures. In the
image below we can see the use of the P-256 Digital Signature Algorithm. For our
implementation we utilize ed25519 instead.

"id": "did:self:3rdYs179x51rfk8zMgQN7-1s5tIro9cs@iUfNAqeElT",
"authentication™: [

{
"id": "#keyl",
"type": "JsonWebKey2028",
"publicKeyJwk™: {
"kty": “EC",
"crv": "P-256",
"5y9lL pOEyepZBP3HCcnOu7wFkTwFIL1qUUg-oFsRNJk™,
"1xDZvayjRUHAr1HghTIgbZoknlWyqaATwsWtJazcUCRw"

Figure 3: A DID document example

A proof is associated with each DID document; it is a “compact serialization” of a JSON
Web Signature (JWS), used to validate the binding between a DID document and the
corresponding did:self DID.

The payload of the proof includes the following claims:

1. The proof’s header includes the following claims:
e alg: The algorithm used for generating the proof
e jwk: The JWK that can be used for verifying the proof
2. The proof’s payload includes the following claims:
e iat: The date and time of the proof’s generation
e exp: An expiration time
e $256: The base64url encoded hash of the DID document, calculated
using SHA-256

The signature of the proof is generated using the private key that corresponds to the
did:self DID and the Edwards-curve Digital Signature Algorithm (EdDSA).

Given a did:self DID, a DID document, and the document proof, any entity can

trivially verify the binding between the DID and the document by executing the

following steps:

1) Verify that the identifier is equal to the thumbprint of the jwk field of the header
of proof.

2) Verify that the digest of the DID document is equal to s256 in the proof.

3) Verify that the proof has not expired.

4) Verify the proof using the jwk field of the header.

2.3. Data transfer with DIDs

DIDs can help with data authentication in many ways. In our scheme we send our data
along with our DID, DID document and proof, all of which are base64url encoded. The

process is explained right below:

1) We verify the DID Document with the steps stated on the previous sub-chapter.

2) Finally, we verify the data’s signature signed with the DID Document’s JSON
Web Key, utilizing the public key located there.

By making those checks we can verify the authenticity of data received. In a later chapter

we showcase this process with an example.

3. Internet of Things Architecture

3.1. loT Gateway

A gateway is a piece of networking hardware or software used in telecommunications
networks that allows data to flow from one discrete network to another [4]. Gateways are
distinct from routers or switches in that they communicate using more than one protocol
to connect multiple networks and can operate at any of the seven layers of the Open

Systems Interconnection model (OSI).

An Internet of Things (1oT) gateway provides a bridge (protocol converter) between
loT devices in the field, the cloud, and user equipment such as smartphones. The loT
gateway provides a communication link between the field and the cloud and may provide

offline services and real-time control of devices in the field.

Interconnected devices communicate using lightweight protocols that do not require
extensive CPU resources. To achieve sustainable interoperability on the I0T ecosystem,
the dominant architectures for data exchange protocols are MQTT and CoAP.
Programming languages such as C, Java, Python are the preferred choices for loT

application developers.

loT GW
MQTT
HTTP
CoAP
loT GW
loT GW

SimpleloTSimulator

Cloud loT
Platform

Figure 4: An example of 1oT an Gateway connecting loT devices and
sensors to cloud-based computing and data processing [5]

10

3.2. The Constrained Application Protocol (CoAP)

3.2.1. Specifications and Features

The Constrained Application Protocol (CoAP) is a specialized Internet application
protocol for constrained devices, as defined in RFC 7252 [6][7]. It enables constrained
devices called "nodes™ to communicate with the wider Internet using messages similar to,
but simpler than, those of HTTP. CoAP is designed for use between devices on the same
constrained network (e.g., low-power, lossy networks), between devices and general
nodes on the Internet, and between devices on different constrained networks, both joined
by an internet. The protocol is designed for machine-to-machine (M2M) applications

such as smart energy and building automation.

CoAP is a service layer protocol, intended for use in resource-constrained internet
devices, such as wireless sensor network nodes. CoOAP is designed to easily translate to
HTTP for simplified integration with the web, achieving interworking between the two
protocols, while also meeting specialized requirements such as multicast support,
exceptionally low overhead, and simplicity. Those requirements are important for
Internet of things (loT) and machine-to-machine (M2M) communication, which tend to
be deeply embedded and have much less memory and power resources than traditional

internet devices. Therefore, efficiency is especially important.

CoAP utilizes UDP as the underlying network protocol, DTLS for security and uses
the same methods as HTTP (Get/Put/Post/Delete).

3.2.2. CoAP Group Communication

CoAP group communication plays a significant role in the 1oT. In many CoAP
application domains it is essential to have the ability to address several COAP resources
as a group, instead of addressing each resource individually (e.g., to turn on all the
CoAP-enabled lights in a room with a single CoAP request triggered by toggling the light

switch).

11

To address this need, the Internet Engineering Task Force (IETF) has developed an

optional extension for COAP in the form of an experimental RFC, Group Communication
for CoAP - RFC 7390 [7][8]. This extension relies on IP multicast to deliver the CoAP
request to all group members. Multicasting has certain benefits such as reducing the

number of packets needed to deliver the request to the members. On the other hand,

multicast also has its limitations, such as poor reliability and cache-unfriendliness.

An alternative method for CoAP group communication that uses unicasts instead of

multicasts, relies on having an intermediary, such as a Gateway, where the groups are

created. Clients send their group requests to the intermediary, which in turn sends

individual unicast requests to the group members, collects the replies from them, and

sends back an aggregated reply to the client. The intermediary thus acts as a concentrator.

3.2.3. HTTP and CoAP

CoAP is intentionally similar to HTTP but modified to work with constrained devices.

The following figure compares CoAP and HTTP.

Feature

CoAP

HTTP

Protocol

It uses UDP.

It uses TCP.

Network layer

it uses IPv6 along with 6LOWPAN.

It uses IP layer.

Multicast support

it supports.

It does not support.

Architecture model

CoAP uses both client-Server &
Publish-Subscribe models.

HTTP uses client and server
architecture.

Synchronous
communication

CoAP does not need this.

HTTP needs this.

networking devices such as
WSN/IoT/M2M.

Overhead Less overhead and it is simple. More overhead compare to CoAP
and it is complex.
Application Designed for resource constrained Designed for internet devices

where there is no issue of any

resources.

Figure 5: Differences of CoAP and HTTP [9]

12

The classic architecture of a CoAP system consists of a CoAP client, a COAP server, a
REST CoAP proxy, and the REST Internet. Data are sent from CoAP clients, such as
smartphones or any 10T device, to the CoAP server, and the same message is routed to
REST CoAP proxy. The REST CoAP proxy interacts with devices outside the CoAP

CoAP Environment

(REST Internet /‘5 .
O g [ll
REST-CoAP CoAP Serv:|\~
Proxy

CoAP Communication -g—pm- : /
HTTP Communication s« CoAP Clients

Figure 6: Architecture of CoAP Environment [10]
environment and uploads the data over the REST Internet, after translating the response

from CoAP to HTTP. This is shown in the following figure.

3.3. 10T Device Setup

There are multiple ways to set up your 10T device and establish a relationship with the

Gateway. The main options are:

1. The IoT device broadcasts a message informing of its installation to the network,
including its IP address to the Gateway.

2. The Gateway can broadcast a message requesting the 10T devices to inform it of
their availability and give it their IP addresses.

3. Directly submit the IP addresses of the devices to the Gateway. This is done with
a request from a neutral resource, like a controller or client via a message. The IPs

of the devices are not received from them directly.

13

After the Gateway receives information about the Devices, it adds them to an IP multicast

address, or saves them to an array, so as to be able to later send CoAP requests to them to

fulfill a request it receives from the Internet.

'Devices Setup Communication via CoAP |

Option 1

When Device1 connects, it

‘Dption 1. (l)Broadcast msg|

<

3.4.

broadcasts a message to be Device1
added to Gateway. Message
could include IP, endpoints etc.
Option 1. (l)Gateway receives msg
and adds Devicel to multicast
P ——
» GATEWAY Device2
Option 2. (1)Gateway sends
broadcast request to find new devices
. Option 2. (ll)Receives
OPtIOI'I 2 request from Gateway
R
Device3

Device3 connects. We
broadcast msg from Gateway
to find new devices, which
answer back with their

information.

A

Gateway device information

Option 2. (Ill)Send back to

Figure 7: Option 1 & 2 illustration of Device Set Up Communication

IoT Device Communication

Here we provide an example of Group Communication, fulfilling a request received from

the Internet, based on CoAP Group Communication.

After receiving a Request from the Internet, the gateway can carry it out with:

A Multicast Communication

[1] Sends a Multicast Request to devices based on resource requested.

[2] Receives many Responses from devices.

[3] Gathers data into one Response, via aggregation or other method.

[4] Sends this Response to the entity that requested it, such as a web

client, cloud, application.

14

e Many Unicast Communications
[1] Sends many Unicast Requests, one for each device.
[2] Receives many Responses from devices.
[3] Gathers data into one Response, via aggregation or other method.
[4] Sends this Response to the entity that requested it, such as a web

client, cloud, application.

3.5. Decentralized Identifiers on 10T

Decentralized Identifiers (DIDs), received from the devices, can be used to:

v Find services the devices are offering.
v Authenticate the responses we receive.

v" Secure the transfer of resources.

Specifically, did:self DIDs are created for each device, possibly by their owner. The
corresponding DID Document needs to be altered only if its JSON Web Keys expire or if
the services offered from the devices change. These DID documents can be directly
transmitted to interested parties or stored in publicly accessible locations and can be
verified as “correct” even if they are retrieved over an unsecured channel, as mentioned

in a previous chapter, making them ideal for the 10T architecture.

15

4. The RIOT Operating System

4.1. Introduction

In our project we used the RIOT operating system to implement the did:self method in an
actual 10T architecture. As we will explain in this chapter, the RIOT OS is a valuable tool
for the Internet of Things. Fundamentally, an Operating System (OS) is characterized by
a few key design aspects, such as the kernel and the programming model [11].

The kernel can either be

i. amonolithic program,
ii. follow a layered approach, or

iii. implement the microkernel architecture.
The programming model defines whether

i. all tasks are executed within the same context and have no segmentation of
the memory address space, or

ii. each process can run in its own context and memory space.

The programming model is also linked to the available programming languages for

application developers.

4.2. Description

RIOT is an open-source microkernel-based operating system, designed to match the
requirements of Internet of Things (IoT) devices and other embedded devices [11][12].
It is a small operating system for networked, memory-constrained systems with a focus

on low-power wireless Internet of Things (1oT) devices.

RIOT provides a microkernel, multiple network stacks, and utilities which include
cryptographic libraries, data structures (bloom filters, hash tables, priority queues), a shell
and more. A microkernel OS is structured as a tiny kernel that provides the minimal
services used by a team of optional cooperating processes, which in turn utilize modules
or libraries to provide higher-level OS functionality. The microkernel itself lacks

16

filesystems and many other services normally expected of an OS. Those services are

provided by optional processes.

The real goal in designing a microkernel OS is not simply to “make it small.”. Since
all the services, like device drivers, memory management, communication, file
management and others, must be built in user space, the microkernel will provide a layer
where a minimum set of services reside. So, the microkernel architecture provides an
abstraction for the hardware layer, so that it can be adapted to different hardware
architectures, without changing the services offered to applications.

Compared to other 10T operating systems, such as Contiki OS and Tiny OS, which
are event-based and provide application development tools supporting a subset of the C
language (contiki) and nestc (tinyos), RIOT fares better when it comes to memory usage
and support.

HIGH-END 10T
i0S
INTERNET Mem ~ 1GB —

&5

A w Mem ~ 500MB) LOW-END 10T

1 CR\UT

! Mem ~ 32kB

A

—
—
L] E

Mem > 4GB
s

F_\
)
Ry 42
Mem > 4GB
Y
Ry &1
From the Noun Project

- Lapiop by KRISWANDIO0D Mem > 4GB
- Computer fram James Zamysliasnky

- Autonomaus Car by ProSymibols

- Cellphone by Bohdan Burmich .

- Internet by Marksu Desu Mem ~ 80kB
- Servers by Alexander Skowalsky

CRI[]T

Constrained Devices
(Kb RAM, MHz, mW/uW)

= RIOT is designed for low-end devices

Figure 8: RIOT in the loT realm [13]

17

Mem ~ 8kB

4.3.

Features

In this section we mention a few features of RIOT OS:

4.4.

As we

RIOT offers a “traditional” threading and scheduling scheme, POSIX-compliance,
thus supporting multi-threading with standard API.

RIOT offers C and (currently, partial) C++ language support, enabling powerful
libraries.

RIOT provides a TCP/IP network stack (IP oriented stacks and High-level
network protocols: CoOAP, MQTT-SN, etc.)

RIOT can be extended with external packages; thus, features are provided as
modules. The modular microkernel structure of RIOT makes it robust against
bugs in single components.

RIOT is based on design objectives including energy-efficiency, small memory
footprint, modularity, and uniform API access, independent of the underlying

hardware.

Comparison of 10T Operating Systems

can see from the image below and based on the features we mentioned at the

previous sub-chapter, the RIOT OS surpasses other 10T Operating Systems, integrating

successfully the 10T design objectives. Consequently, it is ideal for developing concepts

on the Internet of Things, such as the did:self method.
0s Min RAM Min ROM C Support C++ Support Multi-Threading MCU w/o MMU Modularity Real-Time
Contiki <2kB < 30kB a x o v o o
Tiny OS < 1kB <4kB X x o v x X
Linux ~1MB ~1MB v v v 4 o a
RIOT ~1.5kB ~5kB v v v 4 v v
TABLE 1

KEY CHARACTERISTICS OF CONTIKL, TINYOS, LINUX, AND RIOT. (¢') FULL SUPPORT, (o) PARTIAL SUPPORT, (X) NO SUPPORT. THE TABLE COMPARES
THE OS IN MINIMUM REQUIREMENTS IN TERMS OF RAM AND ROM USAGE FOR A BASIC APPLICATION, SUPPORT FOR PROGRAMMING LANGUAGES,

MULTI-THREADING, MCUS WITHOUT MEMORY MANAGEMENT UNIT (MMU), MODULARITY, AND REAL-TIME BEHAVIOR.

Figure 9: Key Characteristics of CONTIKI, TINYOS, LINUX AND RIOT [11]

18

5. Our Implementation

5.1. Objective

The goal of our thesis is to implement decentralized identifiers on loT devices,
specifically on RIOT OS, and examine if the DIDs created with did:self method can be
used for security purposes. In this chapter, we explain our setup and implementation,
while in the next chapter, we show that we can receive a DID from a device, as well as
the DID Document and Proof, and we can authenticate the data sent from each device

using the verified DID Document.

Our code implementation is saved on a GitHub repository located at
https://github.com/KonstBet/did-self-riot-os, which includes the CoAP server

running on loT devices, written for the RIOT OS in C programming language, and

the proxy Gateway, written in python, which are utilized as server and client, with

the CoAP protocol, to fulfill requests from a client to multiple 10T devices.

5.2. Client & Gateway

We used the coap-client tool at the ubuntu terminal to create CoAP requests. Those
requests are made to the Gateway or Devices according to our debugging needs. Coap-

client is also used to display our examples in the next chapter.

The Gateway is being utilized as a proxy. RIOT does not support yet the use of
multicast in CoAP successfully. We added ourselves the devices’ ipv6 addresses, by
making a request to add a new device. Then, the gateway can make multiple unicast
requests to each device, to fulfill a request sent to a group. The Gateway successfully
verifies the DID Document and Data we receive from each device. Most important
though, and the subject of this paper, is the implementation of DIDs with the did:self
method on the Internet of Things, which is explained in the next sub-chapter.

19

https://github.com/KonstBet/did-self-riot-os

5.3. 10T Device

As we mentioned in the previous chapter, we are using the RIOT OS to develop our

application. The testing for the DID implementation of did:self method, which we wrote

in C programming language, was done on the Windows Subsystem for Linux (WSL).

5.3.1. Modules

We included various modules needed for implementing the did:self method and running a

COoAP server, as we can see in the image below, from our Makefile.

USEMODULE
USEMODULE

USEMODULE
USEMODULE

USEMODULE
USEMODULE
USEMODULE

USEMODULE

USEMODULE
USEMODULE
USEMODULE
USEPKG +=

= netdev_default

auto_init_gnrc_netif

gnrc_ipve default

sock udp

gnrc_icmpvb_echo

nanocoap_sock

xtimer

fmt

hashes

= random
= basetdurl
c25519

Figure 10: Modules included in our project

Specifically, the first ones are used for running the CoAP server and the last four for the

implementation of the DIDs with the did:self method.

e random module: Generation of random SSH private and public keys, which
are used for DID Document and Proof verification.

e hashes module: Utilization of sha256 hash algorithm.

e Dbase64url module: Encode data in string form. Both sha256 and base64url are

used for verification purposes and secure network transfer.

20

e 25519 module: In cryptography, Curve25519 is an elliptic curve used in
elliptic-curve cryptography. More accurately, we used Ed25519, which is a

public-key signature system.

5.3.2. Functions & Resources

The code was written in the C programming language. We created structures used for
saving our DID Document and DID Proof variables. Utilizing the modules we stated

above, we created functions for:

e The generation of random ed25519 public/private key pairs, used in DID
Document and Proof.

e The signing of data with those SSH keys.

e The creation and encoding of variables included in the DID Document and Proof.

e The creation of the DID itself, the DID Document and the DID Proof, making use

of the functions above, based on the did:self method.

The resources we are offering via the CoAP server, running on each device, can be seen

in the following screenshot.

coap_resource t coap resources[] = {
F]
, _riot board handler,

, getDid, +,

, getDidDocument,

, getDidProotf, 1,
, sendDataVerifiableWithDid,
, updateDid, 1,

Figure 11: Resources our coap server is offering

Those, based on the request method are:

% GET:
= /riot/board: get board name (basic function).

= /riot/did: get all information about did, including document and proof.

21

= /riot/did/document: get DID document.
= /riot/did/proof: get DID id proof.
= /riot/data: get data signed with the key in the DID Document.

% PUT:
= /riot/did: update the DID.

The creation of the DID happens when we request it for the first time. The same DID is
sent every time, until we update it with the PUT request.

5.4. Limitations & Challenges

During the implementation we faced certain challenges and hit certain barriers. We state

them below.

1. We could not utilize multicast addresses. As explained above, this is a RIOT
limitation, which we bypassed by translating requests to a group to multiple
unicast requests.

2. There are no preexisting libraries for JSON Web Token handling, so we
implemented JWT in the C programming language, based on their formal
documentation.

3. The application requires at least 218KB RAM on our microcontrollers.

22

6. Results

In this chapter we show the responses received from the device via the coap-client.
Verifications of the DID Document and any data we receive from the devices is done
successfully at our implementation of a proxy Gateway, which verifies that the

did:self method was implemented successfully on RIOT OS.

The real responses are without whitespace as we see below.

D momus@DESKTOP-CNLIUTT: - X /A momus@DESKTOP-CNLIUTT: - X /3 momus@DESKTOP-CNLIUTT: X =+ ~ - o x

:~$ coap-client -m get coap://[fe88::6c79:65ff:feea:6939%tape]/riot/did/document
{"id":"did:self:q_ES8EQWIVYhL5HVXpYje5ZDFE-NMulMwivsbbliigsI" K "attestation":{"id":"#keyl", K "type":"JsonWebKey2020" K "public

KeyJwk":{"kty":"OKP" "crv":"Ed25519" "x":"@F6eleMrzp2NKut8088J6q5DXYPvi6IffMEOLyZPSSKO"}1}
~4 |

Figure 12: Get DID Document (No Whitespaces)
But for the purpose of showcasing our scheme, we will format the results. The first two
resources are utilized only for debugging purposes. On production they should be

removed.

» GET DID DOCUMENT (JSON format — for debugging)

"id": "did:self:q_E8 Yh15 DFE - NMulMwiv
"attestatio {

"id": "4

lltypell . | -'Lllll

"publicKeyJwk" :

"ty

Figure 13: DID Document (JSON)
Successfully returns the DID Document of the device. We need the DID Proof to

authenticate it.

23

» GET DID PROOF (JSON format — for debugging)

Ja
"signature”: "F_nbtWPOG Qs_ZTtIq2rWELjtc-o

Figure 14: DID Proof (JSON)

Signature of the proof, signed to the base64url encoding of the header and payload

separated by a dot, is needed for DID verification, as explained previously.

> PUT DID (UPDATE)

The update request returns the message “DID Updated” signaling the refresh of the DID.
If we request the decentralized identifier afterwards, we can observe that it has been

altered.

» GET DID (Document and Proof — base64url encoded)

This request is the most important in our implementation. It returns the DID data we need
to verify the Decentralized Identifier Document according to Chapter 2.2. Below, we
have the response, which contains the information encoded in base64url. The RIOT OS
has not implemented the addition of header parameters; therefore, we added the proof to
the payload. The DID Document and DID Proof are separated by a space. Specifically,

we have painted the Document blue, the Proof green, and the dots red.

24

eyJpZCI6ImRpZDpzZWxmOnFfRThFUVdIVIIobDVIVNhwWWpINVpEZKUtTK11bE1
3aXZzYmJsaWIncOkiLCIhdHRIc3RhdGIvbil6eyJpZCI6IiNrZXkxliwidHIwZSI61kpzb25
XZWJILZXkyMDIwliwicHVibGIjS2V5Sndrljp7Imt0eSI6IKOLUCIsImNydil61kVkMjU1
MTKILCJ41joiMEY 2ZTFITXJ6cDJOa3VOODA4S|ZXNURYWVB2aTZKZmZNRTIseV
pQUINLMCJIfXO0
eyJhbGciOIJFZERTQSIsImp3ayl6eyJrdHkiOiJPS1AILCljecnYiOiJFZDIINTESliwieCl6
ljIwMEFhRDgwZUEzbHhOY zZIROUJWWkx2WjJObVdBWVZzX0s3Wk1VbVVwSXci
X0.eyJpY XQIiOjE2NZE3MjK1IMjYsImV4cCIEMTcwMzI2NTUyNiwiczIINil6ImI12X2|
QX0h6cGJTZ3BXbURCOVAWMjhtZ3ZI1VXhtNzg4dUVk2VHZ1bIFNWEUIfQ.cuDvpP
eSWjtF5JnL4nXSvfGOR8v6xb-E-

p235g8NZffxsY6eM E6YJ8j5etz2lY4ARQxvyZUaUVNNo7m049f6Dw

As we can see, all the information is base64url encoded based on the did:self method and
to decrease payload size. Below, we will analyze each part of the response, giving the
result after base64url decode. Segments are divided by the dots.

e DID Document (Blue segment)

This segment is the base64url encoded string of the DID Document. If we decode

it, we receive the JSON we see below.

¥ je5SZDTE-NMulMwivsbbliigsI",

"attestatiol
"id": "
"type™:
"publicKey]

“kty": "
"orv™:

"x": "OF6el: zp2Mku XYPvi6If{MES]

Figure 15: DID Document (after decoding)

25

e DID Proof (Green Segment)
The DID Proof has the design of a JSON Web Token.

The first segment includes the header.

"alg": "EdDSA",
“:iWk" . :
"kty": "OKP",

"crv™:

"x": "9pos A3 1N VZLvZ2ZNmWAYVs K7ZMUmUpIw™

Figure 16: DID Proof Header (after decoding)

The second segment includes the payload.

iat™: 1671729526,
1703265526,

25

"b6_iP HzpbSgpWmD

Figure 17: DID Proof Payload (after decoding)

Finally, the third segment is the signature of the header and payload separated by

a dot, by the header’s JWT.

The signatures are created according to the formal documentation to the base64url

encoded strings of each data and not to the JSON string.

In the end we can use this response to verify the Decentralized Identifier’s Document.
We successfully verify the DID Documents on our implementation of a proxy Gateway
written in Python, following the instructions provided in Chapter 2.2, verifying that our

implementation on RIOT OS is successful.

26

» GET DATA (Verified by the included DID Document)

The response includes the same information as GET DID, plus the data separated by a

space. The data is represented as shown below.

eyJOZW1wZXIhdHVyZSI6MjUsInNj Y Wx11joiQyJ9.helLOc1-
_14tfXL2nZoFEWSNFGSZ-nRRyUWhqgrG4WAS3LIQRFrSVSTMn20T9-
f7YK07mxyH85Q8Lsdp2Q9ICCQ

First, we verify the DID Document using the Proof as explained in Chapter 2.2.

In our base64url encoded string of the data, we have two segments separated by a dot.
The first segment is the data we wish to transfer. In this case it is the JSON shown next,
after base64url decode.

"temperature™: 25,

"scale": "C"

Figure 18: Data received,
verifiable by DID Document

The second segment is the signature of the base64url encoded string of our data, signed
with the JWT created for the DID Document and verified to the client by the public key
given in the DID Document.

Finally, we observe that we can authenticate our data successfully using Decentralized
Identifiers, as proven from our implementation of the python Gateway, which

authenticates the data successfully, following the instructions in Chapter 2.3.

27

7. Conclusion & Future Work

This paper shows that we can use Decentralized Identifiers for the Internet of Things.
Particularly, we can utilize the did:self method successfully on the RIOT Operating
System, to fulfill our security needs and authenticate any data we receive from our

devices. Future work is required to complete the 10T environment of our paper.

The successful use of multicasting for communicating with a group of devices is an
important part of the Internet of Things. Group communication with the verification of

decentralized identifiers is a good step on completing the architecture.

Research on the use of a HTTP-CoAP Gateway which is able to use multicast for
specific groups of devices and verify the content with the did:self method, specifically,
can be conducted.

The CoAP server module on RIOT OS requires a lot of memory on the device, for the
loT realm, and research on using a network stack that requires the minimum system

memory is essential.

Finally, we could study diverse ways of using the Decentralized ldentifier for
security. Other forms of authentication, using the DID Document created from the

method did:self, are also possible, and worth further research.

28

8. References

[1] W3C, “Decentralized Identifiers (DIDs) v1.0”. (2022), Available at:
https://www.w3.0rg/TR/did-core/.

[2] W3C, “DID Formal Objection FAQ”. (2021), Available at:
https://www.w3.0rg/2019/did-wg/fags/2021-formal-objections/

[3] Nikos Fotiou, Vasilios A. Siris, George Xylomenos and George C. Polyzos, “loT
Group Membership Management Using Decentralized Identifiers and Verifiable
Credentials”, Future Internet (2022), Available at: https://www.mdpi.com/1999-
5903/14/6/173

[4] Wikipedia, “Gateway (telecommunications)”. (2022), Available at:
https://en.wikipedia.org/wiki/Gateway (telecommunications)

[5] SimpleSoft, “SimpleloTSimulator”, (2022), Available at:
https://www.simplesoft.com/SimpleloTSimulator.html

[6] IETF, RFC, “The Constrained Application Protocol (CoAP)”. (2014), Available at:
https://www.rfc-editor.org/rfc/rfc7252

[7] Wikipedia, “Constrained Application Protocol”. (2022), Available at:
https://en.wikipedia.org/wiki/Constrained Application_Protocol

[8] IETF, RFC, “Group Communication for the Constrained Application Protocol
(CoAP)”. (2014), Available at: https://www.rfc-editor.org/rfc/rfc7390

[9] RF Wireless World, “CoAP vs HTTP”. Available at: https://www.rfwireless-
world.com/Terminology/Difference-between-CoAP-and-HTTP.html

[10] Javatpoint, “IoT Session Layer Protocols”, Available at:
https://www.javatpoint.com/iot-session-layer-protocols.

[11] Emmanuel Baccelli, Oliver Hahm et al, “RIOT OS: Towards an OS for the Internet
of Things”. (2013), Available at: https://hal.inria.fr/hal-00945122/document

[12] RIOT OS TEAM, “RIOT Documentation”. (2022), Available at: https://doc.riot-
o0s.org/

[13] RIOT OS, “Content of the course (Introduction)”. See https://riot-0s.github.io/riot-
course/slides/01-introduction/#1

29

https://www.w3.org/TR/did-core/
https://www.w3.org/2019/did-wg/faqs/2021-formal-objections/
https://www.mdpi.com/1999-5903/14/6/173
https://www.mdpi.com/1999-5903/14/6/173
https://en.wikipedia.org/wiki/Gateway_(telecommunications)
https://www.simplesoft.com/SimpleIoTSimulator.html
https://www.rfc-editor.org/rfc/rfc7252
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://www.rfc-editor.org/rfc/rfc7390
https://www.rfwireless-world.com/Terminology/Difference-between-CoAP-and-HTTP.html
https://www.rfwireless-world.com/Terminology/Difference-between-CoAP-and-HTTP.html
https://www.javatpoint.com/iot-session-layer-protocols
https://hal.inria.fr/hal-00945122/document
https://doc.riot-os.org/
https://doc.riot-os.org/
https://riot-os.github.io/riot-course/slides/01-introduction/#1
https://riot-os.github.io/riot-course/slides/01-introduction/#1

