
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
School of Information Sciences and Technology

Department of Informatics

Distributed Ledger Technologies meet the Internet of Things:
Security, Interoperability, and Advanced Access Control

A dissertation submitted in fulfillment of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Iakovos Pittaras

Athens
June 2025

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Copyright ©

Iakovos Pittaras, 2025

All rights reserved.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

TABLE OF CONTENTS

Table of Contents . iii

List of Figures . v

List of Tables . vii

Acknowledgements . viii

Vita and Publications . x

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 Motivation for the dissertation 3
1.2 Contributions . 5
1.3 Dissertation outline . 7

Chapter 2 Distributed Ledger Technologies and Access control 8
2.1 Distributed Ledger Technologies 8

2.1.1 Ethereum . 14
2.1.2 Hyperledger Fabric 17

2.2 Access control . 20
2.2.1 A common reference architecture 21

Chapter 3 IoT access control requirements and existing solutions 24
3.1 IoT access control requirements 24
3.2 IoT access control solutions 27

3.2.1 Non blockchain-based IoT access control 28
3.2.2 Blockchain-based IoT access control 33

Chapter 4 New access control solutions for IoT architectures 38
4.1 Token-based access control – ERC-20 tokens 38

4.1.1 Large scale IoT control system 39
4.1.2 Multi-tenant smart city 49
4.1.3 Related work . 53
4.1.4 Conclusions and future work 54

4.2 OAuth 2.0 authorization using blockchain-based tokens
– ERC-721 tokens . 55
4.2.1 Background . 56
4.2.2 System design . 58
4.2.3 Token management services 63
4.2.4 Implementation and evaluation 66

iii

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

4.2.5 Related work . 69
4.2.6 Discussion . 70
4.2.7 Conclusions and future work 70

4.3 Consensus-based access control 70
4.3.1 System design . 73
4.3.2 Consensus-based access control 77
4.3.3 Implementation and evaluation 82
4.3.4 Discussion . 95
4.3.5 Related work . 101
4.3.6 Conclusions and future work 104

Chapter 5 Applications of blockchains in IoT – Security and interoperability106
5.1 The case of IoT mobile gaming 106

5.1.1 A scavenger hunt location-based mobile game ecosys-
tem emulation . 109

5.1.2 Performance evaluation 116
5.1.3 Discussion . 124
5.1.4 Related work . 129
5.1.5 Conclusions and future work 131

5.2 Smart contract-based digital twins 131
5.2.1 Background – Web of Things 133
5.2.2 Smart contract-based digital twins design 135
5.2.3 IoT system overview 141
5.2.4 Implementation and evaluation 147
5.2.5 Related work . 154
5.2.6 Conclusions and future work 155

Chapter 6 Blockchain as enabling technology: Broader implications . . . 156
6.1 Blockchain-based games 156

6.1.1 Trading games . 157
6.1.2 Mobile games . 159

6.2 Blockchain-based data marketplaces: A privacy-preserving
approach . 160

Chapter 7 Conclusions and Future work 162
7.1 Conclusions . 162
7.2 Future work . 164

Appendix A Acronyms . 166

Bibliography . 169

iv

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

LIST OF FIGURES

Figure 2.1: High level representation of a blockchain network and its core
components. 9

Figure 2.2: Transaction flow in Ethereum blockchain. 16
Figure 2.3: Transaction flow in Hyperledger Fabric blockchain. 18
Figure 2.4: Reference access control architecture and entity interactions,

based on the OASIS XACML standard. 22

Figure 3.1: A categorization of IoT access control. 28
Figure 3.2: OAuth 2.0 entities and interactions. 29

Figure 4.1: A blockchain-based large scale IoT architecture. 43
Figure 4.2: Blockchain-based token-based access control architecture for a

multi-tenant smart city use case. 50
Figure 4.3: OAuth 2.0 using ERC-721 tokens architecture. 59
Figure 4.4: Revocation of ERC-721 tokens on OAuth 2.0. 63
Figure 4.5: Delegation of ERC-721 tokens on OAuth 2.0. 65
Figure 4.6: Fair exchange of ERC-721 tokens on OAuth 2.0. 66
Figure 4.7: Overview of the consensus-based access control solution’s archi-

tecture. 73
Figure 4.8: Design of the smart contract-based approach for the consensus-

based access control solution. 78
Figure 4.9: Design of the endorsement-based approach for the consensus-

based access control solution. 79
Figure 4.10: Experiment results for the smart contract-based approach in

the consensus-based access control solution: with and without
communication with the Authorization Servers. 85

Figure 4.11: Experiment results for the endorsement-based approach in the
consensus-based access control solution: with and without com-
munication with the Authorization Servers. 87

Figure 4.12: Latency with varying numbers of peers for both approaches of
the consensus-based access control solution. 89

Figure 4.13: Failed and successful transactions for the smart contract-based
and the endorsement-based approach of the consensus-based ac-
cess control solution. 91

Figure 5.1: Architecture diagram for the emulation environment of a scav-
enger hunt location-based game, involving two blockchains that
are interconnected through an Interledger Gateway. 113

Figure 5.2: Actors’ interaction with the scavenger hunt location-based mo-
bile gaming emulated system. 115

v

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Figure 5.3: Ethereum gas consumption as a function of the number of game
challenges for the scavenger hunt location-based mobile game. . 122

Figure 5.4: Time scalability for Ethereum-based scenarios in the scavenger
hunt location-based mobile game. 123

Figure 5.5: Time scalability for Hyperledger Fabric-based scenarios in the
scavenger hunt location-based mobile game. 124

Figure 5.6: The Internet of Things/Web of Things architecture considered
in the smart contract-based digital twins design. 136

Figure 5.7: Smart contract-based digital twin’s structure on the Ethereum. 137
Figure 5.8: Source code of the smart contract-based digital twin on the

Ethereum. 138
Figure 5.9: Smart contract-based digital twin’s structure on Hyperledger

Fabric. 139
Figure 5.10: Source code of the smart contract-based digital twin on the

Hyperledger Fabric. 140
Figure 5.11: An overview of the IoT system’s architecture that includes smart

contract-based digital twins. 142
Figure 5.12: Time required for requesting an actuation/sensing process through

the smart contract-based digital twin in Hyperledger Fabric
blockchain. 150

Figure 6.1: An overview of the architecture of a fully decentralized trading
game. 158

Figure 6.2: An overview of a blockchain-based marketplace for privacy-
preserving statistics. 161

vi

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

LIST OF TABLES

Table 3.1: IoT access control security requirements. 26

Table 4.1: ERC-20 token standard main functions. 40
Table 4.2: Cost of the construction building blocks of the large-scale IoT

architecture. 46
Table 4.3: JWT claims used in our OAuth 2.0 system that uses ERC-721

blockchain-based Access Control Tokens. 57
Table 4.4: ERC-721 token standard and ERC-721 metadata extension main

functions. 58
Table 4.5: Cost of the construction building blocks of the ERC-721 Access

Control Tokens. 68
Table 4.6: Experiment stress test comparison table for smart contract-based

and endorsement-based approach of the consensus-based access
control solution. 90

Table 5.1: System Key Performance Indicators for the scavenger hunt location-
based mobile game. 117

Table 5.2: Ethereum Virtual Machine execution cost (gas) for the actions
of the scavenger hunt location-based mobile game. 118

Table 5.3: Mean response time units for write requests (confidence inter-
vals) for the actions of the scavenger hunt location-based mobile
game. 120

Table 5.4: Mean response time units for read requests (confidence intervals)
for the actions of the scavenger hunt location-based mobile game. 121

Table 5.5: System performance evaluation results for all the emulation sce-
narios for the scavenger hunt location-based mobile game. 125

Table 5.6: Ethereum Virtual Machine execution cost (gas) of the construc-
tion building blocks of the IoT system utilizing smart contract-
based digital twin. 148

vii

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my Ph.D.

advisor, Professor George C. Polyzos, for his patient guidance, unwavering support,

and belief in my abilities. The opportunities he provided have been invaluable

throughout the course of my doctoral studies. His constant motivation, advices,

insightful critiques, and patience have not only shaped me as a researcher but also

as a person, with his mentorship being a cornerstone of my academic development.

I am also sincerely thankful for the assistance given by Professor Vasilios

A. Siris, Assistant Professor Spyridon Voulgaris, and Professor George Xylomenos.

Their valuable comments, their constructive feedback, and the thought-provoking

questions were crucial in helping me refine my arguments and deepen my research.

Their expertise not only guided my work but also enriched my understanding of

key research concepts and methodologies.

Many thanks to all senior researchers and professors with whom I had the

great opportunity to collaborate during my Ph.D studies. Thank you, Dr. Nikos

Fotiou, for guiding me at the early stages of my Ph.D. studies. Our interaction and

your expertise have been instrumental in shaping the direction and the quality of

my work. Thank you, Dr. Yannis Thomas for giving me life lessons and inspiring

me to develop mechanisms to entertain myself, both inside and outside the lab. I

also want to thank Christos Karapapas, a great friend and colleague, with whom I

enjoyed a wonderful collaboration. Together, we constantly motivated each other

and had endless conversations and great fun. I would also like to thank Professor

George D. Stamoulis for the great cooperation we had during my time as T.A. and

throughout my studies.

I had the privilege of working at the Mobile Multimedia Laboratory with

fantastic colleagues and friends. Dr. Merkouris Karaliopoulos, Dr. Livia Chatzieleft-

heriou, and Dr. Konstantinos Tsioutas were the first people I met there. They

were very supportive and working with them was a pleasure and always educat-

ing. I would also thank Spiros Chadoulos, who joined the MMLAB almost at the

same time as me, and Yiannis Papageorgiou, Alexandros Antonov, Vasilis Kalos,

Chalima Dimitra Nassar Kyriakidou, and Athanasia Maria Papathanasiou, who

viii

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

represent the new generation of the lab. They are great friends and I wish them

the best.

I would like to extend my thanks to all my friends, who stood to me during

my Ph.D. journey. Special thanks go to Nikos Yfantis, Konstantinos Yfantis, Kon-

stantinos Skoumas, Manolis Partsinevelos, Konstantinos Tsivolas, Dimitris Agath-

aggelos, and Nafsika Oikonomou for being great friends over the years.

Last but surely not least, my warmest thanks to my parents, Marina and

Agapitos, who have always supported me unconditionally, helping me become the

person I am today. Your constant support allowed me to pursue a Ph.D. degree

without distractions. Finally, thank you Maro, for being a great sister and always

being there for me.

ix

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

VITA

2017 Diploma in Informatics, Athens University of Economics and
Business, Greece

2019 M.Sc. in Computer Science, Athens University of Economics
and Business, Greece

2025 Ph.D. in Computer Science, Athens University of Economics
and Business, Greece

PUBLICATIONS

Journal Publications

I. Pittaras, N. Fotiou, C. Karapapas, V. A. Siris, and G. C. Polyzos, “Secure smart
contract-based digital twins for the Internet of Things,” in Blockchain: Research
and Applications, vol. 5, no. 1, 2024

N. Fotiou, I. Pittaras, V. A. Siris, G. C. Polyzos, and P. Anton, “A privacy-
preserving statistics marketplace using local differential privacy and blockchain:
An application to smart-grid measurements sharing,” in Blockchain: Research and
Applications, vol. 2, no. 1, 2021

I. Pittaras, N. Fotiou, V. A. Siris, and G. C. Polyzos, “Beacons and Blockchains
in the Mobile Gaming Ecosystem: A Feasibility Analysis,” in Sensors, vol. 21, no.
3:862, 2021

Refereed International Conference and Workshop Papers

C. Karapapas, I. Pittaras, G. C. Polyzos, and C. Patsakis, “Hello, won’t you tell
me your name?: Investigating Anonymity Abuse in IPFS,” in Proceedings of the
13th International Workshop on Cyber Crime (IWCC), Ghent, Belgium, August
2025

Y. Thomas, N. Fotiou, I. Pittaras, and G. Xylomenos, “Secure and Efficient Data
spaces over Named Data Networking,” in Proceedings of the 2025 IFIP Networking
Conference (IFIP Networking), Limassol, Cyprus, May 2025

C. D. Nassar Kyriakidou, I. Pittaras, A. M. Papathanasiou, G. Xylomenos, and
G. C. Polyzos, “Performance of Smart Contract-based Digital Twins for the In-
ternet of Things,” in Proceedings of the 2nd ACM International Workshop on
Middleware for Digital Twins (Midd4DT), Hong Kong, China, December 2024

x

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

A. M. Papathanasiou, C. D. Nassar Kyriakidou, I. Pittaras, and G. C. Polyzos,
“Smart contract-based decentralized mining pools for Proof-of-Work blockchains,”
in Proceedings of the 2024 IEEE International Conference on Blockchain, Copen-
hagen, Denmark, August 2024

N. Fotiou, C. D. Nassar Kyriakidou, A. M. Papathanasiou, I. Pittaras, Y. Thomas,
and G. Xylomenos, “Certificate Management for Cloud-Hosted Digital Twins,” in
Proceedings of 29th IEEE Symposium on Computers and Communications (ISCC),
Paris, France, June 2024

C. D. Nassar Kyriakidou, A. M. Papathanasiou, I. Pittaras, N. Fotiou, Y. Thomas,
and G. C. Polyzos, “Attribute-based Access Control Utilizing Verifiable Credentials
for Multi-Tenant IoT Systems,” in Proceedings of the 4th IEEE International Con-
ference on Electronic Communications, Internet of Things, and Big Data (ICEIB),
Taipei, Taiwan, April 2024

I. Pittaras and G. C. Polyzos, “Multi-tenant, Decentralized Access Control for the
Internet of Things,” in Proceedings of the 2023 IEEE International Conference on
Internet of Things and Intelligence Systems (IoTaIS), Bali, Indonesia, November
2023

Y. Thomas, N. Fotiou, I. Pittaras, G. Xylomenos, S. Voulgaris, and G. C. Polyzos,
“Peer clustering for the InterPlanetary File System,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Future of Internet Routing & Addressing (Fira
23), New York, USA, September 2023

N. Fotiou, I. Pittaras, S. Chadoulos, V. A. Siris, G. C. Polyzos, N. Ipiotis, and
S. Keranidis, “Authentication, Authorization, and Selective Disclosure for IoT data
sharing using Verifiable Credentials and Zero-Knowledge Proofs,” in Proceedings of
the 5th International Workshop on Emerging Technologies for Authorization and
Authentication (ETAA), Copenhagen, Denmark, September 2022

A. M. Papathanasiou, C. D. Nassar Kyriakidou, I. Pittaras, and G. C. Polyzos,
“R?ddle: A Fully Decentralized Mobile Game for Fun and Profit,” in Proceedings
of the 4th International Congress on Blockchain and Applications, L’aquila, Italy,
2022

C. Karapapas, G. Syros, I. Pittaras, and G. C. Polyzos, “Decentralized NFT-based
Evolvable Games,” in Proceedings of the 4th Conference on Blockchain Research
and Applications for Innovative Networks and Services (BRAINS), Paris, France,
September 2022

I. Pittaras and G. C. Polyzos, “Secure and Efficient Web of Things Digital Twins
using Permissioned Blockchains,” in Proceedings of the 7th International Confer-
ence on Smart and Sustainable Technologies (SpliTech), Split and Bol, Croatia,
July 2022

xi

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

I. Pittaras, N. Fotiou, C. Karapapas, V. A. Siris, and G. C. Polyzos, “ Secure, Mass
Web of Things Actuation Using Smart Contract-based Digital Twins,” in Proceed-
ings of the 27th IEEE Symposium on Computers and Communications (ISCC),
Rhodes, Greece, June 2022

N. Fotiou, E. Faltaka, V. Kalos, A. Kefala, I. Pittaras, V. A. Siris, and G. C. Poly-
zos, “Continuous authorization over HTTP using Verifiable Credentials and OAuth
2.0,” in Proceedings of the Open Identity Summit 2022 (OID 2022), Lyngby, Den-
mark, 2022

C. Karapapas, I. Pittaras, and G. C. Polyzos, “Fully Decentralized Trading Games
with Evolvable Characters using NFTs and IPFS,” in Proceedings of the Workshop
on Decentralizing the Internet with IPFS and Filecoin (DI2F), Espoo, Finland,
June 2021

C. Karapapas, I. Pittaras, N. Fotiou, and G. C. Polyzos, “Ransomware as a Service
using Smart Contracts and IPFS,” in Proceedings of the 2nd IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), Toronto, Canada, May
2020

N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos, “OAuth 2.0 au-
thorization using blockchain-based tokens,” in Proceedings of the 3rd NDSS Work-
shop on Decentralized IoT Systems and Security (DISS), San Diego, CA, USA,
February 2020

N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos, “Secure IoT
access at scale using blockchains and smart contracts,” in Proceedings of the 8th
WoWMoM Workshop on the Internet of Things: Smart Objects and Services (IoT-
SoS), Washington DC, USA, June 2019

Refereed International Conference and Workshop Demos, Abstracts,
and Posters

Y. Thomas, N. Fotiou, I. Pittaras, and G. Xylomenos, “Poster: Named Data Net-
working for Data Spaces,” in Proceedings of 29th IEEE Symposium on Computers
and Communications (ISCC), Paris, France, June 2024

I. Pittaras and G. C. Polyzos, “SmartTwins: Secure and Auditable DLT-based
Digital Twins for the WoT,” in Proceedings of the 18th IEEE International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), Los Angeles, CA,
USA, May 2022

N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos, “Securing IoT
services using DLTs and Verifiable Credentials,” in Proceeding of the Network and
Distributed Systems Security Symposium 2020 (NDSS 2020), San Diego, CA, USA,
February 2020

xii

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

N. Fotiou, I. Pittaras, V. A. Siris, and G. C. Polyzos, “Enabling opportunistic
users in multi-tenant IoT system using decentralized identifiers and permissioned
blockchains,” in Proceedings of the 2nd ACM Workshop on Internet of Things
Security and Privacy (IoT S&P), London, UK, November 2019

xiii

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

ABSTRACT OF THE DISSERTATION

Distributed Ledger Technologies meet the Internet of Things:
Security, Interoperability, and Advanced Access Control

by

Iakovos Pittaras

Doctor of Philosophy in Computer Science

Athens University of Economics and Business, Athens, 2025

Professor George C. Polyzos, Chair

The Internet of Things (IoT), where ordinary physical devices and appli-

ances are accessed through the Internet, communicate with each other, and operate

unattended and autonomously, reshapes the status quo of the modern Internet and

many of its underlying mechanisms. The IoT is an enticing paradigm receiving in-

creasing attention from the research community due to the multitude of important

and often sensitive services that provides across diverse use cases. However, the

proliferation of IoT devices and applications requiring cooperation among heteroge-

neous devices and the exchange of (often sensitive) information between multiple

entities, having no or little trust relationships, highlights the need for seamless

interoperability, enhanced intrinsic security, decentralization, and auditable, fine-

xiv

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

grained, decentralized, and flexible access control. Consequently, although in prin-

ciple the IoT appears to offer numerous benefits, when it comes to its realization

many concerns are raised. In particular, one of the most critical challenges that the

IoT must address is the protection of IoT devices and data generated within IoT

systems. Yet, most conventional access control solutions, designed for centralized,

less dynamic environments and for non resource-constrained devices, have been

proven inefficient and inadequate for IoT’s unique demands. It has, therefore,

become evident that existing IoT solutions need to be reassessed and new access

control solutions have to be developed.

This dissertation argues that Distributed Ledger Technologies (DLTs) offer

a promising approach to meet the (security) requirements of both IoT systems and

IoT access control solutions. Our contribution towards that direction is twofold.

First, we analyze the related literature and derive key requirements that IoT access

control should fulfill. Based on these, we propose novel DLT-based access control

solutions that leverage smart contracts to issue and manage Access Control To-

kens (ACTs) and to serve as decentralized Policy Decision Points (PDPs), thereby

offering strong security properties. To demonstrate feasibility, we integrate our

solutions with the OAuth 2.0 protocol. In addition, we explore how the consensus

mechanism of Hyperledger Fabric can itself serve as a PDP for access control in

multi-tenant, collaborative IoT systems. Second, we demonstrate how blockchain

technology can be integrated into IoT systems and architectures, highlighting its

advantages in use cases, such as gaming and digital twining. We show how this

integration, combined with the Web of Things (WoT) paradigm, can enhance IoT

systems and applications, especially in terms of security and interoperability.

xv

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Chapter 1

Introduction

The technological landscape has undergone a significant transformation in

recent years. Emerging systems and applications depart from traditional central-

ized paradigms to decentralized ecosystems of interconnected devices. The Internet

of Things (IoT) represents a salient paradigm of this transformation that is rapidly

gaining attention, reshaping the status quo of the current Internet and Web. Un-

like the traditional Internet, the IoT enables physical devices, ranging from home

appliances to industrial machinery, to communicate with each other autonomously.

Specifically, the IoT is envisioned to be an ecosystem of interconnected devices,

e.g., sensors and actuators, that can collect, share (sensors), and act (actuators)

on data, having as a goal to merge the cyber with the real world, providing a

multitude of services that improve the quality of our lives.

The IoT is rapidly gaining adoption due to its wide-ranging applications

and offered potentialities that have great impact on several aspects of everyday

life. According to Cisco, 500 billion devices will be connected to the Internet by

2030.1 The increasing adoption of the IoT spans diverse sectors, as it has the

ability to address critical everyday and industrial challenges [1]. For instance, in

healthcare, the IoT supports real-time patient monitoring and remote care, among

others, significantly improving healthcare services. In agriculture, the IoT enables

smart irrigation and soil monitoring, enhancing productivity and promoting sus-

1https://www.cisco.com/c/dam/global/fr fr/solutions/data-center-virtualization/big-

data/solution-cisco-sas-edge-to-entreprise-iot.pdf

1

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

2

tainable farming. In urban environments, the use of the IoT can lead to mitigation

of traffic congestion, enhance energy efficiency, and bolster public safety. Similarly,

manufacturing can benefit from the IoT by enabling digital twining that facilitates

predictive maintenance and streamlining supply chain operations, driving the prin-

ciples of Industry 4.0. These applications demonstrate the IoT’s vast potential to

enhance productivity, sustainability, and quality of life, representing just a few of

the many areas and use cases in which the IoT can be integrated.

However, despite its enormous potential, the IoT faces several challenges

that must be addressed to realize its full promise. The proliferation of IoT devices

has introduced interoperability issues due to the lack of standardization across pro-

tocols and manufacturers. In addition, security and privacy challenges have become

critical as IoT systems handle vast amounts of private and sensitive data [2]. The

first step into securing IoT systems, devices, and data is through access control,

as it is often considered the backbone technology to ensure security. The ultimate

goal of access control is to prevent unauthorized access to resources and unau-

thorized flow of information. However, most IoT devices are resource-constrained,

hence they cannot support the current complex security solutions, constituting tra-

ditional access control and security solutions inappropriate for the IoT. Moreover,

the reliance on centralized infrastructures conflicts with the IoT’s decentralized

nature and can lead to single point of failures and inefficiencies. Consequently,

it is clear that the current Internet and Web architectures and security solutions

cannot effectively and efficiently handle various challenges introduced by the new

paradigms, including security, privacy, access control, interoperability, and decen-

tralization, due to the shortcomings in their original design.

In this context, blockchains and Distributed Ledger Technologies (DLTs) [3]

more general (for simplicity, we will use these terms interchangeably throughout

the dissertation) have emerged as a promising solution to address the challenges

that the IoT currently faces. DLTs, originally developed as the foundation for

cryptocurrencies, such as the Bitcoin [4], have gained immense popularity and

recognition due to their inherent and intriguing properties, such as unique trust,

transparency, decentralization, auditability, immutability, and security. The in-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

3

creasing popularity of blockchain solutions is reflected in the global spending

on these solutions, which is projected to reach $19 billion by the end of 2024.2

Blockchain technology has increasingly being adopted in various domains, includ-

ing supply chains [5], the energy sector [6], smart agriculture [7], etc., showcasing

its versatility and transformative potential. Especially in the context of the IoT

and IoT security, these properties align well with the IoT’s needs, where devices

must interact autonomously and often involve multiple entities with no trust re-

lationships between them. By many, DLTs and smart contracts are expected to

revolutionize [8] and bring “democracy” in the IoT domain [9], facilitating alterna-

tive communication paradigms and enabling novel security mechanisms. However,

the potential of DLTs to redefine traditional systems is confined, as they come

with some drawbacks, including poor performance and high costs, which require

careful consideration. Overcoming these limitations or balancing the gains and the

drawbacks will be crucial for integrating IoT and blockchains, paving the way for

a secure, interoperable, and decentralized future.

1.1 Motivation for the dissertation

The IoT is envisioned to improve the quality of our lives, by seamlessly

interconnecting cyber and real worlds. However, realizing this vision requires ad-

dressing several significant challenges. Currently, there is a plethora of IoT devices

produced by different manufacturers, each employing different protocols and data

formats. On top of that, IoT ecosystems involve multiple business entities with

their own and often competing goals, objectives, and priorities. This diversity has

resulted in IoT systems being fragmented and far from the goal of one unified and

interoperable IoT envisioned. Interoperability is a crucial property for IoT sys-

tems, as it enables diverse devices and applications to work together, regardless of

their underlying protocols and technologies. Without interoperability, IoT devices

from different manufacturers cannot communicate easily and effectively, leading to

isolated “silos” of information and functionality. For instance, consider a smart

2https://www.statista.com/statistics/800426/worldwide-blockchain-solutions-spending/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

4

home environment, where there are IoT devices, such as temperature sensors and

thermostats. These IoT devices should communicate seamlessly to maximize effec-

tiveness and work autonomously, e.g., when the temperature drops below 15◦ C,

the heating system should be activated automatically. Without such interaction,

their functionality and efficiency are significantly limited. Beyond that, there is

also application-level fragmentation in IoT ecosystems. Most manufacturers intro-

duce their own client applications, forcing end-users to install, and switch between,

multiple applications just to monitor or control their IoT devices. This prolifera-

tion of vendor-specific applications further undermines the unified IoT experience.

In addition, as the IoT becomes more and more popular and integrated

into daily life, it is clear that it generates and manages sensitive and even personal

data in some cases, e.g., health data generated by wearable devices. Furthermore,

the environment in which IoT devices need to operate is mostly unpredictable,

highly dynamic, and continuously changing, and since the real world can be di-

rectly impacted, given the pervasiveness of IoT systems, security and privacy are

serious concerns and are considered two of the major challenges that the IoT is

facing [2]. Securing IoT devices and services requires complex security solutions

using advanced cryptographic techniques and algorithms. However, these solu-

tions have not been designed for the IoT, in which many IoT devices are usually

resource-constrained and lack the computational power to handle these complex

operations. Therefore, more lightweight solutions tailored to the limitations of IoT

devices are required.

The first step into securing the IoT is through access control, since it is con-

sidered as a foundational aspect to ensure security. In a nutshell, access control is

a set of methods that can tag, organize, and manage data and devices in a sys-

tem [10]. Yet, traditional access control models and mechanisms are not well suited

for the IoT, since they are too rigid, structured, and require complex operations.

Moreover, they fail to accommodate the collaborative nature and multi-tenancy

of the IoT, where resources and devices may be owned by one entity, stored by

another entity, and might refer to other entities. In such cases, there is not a single

entity solely responsible for the access control, but all the involved entities should

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

5

collaborate to achieve that. Except of the above, traditional access control solu-

tions have been proven inadequate for the IoT, due to their reliance on centralized

infrastructures. There are cases, where they even be deemed insecure by emerging

security paradigms, such as the Zero Trust paradigm [11].

The decentralized nature of DLTs aligns well with the aforementioned chal-

lenges of IoT systems. DLT is a new and exciting technology with many intriguing

properties, which can help significantly in building secure IoT access control mech-

anisms and IoT solutions. There are already some approaches that have explored

the use of DLTs to address these challenges. However, the use of DLTs is a double-

edged sword, as it comes also with some drawbacks, such as performance and costs

issues. Therefore, careful consideration is required.

These observations, give us a strong motive to: (i) elicit concrete (security)

requirements for IoT access control, (ii) revisit key blockchain-based access control

solutions tailored to the IoT, and (iii) design new blockchain-based access control

solutions for the IoT, alongside secure, decentralized, and interoperable blockchain-

based IoT architectures and systems.

1.2 Contributions

Our contributions, which we present in this dissertation, are the following.

• We review and study two popular blockchains, which are used in the disserta-

tion, establishing their key properties. The two blockchains are Ethereum [12]

and Hyperleger Fabric [13]. We also review key access control models and

architectures.

• We gather IoT requirements related to access control and security. Based on

these requirements, we review and discuss related state of the art solutions.

• We design, implement, and evaluate a token-based access control solution

that leverages custom blockchain-based ERC-20 tokens [14], as Access Con-

trol Tokens (ACTs). Our access control solution is applied to an event-driven,

large-scale IoT management solution that we design and implement, based on

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

6

a proposed blockchain-based IoT architecture, offering mass actuation. Fur-

thermore, we demonstrate the use of the proposed ACTs in a multi-tenant

smart city scenario.

• We design, implement, and evaluate a new type of ACT, utilizing the ERC-

721 token standard [15]. The proposed type of ACT supports auditing,

accountability, proof-of-possession, and added value token management ser-

vices, including delegation, fair exchange, and fast revocation. We integrate

our solution with the OAuth 2.0 protocol [16].

• We design, implement, and evaluate a decentralized consensus-based access

control solution for multi-party, collaborative IoT environments, based on

Hyperledger Fabric blockchain. Furthermore, we design, implement, evalu-

ate, and compare two distinct approaches for implementing consensus-based

access control decision. The first approach utilizes smart contracts and the

blockchain to act as Policy Decision Point (PDP), while the second approach

utilizes the actual consensus mechanism of Hyperledger Fabric, i.e., the en-

dorsement policy, to act as PDP.

• We explore the adoption of the IoT and DLTs in the mobile gaming sector,

demonstrating how their combination unlocks new business opportunities

and enables innovative business models. We evaluate the added overhead

introduced by blockchain technology, such as transaction delays and costs,

by analyzing both public and private blockchains and their combination. The

evaluation is performed in a simulated location-based, context-aware mobile

gaming ecosystem, based on defined Key Performance Indicators (KPIs).

• We design, implement, and evaluate secure, decentralized, reliable, auditable,

and flexible smart contract-based digital twins for IoT devices utilizing smart

contracts and the Web of Things (WoT) standard [17]. We implement our

solution in two different blockchains, Ethereum and Hyperledger Fabric. Our

design offers increased security and interoperability. In addition, we propose

using the smart contract-based digital twins as transparent proxies to control

but also isolate the actual IoT devices.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

7

• We present the innovative application of blockchain technology and smart

contracts in other domains than the IoT, including blockchain-based games

that utilize Non-Fungible Tokens (NFTs) and transparent and fair-exchange

marketplaces. We showcase the benefits and the novel features that are

enabled due to the use of the blockchain technology.

1.3 Dissertation outline

The remainder of the dissertation is organized as follows. Chapter 2 presents

the key properties of blockchain technology and provides a review of two major

blockchain technologies, Ethereum and Hyperledger Fabric. Additionally, it pro-

vides a review of key access control models and presents an access control archi-

tecture, which is used as a reference access control architecture in the following

chapters. Chapter 3 presents IoT security and access control requirements and re-

views existing (blockchain-based) access control solutions specifically designed for

the IoT. Chapter 4 details our novel blockchain-based access control solutions for

the IoT. Chapter 5 presents the integration of blockchain technology in IoT sys-

tems and architectures, focusing on the cases of mobile gaming and digital twining.

Chapter 6 presents the application of blockchain technology in other domains than

the IoT. Finally, Chapter 7 presents the conclusions of this dissertation and some

potential directions for future research.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Chapter 2

Distributed Ledger Technologies

and Access control

In this chapter, we examine the blockchain technology, establishing its key

properties, and we review two popular blockchains, namely Ethereum and Hy-

perledger Fabric. Additionally, we examine key access control models, ultimately

selecting a representative access control architecture to serve as a reference archi-

tecture in the following chapters.

2.1 Distributed Ledger Technologies

Blockchains [3] have emerged as a groundbreaking technology with the po-

tential to transform a wide range of industries. At its core, this technology provides

a decentralized and tamper-resistant method for recording and verifying transac-

tions. Unlike traditional systems, blockchains do not rely on trusted centralized

authorities.

A blockchain is an append-only ledger of transactions distributed through-

out a network of mutually non-trusting nodes. Hence, they are also referred to

as DLTs. A simplified version of a blockchain network is illustrated in Figure 2.1.

The nodes participating in the blockchain form a peer-to-peer network. This net-

work is used for connecting the nodes and propagating transactions and generated

blocks, based on a gossip protocol. The ledger organizes data into blocks, which are

8

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

9

Peer A

Peer E

Peer C

Peer B Peer D

Wallet (public/private key pair)

Ledger

Block n-1 Block n Block n+1

Cryptographic link

Transaction

Figure 2.1: High level representation of a blockchain network and its core com-

ponents.

cryptographically linked to form a chain. Each block of the blockchain contains a

collection of validated transactions, i.e., state transitions, organized in a data struc-

ture, and a reference to the previous block through a cryptographic hash. This

cryptographic linking ensures that the ledger maintains a tamper-proof history of

transactions. In most blockchains, like Bitcoin [4], the data structure used to store

transactions within a block, is Merkle trees. Merkle trees organize transaction

data into a tree-like structure, where each leaf node represents a transaction hash,

and parent nodes represent the hashes of their child nodes. The root of the tree

summarizes all transactions in the block. A data structure like that is beneficial, as

it enables efficient verification, since the verification can be done without requiring

access to the full block, data integrity, as any alteration in a single transaction al-

ters the Merkle root, and compact storage, by storing only the Merkle root within

the block. Emerging blockchain designs may utilize alternatives to Merkle trees,

such as Directed Acyclic Graphs (DAGs) or hashgraphs, which aim to enhance

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

10

scalability and performance. The blockchain’s structure ensures that once a trans-

action is included in a block and appended to the chain, its contents cannot be

altered without invalidating subsequent blocks, enabling inherently immutability

of actions and transactions.

The most critical component for the operation of blockchains is the consen-

sus mechanism, as it solves the problem of synchronizing the state of the ledger,

ensuring that all participating mutually non-trusting nodes agree on the same state.

Consensus mechanisms validate transactions, facilitate the addition of new blocks

to the blockchain, and maintain the integrity and consistency of the distributed

ledger. In decentralized networks, achieving consensus is particularly challenging,

as there is not a single trusted centralized entity to decide it. Instead, consensus

mechanisms establish unique trust between mutually non-trusting entities, ensur-

ing reliability and integrity in the blockchain. These mechanisms operate based on

a set of consensus rules that define what constitutes a valid transactions and block.

The main idea behind the consensus mechanisms is to incentivize the participating

users to act honestly. The nature of these incentives depends on the specific con-

sensus algorithm used. Various consensus algorithms have been developed, tailored

to the requirements of different blockchain types, with the most popular of them

being the Proof of Work (PoW), Proof of Stake (PoS), Proof of Authority (PoA),

and Byzantine Fault Tolerance (BFT) algorithms, such as the practical Byzantine

Fault Tolerance (pBFT) algorithm [18], which are algorithms designed to solve

the classical Byzantine General’s problem [19] enabling consensus in distributed

environments despite the presence of malicious nodes.

The PoW algorithm was introduced by the creator of Bitcoin. In these al-

gorithms, nodes, called miners, solve computationally intensive puzzles to validate

transactions and propose new blocks. This method is extremely energy-intensive in

order to prevent attacks by making them economically unfeasible. Honest nodes,

who validate successfully transactions and create valid blocks, are rewarded mone-

tarily. Otherwise, dishonest nodes or those proposing invalid blocks end up losing

the cost of energy used for the validation. A more energy efficient consensus al-

gorithm is the PoS. In PoS, there is a set of validators responsible for validating

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

11

transactions and creating blocks. Anyone holding the blockchain specific cryp-

tocurrency can become a validator. Validators take turns proposing and voting on

the next valid block. Each validator’s vote has different weight, depending on the

size of its deposit, called stake. A validator risks losing its stake, if the block he

staked on is rejected by the majority. On the other hand, for every block that is

accepted by the majority, validators earn a reward proportional to their deposited

stake, incentivizing honest participation and penalizing dishonest behaviors. PoA

algorithms operate similarly to PoS, but replace the staking of cryptocurrencies

with the validators’ reputation. Validators are pre-approved and their credibil-

ity is at stake. If they do not act honestly, they end up losing their reputation

and being removed from the validator set. In pBFT, all the nodes take turns to

vote the next block. pBFT guarantees safety and liveness, as long as fewer than

one-third of nodes are malicious. The BFT algorithms, such as pBFT, are usually

used in permissioned blockchains, where participants are known and trusted or

semi-trusted.

Another strong point of the blockchain technology is the support for execu-

tion of immutable computer programs, called smart contracts, which run determin-

istically within the blockchain. Smart contracts are immutable, in the sense that

once deployed, their code cannot be modified or deleted. Unlike the traditional

software, the only way to modify a smart contract is to deploy a new instance of

it (however, there are some blockchains that allow the modification of the smart

contracts after their deployment). Therefore, users can be confident that what

they develop will always be executed as they developed it and it will always be

respected. Furthermore, smart contracts are executed deterministically, ensuring

that the outcome of their execution is identical for all participants, given the con-

text of the transaction that initiated its execution and the state of the blockchain

at the moment of the execution. Additionally, smart contracts ensure tamper-

proof execution and enhance transparency by allowing all the participating users

to verify the smart contract’s source code and its outcomes. Interactions between

users and smart contracts result in transactions that are immutably recorded on

the ledger, preserving an auditable and secure record of all activities. However,

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

12

the immutability of smart contracts also introduces challenges. If there is a flaw

in smart contract’s logic or a bug in its source code, it will exist forever. Bugs and

flaws in smart contracts can be extremely costly and easily exploited, as demon-

strated by the DAO attack,1 which occurred in June 2016 and resulted in the theft

of 3.6 million Ether ($60 million in that time). For these reasons, many tools

that analyze the smart contract’s source code and detect possible flaws have been

proposed [20].

The blockchains can be broadly categorized into two types, based on their

access and governance models, even though finer distinctions can be made in some

cases. The two main categories are public, permissionless blockchains and private,

permissioned blockchains. Other categories include hybrid blockchains, consor-

tium blockchains, etc. [21]. Public blockchains are open to anyone, who wishes

to participate. Anyone can observe them, join the network, submit transactions,

and participate on the consensus. Public blockchains are fully decentralized and

typically use consensus algorithms like PoW and PoS. Two well known implemen-

tations of this type of blockchain are Bitcoin and Ethereum. On the other hand,

private blockchains are restricted only to participants that have the right creden-

tials. The identity of each participant is predefined and usually cannot change.

Access and permissions are usually controlled by a central authority or a consor-

tium. Consortium blockchains are governed by a group of organizations, providing

a balance between decentralization and control. The protocols and algorithms used

to achieve consensus on private blockchains are simpler and are based on solutions

to the Byzantine General’s Problem. A well known implementation of this type of

blockchains is Hyperledger Fabric.

To participate in a blockchain network, independently of its type, a user

must first create a cryptographic identity. This usually involves generating a

public-private key pair. The private key is used for signing transactions, while

the public key acts as the user’s blockchain “address” and is used for verifying

the signature. Depending on the blockchain type, additional certificates may be

required.

1https://en.wikipedia.org/wiki/The DAO

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

13

To sum up, the key characteristics and inherent properties of the blockchain

technology are the following. Initially, decentralization is an intrinsic property

of blockchain technology, enabled by the design of the blockchain’s architecture

and consensus mechanisms, which eliminates the need for centralized authorities.

Blockchains reduce the reliance on a single, trusted entity, which usually constitutes

a single point of failure. As a result, blockchains enhance reliability and availability.

Furthermore, the distributed nature of blockchains makes them resilient to faults

and malicious users, provided the majority of participants remain honest. Another

key characteristic of blockchains is immutability. Once data, smart contracts, and

transactions are recorded on the blockchain, they cannot be altered nor deleted

without the consensus and awareness of the network. This ensures integrity of the

ledger and prevents tampering. Also, the transactions are recorded on the ledger

in a verifiable manner, enabling traceability, auditability, and non-repudiation. In

addition, blockchains enhance transparency and offer varying levels of it, depend-

ing on the use case, i.e., public blockchains are fully transparent, while private

blockchains are transparent to the participants. Finally, the consensus algorithms

that blockchains rely on ensure agreement between mutually non-trusting nodes,

without a single, trusted authority, ensuring enhanced trust within the system.

While the blockchain technology offers all the aforementioned properties, it

also faces several significant challenges that limit its adoption, including scalability,

performance, high costs, privacy concerns, and interoperability. Blockchains, and

especially public blockchains, struggle to handle a high volume of transactions ef-

ficiently, due to the reliance on consensus mechanisms, like PoW. These scalability

issues result in network congestion and high transaction fees, which can often be

prohibitive for widespread adoption. Furthermore, achieving consensus across a

large distributed network incurs significant communication overhead. This affects

the speed of transaction validation and block propagation, making the blockchains

exhibit worst performance compared to centralized systems. For instance, Bitcoin

can handle approximately 7 Transactions Per Second (TPS) and Ethereum achieves

around 30 TPS, while centralized systems, such as Visa, achieve thousands of TPS.

Blockchains also impose high storage requirements on participants, as nodes must

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

14

store the entire ledger. For example, the size of Ethereum’s ledger currently exceed

1,220 GB.2 This growing storage demand presents scalability concerns, especially

for smaller participants with limited resources. In addition, the public nature of

blockchains can conflict with privacy requirements, making them unsuitable for

certain use cases, where privacy and confidentiality is critical. Finally, it is evident

that a wide spectrum of diverse blockchains exists, each utilizing different tech-

nologies, e.g., consensus algorithms, and offering distinct properties, e.g., public

vs private blockchains. Therefore, the “one blockchain rules them all” paradigm is

far from true. Instead, securely and efficiently interconnecting these heterogeneous

blockchains to leverage their unique advantages becomes increasingly important.

Addressing all these challenges is essential to unlock the full potential of blockchain

technology.

2.1.1 Ethereum

Ethereum [12], introduced in 2015, is one of the most popular public, per-

missionless blockchains. It is an open source, decentralized blockchain platform ca-

pable of executing immutable distributed applications, smart contracts. In essence,

Ethereum is a deterministic state machine, consisting of a globally accessible sin-

gleton state and a virtual machine that applies changes to the state. Ethereum

uses a blockchain to synchronize and store the system’s state changes, alongside a

cryptocurrency, called Ether (ETH). Ethereum is designed to be a general purpose

programmable blockchain that runs a virtual machine, the Ethereum Virtual Ma-

chine (EVM), capable of executing code of any complexity, in a Turing complete

language, such as Solidity.3 As for the consensus mechanism, initially, Ethereum

used PoW, but it transitioned to PoS, as part of the Ethereum 2.0 upgrade. In par-

ticular, the consensus mechanism the Ethereum uses now is based on Casper [22].

Unlike other popular public blockchains, such as Bitcoin, Ethereum allows

users to build Decentralized Applications (DApps), making it one of the most

widely used blockchains. A DApp is an application built on top of decentralized,

2https://ycharts.com/indicators/ethereum chain full sync data size
3https://docs.soliditylang.org/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

15

peer-to-peer services. In general, DApps represent a broader perspective than a

smart contract and they might include other decentralized components, such as

a decentralized storage protocol, like the InterPlanetary File System (IPFS) [23].

However, on blockchains, DApps are primarily realized as smart contracts.

Smart contracts, in Ethereum, are executed deterministically within the

context of EVM. However, they operate with a limited execution scope. Specifi-

cally, they can only access their own state and information about previous blocks.

Thus, they cannot communicate with the “outside world,” e.g., sending HTTP

requests to a server. Each smart contract has a unique address on the blockchain,

which is derived from the smart contract’s creation transaction, as a function of

the originating account and a nonce. The deployment of a smart contract to the

blockchain does not imply that the smart contract will be executed automatically

in the background. Smart contracts can include functions and events. Functions

are the primary way of defining the behavior and actions that a smart contract can

perform. Functions can inspect and alter the blockchain’s state. In contrast, events

are a type of logging mechanism, primarily used for signaling changes or specific

conditions within the smart contract to the outside world, without affecting the

smart contract or blockchain’s state. These events are stored in the transaction

logs, when the smart contract executes, and they are accessible using the Ethereum

blockchain.

To execute an action of a smart contract, gas is required. Gas is Ethereum’s

unit for measuring the computation and storage resources required to perform

an action on Ethereum. Gas accounts every computation step performed by

transactions and smart contract’s execution. Thus, each operation performed on

Ethereum, costs an amount of gas. Gas is divided into gas cost and gas price. Gas

cost is the number of units of gas required to perform an operation on Ethereum,

while gas price is the amount of ether, we are willing to pay per unit of gas, when

we perform an operation on Ethereum. The bigger the amount of gas price, the

faster the operation will be executed. Essentially, gas fee is calculated as:

GasFee = GasCost ∗GasPrice (2.1)

Even after the transition from PoW to PoS, gas fee remains as an economic mech-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

16

Client Application

Wallet (Public/Private key pair)

Peer A

Peer D

Peer C
Peer B

Smart contract

(1) Initiate transaction

(2) Verify transaction

(3) Execute transaction
and create block

(4)

(4)

(5) Re-execute
transactions of the block

(5)

(5)

Figure 2.2: Transaction flow in Ethereum blockchain.

anism to allocate resources efficiently.

To participate in the Ethereum network and execute smart contracts, a

user must own an “account” on the blockchain. An account is essentially a public-

private key pair and has an address on the blockchain, which is derived from the

public key of the user and is a unique identifier of the account. The private key

is used for signing transactions. Furthermore, a user may own an Ethereum “full

node” and interact directly with the blockchain, or he may relay his transactions

through another full node that also acts as a Remote Procedure Call (RPC) server.

Each design choice has its trade-offs. Maintaining a full node requires continuous

network connectivity and some non-negligible storage space for storing the com-

plete Ethereum blockchain,4 whereas relying transactions through an RPC server

entails the risk that the RPC server is offline or acts maliciously and drops mes-

sages. Thus, the RPC server is a single point of failure and trust. To avoid that

we can be connected to many RPC servers from many providers.

The transaction flow in Ethereum, illustrated in Figure 2.2, follows the most

4The size of the Ethereum blockchain on 15 Jan. 2025 was reported by

https://ycharts.com/indicators/ethereum chain full sync data size to be 1219.20GB

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

17

popular model, which is the order-execute model. The flow goes as follows. Ini-

tially, a user initiates a transaction, which includes the sender address, a recipient

address, value, e.g., amount of Ethers to be transferred, gas limit and price, data

field, a nonce, and the sender’s digital signature. Then, the transaction is propa-

gated to the Ethereum network, where nodes verify the transaction’s validity. In

particular, the valid transactions are placed into a pool of transactions, where are

selected by validators, based on a priority, determined by gas fees. Then, a val-

idator executes the transaction and the transaction is ordered in a block, which is

broadcast to other nodes/validators. The other nodes re-execute all transactions in

a block and if the block is valid, they append it on the ledger and the blockchain’s

state is updated.

Finally, a critical part of the Ethereum ecosystem is the Ethereum Improve-

ment Proposals (EIPs) and the Ethereum Request for Comments (ERCs), which

drive the evolution and standardization of the Ethereum ecosystem.5 EIPs are for-

mal documents that describe standards for the Ethereum platform, including core

protocol specifications, client APIs, and smart contracts standards. They are vital

for ensuring that changes to the Ethereum blockchain are thoroughly reviewed,

tested, and agreed upon the community. ERCs represent a specific subset of EIPs,

focused on defining standards for Ethereum smart contracts. These standards help

developers to build interoperable DApss that can seamlessly interact with wallets

and other components of the ecosystem.

2.1.2 Hyperledger Fabric

On the other hand, a popular implementation of a private, permissioned

blockchain is Hyperledger Fabric (for simplicity, we will refer to is as Fabric in

the remainder of the dissertation) [13], introduced by the Linux Foundation in

2016. Fabric is a consortium blockchain, meaning that a Fabric network consists

of multiple organizations that come together to form the blockchain network. Fab-

ric offers a highly modular and scalable architecture. Each organization includes

its own Certificate Authority (CA) that issues X.509 certificates (identities) to its

5https://eips.ethereum.org/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

18

Hyperledger Fabric Network

Org1

Org1

Peer 1 Peer 0

Org1

Org2

Peer 1Peer 0

SC 1 SC 1SC 1 SC 1

(1a) Transaction proposal

(2) Verify signature
and execute
transaction

(3) Proposal response

Fabric Gateway(4) Verify endorsement
policy (e.g., m out of n)

(9) Final transaction

(1a) (3)

Client Application (Fabric SDK)

Wallet (X.509 certificates)

Steps 1a-3,7, 8 apply also here

(8) Verify endorsement
policy and append
transactions on the ledger

Org1 Orderer 3

Orderer 2

Orderer 1

Orderer 0 Orderer service

(6) Collect and
order transactions

Figure 2.3: Transaction flow in Hyperledger Fabric blockchain.

members. In Fabric, membership to the network is controlled by a shared, globally

defined component, called Membership Service Provider (MSP). The MSP imple-

mentation follows the Public Key Infrastructure (PKI) model, identifying which

CAs are authorized to issue valid certificates and mapping the trusted CAs to or-

ganizations. Fabric, like other popular blockchains, such as Ethereum, allows the

execution of smart contracts, known as chaincodes, written in any general-purpose

programming language, such as JavaScript, Java, and Go. Smart contracts in Fab-

ric, in contrast to other popular blockchains, can communicate directly with the

“outside world,” allowing them to send requests to external servers, call APIs, and

more.

Fabric introduces a new model for transactions, called execute-order-validate.

As illustrated in Figure 2.3, the transaction flow in Fabric is slightly different from

Ethereum. Initially, the transaction is executed by all the appropriate peers, called

endorsing peers, then it is validated against an endorsement policy, and finally, it is

ordered in a block, based on the consensus protocol, and committed to the ledger.

In Fabric, the consensus mechanism encompasses more than simply agreeing upon

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

19

the order of transactions and blocks. Consensus is defined as the full-circle verifica-

tion of the correctness of a set of transactions and includes the usage of endorsement

policies and the ordering service. In the ordering phase, the results are gathered by

the orderers, which create and broadcast blocks to the network. The orderers are

orchestrated through a Crash Fault Tolerant (CFT)-based consensus algorithm,

such as Kafka and Raft. The endorsement policy [24] enables the selection of a set

of Fabric nodes, e.g., “n out of m” that are required to agree on the result of a

smart contract invocation for the invocation to be considered valid by the network.

Endorsement policies can capture several different types of security models, from

tolerating up to a certain threshold of malicious nodes to allowing state changes

only by a specific set of nodes. Endorsement policies are defined per smart con-

tract. During a transaction flow, the endorsement policy is validated twice, at the

Fabric gateway and at the peer level. In particular, the Fabric gateway, which is

usually a peer in the blockchain network (it is not the same peer in each transac-

tion), when it collects all the responses from all the appropriate peers, it validates

if the endorsement policy is satisfied (step 4 in Figure 2.3). Then, when orderers

broadcast the block to peers to append it on the ledger, the peers are validating

the endorsement policy again (step 8 in Figure 2.3).

Another difference between the Fabric blockchain and the others is the

flexibility in smart contract development and deployment. In general, after the

deployment of a smart contract, all the participating peers must have the same

state and the same source code of that smart contract. However, a new feature

of Fabric, introduced in Fabric v2.0,6 allows the same smart contract not to be

identical across the members of the network. Organizations can slightly modify

a smart contract, e.g., to perform different validations in the interest of their

organization. Nevertheless, a transaction will be validated and committed to the

ledger, only if the required number of organizations endorse the transactions with

matching results (the endorsement policy should be fulfilled), as it happens in any

other case. This feature allows greater flexibility and supports diverse use cases.

However, this result in non-deterministic execution of the smart contract, since

6https://hyperledger-fabric.readthedocs.io/en/release-2.5/whatsnew.html

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

20

the execution output can differ across the peers. Therefore, it requires careful

definition of the endorsement policies to ensure that the overall consensus process

remains consistent and secure despite the non-deterministic nature of the individual

executions.

2.2 Access control

Access control is a fundamental aspect of security, ensuring that only au-

thorized users can access, modify, or interact with resources, data, and systems.

Essentially, access control is a set of methods that tag, organize, and manage data

and devices within a system. An efficient access control solution should be able to

identify who has access to what, when, and under which conditions [10]. The main

components of an access control system are policies, which define authorization

requirements according to which access control is regulated, a model that provides

a formal representation of access control policies, and a mechanism, which defines

the low-level implementation of the access control model [25].

The access control model is the most critical part of an access control so-

lution. The problem of designing an efficient and secure access control model is

long-standing. The first access control models were proposed in the early 1970s and

were designed according to the military security policies, which solve the access

control problem with confidential hierarchy information [26, 27]. As technology

advanced, the demands for more robust access control solutions grew, leading to

the development of more sophisticated models. In particular, in 1980, the U.S. De-

partment of Defense (DoD) published the Trusted Computer System Evaluation

Criteria (TCSEC) [28], also called “Orange Book” that divides the access control

models into two categories, the Discretionary Access Control (DAC) [29] and the

Mandatory Access Control (MAC) [30]. In DAC model, the owner of a resource

determines the permissions granted to other users. It is based on identity-based

access control, where access rights are assigned to users based on their identities.

On the other hand, MAC relies on a set of system rules rather than on rules defined

by the owner. An example of DAC is file permissions in a Unix system, while a

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

21

MAC example is the classified documents in a government system.

Since then, numerous access control models have been proposed to address

the evolving demands and requirements of modern systems. Notably, in the late

1990s, the Role-Based Access Control (RBAC) model was introduced [31]. RBAC

is an access control model for controlling user access to resources based on their

assigned roles. Every user inherits the permissions associated with their roles. An-

other popular access control model is the Attribute-Based Access Control (ABAC),

in which access rights are constrained with respect to the attributes of subjects

(users), objects (resources), and actions [32]. While these models remain the most

prominent access control models, emerging technologies have prompted the devel-

opment of addition models. These include the Organization-Based Access Control

(OrBAC) [33], Usage Control (UCON) [34], Capability-Based Access Control (Cap-

BAC) [35], and Relationship-Based Access Control (ReBAC) [36], among others.

OrBAC is an extension of RBAC model, designed for use in multi-organization en-

vironments, allowing policies to be defined and enforced at the organizational level.

Namely, users are assigned roles within the context of an organization. UCON is

an advanced access control solution that extends traditional access control by in-

troducing the concept of mutability, regarding the policies (dynamic update to

policies), and continuous authorization, i.e., the policies are continuously evalu-

ated. In CapBAC, access is granted based on the possession of a capability, typ-

ically represented in the form of a token or a credential. The capability specifies

the actions a user can perform on a resource. Finally, ReBAC focuses on access

control decisions based on the relationships between entities rather than roles or

attributes. Relationships are usually modeled as graphs, with access decisions de-

pendent on graph traversal. Each of these models was developed to address specific

challenges in access control, offering unique features and solutions tailored to the

diverse and dynamic needs of modern systems.

2.2.1 A common reference architecture

In this section, we present a common architecture for access control, which

was firstly introduced in the context of the first version of the eXtensible Access

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

22

Policy Enforcement Point

Policy Information Point

Policy Administration Point

Policy Decision Point

Client application

Access request

Access request

Query policy

Reply

Query attributesReply

Client

Owner

Resource endpoint

Reply

Define policies

Access request

Figure 2.4: Reference access control architecture and entity interactions, based

on the OASIS XACML standard.

Control Markup Language (XACML) standard by OASIS [37]. We use this archi-

tecture as a reference in the remainder of this dissertation. Although this architec-

ture was introduced in the context of ABAC, it tries to capture the commonalities

of all access control solutions that are based on policies.

The reference architecture, illustrated in Figure 2.4, is composed of the

following entities:

• Client: The actor that requests access to a resource.

• Client application: Client requests access to a resource through this entity.

• Policy Enforcement Point (PEP): This entity is responsible for enforcing the

access control decisions.

• PDP: This entity is responsible for evaluating access control requests and

making access control decisions, based on defined access control policies.

• Policy Administration Point (PAP): This entity is responsible for storing and

managing the access control policies.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

23

• Policy Information Point (PIP): This entity is responsible for storing client’s

identity or other attributes and relevant information about the client.

• Owner: The actor that owns the resource and defines the access control

policies.

In a nutshell, the entities interact with each other as follows. Initially,

the client, through the client application, initiates an access request to access a

protected resource, hosted in a resource endpoint. The PEP, which acts as a

security proxy, intercepts the access request and forwards it to the PDP. The

PDP receives the request, communicates with the PIP to retrieve client’s identity

or other attributes, roles, etc., needed for the verification of the access control

policy (depending on the implemented access control model). The access control

policies are stored in the PAP and are defined by the owner of the protected

resource. Then, the PDP validates the retrieved attributes, based on the access

control policies, and determines whether access should be granted or denied to that

specific user. The access control decision is then relayed back to the PEP, which

enforces it by allowing or denying the user access to the protected resource. We

should note here that some of these entities may be implemented as a single entity,

for instance, the PDP and the PEP can be implemented by the same application.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Chapter 3

IoT access control requirements

and existing solutions

In this chapter, we elicit the main requirements of IoT systems with a

special emphasis on access control and security. Subsequently, based on these

requirements, we review and discuss existing IoT access control solutions.

3.1 IoT access control requirements

The main security requirements that any system should satisfy are confi-

dentiality, integrity, and availability. These requirements are also applied to access

control solutions. Namely, an access control system should prevent unauthorized

divulgation and modification of resources, and assure access to resources only to

legitimate users. Additionally, an access control solution should support privacy,

which encompasses several properties. Initially, an access control solution should

be transparent in the sense that users should know how their data are used, or

understand who knows what about them and their data. Through anonymity or

pseudoanonymity, access control should support unlinkability and unobservabil-

ity, in order to ensure that a user can use a resource without others being able

to observe him and link specific actions to him. Regarding, the reliability and

availability requirements, an access control solution should always be available

and support offline mode, making access control decisions even if the system is

24

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

25

offline or the “decision maker” is absent or not connected. Besides these security

requirements, an access control solution should efficiently implement revocation,

delegation, and attenuation mechanisms to ensure that access control decisions

will always be right, enabling confidentiality and integrity. Finally, it should be

usable, meaning that a non-expert user must be able to easily express, manage,

and modify access control policies.

Regarding the IoT, a commonly-accepted, standard reference architecture

does not exist. The design and the architectural options vary, depending on the

use case and the application that is developed. For instance, IoT devices may

directly interact with users and applications, or they can be paired with a more

powerful device than them, such as a gateway, which interacts with the users and

the applications. Furthermore, the IoT has already been applied into a variety

of application domains, including smart homes, healthcare, smart buildings, con-

nected vehicles, smart manufacturing and Industry 4.0, smart agricultural, smart

grids, and supply chains [1, 38]. Thus, it is clear from the numerous uses cases and

design options of the IoT that each case has different requirements that need to be

addressed. However, there are some key requirements that any IoT system should

satisfy. These requirements are summarized in (architecture) scalability, interop-

erability – vendor compatibility, multi-agent collaboration, reliability, availability,

usability, data privacy, and security [39]. In addition, the security requirements

are confidentiality, integrity, reliability, availability, privacy, and usability [2, 39].

The need for efficient and secure access control in the IoT is more critical

than in traditional network applications. The main reason is that in the IoT, the

generated data is often private and sensitive. In addition, these data do not always

lie within the administrative realm of their owner. The increasing need for more

secure access control solutions in the IoT with the combination of the peculiarities

of the IoT (many design and architecture options, many use cases, etc.) creates

new requirements for IoT access control.

Therefore, an access control solution designed specifically for the IoT should

be flexible to be easily adapted to different contexts and use cases, decentralized, as

the most IoT architectures are inherently distributed, lightweight, due to IoT de-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

26

Access control security requirements

Non IoT-specific IoT-specific

Privacy Highly granular, fine-grained policies

Transparency Context-awareness

Usability User-driven

Confidentiality Multi-domain policy administration

Reliability Policy combination

Integrity Conflict detection

Anonymity/pseudoanonymity Conflict resolution

Availability Lightweight implementation

Support for offline mode Distributed architecture

Revocation, attenuation, and delegation Flexibility

Table 3.1: IoT access control security requirements.

vices resource-constraints, and heterogeneous, in order to combine different devices

from multiple manufacturers (vendor-agnostic). In the IoT, there are cases, where

IoT devices, systems, and applications are deployed in multi-tenant environments,

e.g., a business environment, where many different and potentially mutually non-

trusting organizations cooperate with each other to provide services to end-users.

Thus, the access control solutions should support interoperability and collaboration

among different parties, which do not have any trust relationships. Furthermore,

it should be user-driven, enabling users to have full and granular access control

over their shared data, since these data might be sensitive. Moreover, given the

direct impact of IoT systems in the real world, auditability becomes crucial, as it

can be the last resort for recovering from security incidents. Due to the IoT’s na-

ture, access control should also support context-awareness regarding its decisions,

e.g., allow a user to open the lights of his house only if he is inside the house.

Additionally, it should be highly granular, in the sense that the “grammar” used

to formulate access control policies should be expressive enough and fine-grained

in order not be be limited to fixed access control policies. All the requirements for

IoT access control solutions are summarized in Table 3.1.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

27

3.2 IoT access control solutions

Traditional access control models and solutions are deemed inappropriate

for IoT environments, as they do not address the IoT-specific requirements for

access control. First and foremost, most access control solutions are primarily

Web-based. Consequently, adopting traditional access control in the IoT typically

necessitates the adoption of the WoT approach [17], which aims to integrate IoT

devices into the Web through standard Web protocols and technologies. Addition-

ally, most of the traditional access control solutions are inappropriate for defining

fine-grained access control policies and permissions based on the context and dy-

namics of IoT environments, as they use more rigid policies that do not adjust

dynamically to such varied conditions. For instance, in RBAC, reaching consensus

regarding the definition of a shared role across different applications, systems, and

domains is extremely challenging, impacting interoperability. Furthermore, most

access control solutions are not lightweight and do not consider the resource con-

straints of IoT devices, as they often involve complex cryptographic techniques.

For instance, ABAC solutions are way too complex, particularly due to the use

of XACML [40], which is commonly used in ABAC solutions for representing at-

tributes, their definition, and expressing attribute-based authorization requests.

This complexity also deters users, making ABAC solutions less user-friendly. Fi-

nally, these solutions often lack a decentralized architecture, with critical compo-

nents, like the PDP, being centralized and inherently trusted (trust is assumed to

be valid under all circumstances).

Thus, we observe that existing access control solutions not only fail to

fulfill the IoT’s requirements, but also there are many open issues that remain to

be addressed [39, 41, 42].These can be summarized as follows:

• Fine-grained access policies

• Usability and user-driven

• Multi-domain policy administration and policy combination (interoperabil-

ity)

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

28

IoT access control solutions

Blockchain-based solutions Non blockchain-based solutions

Smart contract-based solutions

Non smart contract-based solutions

Context-aware solutions
…

Figure 3.1: A categorization of IoT access control.

• Conflict detection and resolution in multi-party environments (auditability)

• Availability

• Lightweight implementation and distributed architecture

To address the open issues and meet all requirements for IoT access control,

new access control solutions tailored to the IoT have been proposed. We categorize

the research interest into two main categories of works. The first considers IoT

access control solutions using advanced cryptographic techniques and other state

of the art technologies, and the second category focuses on access control solutions

backed by blockchains. The categorization, we made, of the existing IoT access

control solutions is appeared in Figure 3.1. In the following subsections, we present

an overview of the state of the art research papers in IoT access control, based on

this categorization. For every work, we present its main contributions and the

addressed requirements, regarding the IoT.

3.2.1 Non blockchain-based IoT access control

One of the most widely used authorization protocols in the IoT is the

OAuth 2.0 protocol [16]. OAuth 2.0 is a token-based authorization framework that

enables a third-party application or client to obtain access to a protected service or

resource, hosted on a resource server. The access is managed by an authorization

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

29

Resource owner

Resource server

Client

Authorization server

Authorization request

Authorization grant

Authorization grant

Access token

Access token

Protected resource

Figure 3.2: OAuth 2.0 entities and interactions.

server, based on the consent of the resource owner. All OAuth 2.0 protocol flows

result in the creation of an ACT, which is used by the users to request access to

the protected resource. OAuth 2.0 systems are composed of the following entities.

A resource owner, who is capable of granting access to a protected resource; the

resource server, which hosts the protected resource and is capable of accepting

and responding to access requests; the client, who makes requests for access; and

finally, the authorization server, which issues ACTs to clients after successfully

authenticating the resource owner and obtaining authorization. The flow and in-

teractions between these entities are depicted in Figure 3.2. As it can be seen, a

client first requests an authorization grant from the resource owner, then it uses

this grant to obtain an ACT from the authorization server, and finally, it uses the

issued ACT to access the protected resource stored in the resource server. The

semantics, as well as the mechanisms for generating and validating access tokens

and grants are transparent to the OAuth 2.0 protocol.

OAuth 2.0 has received widespread adoption and is considered the industry

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

30

standard protocol for authorization, as it enables delegation, interoperability, it

enhances end-user security, and it facilitates access control management. Due to

its intriguing properties, is is being used in environments with higher security

requirements than initially considered, such as IoT systems. However, despite its

adoption and popularity, OAuth 2.0 presents several shortcomings, with the most

important of them being that it relies on centralized servers. The centralization of

OAuth 2.0 leads to two main problems. First, a centralized service constitutes a

single point for attacks. Furthermore, the administrator of this single entity, who

is usually the owner, has a complete view of data and permissions.

An alternative to centralized systems, such as OAuth 2.0, is presented by

Andersen et al. [43], who introduce WAVE, an authorization framework that of-

fers decentralized trust and allows any participant in the system to autonomously

delegate a portion of their permissions. As a use case, the authors consider a

complex case of a smart campus, owned by a property manager, that includes

multiple smart buildings, some of which are leased out to tenants. Within each

campus, the property manager, considered the “owner” of the resources associated

with the buildings, should delegate permissions to individual building managers,

who in turn must delegate permissions to tenants, enabling them to control the

resources of the buildings they lease. Building managers can also grant ephemeral

permissions on subsets of the buildings to other entities, such as visitors. This use

case covers a wide range of IoT applications, from small residential buildings to

larger structures with many administrative points.

WAVE’s functionality is divided into 3 layers. The first layer, the autho-

rization layer, uses a graph-based approach to represent permissions. The global

authorization graph consists of entities, which are bundles of public and private

keys, and attestations, which are permission grants between entities. When a user

wishes to grant permission, he constructs an attestation signed by the granting

entity, containing a policy describing the permissions. When a client wants to ac-

cess a service or a resource, he has to present a proof, which is a path through the

graph from authority to the prover. The second layer uses Reverse-Discoverable

Encryption (RDE) to encrypt attestations, ensuring the privacy of permissions.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

31

This functionality is transparent to users. In a nutshell, in each encrypted at-

testation, the decryption key of the previous attestation is included. To achieve

RDE, the authors use Wildcard Identity-based Encryption (WIBE). The last layer

is a scalable untrusted storage. The entities (public keys) and RDE ciphertexts

(attestations) are stored into the scalable untrusted storage. Again, this layer is

transparent to users. Clients operate only at the level of granting permissions,

creating proofs, and verifying them. The scalable untrusted storage has simi-

lar guarantees as a blockchain. Furthermore, it supports proof of non-existence,

which allows revocation and efficient auditing.

One of the main issues with traditional access control solutions that authors

identify and address is the reliance on a central trusted party and the problems that

arise if this party is compromised. Additionally, the main requirements that are

met by the aforementioned design can be summarized in the following: no reliance

on a central trust, transitive fine-grained delegation and revocation, protected per-

missions, decentralized verification, no ordering constraints, and support for offline

participants. WAVE meets all these requirements simultaneously, for this complex

IoT use case, offering same performance metrics as the ones offered by traditional

centralized systems. However, this work does not involve context-awareness and

does not support the collaboration of many entities for the access control.

On the other hand, there are works that involve context-awareness on the

access control procedure, particularly in decision and enforcement actions. Schus-

ter et al. [44] identify that in the IoT, situation tracking is entangled with the

enforcement of access control policies. Thus, they propose a new approach in IoT

access control towards that direction. Specifically, they introduce Environmental

Situation Oracles (ESOs) into the IoT ecosystem, to enforce situational constraints

within IoT access control frameworks. ESOs can be deployed at any layer of the

IoT stack, where access control is applied. They encapsulate the tracking of envi-

ronmental conditions relevant to access control enforcement and present a uniform

interface that can be incorporated into any access control policy and invoked by

any monitor within a given IoT ecosystem. The use case considered is a smart

home, however, the proposed solution can be easily integrated in any IoT use case.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

32

Using situational conditions in access control policies is a well-known ap-

proach and many solutions have been proposed and integrated on well-known IoT

frameworks, such as Samsung’s SmartThings.1 These frameworks typically track

the user’s location, usually from the user’s smartphone, to determine their loca-

tion. However, the existing solutions have several problems and limitations. First

of all, tracking the environmental situations directly from the user’s smartphone

can lead to over-privileging in IoT applications and privacy violations. If the user

has installed many IoT frameworks, from different vendors, all of them gain the

ability to track and determine his location. Moreover, the existing frameworks

are unable to enforce common policies, such as “allow access only when user is at

home.” Furthermore, GPS applications in smartphones are not completely accu-

rate; they cannot, for example, distinct whether the user is in the living room or

in his bedroom. All these issues result in over-privileged, redundant, inconsistent,

and inflexible implementations.

In contrast, ESOs enable two-way obliviousness between access control poli-

cies and situation trackers. A single ESO can serve multiple access control frame-

works across the IoT ecosystem. This reduces inefficiency, supports consistent

enforcement of common policies, and minimizes over-privileging. Furthermore,

the access control frameworks, are oblivious of the details and implementation of

the ESO. Finally, ESOs enforce the principle of the least privilege. Thus, IoT

frameworks have access only to abstract data, e.g., “the user is at home,” rather

than to raw data, such as the user’s smartphone GPS coordinates. An ESO can

be maintained by a trusted party or even by one of the client IoT frameworks

(e.g., SmartThings). However, in both cases, other IoT frameworks no longer need

access privileges for the raw information.

Another work with a design very similar to ESOs, which offers the same

benefits, is presented by Chi et al. [45]. The authors recognize that in IoT appli-

cations, large amounts of (sensitive) data are transmitted to IoT platforms. To

address this issue, they propose a data minimization approach that guarantees the

correctness and completeness of home automation, satisfies personal privacy pref-

1https://www.samsung.com/us/smartthings/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

33

erences, and reduces the amount of data sent to IoT platforms. To achieve that,

they introduce PFirewall, a customizable data flow control system that enhances

the privacy of IoT users. PFirewall is particularly aimed at protecting the privacy

of smart home owners. They have tested their solution in Samsung’s SmartThings

framework, and on openHAB.2 However, the authors claim that their solution can

also be applied in other IoT use cases, such as smart offices, hospitals, and factories.

PFirewall, similar to ESOs, acts as an intermediate trusted entity for IoT

systems, positioned between IoT devices and IoT platforms (or hubs and gate-

ways). PFirewall includes three main modules, the device connector, which com-

municates directly with IoT devices, the platform connector that interacts with

the IoT platforms, and the policy-based data filter, located between the device

and platform connectors. It filters the sensitive data produced from IoT devices

and sent to IoT platforms, based on policies. The policy-based data filter itself

has three components, the policy generator that generates policies either auto-

matically or user-defined, a module that checks if a user-defined policy conflicts

with existing data-minimization policies and reports results back to users, and

the last component interprets and executes all policies. Their evaluation on the

two aforementioned frameworks shows that PFirewall significantly reduce sensi-

tive data leakage, without negatively impacting home automation, and generally

minimizes the attack surface concerning attacks aimed at compromising user pri-

vacy. These works do not propose new access control solutions for the IoT; instead,

they introduce mechanisms to incorporate context-awareness into the access con-

trol procedures, regardless of the access control solution. Therefore, they do not

address any of the open challenges or IoT access control requirements other than

context-awareness.

3.2.2 Blockchain-based IoT access control

In this section, we explore IoT access control solutions that utilize blockchain

technology as a core component of their systems. Blockchain is considered a poten-

tial solutions for enabling access control in IoT environments, due to its unique abil-

2https://www.openhab.org/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

34

ity to establish trust, transparency, auditability, availability, reliability, integrity,

and non-repudiation [46]. Research on blockchain-based IoT access control can

be broadly categorized into three types. The first category involves the use of

blockchain technology and smart contracts to develop complete IoT systems. The

second leverages smart contracts to represent components of the access control

architecture, such as PDPs, PEPs, etc. The third category utilizes blockchain and

smart contracts to implement and represent auxiliary entities of access control,

e.g., ACTs, capabilities, and related mechanisms.

Ouaddah et al. [47] present FairAccess, a fully decentralized, pseudonymous,

and privacy-preserving authorization management framework that enables users to

own and control their data. FairAccess introduces new types of transactions in the

Bitcoin blockchain that are used to grant, get, and delegate access. Although the

authors demonstrate their solution in a smart home use case, they claim that it is

applicable to a variety of IoT use cases, such as transportation and healthcare. The

main entities of FairAccess include resource owners and requesters. Each of these

entities interacts through transactions. Furthermore, each entity owns a wallet,

which holds his credentials, his addresses, and the transactions related to them.

Moreover, every user and his resources have a public cryptographic identity, which

in essence is an address. The authors have modified Bitcoin transactions to trans-

fer ACTs, which are encrypted with the public key of the requesting party, instead

of transferring bitcoins. The types of the modified transactions are grant access,

where a resource owner defines an access policy and generates a new ACT, get ac-

cess transaction, where a requester “spends” the ACT, and delegate access, where

a requester delegates the access to another entity. FairAccess enables transparency

and demonstrates a decentralized architecture. Furthermore, it is user-driven, al-

lowing users to be masters of their own data with full and granular control over

the shared resources.

FairAccess utilizes the Bitcoin blockchain, which presents poor performance

and does not support the execution of smart contracts, but only the execution of

scripts with limited functionality. In contrast, Ethereum blockchain supports the

execution of smart contracts, making it easier to implement complex functional-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

35

ities, like those needed in access control. Hammi et al. [48] leverage Ethereum’s

capabilities for parallel execution of smart contracts to propose a decentralized

system, called bubbles of trust, which ensures robust identification and authenti-

cation of IoT devices, protects data integrity, and ensures availability. To achieve

all that, the authors rely on the security properties provided by the blockchain

technology. Authors claim that their solution can be applied to the majority of

IoT use cases, however, they evaluate their approach in four use cases; smart home,

waste management, smart factory, and smart road radar.

The primary goal of the system is to create secure virtual zones of IoT de-

vices in an IoT environment. Each IoT device communicates only with other IoT

devices within its zone and considers all other devices as malicious. The authors

use an Ethereum smart contract to group IoT devices in “bubbles” of trust. In a

nutshell, the system works as follows. Each “bubble” is managed by a master, anal-

ogous to a CA, that decides which device can join the bubble. To join a bubble, an

IoT device must present a lightweight certificate, signed by the master, to the smart

contract. Once part of the bubble, an IoT device can communicate securely with

the other members of the same bubble, through the smart contract, which verifies

whether the sending and receiving IoT devices belong to the same bubble. This

design, leveraging the blockchain technology, ensures mutual authentication and

message integrity, identification, non-repudiation, and scalability. Furthermore,

it ensures protection against sybil attacks, spoofing attacks, message substitution

attacks, message reply attacks, and Distributed Denial of Service (DDos) attacks.

However, since the solution relies on Ethereum blockchain, it introduces monetary

costs, which may be not negligible.

Other works utilize smart contracts to implement some of the access con-

trol actions within the blockchain. Novo [49] proposes a new decentralized access

management system, where access control information is stored and distributed

using blockchain technology. The proposed solution involves a single Ethereum

smart contract that defines all the operations allowed in the access control system.

Entities, called managers, interact with the smart contract in order to define the

access control policies of the system. Gateway nodes, called management hubs, are

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

36

responsible for handling resource requests by taking into consideration the policies

stored in the blockchain. To do so, they query the smart contract to fetch the

access control policies and based on them decides on access. Thus, the proposed

solution uses a smart contract just to act as PAP and PIP.

In contrast, other works utilize smart contracts for the decision processes.

Zhang et al. [50] propose a smart contract-based access control framework that

achieves distributed and trustworthy access control for IoT systems. The authors

demonstrate their solution in a smart home use case, but assert that their approach

is generic enough to be deployed in a variety of IoT use cases. In their construction,

the actions a “subject” can perform on an “object”, as well as the corresponding

permissions are recorded in an “access control smart contract”. A “register smart

contract” is responsible for maintaining a mapping from subject-object identifier

pairs to access control contract addresses. An IoT gateway handles resource re-

quests and it is responsible for enforcing the access control policies defined in the

corresponding access control smart contract. Additionally, they introduce a judge

smart contract, which facilitates the dynamic validation by receiving misbehavior

reports, judging the misbehavior, and returning the corresponding penalty. Fi-

nally, the register smart contract, which registers the information of the access

control and judging contracts, and provides functionality for managing them. In

this work, authors just implement an identity-based access control solution on

the blockchain, without proposing any novel mechanism utilizing the blockchain’s

properties.

In this direction is also the work presented later by Liu et al. [51], who

propose an access control system for the IoT, name Fabric-IoT, with the difference

that Fabric-IoT is based on the Fabric blockchain, rather than on Ethereum. The

system is similarly composed of three types of smart contracts, a device smart con-

tract, a policy smart contract, and an access control smart contract. The device

smart contract provides methods for storing the URL of resources and querying

them. The policy smart contract provides functions for managing access control

policies, while the access control smart contract implements the access control

methods. Essentially, the authors split the main functionality of the ABAC model

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

37

and implement it across the two smart contracts related to access control policies,

decisions, and enforcement. The system ensures data consistency, distributed ar-

chitecture, privacy, flexibility, fine-grained and dynamic access management, and

presents better performance, than solutions that use public blockchains.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Chapter 4

New access control solutions for

IoT architectures

In this chapter, we present our proposed access control solutions for IoT

systems, which leverage blockchain technology to enhance security. As IoT envi-

ronments become ubiquitous and increasingly complex, conventional centralized

access control solutions encounter various challenges, underscoring the need for

more decentralized and secure approaches. Our access control solutions are de-

signed to harness the intrinsic properties of blockchain technology, offering robust

access control mechanisms tailored to the needs and requirements of IoT environ-

ments. By utilizing smart contracts and blockchains, we manage to decentralize

critical entities of the access control architecture (Figure 2.4), especially the PDP,

which traditionally acts as central authority in making access control decisions.

By leveraging blockchain technology, we can distribute the decision-making pro-

cess, thereby enhancing transparency, trust, and resilience against attacks, while

reducing bottlenecks associated with centralized systems.

4.1 Token-based access control – ERC-20 tokens

Many legacy access control mechanisms implement access control solutions

using “tokens” that indicate the capabilities and the access rights of a user over a

resource. However, particularly in the context of the IoT, token management, se-

38

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

39

curity, and semantics interpretation cannot be trivially implemented. Utilizing the

inherent properties of blockchain technology, such as transparency, decentraliza-

tion, and immutability, can significantly enhance the security of ACTs and reduce

the risks associated with centralized control. For this reason, we leverage the ca-

pability of the Ethereum blockchain, which supports the development of custom

tokens, to design and implement novel forms of ACTs. This capability allows for

the creation of token-based access control solutions specifically tailored to IoT en-

vironments, ensuring more robust, efficient, and secure access control solutions,

providing better token management, such as efficient revocation, delegation, and

fair exchange.

Ethereum has specified an open “token standard,” called ERC-20 [14]. This

standard defines some functions that a smart contract should implement in order

to be able to create and manage custom fungible tokens, i.e., a new type of coin

on the Ethereum blockchain. Table 4.1 describes the main functions defined in

ERC-20 token standard. The two transfer functions, when invoked, each generates

an event, called Transfer. The event has three attributes; the from address, the to

address, and the value of transferred tokens. Furthermore, the function approve

generates an event, called Approval, which has three attributes; the owner address,

the spender address, and the value of the tokens. Many popular Ethereum wallets,

such as Metamask,1 can handle and manage ERC-20 tokens.

To validate the feasibility of ERC-20 tokens as ACTs and show their po-

tentials and benefits, we demonstrate it into two real life IoT use cases [52, 53].

4.1.1 Large scale IoT control system

In this work, we take advantage of the distributed nature of blockchains

to build a large scale IoT control system that supports novel token-based access

control [52]. We argue that existing approaches lack realism and do not take

full advantage of the possibilities and capabilities of the blockchain technology.

Indeed, related work in this area either neglects the limitations of the IoT devices,

or tries to introduce new, hard to deploy, blockchain technologies, or proposes

1https://metamask.io/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

40

Name Purpose

name() Returns the name of the token

symbol() Returns the symbol of the token

decimals() Returns the number of decimals the token uses

totalSupply() Returns the total token supply

balanceOf(address) Returns the account balance

transfer(to, value) Transfers tokens to an address

transferFrom(from, to, value) Transfers tokens from one address to another

approve(spender, value) Allows spender to withdraw from your account,

multiple times, up to the value

allowance(owner, spender) Returns the amount, which spender is still

allowed to withdraw from owner

Table 4.1: ERC-20 token standard main functions.

(unrealistic) modifications to existing blockchain architectures. Similarly, it does

not create new solutions using the new features provided by this novel paradigm,

instead it tries to merely transfer existing techniques into the new environment.

Although, the latter approach may seem to have some value, it turns out that

many of the existing solutions do not consider the particularities of the blockchain

technology. For example, public blockchains cannot be used for storing secret

and sensitive information, nevertheless, many proposals use public blockchains for

storing private user data and business roles and structures.

We are concerned with the secure operation of large IoT deployments and

our work is based on the observation that many blockchain solutions can be used

as event-based systems. With this in mind, we design a blockchain-based archi-

tecture that allows users to control IoT devices organized in “groups,” e.g., turn

on the lights of a smart city. Our architecture, which is built using the Ethereum

blockchain, considers the limitations and capabilities of the IoT devices, as well as

the properties of the blockchain technology. Then, we secure this architecture by

adding a token-based access control solution, using the Ethereum’s custom ERC-

20 tokens. This approach has some significant advantages compared to existing

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

41

token-based approaches, with the most important being that it is impossible for a

user to transfer his security tokens to another user.

A blockchain-based IoT architecture

We now describe our Ethereum-based IoT architecture, which is composed

of the following entities:

• The blockchain infrastructure

• A smart contract that generates events

• Full nodes that also act as RPC servers

• IoT devices

• IoT gateways

• Clients that want to control the IoT devices

Clients and IoT gateways are in control of an Ethereum blockchain wallet

and they can be Ethereum full nodes themselves or they can be connected to the

blockchain through another full node, acting as an RPC server, as we have already

mentioned. In our design, we consider the latter design option. A client does not

have to interact directly with an IoT gateway (or IoT device), instead all interac-

tions take place through the blockchain. Furthermore, IoT devices are connected

to IoT gateways. From a high-level perspective our architecture is designed as

follows. All device operations are mapped to a function in a smart contract; every

time a client invokes a function (properly) the smart contract generates the corre-

sponding blockchain events. These events are received by interested IoT gateways

and eventually result in an operation in the appropriate IoT devices.

As IoT devices, we consider actuators and we assume that an actuation

process can be invoked through an “operation,” e.g., “turn on the light” (of course,

sensors can easily be handled and their operations can be thought of as “provide me

your current data”). Furthermore, IoT devices are identified by URIs. Following

the semantics of CoAP group communication [54], we consider that an IoT device

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

42

may have multiple URIs and a URI may correspond to multiple devices. The

semantics of a URI are application specific, for instance, they may indicate the

physical location of a device, e.g., “building6/floor3/room2.” An IoT gateway

knows the URIs and the supported operations of the devices attached to it, e.g.,

by using an out-of-band configuration mechanism, or by using a service discovery

protocol, such as CoRE Resource Directory [55].

The main component of our system is a smart contract, whose address is

considered well-known. When invoked, this smart contract generates the appropri-

ate events. An Ethereum event has a name and some attributes. A RPC client may

request to watch the events produced by a smart contract, by specifying the event

name and optionally a filter over (a maximum of three) “indexable” attributes.

In our architecture, we consider a generic event name, i.e., Operation, and we

specify for each event two attributes: an indexable called OPCode that encodes

the desired operation and a second one, also indexable, called URIResource that

corresponds to the URI of the device(s) in which OPCode is applied (in order

to be more precise, since Ethereum does not allow strings to be indexable, the

URIResource attribute holds the hash of the URI). IoT gateways register to their

RPC server to watch the event Operation of our smart contract and (optionally)

specify filters on the event’s attributes.

Clients simply interact with the smart contract and invoke the appropriate

functions. The main function of our smart contract is called invokeOperation.

This function accepts two input parameters: an OPCode and a URIResource,

and generates an Operation event, whose attributes have the same value as the

function call parameters. Eventually, this event reaches the IoT gateways that are

“watching” for it. In return, each IoT gateway invokes the corresponding operation

at the IoT devices that are associated with the specified URI. An overview of our

approach is illustrated in Figure 4.1. In this figure, there is a client, two IoT

gateways, and two IoT devices attached to each gateway. One of the gateways

starts “watching” for the Operation event of the smart contract located at the

address “0xa3c1” (step 1). Furthermore, the gateway requests events to be filtered

based on their OPCode and specifies that it wants to watch only for events in which

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

43

0xa3c1

RPC Server RPC Server

Client IoT GW IoT GW

IoT Devices

(3) 0xa3c1/Operation

(4) 0xa3c1/Operation

(2) invokeOperation
(URI, TurnOnLights)

(1) watch 0xa3c1/Operation
{OPCode:TurnOnLights,
URI:building6/floor2}

(3) 0xa3c1/Operation

(5) URI, Operation

Figure 4.1: A blockchain-based large scale IoT architecture.

OPCode is “TurnOnLights”. At some point, a client invokes the invokeOperation

function of the smart contract. It uses as URIResource, a URI that matches the

IoT devices of the aforementioned gateway and as OPCode “TurnOnLights” (step

2). This transaction results in the creation of an event, which is propagated to all

full nodes (step 3). Furthermore, it is transmitted to the IoT gateways that are

watching for such events, including our example gateway (step 4). The gateway

extracts the URIResource of the event and checks if it matches any of the IoT

devices attached to it. Since this is the case in our example, the IoT gateway

executes the corresponding operation on the appropriate devices (step 5).

Token-based Access Control using Smart Contracts

The core of our token-based access control solution is built using two of the

functions, presented in Table 4.1, namely the balanceOf and transfer functions.

The first function returns the token balance of a user, while the second function can

be invoked by a user A to transfer some tokens (he owns) to another user B. The

smart contract of the architecture defined in the previous section is extended with

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

44

implementations of the functions defined by the ERC-20 token standard. These

extensions are used for providing access control as follows.

Initially, a user that “owns” the smart contract assigns all tokens to himself.

We refer to this user as the “owner.” Then, the owner transfers at least one token to

each authorized client. As a matter of fact, the number of tokens a client owns can

be used as an indication of his role; the more tokens he owns, the more privileged

his role. The smart contract owner can protect an operation by specifying the

roles, i.e., the balance in custom tokens, of authorized clients. Therefore, in the

simplest case, an operation can be protected simply by having the smart contract

function checking if the client that invokes it owns the necessary number of tokens

(this validation is trivially implemented using the balanceOf function). However,

our approach can handle some more sophisticated and novel constructions.

Token transfer. In theory, and based on the ERC-20 semantics, any client can

transfer some of his tokens to another client using the transfer function. Of course,

speaking about ACTs, this constitutes a security threat, since this way a client

authorizes another client – potentially malicious – to perform an operation. It

should be noted here that this is an existing threat in legacy token-based access

control systems. Fortunately, ERC-20 defines only an “interface” and does not

dictate any particular implementation choice. Hence, in our smart contract, a

client is allowed to transfer his ACTs only to the owner. This transfer is enabled

in order to support functionalities, such as “shifts,” where a client is authorized to

perform an operation only for a specific time period (that corresponds to his shift)

and then transfers through the owner his authorization to the client of the next

shift. It should be noted here that off-chain ACT transfers are impossible.

Probation periods. Another interesting capability of an ERC-20 compatible

smart contract is that it can modify the token balance of a user at will. In our

mechanism, we leverage this feature to support clients in probation, trainees, and

other similar roles. In particular, we allow the owner to define a list of clients,

whose balance is decreased by one every time they invoke an operation. This way,

these clients are allowed to perform only a certain number of operations, then

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

45

the results of these operations are inspected (out of band), and if everything is as

expected, the clients regain their tokens back.

Supervised operations. Using our mechanism, it is possible to define “critical”

functions, that require the “approval” of a client that holds a more privileged

role. In particular, if such a function is invoked by an underprivileged client,

instead of producing an operation event, a new type of event is produced called

AuthorizationRequest. This event is handled by a privileged client, who inspects

its fields and acts accordingly, i.e., he may ignore it, or he may invoke the same

function again so that the Operation event is generated. This operation can even

be asynchronous.

Two-step access control. Since the Ethereum ledger is distributed any full

node (or RPC client) can learn the token balance of a user without interacting

with the corresponding smart contract, by just inspecting the blockchain. This

property enables the definition of additional (possibly finer grained) access control

policies at the IoT gateways. This means that even if a client is authorized by the

smart contract, eventually his operation may be rejected by some/all IoT gateways.

The access control policies defined at the IoT gateways may take into consideration,

in addition to the role of the client, other auxiliary information provided by the

“real” world, such as time, location information, other IoT measurements, etc.

Notice that Ethereum smart contracts do not have access to such information.

This mechanism is extremely useful, as it allows our solution to be combined with

traditional access control solutions at the IoT gateways.

Panic button. Our access control smart contract defines a function that can be

invoked only by the owner and it resets the token balances of all users, returning

in essence all ACTs back to the owner. This function can be used in case of

emergency, e.g., in case of a security breach. Additionally, when invoking this

function, the owner can specify the public key of a user, resetting this way the

balance of that particular user. Using this approach, client revocation can be

trivially implemented. Since all transactions are recorded in the blockchain, it is

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

46

Operation Cost measured in gas

Contract deployment 1418480

Send Operation event 2560

Search map 1033

Map entry creation 45938

Map entry modification 6110

Table 4.2: Cost of the construction building blocks of the large-scale IoT archi-

tecture.

painless to restore user balances to their value prior the “panic button” invocation.

Moreover, the clients, whose tokens are revoked have no control over this process,

hence revocation is instantaneous and effective using only a single transaction.

Evaluation and Discussion

Performance and cost evaluation. We have implemented and tested our pro-

posed solution in a private Ethereum network, as well as, in a number of Ethereum

test networks, including Rinkeby and Ropsten Ethereum testnets. As an IoT gate-

way, we have used Mozilla’s Things Gateway that implements the WoT standards.2

We implemented clients as JavaScript Web applications using web3.js Ethereum

JavaScript API and the Metamask Firefox extensions.3

As we have already mentioned, the invocation of an Ethereum smart con-

tract function creates some computational overhead measured in “gas” units, which

depends on the operation’s complexity. Each user declares the price he is willing to

pay per gas unit; the bigger the amount, the faster the operation will be executed.

The fastest an operation can be executed in Ethereum is ≈ 15 seconds, which is

the time required by the Ethereum network to generate a new block. However, the

block time can vary slightly due to various factors, such as network congestion.

Hence, users compete each other since they wish to execute their operation fast

but they do not want to get charged a lot. Currently, the average price of a unit

2https://webthings.io/
3https://web3js.readthedocs.io/en/v1.10.0/index.html

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

47

of gas is $0.0729.4 Our construction uses Ethereum’s events and is built using a

“mapping” type, i.e., a hashtable-like data structure that maps “keys” to “values.”

Our events have two fields, namely OPCode of type byte and URIResource of type

byte32, i.e., a byte array of size 32. Furthermore, our mapping maps keys of type

address to values of type int and it is used for maintaining client’s balance. The

primitive operations required by our smart contract are map search, creation of a

new map entry, and modification of the value of a map entry. Table 4.2 shows the

cost of these operations in terms of gas consumption.

Qualitative and security properties. Our construction leverages the inher-

ent properties of the blockchain technology. By design, blockchain solutions offer

reliability and robustness, since the ledger is replicated in multiple locations and

there is no single point of failure. Furthermore, blockchain communication proto-

cols and APIs include message integrity protection, as well as, resilience against

replay attacks. Smart contract execution is deterministic and cannot be affected

by malicious entities. Similarly, smart contracts cannot be modified, not even by

their owners. As already discussed, invoking a smart contract function has some

monetary cost; this could be an effective defense against DoS attacks.

As far as our token-based access control is concerned, it can be observed

that it has some intriguing security properties. Firstly, ACTs can only be used

by their owners, and ACT owners cannot transfer them to other users. Even if

the blockchain keys of a user are compromised, our construction prevents ACT

transfer (of course the stolen keys can be used for issuing transactions on behalf of

the victim users). This is a significant advantage compared to traditional token-

based access control mechanisms, where not only the corresponding ACTs have to

be secured, but also an ACT recipient should be able to verify the binding between

the ACT and the user who sent it (i.e., additional mechanisms for detecting stolen

ACTs should be in place). In other words, the responsibility (and security) of

binding of ACTs to ACT owners is performed by the blockchain and it is not

the responsibility of each user (which opens security issues). Furthermore, and

4As measured by https://ycharts.com/indicators/ethereum average gas price on 15 Jan.

2025

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

48

as already discussed, blockchains are an indelible, append-only, and tamper-proof

logs, hence, in case of a security incident or in case of a dispute they can provide

undeniable auditing information. Moreover, our construction offers secure and

effective revocation. Ethereum’s mechanisms guarantee that only an owner can

revoke ACTs (providing of course that the owner’s private key is secured), as well

as, that a token revocation has immediate affect. Finally, since our construction

is based on an established Ethereum standard, libraries and wallets that support

it, can be used for implementing client applications.

Ethereum is composed of a P2P network, where all valid blocks are broad-

cast to all nodes. In reality, events are special fields encoded in those blocks, hence

the number of nodes watching for events does not have any impact on the number

of transmitted messages. In other words, if we take Ethereum infrastructure for

granted (or any other similar architecture), it is costless to build a group commu-

nication application on top of that. Moreover, due to this property, the network

location of the IoT gateways does not have to be well known, neither have gateways

to be reachable through the Internet.

Discussion. Despite the advantages of the blockchain technology, it comes with

some costs. As already discussed Ethereum (and most blockchain systems) involve

some monetary cost, as well as some transaction delay. Unfortunately, the mon-

etary cost of transactions fluctuates greatly. Furthermore, Ethereum operates on

the premise that at least half of the network nodes are honest; having an attacker

controlling more than 50% of the nodes is an unlikely but not impossible threat.

Finally, Ethereum’s ledger is public and anybody can inspect it. This property

constitutes a privacy threat since it is possible for a third party to deduce infor-

mation such as, who perform which operation and when, the “roles” of the users,

the introduction of new authorized users, etc. All these shortcomings can possibly

be addressed using a permissioned private blockchain, such as Fabric.

In the construction presented, clients interact with the IoT devices only

through the blockchain. Of course cases, where a client interacts directly with

an IoT gateway can be considered. This direct interaction has some advantages,

including zero transaction fees and faster response times. Moreover, and since the

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

49

Ethereum ledger is replicated in all nodes, a gateway can still perform token-based

access control. On the other hand, in this case, the gateway should be able to

verify the identity of the client, i.e., his blockchain public key.

4.1.2 Multi-tenant smart city

As we have already mentioned, ERC-20 tokens are fungible, meaning that

each token is identical in type and value. Therefore, in our previous solution, we

cannot distinguish users who hold the same balance. So, attempting fine grained

roles (e.g., sub-roles) and access control policies is not trivial and may require

extra logic to the smart contract, leading to higher costs and higher risk of imple-

mentation errors. To avoid that, we demonstrate a slightly different design for a

multi-tenant smart city scenario [53].

Consider a smart city, in which numerous IoT devices have been deployed

in order to provide services to the citizens and to address many of the urbanization

challenges. There are many types of IoT devices that can be deployed in a smart

city, from air pollution and temperature sensors, to connected cameras, streetlights,

and GPS trackers. Each type of IoT device provides a different service to the

community. For illustration, we consider four types of services: traffic monitoring,

video surveillance, connected streetlights, and weather monitoring. Some of these

services, such as the traffic and weather monitoring, can be used by any citizen,

while others, such as the video surveillance and connected streetlights, can only

be used and managed by the appropriate authorities. In our case, the municipal

government (which consists of many persons, such as the mayor, deputy mayor,

et al.) is the (“owner” and) “manager” of the IoT devices deployed in the smart

city. The owner should allow access to the traffic and weather services to the

citizens. In addition, it should allow to the appropriate authorities, e.g., the police

department, which again consists of many persons, to manage and access the

services of connected streetlights and video surveillance. We will use this scenario

to demonstrate the benefits of blockchain-based token-based access control system

in large, complex, and multi-tenant IoT environments.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

50

Blockchain network

PDP contract

ACTs contracts /
 PIP

Traffic monitoring /
 PEP

Mayor Police officer Citizen

Verify request

Figure 4.2: Blockchain-based token-based access control architecture for a multi-

tenant smart city use case.

System design

Our architecture, illustrated in Figure 4.2, is composed of the following

entities:

• The blockchain infrastructure

• A smart contract that acts as a PDP

• Many ACT smart contracts that acts also as PIPs

• The municipal government

• Clients wishing to interact with IoT devices and the corresponding services

• IoT services that act also as PEPs

As the blockchain, we use the public Ethereum blockchain because its fea-

tures and properties are well known and trusted in order to better illustrate the

methodology. However, our solution can also be based (with no changes) on a

private instance of the Ethereum blockchain, or with appropriate extensions and

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

51

modifications on permissioned blockchains, such as Fabric, or even combinations of

permissionless and permissioned blockchains through interledger technologies [56].

In our system, we introduce two types of smart contracts. The PDP con-

tract is responsible for deciding if an actor can gain access to a service or not.

All other smart contracts, called ACT contracts, are responsible for creating and

managing ACTs. All the ACT contracts implement the ERC-20 token standard.

We have three ACT smart contracts. One for creating and managing the ACTs

that correspond to the owner and the managers of the IoT devices, the provided

services, and the system as a whole (the municipal government). The second smart

contract creates and handles the ACTs for the citizens, while the last ACT con-

tract creates and manages the ACTs for the police department. In addition, we

can easily add more ACT contracts that correspond to other authorities of the city

by just deploying new ERC-20 contracts with the appropriate functionality.

From a high level perspective, the entities of our system interact with each

other as follows. Initially, the owner develops and deploys all the smart contracts

of the system on the Ethereum blockchain. Then, the owner modifies the ACT

contracts and for each contract adds an appropriate operator. For example, for

the ACT contract that corresponds to the police department, the operator is the

police chief. For the citizens ACT contract, the operator is someone chosen by

the municipal government. Subsequently, the owner modifies the PDP contract.

He creates a mapping that shows which services can be accessed from which type

of ACTs. For instance, the video surveillance service is mapped to the police

department ACT, since only the users having such ACTs can access this service.

In order for a client to request an ACT, he has to send a transaction to

the appropriate smart contract to invoke the requestACT function. When this

function is invoked, it generates an event that contains the Ethereum address of

the requester (in essence, his public key). The event is eventually “caught” by the

operator, who “listens” to the blockchain for events. The operator checks that the

client’s address is valid (client authentication) and he sends a transaction to the

blockchain, and in particular to the transfer function, to “transfer” the ACT to

the client’s blockchain wallet. Otherwise, the request is denied.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

52

From this point on, a client is able to request access to a specific service or

IoT device. To do so, the client sends an access request to the service or IoT device

he wants to interact with. Then, the request is forwarded to the PDP contract. In

particular, a transaction is sent to the PDP contract to invoke the requestAccess

function. The transaction includes the service that the client wants to access and

his Ethereum address. The smart contract checks the map for the requested service

to find out which of the tokens are appropriate for that specific service, e.g., if a

client request access to the camera surveillance service, then he has to own an

ACT that corresponds to the police. Then, the smart contract verifies that the

address of the client has the required token. To verify that, it interacts with the

appropriate ACT contract and invokes the balanceOf function with the client’s

Ethereum address as a parameter. If all the requirements are met, the smart

contract returns “allow access,” otherwise “deny access.”

The PDP contract implements also some other administrative actions that

are responsible for managing the whole system. Namely, it includes a function that

changes the operator of an ACT contract. Moreover, it has a function that changes

the ownership of the whole system, if the municipal government changed. These

functions can only be invoked by the owner. Furthermore, each ACT contract

includes functions for revoking and delegating the ACTs. The delegation function

can be invoked only by the clients that already have acquired an ACT, while the

revocation function can only be invoked by the operator of the contract and the

owner. In essence, these functions are implemented using the transfer function of

the ACT contracts. However, at its current design, a client can delegate his ACT

to anyone. This opens security issues, thus additional mechanisms for checking the

delegation process should be in place.

Discussion

As in the previous design, our solution takes advantage of all the inherent

properties of the Ethereum blockchain. It offers reliability, robustness, availability,

immutability, non-repudiation, auditability, message integrity, and it is resilient

to several attacks, such as DDos and replay attacks. With regards to the smart

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

53

contracts, the execution of them is deterministic and since the smart contracts are

part of the blockchain, they are immutable too. Thus, we are sure that the access

decisions will always be correct and respected no matter what. So, only the clients

having the right ACT will gain positive answer to their access request. However,

the enforcement of the access decision does not happen on the PDP contract nor

on the ACTs contracts, but it happens on the IoT devices or the software that

manages the provided services. Thus, if a provided service is compromised, then

a malicious user can might get access to it, without owning the appropriate ACT.

Additionally, our system has many advantages compared to traditional access con-

trol mechanisms. First of all, it is decentralized and it is lightweight. It is much

easier and simpler for a constraint IoT device to just read the blockchain for the

decision instead of performing advanced cryptographic techniques to check the va-

lidity of an ACT or to decide if an access decision is valid or not. Furthermore,

as previously, our solution provides a secure, effective, and instantaneous revoca-

tion mechanism. Finally, it presents the same drawbacks as the previous design.

In particular, it introduces monetary costs and transactions delays. However, to

avoid that our presented system, depending on the use case, can easily be deployed

on private Ethereum, or even with few modifications on Hyperledger Fabric and

other blockchains.

4.1.3 Related work

Early attempts to incorporate the blockchain technology into the IoT pro-

posed new blockchain systems, such as the WAVE [43]. Another such work pre-

sented by Dorri et al. [57] designed a blockchain-based smart home management

system. They proposed a custom, blockchain technology, where the home gate-

ways hold the role of the miners. Such solutions are hard to be deployed since they

require a “critical mass.” Our approach is built on existing technologies and can

be used with already available libraries and wallets.

More recent attempts are using the blockchain technology and smart con-

tracts to provide security and access control for the IoT, as discussed in the pre-

vious chapter [48, 49, 50]. These solutions follow a similar pattern: they encode

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

54

in a smart contract the actions a specific user can perform to a particular IoT

device/resource. Our solution extends these approaches by considering the token

balance of users in the access control policies. In other words, these solutions re-

semble to an access system, which is based on usernames and passwords, whereas

our solution resembles to RBAC model. Furthermore, by leveraging the handling

functionalities of known and popular Ethereum standards to realize ACTs, our

approach enables some novel constructions.

Finally, Hanada et al. [58] explored the possibilities of smart contracts to

Machine-to-Machine (M2M) communication. To this end, they developed and

evaluated an IoT application for automated, M2M, gasoline purchases that uses

Ethereum smart contracts to perform transactions. Our work is also in this direc-

tion. Nevertheless, in addition to merely using smart contracts to provide message

transfer and payments, our solution supports group communication and access

control.

4.1.4 Conclusions and future work

In this work, we designed, developed, integrated into real life scenarios, and

evaluated blockchain-based ACTs. In particular, in [52], we designed, developed,

and evaluated an IoT architecture, based on smart contracts and blockchains. Our

solution leverages the distributed nature of the blockchain technology to build an

event-based system. Furthermore, we enhanced our architecture with an access

control solution based on custom blockchain-based tokens. We showed that our

access control solution has some intriguing properties and presents some impor-

tant advantages compared to traditional access control systems, such as improved

efficiency, high availability, auditability, non-repudiation, and rich functionality,

including secure and effective revocation. Finally, our Ethereum-based implemen-

tation shows that our solution is feasible with low overhead. Additionally, in [53],

we presented an alternative design of our token-based access control for a multi-

tenant smart city use case.

Blockchain is an exiting, evolving technology, with endless possibilities.

Hence, our system can be extended in numerous ways. For instance, our sys-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

55

tem can be extended to support IoT-based sharing economy, or even auctions over

IoT ACTs (e.g., a funny use case could be an auction for the token that can light

the Christmas tree of a city). Similarly, the blockchain can be used for tracking

user reputation or even “score” in a gameficated application. Finally, our ar-

chitectures can be extended to support blockchain-based Decentralized Identifiers

(DIDs), a new technology under standardization with exciting security and privacy

properties.

4.2 OAuth 2.0 authorization using blockchain-

based tokens – ERC-721 tokens

As mentioned, ERC-20 tokens are identical in both type and value, so

users cannot be uniquely distinguished on-chain. Thus, ERC-20 tokens are not

appropriate for identity-based access control. For that reason, we also propose a

different type of ACT, which is protected using proof-of-possession keys and at

the same time it supports auditing and accountability, fast revocation, and added-

value services [59]. In order to achieve our goal, we build again on the blockchain

technology. Our solution considers an append-only distributed ledger, where users,

identified by a public key, can transact uniquely identified tokens. Our implemen-

tation is based on the Ethereum blockchain and the ERC-721 token standard [15].

Our proposed system leverages smart contracts to build blockchain-based token

management services. The feasibility of our solution is verified through a proof

of concept implementation, where we integrate our solution on OAuth 2.0 proto-

col for an IoT gateway access use case. The proposed solution has the following

advantages.

• The entity that generates ACTs (i.e., the authorization server in the OAuth 2.0

protocol) can easily revoke them before they expire. Furthermore, ACT revo-

cation does not involve any interaction with the client or the resource server,

hence it can be implemented even if these entities are offline/unreachable.

Similarly, a resource server can verify the validity of an ACT, i.e., that it has

not been revoked, even if the authorization server is offline, since ACT revo-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

56

cation is recorded on the blockchain through a transaction that can occur at

any time prior to the ACT’s usage.

• Clients do not have to store their ACTs locally, neither do they have to store

any secret associated with their ACTs. Instead, all ACTs can be retrieved

form the ledger. Hence, ACTs are portable and can be easily used by multiple

client devices. Furthermore, since we are using a popular token specification,

a wide range of “wallets” and libraries can be supported by our system.

• ACT integrity and authenticity can be verified simply by performing a lookup

in the ledger, and it does not involve any signature verification or any other

cryptographic operation. Therefore, our solution is less prone to implementa-

tion errors, and ACTs are simpler, since they do not carry any cryptographic

proof. Furthermore, token ownership can be securely modified without any

interaction with the authorization server.

• All tokens, including the revoked ones, are immutably stored in the ledger,

hence auditing and accountability mechanisms are facilitated.

4.2.1 Background

JSON Web Tokens

In a nutshell, OAuth 2.0 constitutes the protocol through which a client ob-

tains an ACT from an authorization server, to access a protected resource, stored

in a resource server. However, OAuth 2.0 specification does not define how an

ACT is generated, validated, and destroyed; instead it leaves the management of

OAuth 2.0 token’s lifecycle as an open design choice. Each OAuth 2.0 deployment

may choose the type of ACT, it will use. The most commonly used type of ACT

is the bearer ACT [60], which can be used by any user who possesses it, i.e., the

“bearer.” For additional security, an ACT can be associated with a secret key, so

that only users, who can prove that they possess this key can use the ACT. Since

the latter type of ACTs provides more security, at the cost of the communication

overhead required to verify ownership, it is considered by our solution. In particu-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

57

Name Semantics

iss The issuer of the token

sub The subject of the token, i.e., the entity that will use the token

to gain access to a resource

aud The audience of the token, i.e., the the recipients that the JWT

is intended for

exp The expiration time on or after which the JWT must not be accepted

for processing

jti A unique token identifier

Table 4.3: JWT claims used in our OAuth 2.0 system that uses ERC-721

blockchain-based Access Control Tokens.

lar, our constructions are based on JSON Web Tokens (JWTs) [61], enhanced with

blockchain-based proof-of-possession mechanisms.

A JWT is a compact, URL-safe means of representing “claims.” It consists

of zero or more name/value pairs, and it is transmitted encoded in base64url [62].

RFC 7519 [61] defines some “standard” claim names and their semantics. Table 4.3

contains the names and the corresponding semantics of the JWT claims used by

our solution.

ERC-721 token standard

ERC-721 [15] is an open standard that describes how to build non-fungible

or unique tokens on the Ethereum blockchain. This standard is very similar,

in many ways, to ERC-20 token standard, which is probably the most popular

Ethereum standard. However, in contrast to ERC-20 tokens, ERC-721 tokens

are unique and non-interchangeable with other tokens (non-fungibility). Many

Ethereum wallets, such as Metamask, can handle also these tokens. All ERC-721-

based tokens are identified by a unique identifier (we will refer to this identifier as

tokenid), and they can be owned only by a single user. This standard, like every

other token standard in Ethereum, defines some functions that a smart contract

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

58

Name Purpose

ownerOf(tokenid) It accepts as input a tokenid and returns

the address of the token owner

transferFrom(from, to, tokenid) Transfers a tokenid from one

address to another

approve(address, tokenid) It approves an address to manage a tokenid

on owner’s behalf

getApproved(tokenid) It retrieves the address that is allowed to

manage tokenid

tokenURI(tokenid) Returns a URI that point to

tokenid’s metadata

Table 4.4: ERC-721 token standard and ERC-721 metadata extension main func-

tions.

should implement in order to be able to create and handle ERC-721 tokens. Fur-

thermore, the ERC-721 metadata extension, defines some additional functions that

can be used for associating an ERC-721 token with metadata. Table 4.4 describes

the functions defined in ERC-721 and in ERC-721 metadata extension, used by

our system.

Functions transferFrom and approve, when invoked each generates an

event, named Transfer and Approval respectively. Both these events have three

attributes; the attributes of the Transfer event are the from address, the to address,

and the tokenid, while the attributes of the Approval event are the owner address,

the approved address, and the tokenid.

4.2.2 System design

Our system considers a typical OAuth 2.0 architecture, depicted in Fig-

ure 3.2. Therefore, the main entities of our system are clients, authorization

servers, resource servers, and resource owners. From a high-level perspective, our

system operates as follows. The client requests an ACT from the authorization

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

59

Authorization
server

Client

Resource
server

Authorization grant

ERC-721 token ERC-721 token

Access request

Token lookup

ERC-721 token
Challenge

Response

Figure 4.3: OAuth 2.0 using ERC-721 tokens architecture.

server, using an authorization grant received by the resource owner. The autho-

rization server validates the authorization grant of the client, generates a JWT and

an ERC-721 ACT, transfers the ERC-721 ACT to the Ethereum address of the

client, and transmits the JWT to the client. Then, the client requests access from

the resource server, providing the JWT. The resource server retrieves the corre-

sponding ERC-721 ACT, which is used for verifying the validity and the ownership

of the JWT: if all verifications are successful the resource server allows the client

request. This process is illustrated in Figure 4.3.

Notation and security assumptions

In our system, resources are uniquely identified by a URI, referred to as the

URIresource. We assume a security mechanism with which a resource server can

prove that it hosts a specific URIresource, e.g., using a X.509 certificate. Henceforth,

when we say that “a client requests URIresource from a resource server,” it is

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

60

assumed that the client has already verified URIresource ownership. Moreover, the

communication between a client and a resource server takes place over a secure

communication channel.

In our system each authorization server owns an ERC-721 contract, referred

to as ContractAS; we detail these smart contracts in the following section. More-

over, we assume a security mechanism with which clients and authorization servers

can securely communicate; this mechanism provides confidentiality and integrity

protection of the exchanged messages, as well as, authorization server authentica-

tion. Furthermore, resource owners trust authorization servers to behave according

to the specified procedures.

Finally, each client owns a public key PKClient, and a corresponding private

key, used for transacting with the Ethereum blockchain. Again, we consider a

security mechanism with which PKClient ownership can be verified.

The ERC-721 smart contract

ERC-721 contracts in our system are implemented such that only the con-

tract owner can create new ACTs. When a token is created its tokenid and meta-

data are specified: these two properties are read-only and they cannot be modified.

Moreover, ACT owners in our system cannot transfer their ACTs; the only entity

that can invoke the transferFrom method is the contract owner. Moreover, when

invoking the transferFrom method, the contract owner is allowed to transfer any

token, no matter who the token owner is.

The ERC-recommended approach for associating a token with some meta-

data is through the metadata extension, which provides a method that maps a

tokenid to a URI, where metadata are stored, i.e., tokenURI. Nevertheless, we

postulate that this approach violates both the decentralization and immutability

principles of DLTs, since with this approach the metadata file is stored in a cen-

tralized location, and it can be modified without being possible to track or even

detect the changes. For this reason, in our system, metadata are encoded in a JWT

and the base64url representation of the JWT is stored in the contract: this is the

return value of the tokenURI method. Therefore, in our system, the metadata

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

61

extension is used to retrieve the metadata themselves and not a URI that points

to the metadata.

Setup

During the setup phase, resource owners configure their resource servers

with ContractAS. Moreover, clients “register” with the authorization server.5 Dur-

ing this registration process, which is out of the scope of this paper, the authoriza-

tion server learns the Ethereum public key of the client, i.e., PKClient. In cases

where this registration process cannot take place a priori, solutions such as the

OAuth 2.0 dynamic client registration protocol [63] can be considered. Addition-

ally, prior to any other operation, each client obtains from the resource owner an

authorization grant (the format of this grant and the mechanisms for generating

it are out of the scope of this paper). This grant represents a resource owner’s

authorization, and is used by a client to request an ACT for a specific URIresource.

ACT request

A client, that owns PKClient, requests from an authorization server an ACT

for a protected resource URIresource, including in the request the authorization

grant received during the setup. The authorization server verifies PKClient owner-

ship and grant validity (using protocols out of the scope of this paper). Then, the

authorization server creates a JWT, which contains the claims show in Listing 4.1.

Listing 4.1: The generated JWT.

{
‘ ‘ i s s ’ ’ : ‘ ‘ContractAS ’ ’ ,

‘ ‘ sub ’ ’ : ‘ ‘PKClient ’ ’ ,

‘ ‘ aud ’ ’ : ‘ ‘URIresource ’ ’

‘ ‘ j t i ’ ’ : ‘ ‘ tokenid ’ ’

‘ ‘ exp ’ ’ : ‘ ‘ e xp i r a t i on time ’ ’

}

5This registration step is also assumed by the OAuth 2.0 protocol.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

62

As a next step, the authorization server creates an ERC-721 ACT. The

tokenid of this new ACT matches the value specified by the jti claim of the JWT.

Moreover, the metadata of the token is set equal to the base64url encoding of

the JWT. Finally, the authorization server invokes the transferFrom method of

the ERC-721 contract to transfer the created ACT to PKClient, and sends the

generated JWT back to the client. It should be noted that the client does not

have to store the JWT: at any time, he can retrieve all the ACTs he owns from the

ERC-721 contract, and extract the corresponding JWT from an ACT’s metadata.

Resource access request

In order for a client to access a protected resource, it sends to the resource

server a request that includes the received JWT. The resource server performs the

following steps.

1. It examines: (i) if it “knows” the ContractAS included in the iss claim of

the JWT (i.e., if it has been configured with this contract address), (ii) if the

URIresource included in the aud claim of the JWT matches the URI of the

requested resource, and (iii) if the token is still valid (i.e., it has not expired).

2. It executes the ownerOfmethod of ContractAS, providing as input the tokenid

included in the jti claim of the JWT, and examines if the returned address

corresponds to PKClient included in the sub claim of the JWT.

3. It executes the tokenURI method of ContractAS, and examines if the re-

turned string is the same as the received JWT.

At this point, the resource server is able to attest the integrity of the received

JWT (since it is the same as the metadata of the token stored in the blockchain),

as well as its validity. As a next step, the resource server verifies that the client is

the real owner of PKClient. If all verifications succeed, the resource server accepts

the client’s request. Additionally, a resource server may store a valid JWT locally,

create a session identifier, and send this identifier to the client: the client may use

this identifier, as long as the JWT is still valid, accelerating this way subsequent

requests for the same resource.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

63

Resource server

Resource request, token

Client

ownerOf(), tokenURI()

Authorization server

transferFrom()

Figure 4.4: Revocation of ERC-721 tokens on OAuth 2.0.

4.2.3 Token management services

Revocation

ACTs usually carry an expiration time: OAuth 2.0 and JWTs specifications

do not provide any mechanism that allows an authorization server to revoke an

ACT prior to its expiration time. Even “OAuth 2.0 token revocation RFC [64],”

specifies a mechanism that allows “clients to notify the authorization server that

a [...] ACT is no longer needed,” i.e., a mechanism that provides a “log out”

functionality rather than revocation.

In our system, ACTs can be revoked by an authorization server by invoking

the transferFrom method of the ERC-721 contract and transferring an ACT back

to the authorization server (it is reminded that authorization servers are the smart

contract owners and smart contract owners in our system are allowed to transfer

any ACT, no matter who the ACT owner is), as shown in Figure 4.4. We consider

two cases: (i) the corresponding JWT has not been used by the client by the time

of the revocation, and (ii) the corresponding JWT has been used, it has been stored

locally by the resource server, and it has been associated with a session identifier.

In the former case, when a client tries to use the JWT the verification process

will fail, since the output of the ownerOf method will not match the PKClient

included in the sub claim of the JWT, hence the resource server will reject the

JWT. In the latter case, the resource server must “listen” for the events emitted

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

64

by the transferFrom method; if an event contains a tokenid included in an already

stored JWT, the resource server must delete the JWT and the associated session

identifier. It should be noted that events are immutably stored in the blockchain,

hence if a resource server is offline for some time, it can easily recover all missed

events.

Delegation

Listing 4.2: JWT with delegation enabled. cnf stands for “confirmation.”

{
‘ ‘ i s s ’ ’ : ‘ ‘ContractAS ’ ’ ,

‘ ‘ sub ’ ’ : ‘ ‘PKClient ’ ’ ,

‘ ‘ aud ’ ’ : ‘ ‘URIresource ’ ’

‘ ‘ j t i ’ ’ : ‘ ‘ tokenid ’ ’

‘ ‘ exp ’ ’ : ‘ ‘ e xp i r a t i on time ’ ’

‘ ‘ cnf ’ ’ :

{
‘ ‘ kid ’ ’ : ‘ ‘PKDelegee ’ ’

}
}

There can be cases, where a client does not wish to authenticate to the

resource server using PKClient, e.g., PKClient may be stored in a secure, offline

storage place, or a user may want to temporary use another device that does not

have access to PKClient (for example, a user may want to use different devices

while traveling). For these cases, our system allows an ACT owner to delegate an

ACT to another Ethereum address. The ACT does not change ownership, and

the latter address is not allowed to further delegate the token. We implement

this functionality by using the approve method of the ERC-721 contract and the

“proof-of-possession key Semantics for JWTs” defined in RFC 7800 [65]. RFC

7800 defines a “confirmation” (cnf) claim, which contains the key of the owner of

a JWT. Delegation of a tokenid is implemented as follows: PKClient invokes the

approve method providing as input tokenid and the Ethereum address associated

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

65

Resource server

Resource

Resource request, token

Client A

Verify Client key ownership

getApproved(), tokenURI()

Client B

Approve(Client B)

Figure 4.5: Delegation of ERC-721 tokens on OAuth 2.0.

with the public key of the delegee PKDelegee. Now PKDelegee can use this token

by constructing a JWT and by adding PKDelegee in the cnf claim, as illustrated

in listing 4.2. The cnf claim is not recorded in the ERC-721 token’s metadata,

since metadata are read-only. For this reason, when PKDelegee performs a resource

access request, Step 3 of token integrity verification is modified as follows. It should

be noted that when a token is revoked, the delegee can not use it.

3. The resource server executes the tokenURI method of ContractAS, and ex-

amines if the returned string is the same as the received JWT excluding

the cnf claim.

Then, JWT ownership is verified as follows: the resource server executes

the getApproved method of the ERC-721 contract, providing as input tokenid,

and examines if the return value equals to the Ethereum address associated with

PKDelegee; finally, it challenges client to verify PKDelegee ownership. The delegation

process does not involve the resource owner, neither the authorization server. The

delegation process is shown in Figure 4.5.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

66

Access token

Authorization server
Client

ERC-721 token

Token identifier
Owner : Authorization server
Metadata: JWT

Payment

transferFrom()

Figure 4.6: Fair exchange of ERC-721 tokens on OAuth 2.0.

Fair exchange

Smart contracts are ideal for performing “fair exchange” of digital goods [66].

In our solution “fair exchange” of ACTs works as follows (shown also in Figure 4.6).

The authorization server creates the ERC-721 token, and stores it in the ERC-721

smart contract by “indicating” a PKClient; the smart contract transfers the ACT to

PKClient only when the latter performs an action, e.g., pay a pre-specified amount

of money. The advantage of this approach is that the client can inspect the ACT

before performing any action; of course the client cannot use the ACT, before per-

forming the specified action, since up until this point, the client does not own the

ACT.

4.2.4 Implementation and evaluation

Implementation

We have developed a proof of concept implementation of the presented

solution. We considered the case of an IoT gateway access, the owner of which

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

67

wishes to grant access to guest users. As an IoT gateway we used the WebThings

Gateway that implements the WoT standard. For our proof of concept, we chose

not to modify the gateway itself, instead, we have developed an application that

acts as a proxy, between the client, the blockchain, and the gateway (that holds the

role of the resource server). As an Ethereum wallet, we used the Metamask Firefox

extension, which can handle ERC-721-based tokens. We implemented clients as

JavaScript web applications using web3.js Ethereum JavaScript API.

The main component of our proposed system is the smart contract that

implements the functions of the ERC-721 interface. The smart contract was de-

veloped using Solidity, which is a Turing-complete programming language for im-

plementing smart contracts. In addition to the functions included in Table 4.4,

we implemented two functions that are not defined in the ERC-721 interface. The

first one, named mint, is for creating new ACTs, and the other, named burn,

for “burning” ACTs, i.e., for destroying them. These functions, as well as, the

transferFrom and approve functions, can only be invoked by the smart contract

owner.

Performance and cost evaluation

We have tested our proposed system in the Rinkeby Ethereum test net-

work.6 We chose a public test network rather than a private one in order to have

more reliable results. Table 4.5 shows the cost of deploying the smart contract in

the blockchain network, as well as the cost of operations performed by our system

in terms of gas units. The average price of a unit of gas is $0.0729.7 Some of the

aforementioned functions are declared as view functions. That is, they only read

the state of the blockchain, without modifying it. Thus, they incur no cost and

delay. These functions are: tokenURI, getApproved, and ownerOf. In addition to

gas, Ethereum adds an execution time overhead, which on average is ≈ 15 seconds.

6https://www.rinkeby.io/
7As measured by https://ycharts.com/indicators/ethereum average gas price on 15 Jan. 2025

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

68

Operation Cost measured in gas

Contract deployment 1585444

Create an ACT 254141

Burn an ACT 85791

Transfer an ACT 63858

Approve 45735

Table 4.5: Cost of the construction building blocks of the ERC-721 Access Control

Tokens.

Security evaluation

Privacy considerations. With our solution, an authorization server does not

have to be aware of the resource server, i.e., they never have to communicate

directly, not even in the case of an ACT revocation. The authorization server

learns only the URIresource that a client wants to access, but this does not have

to be the real URI of the resource: any pseudonym that the resource server can

understand can be used instead. On the other hand, the metadata of an ERC-721

token are immutable and visible to anybody, constituting a privacy threat. In

order to enhance clients’ privacy, metadata can be encrypted using a key known

only to the resource owner, to the client, and to the resource server.

Authorization server key breach. In order to enhance the security of our

solution, we specify that some functions of the ERC-721 contract can only be

executed by the contract owner, i.e., the authorization server. Of course, if the

private key of the authorization server used for deploying the contract is compro-

mised, then the security of our system is jeopardized and a new contract has to be

deployed, which requires re-configuration of the resource servers. For this reason,

a realization of our system may consider two different keys: one for invoking the

security critical functions of the smart contract, and another for specifying which

is the former key. The latter key can be the one used for deploying the contract

and can be securely stored offline.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

69

Approving other types of identifiers. ERC-721 specifications define that

with the approve method a token owner can specify another Ethereum address

that can manage its tokens. However, in our system a delegee never interacts with

the blockchain, therefore the input to approve does not have to be an Ethereum

address. Other types of delegee identifiers can be considered, such as legacy public

keys, or even contemporary forms of authentication such as Verifiable Credentials

(VCs) [67].

4.2.5 Related work

As we showed in Section 4.1.3, many research efforts investigate blockchain-

based access control, either by defining custom blockchains, such as [57], or by using

smart contracts for recording policies and for implementing on-chain PDPs [48, 50,

49, 68, 69]. Our solution does not rely on smart contracts for implementing PDP,

which may cause privacy issues, instead it uses the ledger for storing auxiliary

information used for validating OAuth 2.0 ACTs.

Other works have also explored integrating blockchain technology into the

OAuth 2.0 protocol. For example, Siris et al. [70] demonstrate how to enhance

the OAuth 2.0 protocol with blockchain. In particular, they present four distinct

applications of blockchain technology in OAuth 2.0 protocol: linking authorizations

to blockchain-based payments without online interaction; immutably recording

hashes of exchanged information during the OAuth 2.0 flow; encoding policies

via smart contracts for transparency and immutability; and using blockchain as a

deterrent against DoS attacks through the required transaction costs. Additionally,

the study in [71] offers a high-level description of using smart contracts within

OAuth 2.0 to enable users to freely select the server that provides authorization

to their protected resource. Unlike these approaches, our work specifically utilized

blockchain technology to issue and manage OAuth 2.0 ACTs.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

70

4.2.6 Discussion

In this work, we demonstrate how to integrate blockchain-based ACTs with

the OAuth 2.0 protocol. However, our proposed ERC-721 ACTs can likewise be

applied to blockchain-based access control solutions. For instance, the ERC-721

ACTs can be easily incorporated into the access control solution presented in Sec-

tion 4.1.1, with only minor modifications. In particular, the access control policies,

included in the smart contract, would now take the form: access to a resource X is

permitted to the user owning the ACT with tokenid y. Thus, the smart contract,

which acts as PDP, invokes the ownerOf function, with the appropriate tokenid,

rather than checking the ERC-20 token balance as in our previous design.

4.2.7 Conclusions and future work

In this work, we presented the design and implementation of an OAuth 2.0

ACT, backed by blockchain-based smart contracts. Our solution uses Ethereum

to store information that can be used for auditing purposes, as well as, for ACT

integrity verification. Ethereum smart contracts facilitate revocation, decouple au-

thorization and resource servers, enable token delegation, and create opportunities

for exchanging tokens with assets. We believe that our work can be extended to-

wards many directions, including the use of permissioned ledgers, ACT validation

using conditions stored in the ledger, privacy-preserving ACT representations, and

the application of similar mechanisms for managing authorization grants.

4.3 Consensus-based access control

Emerging systems and applications depart from the traditional centralized

host-centric paradigm and allow multiple stakeholders to share their resources in a

decentralized manner, as well as to jointly collaborate on the same resources. Ex-

amples of such systems include IoT data-sharing applications, collaborative editing

tools, video conferencing tools, decentralized storage services, decentralized data

spaces, and many others. In such collaborative systems, resources may be owned

by one entity, stored by another entity, and accessed by a third one. At the same

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

71

time, a protected resource may be composite, e.g., a smart building that includes

multiple devices, where each individual component may have a different owner.

Additionally, protected resources may have inter-dependencies, i.e., relations with

each other. One such example is healthcare records, which contain personal health

information, owned by the patients, and diagnoses, treatments, lab results, etc.,

made and owned by healthcare providers. Thus, there is not a single entity, who

is solely responsible for the access control, but all the involved entities should

collaborate to achieve that.

Existing legacy access control solutions, that often rely on a single trusted

entity for defining, deciding, and enforcing access decisions, are not well suited

for the aforementioned cases, since they are too rigid and inflexible, and they do

not allow and support collaborative definition of access control policies [72, 73].

At the same time, emerging paradigms, such as the Zero Trust paradigm [11],

which is built on the assumption that no entity is trusted by default and even if

they were previously verified, require continuous authorization. This requirement

can overload centralized ASes, disrupt the availability of centralized access control

systems, and even result in DoS.

For these reasons, new solutions that enable multiple ASes, entities respon-

sible for authenticating and authorizing users, and handling access control proce-

dures, to jointly manage access control policies and make access control decisions,

are required. However, this collaborative form of access control becomes challeng-

ing, in cases, where these entities are not mutually trusted, especially if there is

not a single centralized service to facilitate the collaboration. In that case, con-

sensus protocols should be securely applied, and efficient, flexible, decentralized,

transparent, and auditable mechanisms are required.

To this end, we explore howDLTs can be used to build secure, decentralized,

and reliable access control solutions for collaborative environments. In this work,

we design an application-independent access control solution that allows multiple

ASes to cooperate and make access control policies and decisions, without the

need for a single centralized authority. We study three different scenarios for

collaboration. Initially, we study the case, where all ASes belong to the same

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

72

administrative domain (e.g., a company wishing to apply the Zero Trust paradigm),

but does not trust a single AS. Then, we extend our design to consider cases,

where each AS may belong to a different administrative domain, but all ASes

evaluate the same access control policy (e.g., collaboration platforms, where data

access requests are approved by all collaborating entities using the same policy).

Finally, we further extend the latter design to consider cases, where each AS makes

access control decisions based on a “local” policy and the final decision is made

by applying a consensus protocol among the ASes (e.g., a collaboration platform,

where users must prove that they have “approval” to perform an action by at least

n other collaborating entities and each entity evaluates a different property of the

user).

Our solution addresses the main challenges of the collaborative access con-

trol [72, 73], it eliminates the need for reliance on a trusted centralized service

and it facilitates co-operation among entities that are not mutually trusted. Fur-

thermore, the ASes in our solution can implement any access control model, from

simple ACLs to more complex models, such as OrBAC and ReBAC. For the col-

laboratively defined access control policies, our solution is expressive enough and

flexible, allowing it to adapt to a variety of use cases. In order to achieve our goals,

we leverage Hyperledger Fabric [13]. Our Fabric-based implementation, takes mea-

sures to decrease the communication overhead towards ASes, as well as to “isolate”

them, so that they can be accessed only by the Fabric peers of the corresponding

organization. Overall, with this work, we are making the following contributions:

• We propose a decentralized consensus-based access control solution tailored

to collaborative systems based on Hyperledger Fabric.

• We design, implement, and compare two distinct approaches for implement-

ing consensus-based access control decision.

– An approach, where consensus rules are encoded in smart contracts.

– An approach, where consensus rules are integrated in a part of the

consensus mechanism of Hyperledger Fabric, the endorsement policy.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

73

Hyperledger Fabric Blockchain /
Global Policy Decision Point

Authorization Server 1 /
Local Policy Decision Point

Authorization Server 2 /
Local Policy Decision Point

Client application /
Policy Enforcement Point

(1) request access

(2) request access

(3) can client have access (3) can client have access

(5) true/false(5) true/false

(6) collect answers and decide

ClientResource endpoint

(7) true/false

Policy Information Point 1 Policy Information Point 2

(4) check PIP (4) check PIP

(8’) deny
access

Org1 Org2

Figure 4.7: Overview of the consensus-based access control solution’s architec-

ture.

• We develop proof-of-concept implementations and we evaluate the perfor-

mance and security properties of both approaches using the Hyperledger

Caliper blockchain benchmark tool.

4.3.1 System design

System entities and notation

The main entities of our system, illustrated in Figure 4.7, are clients, ASes,

PIPs, a client application that acts also as PEP, and the Fabric blockchain infras-

tructure. The proposed system shares the main components, protocols, and access

control flow common to any access control system, as illustrated in Figure. 2.4

but introduces key enhancements for collaborative systems. In particular, we in-

corporate two distinct decentralized PDPs; one, involving the ASes, is responsible

for decisions based on “local” access control policies, and the other, utilizing the

blockchain and smart contracts, collects and aggregates the results from the ASes

and decides based on “global” access control policies. “Local” access control poli-

cies are defined and validated solely within the scope of one organization, meaning

that each organization has its own “local” access control policies and decisions.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

74

Furthermore, “local” access control policies can be evaluated with any access con-

trol model, as long as, the access decision is yes or no. On the other hand, “global”

access control policies are defined “collaboratively” by all the involving entities.

Thus, the ASes act as “local” PDPs, while the blockchain infrastructure acts as

the “global” PDP. The most critical part in our system is the smart contract that

receives the clients’ access requests and acts accordingly (see Section 4.3.2).

Clients interact with the system through a client application that is config-

ured with the x.509 client’s certificate, as it interacts with the blockchain network

and the deployed smart contracts on the behalf of the user. The protected resource

is hosted in a particular endpoint, which is uniquely identified by a URL, referred

to as the URLresource (the endpoint is oblivious to the proposed solution). The

ASes are also identified by URLs, referred to as URLAS, and having a structure

like, https://as1.company1, depending on the administrative domain that they are

owned by. We model administrative domains as Fabric organizations and we al-

low each organization to maintain its own external ASes, which are accessed over

HTTPS.

Usage scenarios

We consider three distinct scenarios that vary in complexity. These usage

scenarios have been carefully chosen to encompass a spectrum from simpler, more

straightforward scenarios to progressively more sophisticated ones. By exploring

these diverse scenarios, we aim to comprehensively analyze the applicability, se-

curity, and performance of our proposed designs across a wide range of real-world

contexts. In the first baseline scenario, we consider the case, where a protected

resource is owned and managed only by a single organization. Namely, only one

entity is responsible for defining, deciding, and enforcing the access control policies

and requests. However, we assume that the organization owns multiple ASes that

perform the same validations. All of the ASes should individually respond to the

access requests and then the final response is determined based on the individual

responses. This approach is used to enhance the resilience of the system against

AS compromises. The second scenario is similar to the baseline scenario, with the

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

75

difference that instead of having only one organization owning multiple ASes, we

have multiple organizations owning multiple ASes. However, as in the baseline

scenario, all the ASes from all organizations perform the exact same validations.

This approach can be used for use cases, where the organizations do not fully trust

each other. The final scenario that we consider includes multiple organizations

owning ASes, but instead of performing the same checks each AS group validates

different client’s properties. For instance, the ASes of one organization verify if

the requester is a student and the ASes of another organization if her age is over

20. One use case for this scenario is collaborative attribute-based access control,

where each organization provides and verifies different attributes.

System overview

In a nutshell, our system (illustrated in Figure 4.7) works as follows. Ini-

tially, clients, through the client application, request access to a protected resource,

by sending a transaction to the system’s smart contract. Then, the smart contract

forwards the access request to the appropriate ASes, which fetch the client’s at-

tributes from their PIPs and decide on access based on the “local” access control

policies. Subsequently, the ASes send back to the blockchain their “local” access

control decision. The blockchain aggregates the “local” access responses from all

the involved ASes and based on the collaboratively defined “global” access con-

trol policy decides for the access and responds back to the client application with

the final access control decision. Finally, the client application/PEP enforces the

“global” access control decision. Therefore, to approve a resource access request,

many ASes, owned by one or more administrative domains, depending on the sce-

nario, must cooperate to decide whether clients can be granted access or not, based

on collaboratively defined access control policies. For the cooperation of the ASes,

we propose two different approaches/solutions (see Section 4.3.2). Our system

involves the following phases.

Set up. Our system assumes a setup phase during which the Fabric network is

created, the blockchain and its parameters are configured, and the smart contract

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

76

is developed and deployed. Moreover, in this phase, the certificates and the keys

for the members of the network (peers, orderers, etc.) are created. Furthermore,

each organization should configure its ASes with the “local” access control policies.

Our proposed system is oblivious to the access control model used in the ASes, and

thus, how the access control policies are defined. As we discussed above, depending

on the scenario, all ASes may be configured with the same access control policy

or each organization may configure its ASes with different access control policies,

e.g., AS1 has a “local” policy that dictates that the client pub keyclientx can access

data, but AS2 is configured with a policy dictating that pub keyclientx cannot access

data. Furthermore, during this phase, the organizations should come together and

decide the “global” access control policies. After deciding the “global” access

control policy, every organization signs it through the blockchain with the form

of transactions. Finally, in the setup phase, the client obtains a X.509 certificate,

issued by a CA that participates to the Fabric network, in order to be able to

interact with the system.

Access request. The client request, which is essentially a transaction to the

blockchain, is initiated via the client application. The transaction includes the

client’s certificate along with the client’s digital signature, which is generated us-

ing the client’s private key, priv keyclientx . The request ends up on the smart

contract deployed on the Fabric blockchain. Following, the smart contract verifies

the client’s signature using the client’s public key, pub keyclientx , extracted from

her certificate. Then, the smart contract includes the client’s public key to the

request and forwards it to the appropriate ASes, requesting access for the client

with that particular public key.

Access decision. Each AS checks the client’s public key and responds to the re-

quest, based on its “local” access control policies (two different organization/ASes

might have different “local” access control policies for the same public key, de-

pending on the scenario). To evaluate the requests, the ASes are communicating

with their PIPs to fetch user’s attributes and evaluate the “local” access control

policy based on these attributes. Then, they send back to the smart contract their

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

77

access decision. Following, the blockchain collects the replies from all ASes and

based on a “global” access control policy, defined collaboratively by all involved

organizations, responds with the final decision (the exact flow of this process is

presented in the following section).

Access enforcement. In this final phase, the client application, which also acts

as the PEP, receives the “global” collaborative access decision from the blockchain.

Then, based on that decision, it either forwards the request to the resource end-

point, if the client has been granted access to the resource, otherwise it sends back

to the client an appropriate error message.

4.3.2 Consensus-based access control

In this section, we present our two different solutions for collaborative access

control, namely the cooperation of many mutually non-trusting entities to decide

on access control.

Smart contract-based approach

Our first approach, called smart contract-based approach, to enable collab-

orative access control, i.e., allow the cooperation of many ASes having no trust

relationships with each other, utilizes smart contracts. In our design, we consider

a smart contract, called Authorization Smart Contract (ASC) that receives the

access request from the client application, which also acts as a PEP (following the

reference architecture in Figure 2.4), forwards the request to the appropriate ASes,

calculates the “global” access control decision, and responds back to the client the

final access decision. The design of our solution is presented in Figure 4.8.

The solution works as follows. Initially, the client, after acquiring her cer-

tificate, sends an access request, through the client application, to the deployed

ASC. The ASC receives the request and forwards it to all the appropriate ASes.

To do so, the ASC should include all the URLs of all ASes within its source code.

When an AS receives the access request, it performs the appropriate validations,

depending on the implemented access control model (the access control model im-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

78

Authorization Server 1 Authorization Server X

Peer1 PeerX

Fabric Gateway

...

...

Authorization SC Authorization SC
1) Access request 1) Access request

2) Access request 2) Access request

2) Access request

3) Local access
response 1

3) Local access
response1

3) Local access
response X

4) Calculate final
access response

4) Calculate final
access response

5) Final access response

3) Local access
response X

Figure 4.8: Design of the smart contract-based approach for the consensus-based

access control solution.

plemented in the ASes is oblivious to our system) and responds back to the ASC

accordingly. Following, the ASC receives the responses from all the ASes, aggre-

gates them, and determines the final response based on the collaboratively defined

“global” access control policies. Various strategies can be employed for calculating

the final response, depending on the use case and the scenario. Examples of such

strategies include, deny-overrides, majority voting, or a threshold scheme. In the

third scenario, where each group of ASes validates different attributes, the collab-

oratively defined “global” access control policy can be of type m out of n. Finally,

the client application receives the response from the blockchain network and its

subsequent actions are contingent upon the response (as we show above in the

access enforcement process).

We should note here that the ASC is deployed on all peers participating

in the Fabric network, meaning that every peer executes the transactions. Thus,

in our design, a client request will end up to all the peers that have deployed the

ASC and all these peers will send requests to all ASes, as shown in Figure 4.8.

For instance, if there are 1000 peers and everyone has to execute the transaction,

then all of them will send a request to all ASes. Each AS will eventually end up

receiving 1000 requests for the same access request. Therefore, it is clear that in

some use cases, where many peers are needed, this can lead to a Denial of Service

(DoS) for the ASes. Furthermore, with a design like this one, the ASC needs to

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

79

Authorization Server 1 Authorization Server X

Peer1 PeerX

Authorization SC

Fabric Gateway

...

...

Authorization SC

1) Access request 1) Access request

2) Access request 2) Access request3) Local access
response 1

3) Local access
response Χ

4) Local access
response 1

4) Local access
response Χ

5) Calculate final access response
/ Validate endorsement policy

Figure 4.9: Design of the endorsement-based approach for the consensus-based

access control solution.

include the URLs of all the ASes. This may be inappropriate in some use cases,

as every organization can learn the URLs of other organizations’ ASes.

Endorsement-based approach

With the smart contract-based approach, we achieve to decentralize the

“global” PDP, responsible for evaluating the collaboratively defined “global” access

control policies. Furthermore, we enable transparency and auditability regarding

the access decision and how it is achieved, by making a smart contract responsible

for this process, since the smart contracts are deployed and run in all the involved

peers and their execution output is immutably written in the ledger. However,

as we showed above, this design may be inappropriate for some use cases. For

instance, in the second and third usage scenario, where there are many and possibly

untrusted organizations, an organization might not want other organizations to

know the URLs of its ASes or its “local” access responses. To address that we take

advantage of some of the features of Fabric blockchain, as well as some parts of

its consensus mechanism to create a more elaborate design, the endorsement-based

approach, presented in Figure 4.9.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

80

As shown in Figure 4.9, a peer, instead of sending requests to all ASes, it

only sends a request to the AS(es) owned by its organization. To achieve that we

exploit the newly introduced feature of Fabric that allows the same smart contract

not to be identical across the network members that have deployed it. In particular,

we slightly modify the source code of the smart contract, and depending on the

organization where it is deployed, we configure it to include only the URL of the

AS(es) of its organization and only that (not the URLs of the other ASes). For

instance, a smart contract that is deployed on the peers of organization1, includes

only the URLs of the ASes owned by that organization, while the same smart

contract that is deployed on the peers of organization2 will include the URL of

ASes owned by that particular organization, and so on. In this way, we achieve

that the smart contract performs different validations depending on the peer where

it is deployed. Furthermore, with this design, we enhance the security of the ASes,

protecting them from DoS, as they do not receive requests from all the participating

peers. Also, we manage to hide their URLs to other organizations’ members.

However, even with the aforementioned design, the URLs of the ASes are

included in the smart contracts, but only the peers of the same organization can

see them. To tackle this challenge, an alternative solution is to include only a

generic URL (e.g., https://as.company) within the smart contract and modify the

DNS configuration of each individual participating peer, by modifying its hosts

file, and associate the generic URL with the IP address of a distinct AS. Due to

this customization process, there is no need for including all the URLs of all the

ASes within the smart contracts. In this manner, we also manage to hide the

location information of the ASes, by excluding completely their URLs from the

smart contracts.

In the endorsement-based approach, the smart contract receives responses

only from the AS of the peer where it is deployed, rather than from every AS.

As a result, the smart contract cannot play the role of PDP anymore, because

it does have access to all “local” access responses. Therefore, in contrast to the

smart contract-based approach, where the smart contract collects all the “local”

access responses, aggregates them, and decides on the final collaborative access

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

81

response, this design exhibits a different flow. Here, the endorsement policy, which

has been agreed among the involved organizations, serves as the collaboratively

defined “global” access control policy and the entity responsible for gathering all

the responses from the smart contract and validates the endorsement policy (the

“global” collaborative access control policy) is the Fabric gateway. For instance,

in a scenario with four organizations, where access to the protected resource re-

quires approval from three out of the four organizations, the endorsement policy

would be OutOf(3, ’Org1MSP.member’, ’Org2MSP.member’, ’Org3MSP.member’,

’Org4MSP.member’), following the Fabric terminology. This means that access is

granted if any three organizations approve the request, regardless of which specific

organization approve it. As we have already mentioned, for an endorsement policy

to be validated, the peers that are dictated by the endorsement policy should exe-

cute the transaction and produce identical results. For example, in a scenario with

two organizations, each owning one peer, both peers must give a positive response

for access to be granted. In this case, the peers of both organizations would exe-

cute the transaction, send requests to their respective ASes, and expect both the

respond with true. If one of them responds with false and the other with true,

the endorsement validation fails. As a result, the transaction will not be appended

to the ledger and the Fabric gateway will return an error message, denying access

to the client. If both ASes respond with either true or false, the transaction will

be validate and written to the ledger. If the result is true the access is permitted,

otherwise access is denied.

As we mentioned in Section 2.1.2, the endorsement policy is validated twice,

before the transaction is committed on the ledger. First, it is validated by the

Fabric gateway, which is a single entity. Then, it is validated by all participating

peers. Therefore, the PDP, which is responsible for validating the collaboratively

defined “global” access control policy, is not a single entity, i.e., the Fabric gateway,

but all the participating peers play this role.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

82

4.3.3 Implementation and evaluation

Implementation

We developed proof-of-concept implementations of the proposed system, as

well as, the two distinct approaches for collaborative access control, namely the

smart contract-based approach and the endorsement-based approach, to evaluate

their feasibility and performance. In both implementations, the client application

is developed using the Fabric Client SDK, enabling interaction with the blockchain

network. For the evaluation, we utilize a baseline network, which is structured as

follows:

• One orderer organization (org0) with three orderer nodes.

• Three peer organizations (org1, org2, and org3) having two peers each.

• Three ASes, each independently validating access requests, based on “local”

access control policies.

In the smart contract-based approach, a single smart contract handles the

access control process. Since no single AS or organization is inherently trusted,

each organization deploys the same smart contract that forwards every access

request to all three ASes. Thus, every AS receives six identical requests, as there

are six peers on the network. Each AS evaluates the request and returns its decision

(‘allow’ or ‘deny’) based on its “local” policy. The smart contract aggregates these

responses and applies, in this case, a majority voting policy; if two out of the three

ASes approve the request, access is granted. The endorsement-based approach

leverages Fabric’s endorsement policy to determine the final access decision. In

the endorsement-based approach, each organization only communicates with a

single AS, exploiting Fabric’s capability to run slightly different smart contracts

across organizations. Specifically, in our setup, org1 only communicates with AS1,

org2 with AS2, and org3 with AS3. Each smart contract instance is configured

to contact only its respective AS, and we do not have a single smart contract

aggregating access decisions. Instead, the endorsement policy determines the final

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

83

outcome, which in this case is the majority endorsement policy, requiring at least

two out of three ASes to approve a request for access to be granted.

In regards to the access control model implemented in the ASes’ side, we

implemented a basic decision model, where each AS generates a random decision

(‘allow’ or ‘deny’) based on 0.5 probability threshold, thus our implementation does

not include communication with the corresponding PIPs or PAPs. This model ab-

stracts “local” policy and access control model specifics, such as how the PAP and

the PIP are implemented, how policies are stored, and so on. We emphasize that

the proposed solution is agnostic to specific PAP and PIP implementations, mak-

ing it flexible in this regard. Additionally, we deliberately exclude the overheads

of PAP and PIP from our evaluation to focus solely on the proposed solution.

Performance evaluation

To assess the system’s performance, we utilize the following metrics and

properties:

• Latency (s): We measure the time required to respond to an access request,

which includes the execution of an issued transaction and the communication

with the ASes.

• Scalability : We assess the scalability, by gradually increasing the number of

peers to the peer organizations and evaluate the system’s performance, i.e.,

latency and throughput, by conducting a set of similar experiments.

The baseline network was implemented using a Kubernetes cluster consist-

ing of four nodes; one master node and three worker nodes. The master node

orchestrates the Kubernetes environment, serving as the control plane, and host-

ing the three ASes. The blockchain network is deployed on the other three nodes.

To ensure more reliable results in next-generation networks, we deployed the clus-

ter within a 5G testbed, provided by the 6G-SANDBOX project.8 Each node in

the testbed is equipped with a CPU having eight processors, 16GB of RAM, and

100GB memory.

8https://6g-sandbox.eu/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

84

To evaluate the aforementioned metrics, we utilize Hyperledger Caliper, a

blockchain benchmark tool.9 Hyperledger Caliper allows us to control the rate at

which transactions are sent to the system, thus enabling us to analyze how the sys-

tem handles increasing workloads. For our experiments, we utilize the fixed-rate

controller, which sends transactions at a constant, predefined rate, until the test’s

duration is reached. To optimize performance, we modify a few key configurations

across Fabric, Hyperledger Caliper, and Kubernetes. A few of these include in-

creasing the peer’s cache size from the default 64MB to 128MB, and extending the

endorsement timeout (how long the gateway waits for a response from endorsing

peers) from 30 to 120 seconds.10 Additionally, we modify the concurrency limit

related parameters to increase the number of concurrently running requests to a

service on each peer.

Each experiment consists of ten test cycles, with each cycle gradually in-

creasing the send rate, measured in TPS. We start at 10 TPS and increase it by

10 TPS per test cycle, reaching a maximum of 100 TPS in the final test cycle.

Each test cycle runs for a duration of 100 seconds. The purpose of this experi-

ment is to evaluate how the system handles increasing transaction rates, eventually

identifying the system’s limits. We measure the number of successful and failed

transactions processed within each test cycle and analyze the corresponding la-

tency. The final three test cycles, and especially the last one at 100 TPS, serve as

a stress test, revealing potential performance bottlenecks.

Smart contract-based approach. The results of the experiments conducted

for the smart contract-based approach are depicted in Figure 4.10, where we present

latency with and without communication with the ASes. In the second case, where

there is no communication with the ASes, we only measure the time required for

a transaction to be processed by the blockchain network, so as to estimate the

overhead added by our proposed solution.

In the first seven test cycles, the system processes transactions at the re-

quested rate without failures with 0.11 seconds average latency, indicating that it

9https://www.lfdecentralizedtrust.org/projects/caliper
10https://hyperledger-fabric.readthedocs.io/en/release-2.5/performance.html

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

85

 0.01

 0.1

 1

 5
 10

 50

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

L
at

en
cy

 (
s)

Number of Transactions

w/o AS communication With AS communication

Figure 4.10: Experiment results for the smart contract-based approach in the

consensus-based access control solution: with and without communication with

the Authorization Servers.

is operating within its capacity. However, latency begins to increase in the sixth

and seventh test cycles, with an average value of 0.34 seconds. Although the in-

crease may appear minor at first, latency in the sixth test cycle is nearly three

times higher than in the preceding cycles, and in the seventh test cycle, it reaches

four times the values recorded in the first five cycles. These observations suggest

that the system is approaching its performance limits, with the seventh test cycle

serving as an early indication of the performance degradation that follows. In the

eighth test cycle, latency rises considerably to 12 seconds, which compared to 0.12

seconds in the earlier test cycles is a 100 times more. Additionally, 873 out of 8005

transactions (10.91%) fail, indicating that the system is stressed. In the ninth

test cycle, latency also increases significantly to 48.47 seconds, and 8589 out of

9005 transactions (95.38%) fail, demonstrating even more clearly that the system

is struggling to process the workload. In the final test cycle, which concludes our

stress test, the system is pushed beyond its limits, resulting in a significant decline

in performance, with 9897 out of 10005 transactions (98.92%) failing. Overall, in

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

86

the final three test cycles, latency remains excessively high and the majority of

transactions fail. These results show that while the system maintains stable per-

formance under moderate loads, beyond a certain point, latency rises considerably,

and transaction failures increase.

Note that the system does not reach its peak due to the blockchain itself.

To confirm this, we conducted an additional experiment in which the system oper-

ated without communication with the ASes. The results demonstrate that under

the same conditions, the blockchain alone does not reach its processing limits dur-

ing the experiment. Across all test cycles, no transaction failures occur and the

blockchain introduces minimal overhead, contributing at most 0.02 seconds of ad-

ditional latency, which also remains stable across the test cycles. The minimal

additional latency confirms that blockchain not only can be integrated into access

control solutions without becoming a performance bottleneck, but it also provides

the ability to record and verify access decisions, ensures traceability, transparency

and auditability, and thus accountability and trust. Therefore, we observe that

in the complete experimental setup the bottleneck arises from the communica-

tion with the ASes, as each AS must respond to numerous separate requests per

transaction and processes these requests sequentially. However, this limitation is

implementation-specific and it can be addressed by leveraging multi-threading for

parallel request handling or by implementing load balancing mechanisms. This

could improve performance. However, we should note that the communication

with the ASes is not specific to our design and also occurs in legacy systems.

Endorsement-based approach. The results of the experiments conducted for

the endorsement-based approach are depicted in Figure 4.11. In these experiments,

as the send rate gradually increases, the system initially maintains stable latency,

with an average of 0.02 seconds, and successfully processes transactions at the

requested rate without any failures during the first four test cycles. Between

the fifth and seventh test cycles, although latency remains below 0.15 seconds,

the average value has increased to 0.08 seconds, which is four times the latency

recorded in previous test cycles, serving as an early indicator of the decrease in

performance that follows later. In the final three test cycles, the system is stressed,

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

87

 0.01

 0.1

 1

 5

 10

 20

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

L
at

en
cy

 (
s)

Number of Transactions

w/o AS communication With AS communication

Figure 4.11: Experiment results for the endorsement-based approach in the

consensus-based access control solution: with and without communication with

the Authorization Servers.

underperforming resulting in increased latency, ranging from 5.15 to 14.7 seconds.

Moreover, in the final three test cycles, we begin to observe failed transactions.

Specifically, in the eighth test cycle 4.66% of the total 8005 transactions have failed,

in the ninth test cycle, we have 18.89% of the total 9005 transactions failing, and

in the tenth test cycle 29.68% of the total 10005 transactions failed.

We repeat a similar experiment for the endorsement-based approach with-

out communication with the ASes to record the blockchain induced overhead. The

results closely resemble those observed in the similar experiment for the smart

contract-based approach, confirming again that the system’s performance limita-

tions are not due to the blockchain itself. Throughout all test cycles , no transac-

tion failures occur, and the blockchain introduces only minimal overhead. Specif-

ically, the additional latency remains stable across all cycles and does not exceed

0.02 seconds. While the AS communication bottleneck is less pronounced in the

endorsement-based approach, the same issue remains, as ASes still process requests

sequentially.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

88

Scalability. To assess the scalability of the proposed solutions, we extend the

baseline network by gradually increasing the number of peers to each peer organi-

zation. The experiments consist of seven test cycles, with a 100-second duration

each and 80 TPS send rate. We assess the scalability of the system on just one test

cycle of the previous experiments, the one with a 80 TPS send rate, since it marks

the point, where the system begins to collapse for both approaches. The scalability

experiments allowed us to evaluate whether adding more peers would improve per-

formance, reduce latency, and enable more efficient workload handling, as well as

to determine which approach scales better. Note that our implementation utilizes

the majority endorsement policy, where the majority of the organizations have to

endorse the transaction and any member from each of these organizations has to

sign it. This means that the scalability conclusions presented in this section are

specific to this configuration (the results may vary under different endorsement

policies, particularly those requiring approval from all peers in the network). It

is also important to note that in this experiment, we did not add more orderers.

Additional orderers are typically introduced in larger and more complex topologies

to enhance fault tolerance and improve overall network resilience. The results are

depicted in Figure 4.12.

The smart contract-based approach shows a gradual improvement as more

peers are added. Specifically, with 6 peers (two peers in each organization), we

have 12.03 seconds latency, with 9 peers, latency drops to 9.2 seconds and with

12 peers in the final test cycle, we achieve 3.19 seconds. Although in the final

test cycle latency remains relatively high, it still shows significant improvement,

as we increase the number of peers. The endorsement-based approach achieves

significantly better latency. In the first test cycle, having 6 peers (two peers per

organization), latency is 5.15 seconds, in the fourth, with 9 peers, we achieve 0.11

seconds, which is an acceptable value for a test cycle during which the system was

previously stressed, and in the final test cycle, latency drops to 0.03 seconds. The

differences in latency values further reflect the advantage the endorsement-based

approach has over the smart-contract-based approach in regards to the overhead

introduced by AS communication. This is also confirmed by observing the trans-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

89

 0

 2

 4

 6

 8

 10

 12

 14

 6 7 8 9 10 11 12

Smart contract-based approach
Endorsement-based approach

L
at

en
cy

 (
s)

Peers

Figure 4.12: Latency with varying numbers of peers for both approaches of the

consensus-based access control solution.

action failures for each approach. The endorsement-based approach started with

373 failed transactions, while the smart contract-based approach with 873 failed

transactions, in a test cycle where they would need to execute 8005 transactions.

The smart contract-based approach managed to improve this value to 658 by the

fourth test cycle, where an additional peer was introduced to every organization in

the network, and 227 in the final test cycle, where each peer organization had three

peers. In contrast, the endorsement-based solution had no failed transactions after

the fourth test cycle, where one additional peer was introduced across all peers in

the network.

Comparison. A major differentiating factor between the two approaches is the

frequency of the communication associated with the ASes. In the smart contract-

based approach, each transaction results in multiple identical requests being sent

to the ASes; one per peer organization. This introduces significant overhead,

as each peer and each AS must process multiple requests, leading to higher re-

source consumption and potential DoS risks under high loads. In contrast, the

endorsement-based approach eliminates redundant requests by ensuring that each

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

90

Approach Test cycle Latency # Suc-

cessful

Failed

Smart contract-based

8 12.03 7132 873

9 48.47 416 8589

10 48.98 108 9897

Endorsement-based

8 5.15 7632 373

9 9.60 7304 1701

10 14.7 7036 2969

Table 4.6: Experiment stress test comparison table for smart contract-based and

endorsement-based approach of the consensus-based access control solution.

organization only communicates with its own AS, significantly reducing the load

on ASes and by extension the peers (this is also shown in Figures 4.8 and 4.9).

We compare the final three test cycle results for the fixed-rate experiment

for both approaches in Table 4.6. Both approaches initially perform similarly,

processing transactions at the requested rate with stable latency. Notably, the

endorsement-based approach presents a lot less latency than the smart contract-

based approach. As the send rate increases, in the smart contract-based approach,

signs of stress begin to appear in test cycle 6 and 7, with a sharp increase in

latency. The final three test cycles show significant performance decline, where

the failed transactions increase. At 100 TPS, 98.92% of transactions failing and

latency recorded at 48.98 seconds. The endorsement-based approach follows a

similar trend but exhibits better resilience under stress, with significantly less failed

transactions. While latency also increases in the final three test cycles, it remains

consistently lower than in the smart contract-based approach. For instance, at 100

TPS, failed transactions account for 29.68% instead of nearly 99% in the smart

contract-based approach. Additionally, latency in the endorsement-based approach

peaks at 14.7 seconds, which is significantly lower than the 48.98 seconds observed

in the smart contract-based approach. The difference between failed and successful

transactions across the test cycles is also depicted in Figure 4.13. Specifically,

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

91

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

TC 1
TC 2

TC 3
TC 4

TC 5
TC 6

TC 7
TC 8

TC 9

TC 1
0

Tr
an

sa
ct

io
n

s

Test Cycles (TC)

Successful txs
Failed txs

(a) Failed and successful transactions for the

smart contract-based approach.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

TC 1
TC 2

TC 3
TC 4

TC 5
TC 6

TC 7
TC 8

TC 9

TC 1
0

Tr
an

sa
ct

io
n

s

Test Cycles (TC)

Successful txs
Failed txs

(b) Failed and successful transactions for the

endorsement-based approach.

Figure 4.13: Failed and successful transactions for the smart contract-based and

the endorsement-based approach of the consensus-based access control solution.

Figure 4.13a shows the transactions for the smart contract-based approach and

Figure 4.13b shows the transactions for the endorsement-based approach across

test cycles. These results suggest that the endorsement-based approach maintains

more stable performance as the workload increases, largely due to its reduced

communication overhead with the ASes.

The aforementioned conclusion is further confirmed in the scalability ex-

periments, where we observe that the endorsement-based approach manages to

achieve the requested TPS and maintain low latency after the fourth test cycle,

where one additional peer was introduced to each organization.

In a real world deployment, performance would likely be better than in our

experimental setup, where the ASes share resources with each other and the Kuber-

netes control plane, potentially impacting response times. Additionally, in a pro-

duction environment, we would have dedicated nodes with higher computational

power, we would utilize multi-threading and employ load balancing techniques, as

well as mechanisms to provide high availability, such as autoscaling to meet de-

mand, etc. However, even with the limitations of our setup, our results consistently

show that the endorsement-based approach maintains stable performance, scales

more efficiently, and handles higher workloads more effectively. In contrast, the

smart contract-based approach, although still a suitable solution for collaborative

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

92

access control, is impacted by the higher communication overhead with the ASes,

which limits performance under stress and can become a bottleneck if they are not

implemented efficiently.

Security Evaluation

Assumptions. For our security analysis, we make the following assumptions.

During the setup phase, each client, through the client application, acquires a

X.509 certificate issued by a CA of Fabric network. We assume that clients man-

age their certificates in a secure manner, utilizing a secure storage mechanism,

such as a secure wallet. Moreover, we are not concerned with malicious services

that can change the flow of the protocols. Specifically, we assume that the client

application/PEP, which is a centralized service in our proposed system, is always

available and operates reliably. For example, if the final collaborative access deci-

sion is to grant permission, then it cannot deny it. Additionally, we assume that

the communication between the client application and all other entities in the sys-

tem occurs over a secure communication channel. Thus, network-based attacks,

such as traffic analysis, etc., are out of the scope of this paper.

Security requirements. To enable an efficient and secure access control so-

lution, our presented system should fulfill specific security requirements. These

include confidentiality, integrity, availability, transparency, non-repudiation, and

privacy. Confidentiality (or safety property) is a fundamental requirement for a

secure access control system, as it ensures that only legitimate clients can access

the protected resources. Integrity is also essential to ensure that access control

policies and logs cannot be tampered with. This is critical, especially in collabora-

tive environments, to maintain trust in the system. Furthermore, the availability

property ensures that the system remains constantly operational. Regarding pri-

vacy, the access decisions or policies should not leak information about clients,

ASes, interactions, etc. Lastly, transparency and non-repudiation are crucial in

collaborative environments, so the access decisions can be audited, visible, and

easily verifiable.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

93

Threat model. Initially, for the members of the Fabric network, the organiza-

tion’s peers, we consider the honest-but-curious attacker model. This model does

not want to create a malicious activity in the system, but in addition, the attacker

is passive following honestly the protocols steps and at the same time aims to

obtain information beyond their own outputs. On the other hand, we consider

two types of attacks, collaborative attacks and individual attacks. Collaborative

attacks involve multiple malicious users working together, for example, conducting

DDoS attacks to disrupt service availability, while individual attacks include only

one malicious user trying to compromise entities in the system, such as privileged

insider threats. In both scenarios, the malicious users have two purposes, either

deny access to legitimate users or lead the system to allow access to unauthorized

users.

Informal analysis. In our designs, an honest-but-curious peer can only acquire

knowledge of the final access decision. Specifically, in the second design, a peer

cannot even learn the endpoints (URLs) of other organizations’ ASes, nor the indi-

vidual responses from those ASes. In both designs, the system limits information

exposure by concealing URLs and endpoint details, thereby protecting sensitive

information even from honest-but-curious peers within the network. Therefore, in

addition to preventing leakage of private information, such as the URLs of an AS,

our system manages to protect crucial components of the system, by not disclosing

information to mutually non-trusting entities, e.g., other collaborating organiza-

tions.

Furthermore, in our designs, the compromise of an AS or a peer does not

compromise the client’s access. In particular, if an adversary compromises an AS,

she cannot grant or deny access, prevent clients from gaining access, or modify

the access decisions (given the appropriate collaboratively defined “global” access

control policy). The only action the adversary can take is to alter only her own

organization’s access response or inspect and modify the “local” access control

policies, without however impacting the broader system. In both designs, the sys-

tem is resilient even in privileged insider threats. If a malicious user compromises

an admin peer, i.e., a peer with elevated privileges for the management of her

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

94

organization, she cannot alter the smart contract, modify the ledger, or override

the “global access control” policy. Any such changes would require the approval

of all participating organizations (or a defined threshold, depending on the use

case). To achieve the aforementioned, the adversary would need to compromise

more than the defined threshold (depending on the use case). For instance, if the

“global” access control policy (or endorsement policy in the second design) is based

on majority voting, then the adversary would need control of more than 50% of

the peers or ASes. In such a case, the adversary could gain full control of the

blockchain, alter it, and potentially deny access to legitimate users or grant access

to malicious ones.

Additionally, our system demonstrates increased availability and robust re-

silience against DDoS attacks. The PIPs are oblivious to the system and only

the ASes from the same administrative domain know their URLs, securing them

from malicious users. Moreover, the URLs of the ASes are not stored in the smart

contract or in the ledger in the second solution. Even if an adversary compromises

a peer, she will only learn the URL of one AS. Similarly, if she compromises an AS,

she will learn the URL of one PIP, but not the URLs of the PIPs or ASes of other

organizations. Thus, the ASes and the PIPs are secured from clients or members

of other organizations. Even if some ASes or PIPs are compromised or unavail-

able, the system will remain operational and available, as long as the number of

unavailable servers is below the defined threshold in the use case. Furthermore,

the PDP is fully decentralized and does not present a single point of failure, as

it is implemented in a smart contract. Even if some peers are disconnected or

compromised, the PDP will continue to be available. Our system does not involve

a single point of failure, except for the PEP, which is a single point of failure, as

in any other legacy access control system. However, the PEP is assumed to be

secure and trusted. Through these mechanisms, our system effectively mitigates

the impact of malicious attempts to disrupt service availability.

Our proposed system preserves the desired security properties as follows.

Regarding confidentiality, as discussed above, if malicious users compromise fewer

ASes or peers than the defined threshold, only legitimate users will get access to the

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

95

protected resource, assuming the client application is secure. Integrity is ensured

through blockchain’s immutability, since every transaction is immutably written

on the ledger. Immutability guarantees that the “global” access control policy

cannot be altered or deleted by malicious users, ensuring integrity across all peers.

Transparency and non-repudiation are achieved through the inherent properties

of the blockchain technology. The transparent nature of the blockchain allows ev-

erything recorded on the ledger to be audited at any time, by any member of the

blockchain network, ensuring non-repudiation. However, too much transparency

can lead to leakage of private information. In our second design, we mitigate this

risk by excluding sensitive data, e.g., URLs of all ASes, from the smart contract,

thereby ensuring privacy. Finally, our proposed system ensures policy enforce-

ment consistency, since access control decisions are made through smart contracts

running on multiple peers and are immutably recorded on the ledger (in the first

design).

4.3.4 Discussion

In the previous sections, we presented two approaches for consensus-based

access control tailored to collaborative systems of independent entities. With our

solutions, we allow semi-trusting and untrusting entities to collaborate for provid-

ing access to shared data or resources. With the smart contract-based approach,

we utilized smart contracts to completely decentralize the PDP, while with the

endorsement-based approach, we achieve embedding the access decision on the ac-

tual consensus mechanism of the Fabric blockchain, which is already trusted by all

the involved entities and does not depend on one of the parties The proposed solu-

tions enable efficient and effective access enforcement by just querying the ledger.

The time required for reading a record from the ledger is negligible and it is anal-

ogous to a query to an AS. Thus, the blockchain does not add overhead in this

process.

In this paper, we are focusing on the collaborative access control. Thus, the

proposed system is transparent to the “local” access control models and it can be

used as an underlying framework for collaborative environments for many access

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

96

control models. This flexibility is essential for enabling effective collaboration, as

it offers interoperability among different access control models, allowing different

organizations to implement different access control models. Each organization can

retain its preferred access control model without enforcing a single, uniform system

across all organizations. For instance, one organization can implement ABAC for

its “local” access control and another organization can use RBAC. Such adaptabil-

ity is especially beneficial given the rapid development of advanced access control

systems, such as CapBAC, UCON, and ReBAC. Furthermore, the participating

organizations do not need to modify their existing access control systems. Instead,

they can leverage their existing implementations as their “local” access control

procedures. Therefore, our approaches offer a flexible, non-intrusive framework

that facilitates seamless interoperability among organizations with varying secu-

rity preferences and requirements.

Additionally, our consensus-based access control solution can serve many

use cases and scenarios, since the different approaches address a wide range of re-

quirements. However, in the endorsement-based approach, the endorsement policy

is used as the access control policy. That means that for all users and for all shared

resources, we have one collaboratively defined “global” access control policy, since

there is one endorsement policy per smart contract. This might be inappropriate

for some use cases and scenarios, but it can addressed by deploying different smart

contracts for different resources. Another solution that allows us to define more

fine-grained policies per users or resources, is to take advantage of a new feature of

Fabric [24] that allows us to set endorsement policies at the level of state variables

of a smart contract. Furthermore, our first solution can easily be implemented

with minor modifications in any other blockchain that supports the execution of

smart contracts, such as the public Ethereum blockchain [12]. This can serve other

use cases beyond those considered here, since in Ethereum openness is a critical

property, while performance and costs are secondary concerns.

Regarding the administration of the “global” access control policies, this pa-

per does not focus on how they are defined. Instead, we assume that the admins of

each organization cooperate to define these “global” access control policies. Once

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

97

the “global” access control policies are established, they are encoded either within

the smart contract or as the endorsement policy in Fabric. This ensures that the

“global” access control policies will be consistently respected, as the underlying

blockchain mechanisms guarantee their enforcement. In addition, after the def-

inition of the “global” access control policies, no organization can modify them

independently, as they are encoded within the smart contract or as endorsement

policies. Any modification requires cooperation from all participating organiza-

tions. This establishes trust among the participating organizations, even in cases,

where they do not mutually trust each other.

Except for the aforementioned, our system has many desirable usability

properties. New organizations, new ASes, new PIPs, or new access control poli-

cies can seamlessly be added. Also, existing access control policies can easily be

modified or removed, by exploiting a feature of Fabric, which allows us to upgrade

deployed smart contracts at runtime.11 In addition, all these changes are trans-

parent to the client application and the PEP. Nothing has to be changed on this

entity.

Paci et al. [72] and Tolone et al. [74] in their surveys on access control for col-

laborative systems, summarize the main requirements that access control systems

should fulfill for such environments. Paci et al. [72] highlight key requirements, in-

cluding policy specification, governance, usability, and transparency, while Tolone

et al. [74] present higher-level requirements, as follows.

• Access control must be applied at a distributed platform.

• Access control models should be generic enough to accommodate various

environments.

• Scalability, as the number of operations is much richer in collaborative envi-

ronments.

• Privacy at varying levels of granularity.

11https://hyperledger-fabric.readthedocs.io/en/release-2.2/deploy chaincode.html#upgrading-

a-smart-contract

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

98

• Transparency.

• Access control models must allow high-level specification of access rights,

managing the complexity that collaboration introduces.

• Access control models must be dynamic, to be able to specify and change

policies at runtime.

• Performance and costs should be kept within acceptable bounds.

In our work, we do not focus on policy definitions, assuming instead that

each organization defines its own policies, while the collaboratively defined “global”

access control policy is feasible and tailored to the specific use case. For instance,

in a biomedical data sharing scenario, a patient’s individual access preferences

may weigh more than a hospital’s access decision. Leveraging smart contracts or

the endorsement policy to define “global” access control policies provides sufficient

expressiveness to serve such scenarios and many others. However, our proposed

solution meets all the other identified requirements. In terms of governance, our

system facilitates the collaborative administration of shared resources, allowing

joint management and decision making. Regarding transparency, our system allows

all the organizations to understand collaborative decisions and their effect, as all

organizations can audit the blockchain. As shown above, our solutions have several

usability properties too.

Our system is also in line with Tolone et al. [74]’s summarized requirements.

Built on a blockchain infrastructure and having smart contract or the consensus

protocol acting as PDP, our solution inherently supports decentralization. Our dis-

tributed design is essential in collaborative contexts. Furthermore, as we showed

above, our solution is flexible and generic enough, supporting various access control

models that an organization may wish to use. Moreover, as we demonstrated in the

previous section, our solution is dynamic, usable, transparent, and ensures privacy

for sensitive information (e.g., URLs of endpoints, ASes, etc.). In terms of per-

formance and scalability, our performance evaluation has showed that our system

introduces minimal overhead in the decision phase, with no additional overhead

during the enforcement phase, demonstrating both efficiency and scalability.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

99

It is important to note that in the endorsement-based approach, we leverage

a unique feature of Fabric that allows smart contracts not to be identical across

the peers on which it is deployed. In particular, in our design, this feature enables

smart contracts to request different ASes, depending on their organization. This

results in the execution output potentially differing across the peers. This offers

much flexibility and many advantages for our design. However, it also requires

careful definition of the endorsement policy (or “global” access control policy) to

ensure that the overall consensus process remains consistent and secure despite the

differences in individual executions.

Real life use cases

A striking example that highlights the need for collaboration in access con-

trol is the case of healthcare data sharing. In such cases, sensitive patient records

are managed by multiple healthcare providers. Thus, mutual agreement on ac-

cess control by the patient and the healthcare providers is necessary to maintain

privacy and regulatory compliance. One real life application that facilitates health-

care data sharing is eHealth Exchange.12 The eHealth Exchange is a nationwide

network in the United States that enables sharing of medical records across differ-

ent healthcare organizations, such as hospitals, pharmacies, insurance companies,

and governmental agencies. At a high level, the eHealth Exchange network oper-

ates as follows. Healthcare providers collect data directly from patients, as part

of their medical care. Once collected, healthcare providers must obtain patient

consent to share these data. Then, they can share the collected data with other

entities participating to the network. Although the data exchanged among the

participating entities are patients’ records, patients do not participate directly in

the network, as they only give their consent once, during the collection of the

data. When another entity wants to access these data, it requests them from the

provider that collected them and based on access control policies, defined solely

by that provider, decides whether to allow access or not. Therefore, the patient

consents once for her data and then the healthcare provider can share them with

12https://ehealthexchange.org/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

100

any entity it wants, without asking the patient again. With our access control so-

lution this can be addressed. In particular, the patient can be a part of the access

decision for each access request. This is critical, as there may be use cases, where

the patient may want to share her data with one entity, e.g. a government agency,

but not with another, e.g., an insurance company. Our solution achieves this.

Aside from that, in the eHealth Exchange, access control occurs on the provider’s

side, on its own centralized servers. Therefore, if a patient does not fully trust

the healthcare provider, she cannot be sure that her wishes are respected. Our

solution, utilizing blockchain technology and smart contracts, can address that, as

everything is immutably recorded on the ledger.

Another example, where data is managed by multiple mutually non-trusting

entities and thus collaborative access control is critical, as it prevents any single

party from exposing or altering the data, is the case of supply chains. In supply

chains multiple parties, such as manufacturers, distributors, and retailers, share

and manage sensitive data, such as product origins and quality certifications. There

are many efforts that integrate blockchain technology to enable traceability, trans-

parency, and auditability, among others, in supply chains. One real life application

that utilizes blockchain technology is the IBM Food Trust service.13 IBM Food

Trust is a blockchain-based application, designed to bring transparency, traceabil-

ity, and efficiency to the food supply chain. It is built on Fabric, which means

that participants, from farmers to distributors and retailers, are known and veri-

fied. Data, such as production details, shipping information, etc., are recorded on

the blockchain. The access procedures for these data are managed by the Fabric

blockchain and are based on the Fabric’s access control mechanism, i.e., the Fab-

ric’s MSPs, meaning that anyone possessing a certificate from any participating

organization can access the data. For data, shared only among a portion of or-

ganizations, the system utilizes private channels in Fabric, i.e., different ledgers.

Although this solution enables transparency and auditability with regard to access

control, it is somewhat coarse-grained, as it does not allow each entity to have its

own access control policies. Additionally, it does not involve external ASes, mak-

13https://www.ibm.com/blockchain/resources/food-trust/food-logistics/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

101

ing the system extremely vulnerable if just a single CA is compromised. Finally,

it is complex, as it creates different channels and ledgers. Our solution addresses

these issues, by allowing entities to define their own “local” access control policies

and by incorporating external ASes.

4.3.5 Related work

In recent years, the number of collaborative systems has been increasing.

Balancing collaboration and security is a difficult problem. The first step towards

securing such system is through advanced and novel access control. In particular,

many research works [72, 73, 74] highlight the need for new access control models

for collaborative systems, presenting the requirements and the inefficiencies of con-

ventional access control when applied on collaborative environments. Due to these

inefficiencies of traditional access control, many access control solutions tailored to

collaborative multi-party systems have been proposed.

Shen et al. [75] were pioneers in introducing access control for collaborative

environments. Their work, one of the earliest in this domain, propose the extension

of the classic access matrix model, proposed by Lampson [76], to include collab-

oration rights, negative rights, automation, and inheritance-based specification.

Damen et al [77] propose a collaborative access control system based on RBAC

and a policy language based on a hybrid logic. For every role, the entities that

need to collaborate define authorization requirements. When an access request is

made, the authorization requirements are evaluated individually and the results

are combined. For the final decision, the authors consider two different strategies,

permit-takes-precedence and deny-takes-precedence. Their evaluation shows that

the introduced overhead is from 7ms to 263ms. Carminati et al. [78] enhance

topology-based access control to create a collaborative access control for Online

Social Networks (OSNs). They propose a policy language that allows defining col-

laborative access policies. Then, regarding the enforcement of the access decision,

authors introduce a centralized trusted entity, which receives the request and asks

the involved entities if they allow access or not. In particular, Mahmudlu et al. [79]

propose a data governance model for collaborative systems. They propose a frame-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

102

work that can express the relationships between stakeholders and data objects. To

implement that, they use the access control policy language XACML [40]. Addi-

tionally, the work of Sheikhalishahi et al. [80] aims at securing and protecting the

collaborative policies to avoid leak of sensitive information, e.g., the relationships

of co-owners with other parties. To achieve that, they use homomorphic encryp-

tion and Secure Function Evaluation (SFE). The same problem is addressed by

George et al. [81] for the use case of third-party Unmanned Aerial Vehicle (UAV)

services. In particular, they present a privacy preserving multi-party access con-

trol for constrained devices. They build on top of the SFE paradigm to enable

multi-party policy composition and evaluation. The UAVs can evaluate complex

multi-party policies without relying on a persistent Internet connection. The main

focus of this work is on how to protect the access policies. Gouglidis et al. [82] pro-

pose an enhanced RBAC, called domRBAC, for collaborative applications. Their

solution differentiates the access policies that need to be enforced in each domain

and supports collaboration during role assignment. Roles are enriched with the

notion of domains and are expressed in pairs of domains and roles. As a PDP,

they introduce an Access Control Decision Function, which parse the graph that

contains all the roles.

All these works present access control solutions for collaborative systems.

However, they introduce complex policy languages, and in many use cases add sig-

nificant computational overhead (graph-based solutions, intensive cryptographic

techniques, etc.). This can be impractical for some use cases, such as IoT, where

devices are resource-constrained. Furthermore, all these solutions rely on cen-

tralized services, which may limit the resilience, scalability, and the collaboration

ability. In our work, we leverage DLTs to create secure, usable, transparent, and

decentralized consensus-based access control tailored to collaborative systems. Our

system enables collaboration among multiple entities, without introducing complex

policy languages and without revealing sensitive information of one entity to an-

other. Notably, our system is decentralized and distributes the access decision

process by using a smart contract and Fabric blockchain consensus as the system’s

PDP.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

103

Blockchain technology has often been considered for access control system

and solutions in the last few years [46, 83] and especially for access control in

the IoT domain [84, 85]. There are many research efforts that utilize DLTs for

access control, mainly Ethereum and Fabric that support the execution of smart

contracts. In particular, some efforts [86, 52] utilized DLT to create and manage

blockchain-based ACTs. Other works implement various access control entities as

smart contracts [50, 51, 87], e.g., to store access control policies within a smart

contract, i.e., a PIP, or to implement the PDP as smart contract. Furthermore,

there are works that modify a blockchain to serve their need, e.g., Ouaddah et

al. [47] introduce new types of transactions in Bitcoin that are used to get, grant,

and delegate access, while others create their own blockchain to use it for access

control [43]. All these efforts highlight the advantages of using blockchain and

smart contracts to provide secure access control. However, they primarily focus on

using blockchain technology for storing the access control policies and decisions,

with smart contracts being used to process access control requests, without allow-

ing collaboration among multiple entities. However, there is one work, by Siris et

al. [88] that in one of the proposed models, authors try to utilize the blockchain

technology to allow many authorizations servers to collaborate for access. How-

ever, in this work, all the ASes have to be known and their endpoints should be

encoded in the smart contract. Also, this work does not support the collaborative

definition of the access control policy.

In our work, we take this a step further. We do not only utilize smart

contracts, but in our second design, the endorsement-based approach, we leverage

a part of the actual consensus mechanism of the Fabric blockchain for deciding on

and enforcing access. To the best of our knowledge, there is not any other prior

work that uses the consensus mechanism of blockchain for access control processes.

Furthermore, these works do not support collaboration between many entities for

the access control.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

104

4.3.6 Conclusions and future work

We proposed a decentralized, secure, flexible, consensus-based access con-

trol solution tailored to collaborative systems. Our solution utilizes the blockchain

technology, and in particular the Hyperledger Fabric permissioned blockchain. We

presented two different approaches, one that utilizes smart contracts to allow the

collaboration of many entities regarding access control and to decide the final

access decision. The smart contract-based approach can be implemented in any

blockchain, public or private that allows the execution of smart contracts. The sec-

ond approach takes advantage of the consensus mechanism of Hyperledger Fabric,

i.e., access is decided based on a part of the consensus mechanism of the blockchain

itself, the endorsement policy. For both approaches, we proposed mechanisms for

integrating external ASes in an efficient, private, and secure way. In addition,

a strong property of our solution is that it can incorporate many access control

models, as the access control model utilized is transparent to our system, which is

used as an underlying framework for collaborative environments. Our evaluation

demonstrates that our solutions is feasible, introducing a bearable blockchain-

induced overhead of 0.02 seconds. Furthermore, under normal conditions, our

two proposed approaches exhibit latencies of 0.11 seconds and 0.02 seconds, re-

spectively. This shows that although the smart contract-based approach provides

increased transparency, it also results in higher communication overhead, present-

ing worse performance compared to the endorsement-based approach. Finally,

our security analysis demonstrates that our solutions are secure and meet the de-

fined requirements – confidentiality, integrity, availability, transparency, auditabil-

ity, non-repudiation, and privacy – even in the face of various attacks.

The presented access control solution can be extended in many ways. De-

pending on the use case, revocation and/or delegation mechanisms may be re-

quired. Thus, experimenting with effective and efficient such mechanisms and inte-

grating them in the presented access control solution would extend and strengthen

the system as a whole. Another next step, would be to evaluate the performance

of the proposed access control solution in a larger-scale environment. This would

involve testing the system under various configurations, including different network

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

105

sizes, peer organizations, and more complex setups. Additionally, further investi-

gation into the impact of different endorsement policies and their interactions with

scalability and performance would provide valuable insights.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Chapter 5

Applications of blockchains in IoT

– Security and interoperability

In this chapter, we explore the innovative application of blockchain tech-

nology within the IoT, focusing on two distinct use cases: IoT mobile gaming and

digital twin technologies. By integrating blockchain into these areas, we aim to en-

hance security and interoperability among diverse IoT systems and devices, which

is crucial for seamless and secure interactions. In the realm of mobile gaming,

blockchains and smart contracts offer a decentralized platform enabling ecosystem

expansion and diversification, customer attraction and retention, exploitation of

context sensitive and personalized advertisements, and improved monetization of

in-game assets. On the other hand, they can be used to realize secure, available,

and reliable digital twins of IoT devices that offer interoperability, decentraliza-

tion, and auditability. Throughout this chapter, we demonstrate how blockchain

technology can address some of the core challenges of IoT, including security and

interoperability, thus unlocking new potentials for IoT deployment across diverse

sectors.

5.1 The case of IoT mobile gaming

Blockchain constitutes a significant baseline platform technology for many

applications in various domains, as it offers intriguing properties. One such indus-

106

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

107

try that can potentially significantly benefit from the use of blockchains is the mo-

bile gaming industry.1 As the blockchain technology matures, more and more com-

panies from the gaming industry experiment with integrating blockchains into their

games. The first blockchain-based game that became a success was CryptoKitties,2

launched in 2017. Since then, many other and of different types blockchain-based

games have been developed, including gambling games,3 online casinos,4 and trad-

ing games,5 among others. Each one of these types of games exploits different

attributes and advantages of blockchains.

Blockchains provide decentralization, immutability and improve robustness,

availability, transparency and finally trust among participants, enabling mutually

non-trusting parties to interact and engage with each other, without the need for

a trusted third party. When it comes to the mobile gaming industry, blockchains

can help in the creation of large gaming ecosystems, involving many and diverse

stakeholders that may have conflicting interests, e.g., advertising companies and in-

dependent programmers, among others. Nevertheless, these properties come with

a cost. The CryptoKitties game revealed some of the inefficiencies of blockchain

technology. CryptoKitties attracted a lot of attention, more than 40000 active

users per day, leading to increased traffic on the Ethereum network, resulting in

a sixfold increase in pending transactions on the Ethereum blockchain.6 Further-

more, developers of such games have to face a variety of other issues regarding

the performance of their games, such as increased delays, scalability issues, and

last but not least, high transaction costs. Therefore, designing a blockchain-based

game is not a trivial task and sometimes it can be very challenging, leading to

non-scalable and non user-friendly systems.

In this work [89], we explore different system architectures, combining var-

ious types of ledgers, in order to determine a suitable architecture for blockchain-

based games, and investigate the relative trade-offs in combining public and private

1https://www.fortunebusinessinsights.com/blockchain-gaming-market-108683
2https://www.cryptokitties.co/
3https://satoshidice.com/
4https://7bitcasino.com
5https://godsunchained.com/
6https://www.bbc.com/news/technology-42237162

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

108

ledger technologies. Key advances in the blockchain technology exploited in this

work are: private and public instances of the Ethereum blockchain, the Fabric

blockchain, which allows efficient and high performance operations in consortia,

and finally interledger mechanisms [56] that allow hybrid ledger ecosystems, ben-

efiting from the best of both worlds.

In addition, we consider the inclusion of IoT devices and technologies in

mobile gaming, which can help in the creation of novel and fun mobile games,

while enlarging the set of involved parties and creating new business opportunities

at the same time. Gaming companies, and in particular mobile gaming companies,

try to take advantage of the many benefits and opportunities that IoT provides in

mobile gaming.7 They try to combine the real with the virtual worlds, in order to

develop fun augmented or mixed reality games that make players feel that they are

personally involved in the game environment, part of which is in the real world.

Furthermore, by creating games that combine the physical with the digital world,

new business opportunities arise. Cafes, malls, and similar establishments and

companies, can participate in such applications, creating or enlarging the gaming

ecosystems, by deploying IoT devices in their premises in order to contribute and

expand the location-based, context-aware, augmented or mixed reality gaming

experience, as we will discuss below.

To sum up, we investigate and evaluate the combination of IoT and blockchains

in mobile gaming. The contributions of this work are:

• We investigate exploiting the IoT and DLTs in designing an expanding mobile

gaming platform that can support an open mobile gaming ecosystem with

improved in-game features, such as in-game assets, transparent transactions

among the various entities, e.g., players, game developers, and advertisers,

cross-game and game company assets and value transfers, and player inter-

actions with the real world.

• We define KPIs for IoT-based and DLT-supported mobile gaming platforms.

7https://www.headstuff.org/entertainment/gaming/how-the-internet-of-things-is-changing-

the-gaming-industry/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

109

• We illustrate the advantages of permissioned and permissionless blockchains

in the mobile gaming context and demonstrate the benefits of interledger

technologies in combining both types of blockchains, creating hybrid envi-

ronments.

• We evaluate a specific IoT and hybrid DLT mobile gaming platform de-

signed through a combination of emulation of gaming functions and actual

implementations of blockchain functionality with different combinations of

an Ethereum public blockchain, a private instance of Ethereum, and Fabric

blockchain.

5.1.1 A scavenger hunt location-based mobile game ecosys-

tem emulation

The mobile gaming industry has been considering how to expand the gam-

ing ecosystem. Various ideas have been contemplated and directions proposed.

First, improving player trust in the exclusivity, rareness, or even uniqueness of

in-game assets provided by gaming companies and traded by players. This is a

privileged area for blockchains. Then, if that is secured, the (long-term) value

of assets increases and it was felt that players that own such assets should be

able to transfer them between games, even across ecosystems of different gaming

companies. Again blockchains can play a role here; if the ecosystems use differ-

ent blockchains, interledger technologies provides solutions. Another direction ex-

ploited to engage players and programmers and expand games and keep them fresh

and adapt them to various communities and interests is the incorporation of the

capability of third parties to design in-game “challenges.” These are specific tasks

designed and programmed possibly by independent, to the main gaming company,

parties that are attached to the game and expand it. These challenges can bring

their own rewards, in particular if there is a general, accessible system of rewards

and assets endorsed by the game, such as a blockchain–e.g., Ethereum tokens can

play both roles. Finally, advertising is also present in this domain. More interest-

ing is perhaps context-aware advertisements, related to the game and the player’s

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

110

performance, interests, and choices. Enabling advertising companies to conduct

campaigns outside the complete control, and perhaps without a-priory knowledge,

of the gaming company is an intriguing possibility, potentially supported by open

blockchains.

A different direction has been very successfully brought to the forefront by

Pokémon Go,8 one of the most used and profitable mobile apps in 2016. In addi-

tion to Augmented Reality (AR), it popularized location-based gaming technology,

creating opportunities for brick and mortar stores and other businesses to exploit

the digital revolution and mobile gaming in particular to improve their bottom line

due to increased foot traffic. On the other hand, Pokémon Go also exhibited many

other features of mobile gaming we are considering and trying to address through

technology in this work: cheating and hacks by players, the power and presumed

arbitrariness of the gaming company, the performance problems of centralization,

in particular in the case of targeted DoS attacks, the low resolution of the location

technology and others. But the success and publicity created by Pokémon Go

has intensified interest in location-based and context-aware gaming more generally

and in particular in combination with advanced IoT technology availability and

affordability.

In order to evaluate how blockchains and IoT technologies perform in de-

manding mobile gaming applications and their potential impact on expanding gam-

ing ecosystems, we emulated a generalized version of the scavenger hunt location-

based mobile game introduced and implemented by Rovio in the EU H2020 project

Secure Open Federation for Internet Everywhere (SOFIE).9 The game is designed

around locations with players incentivized to move from location to location with

puzzles presented only when present in the right location. Players are rewarded

for solving the puzzles. The game utilizes IoT beacons or specific Wi-Fi access

points or localization, includes “challenges,” and exploits blockchains. A compre-

hensive description of the mobile game and its architecture is presented in [90]. In

a nutshell, the players have to solve some riddles using clues to reveal the target

locations. By solving these riddles, the players are rewarded with points, which

8https://pokemongolive.com/
9https://www.sofie-iot.eu/en

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

111

they can exchange with rewards and assets. From a high level perspective, the

flow of the game is as follows. Initially, the player sees the available nearby rid-

dles (challenges), based on her GPS location. Then, she selects one of them, and

receives some clues that will lead her to the first location that she has to visit.

When she arrives at the location of a deployed IoT device, a riddle alongside with

some clues are shown on her mobile device. Solving the riddle or performing the

appropriate task, e.g., take a picture of a statue located in square X, where X is

four blocks away from square Y, will reveal the location of the next IoT device, in

order for the player to go there, collect her points, and download the next riddle.

This procedure continues until the last IoT device is reached.

In addition to the core functionality of the game described above, the spe-

cific mobile game provides some additional features. A user is able to skip any

challenge, at any time of the game, by viewing an advertisement offered by an

independent advertising company, by paying in in-app tokens or in fiat currency.

Furthermore, a player can get a reward, which can be an asset for the game, by

the advertising company, if she watches an advertisement. Moreover, the player

can at any point of the game redeem her points in order to get rewards given by

the gaming company. The rewards are assets, e.g., a sword or a shield, that can

be used in the game or in any other game that uses the same blockchain platform.

The blockchains considered in the design of the game are Ethereum and

Fabric, for different roles and reasons. A private instance of Ethereum, without

the energy-hungry proof-of-work can be used as an alternative to Fabric. These

blockchains are chosen for external and internal gaming functions. To intercon-

nect these two blockchains, there is a need for an Interledger Gateway (ILG) that

handles the communication between the two ledgers. An ILG is a component that

enables interoperability among different DLTs, by transferring information and

value between them. In the SOFIE project, an interledger component has been

developed that enables activity on one ledger, called Initiator, to trigger activity

on one or more ledgers, called Responder(s).10 This specific interledger component

is used in the mobile game in order to allow the communication between Fabric

10https://github.com/SOFIE-project/Interledger

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

112

and public or private Ethereum networks.

For the IoT part of the game, IoT beacons are used as proximity sensors

to determine the location of a player, when she visits the corresponding Point of

Interest (PoI). The beacons could be sensed by the user’s smartphone using the

Bluetooth Low Energy (BLE) standard, or even Wi-Fi, with different accuracies.

Modeling and emulation environment

To evaluate the performance and other aspects of the scavenger hunt location-

based mobile game, we developed an emulation environment, as it allows us to

easily compare different blockchain setups that utilize public (permissionless) and

private (permissioned) blockchains, which would be complicated and difficult with

the actual mobile game implementation. Our emulation involves and investigates

public ledgers, using a public Ethereum test network, and private ledgers, using

a private Ethereum network or the Fabric blockchain, allowing us to compare dif-

ferent configurations with the two aforementioned types of blockchains that have

different features and trade-offs in terms of transaction cost, latency, transparency,

and privacy. Our evaluation through the emulation environment focuses on some

system performance metrics (KPIs) and does not consider business oriented metrics

such as player satisfaction, gaming experience, and revenue opportunities.

The implemented emulation environment is composed of the following en-

tities and actors (see also Figure 5.1):

• A Web application that emulates the mobile gaming client

• The players

• The game administrator

• The (public or private) Ethereum blockchain and the corresponding smart

contracts

• The Hyperledger Fabric blockchain and the corresponding smart contracts

• An ILG

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

113

Web
Application

Interledger Gateway

PlayerGame
administrator

Ethereum

Hyperledger Fabric

Figure 5.1: Architecture diagram for the emulation environment of a scav-

enger hunt location-based game, involving two blockchains that are interconnected

through an Interledger Gateway.

The first component of our system is the mobile gaming client, which is

emulated as a Web application implemented using React.js.11 Both players and

administrators use this Web application to interact with the game, players to

play the game and administrators to modify the game. In order for actors to

interact with the application, they need to own an account in the gaming system,

as well as a blockchain wallet account. Each challenge/riddle is identified by a

unique identifier. In order for a player to select and “play” a challenge, she has to

choose the appropriate challenge identifier. The solution of the challenge’s riddle

is emulated in the application through a “complete” button. The player can skip

a challenge by paying some predefined amount in cryptocurrency, or in in-app

tokens, or by viewing an advertisement. The in-app tokens are developed using

the Ethereum ERC-20 token standard. Finally, advertisements are emulated as

functions of a smart contract. Thus, if a player wants to “watch” an advertisement

and get the corresponding rewards, she has to call the appropriate function of the

smart contract from the application.

11https://reactjs.org/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

114

The main functionality of the scavenger hunt location-based mobile game

is emulated by three smart contracts. The first smart contract, named game smart

contract implements all the functionality related to the challenges and rewards. In

particular, it records the challenges on the blockchain. It also records a mapping

of players and challenges and whether a particular player has completed the tasks

of a challenge or not. Furthermore, the smart contract automatically calculates

the points that each player obtains, when he completes the challenge. Moreover,

it implements the functions for skipping a challenge. Finally, it implements a

function for redeeming the rewards. The second smart contract, called ads smart

contract contains the functions that emulate the advertisements. It is responsible

for checking whether a player “watched” the advertisement or not and provides

the corresponding rewards. The third smart contract is the token smart contract.

The token smart contract mints, burns, and manages the in-app tokens. In our

emulation environment, we have implemented the ILG as one entity that “watches”

all the blockchains for emitted events and acts accordingly when it receives one

such event. Adding one entity that acts as the ILG is the easiest and typical

solution. The interledger functions are implemented using Node.js and the web3

JavaScript library in order to interact with the smart contracts.

The architecture shown in Figure 5.1 is one of the four architecture scenarios

that we have developed, and in particular is the fourth emulation scenario (see be-

low). Figure 5.2 presents the actors’ interactions with the emulation environment.

The diagram shows all the involved actors of the mobile gaming ecosystem and the

functions of the emulated mobile game, they can perform or interact with. The

four emulation scenarios that involve different DLTs setup are presented below.

Scenario 1 – One public blockchain - Ethereum. The first scenario

considers a single public Ethereum blockchain. All three smart contracts, which

implement the gaming functionality, are deployed on the Rinkeby Ethereum test

network.

Scenario 2 – Two types of blockchains - public and private Ether-

eum. The second scenario investigates the gains from utilizing two types of

blockchains, a public blockchain and a private/permissioned blockchain. The pub-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

115

Ads Manger

Developer

Player

Publish
advertisements

Design/Add
challenges

Play
challenges

Redeem
rewards

Offer rewards

Skip
challenges

Get In-App
tokens

View
advertisements

Figure 5.2: Actors’ interaction with the scavenger hunt location-based mobile

gaming emulated system.

lic blockchain is an instance of Ethereum on Rinkeby Ethereum test network, while

the permissioned blockchain is a private instance of Ethereum. The game smart

contract is deployed on the private ledger, while the other two smart contracts

are deployed on the public ledger. In order for the two ledgers to communicate

with each other, there is an ILG, which is responsible for the interconnection of

them. ILG “listens” for events on both instances of Ethereum and handles the

corresponding functions.

Scenario 3 – One private blockchain - Hyperledger Fabric. The

third scenario considers a single private ledger. In particular, we use the Fabric

blockchain. All smart contracts are deployed on it.

Scenario 4 – Two types of blockchains - public Ethereum and

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

116

Hyperledger Fabric. Last but not least, the fourth emulation scenario utilizes

the two types of blockchains, as in scenario 2, but differs from that scenario in that

the private blockchain used is the Fabric blockchain, instead of a private instance

of Ethereum.

5.1.2 Performance evaluation

To evaluate the performance of the presented mobile game using the emu-

lation environment, we first define the performance metrics that play crucial role

in the performance of the system. The first performance metric we consider is

the response time, namely the time required to execute various requests. In this

case, where the gaming system utilizes blockchain and IoT devices, the response

time is affected by the time that the system performs read and write transac-

tions, and the time that an IoT device needs to detect the players arriving in a

particular location. Furthermore, since we utilize public Ethereum in the mobile

game, we should consider the execution cost, measured in gas, as a performance

metric. Finally, the last two performance metrics we consider are the throughput

and the scalability, since they characterize the volume of transactions, as well as

the number of players that the system can support in a given time window. The

aforementioned metrics constitute the KPIs and are shown in Table 5.1. We do

not consider business oriented metrics and that is why in the table there are not

popular KPIs for mobile gaming, such as Daily Active Users (DAU), Average Rev-

enue Per User (ARPU), and Monthly Active Users (MAU) among others, which

are important but addressable only through a real implementation.

We now describe the performed experiments needed to measure the defined

KPIs and the corresponding results for all the emulation scenarios described in

the previous Section. The smart contracts running on the Ethereum blockchain

were written in Solidity, while the smart contracts running on Fabric were writ-

ten in Node.js. Ethereum smart contracts were tested in the Rinkeby Ethereum

test network. On the other hand, for the scenarios that leverage Fabric, we used

Fabric v1.4. The blockchain network in Fabric was consisted of two organizations,

having two endorsing peers each. The smart contracts were deployed in all peers.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

117

KPI Name Description

KPI 1 Public ledger execution cost Cost for executing operation on a

public ledger

KPI 2 Response time for write requests Time for the system to respond to

write transactions

KPI 3 Response time for read requests Time for the system to respond to

read transactions

KPI 4 BLE beacon detection time Time that player has to wait be-

tween arriving at location and re-

ceiving the task

KPI 5 Throughput Maximum number of transactions

per time unit

KPI 6 Cost scalability Increase of cost as number of chal-

lenges increases

KPI 7 Time scalability Increase of response time as num-

ber of challenges increases

Table 5.1: System Key Performance Indicators for the scavenger hunt location-

based mobile game.

The results presented below are the average value of 10 executions. Furthermore,

we calculated the 95% confidence interval for each of the experiments, using the

Student’s t-distribution (because the sample size is small, < 30).

KPI 1 refers to public ledger execution cost and is measured in gas units.

The third scenario, which utilizes only the Fabric blockchain does not entail an ex-

ecution cost, since it does not perform any actions on a public ledger. For the same

reason, some of the actions in the second and fourth scenario incur zero cost. Fur-

thermore, some actions in different scenarios have the same implementation, hence

they also have the same transaction cost. All the actions that involve a transaction

on a public ledger and the corresponding execution cost, for all scenarios is shown

in Table 5.2. We observe that for all the actions except of one, the execution cost

is smaller in the second and fourth scenarios that involve a public and a private

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

118

Actions Scenario 1 Scenario 2 Scenario3 Scenario 4

Add challenge 47050 N/A N/A N/A

Begin challenge 52423 N/A N/A N/A

Complete challenge 53529 N/A N/A N/A

Skip challenge by pay-

ing

61867 N/A N/A N/A

Skip challenge by in-

app tokens

63877 33438 N/A 33438

Skip challenge by view-

ing ads

53926 21462 N/A 21462

Get in-app tokens by

paying

44199 35274 N/A 35274

Get in-app tokens by

viewing ads

37981 56736 N/A 56736

Redeem rewards 36618 35274 N/A 35274

Table 5.2: Ethereum Virtual Machine execution cost (gas) for the actions of the

scavenger hunt location-based mobile game.

ledger. This happens, because these actions involve the interaction of the game

smart contract with the ads or the token smart contract. In these scenarios, the

game smart contract is deployed on the private ledger, so the actions performed

by that smart contract do not incur cost. For this reason, the total amount of cost

required for these specific actions is the gas consumed only by the public ledger.

We should note here that the execution of a transaction in the private Ethereum

consumes private EVM resources. So, we assume that the cost is zero, and that is

why we have set the results for these actions as Not Applicable (N/A).

The function with the highest execution cost on the second and fourth sce-

narios is the function invoked for getting in-app tokens by viewing advertisements.

This function involves the invocation of all three smart contracts. The player first

calls the function of the game smart contract to alert the system that she wants to

“watch” an advertisement in order to acquire some in-app tokens, then the game

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

119

smart contract invokes the ads smart contract, and finally when the ads smart

contract finishes the execution, the game smart contract invokes the token smart

contract to transfer the in-app tokens to the player’s account. In the first scenario,

all these invocations can be done only by one transaction for invoking the game

smart contract. Then, the game smart contract will invoke the other two smart

contracts internally. In the other two scenarios, we cannot perform this specific

action by sending just one transaction, since the smart contracts are deployed on

different blockchains, thus we need two more transactions, initiated by the ILG.

One transaction to invoke the game smart contract (zero cost), which will trigger

an event that will be “caught” by the ILG. Then, the ILG will send a transaction

to the ads smart contract. When the execution will finish, it will send a trans-

action back to the game smart contract to inform it that the user “watched” the

advertisement. After that, it can proceed with the payment. The same process

is followed with the token smart contract. Thus, for this particular action, the

second and the fourth scenario adds an overhead of two more transactions on the

public ledger. The above results confirm that using a single public ledger is very

costly. Furthermore, the results quantify the gains, in terms of cost that can be

obtained by combining a private and a public ledger.

The second KPI refers to response time for write requests. As we have al-

ready mentioned, in Ethereum, the transaction delay depends on the block mining

time and it is ≈ 15 seconds. Therefore, for scenarios that utilize the Ethereum

blockchain (public or private) the response time for write transactions is ≈ 15

seconds. This time is also affected by other external factors, such as the load of

the network, the size of the transaction, and how many transactions can fit in a

block. We performed some experiments in the Rinkeby Ethereum test network, to

validate that the response time is indeed around 15 seconds. On the other hand,

in Fabric, in order for a transaction to be added on the ledger, it must get through

by three phases. These phases are the execution phase, the ordering phase, and

the validation phase. So, in Fabric, the transaction delay depends on the time that

each phase requires. The results, with the confidence intervals, for all scenarios

are presented in the Table 5.3.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

120

Actions Scenario 1 Scenario 2 Scenario 3 Scenario 4

Add chal-

lenge

14.55 (± 2.48) 14.55 (± 2.48) 2.209 (± 0.03) 2.209 (± 0.03)

Begin chal-

lenge

15.38 (± 3.14) 15.38 (± 3.14) 2.195 (± 0.01) 2.195 (± 0.01)

Complete

challenge

14.14 (± 3.57) 14.14 (± 3.57) 2.187 (± 0.01) 2.187 (± 0.01)

Skip chal-

lenge by

tokens

12.96 (± 2.90) 12.96 (± 2.90) 2.176 (± 0.01) 12.96 (± 2.90)

Skip chal-

lenge by

ads

15.14 (± 3.39) 15.14 (± 3.39) 2.182 (± 0.02) 15.14 (± 3.39)

Get tokens 11.12 (± 2.05) 11.12 (± 2.05) 2.187 (± 0.01) 11.12 (± 2.05)

Table 5.3: Mean response time units for write requests (confidence intervals) for

the actions of the scavenger hunt location-based mobile game.

The next KPI refers to the time needed for the system to respond to non-

altering transactions, namely read requests. Read requests in Ethereum do not

broadcast or publish anything on the blockchain, and the response is returned in-

stantaneously, since the requests are local. Furthermore, read requests in Fabric

follow the same flow as the one described above for the write requests, with the

difference that for the read requests the flow ends when the proposal response is

returned to the client (i.e., there is not an ordering and validation phase). The

results are shown in Table 5.4. We observe that the response time in scenarios that

utilize Ethereum is approximately 1 second, which is not negligible as expected.

That is happening because in our emulation environment, we do not own and

run an Ethereum (full or light) node. So, in order to interact with the Ethereum

blockchain, we communicate with another node of the network, acting as RPC.

Thus, an additional (network) overhead is introduced. We performed some exper-

iments with local Ethereum, in order to find out the exact value for the response

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

121

Actions Scenario 1 Scenario 2 Scenario 3 Scenario 4

Query points 1.106 (± 0.05) 1.106 (± 0.05) 0.024 (± 0.002) 0.024 (± 0.002)

Query challenges 1.085 (± 0.04) 1.085 (± 0.04) 0.026 (± 0.006) 0.026 (± 0.006)

Query tokens 1.124 (± 0.06) 1.124 (± 0.06) 0.021 (± 0.001) 1.124 (± 0.06)

Table 5.4: Mean response time units for read requests (confidence intervals) for

the actions of the scavenger hunt location-based mobile game.

time in non-altering transactions, which is ≈ 0.045 seconds.

The next KPI is the BLE beacon detection time. Functionality related to

beacon detection time is not implemented in the smart contracts, hence this time

is independent of the ledger transaction time. Furthermore, since this action is

independent of the blockchains, our emulation environment does not consider IoT

related actions, thus we do not have produced results about this specific KPI.

However, in [90], there is an exhaustive evaluation about the beacon performance

for this specific mobile game. Authors calculated that the average delay is 5.8

seconds.

Next, we have the KPI related to throughput, which is defined as the num-

ber of transactions per time unit that the system can support. To measure this

KPI, we conducted a number of experiments sending write requests to the system,

since read requests are local, and they do not record anything on the ledger. Ini-

tially, we measured the throughput of private Ethereum. In these experiments, we

observed that a block can store up to 74 transactions, related to our game. Also,

we know that a block is mined in 15 seconds, so the throughput of the system is

4 TPS. We should note that the throughput is affected by the number of transac-

tions that can fit in a block. In particular, we measure the transactions that fit

in a block by calculating the amount of gas that is packed in the block. So, the

throughput might be increased for some other actions that costs less gas. In pub-

lic Ethereum, a block will contain transactions from the whole Ethereum network,

and not only from our game, thus the throughput will be even smaller. On the

other hand, in Fabric, we have observed from the configuration file that a block

can fit up to 20 transactions, with a maximum transaction size of 99 MBs. From

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

122

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 0 20 40 60 80 100 120

G
as

Number of challenges

Figure 5.3: Ethereum gas consumption as a function of the number of game

challenges for the scavenger hunt location-based mobile game.

the experiments we conducted, we measured that a block is added on the ledger

in about 100 milliseconds and that all the transactions related to our use case had

transaction size smaller than 99 MBs. Therefore, the throughput of the system

is 200 TPS. The above results are not affected by the ILG component, since we

measure the throughput of each blockchain separately.

The last two KPIs are related to scalability, and in particular they show

how the execution cost (KPI 6) and the response time (KPI 7) are affected by the

number of challenges or users. As the throughput, scalability is not affected by

the ILG or any other component of the system. The cost scalability concerns only

scenarios that use the public Ethereum blockchain, which introduces a transaction

cost. We defined the cost scalability as the ratio of the cost over the number of

challenges. The cost scalability is shown in Figure 5.3. We observe that the cost

scalability is linear to the number of challenges. Similarly, the cost scalability

remains linear, not only to the number of challenges, but also to the number of

in-app tokens, points, and any other metric that involves transactions with the

Ethereum blockchain.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

123

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400

Ti
m

e
(s

ec
on

ds
)

Number of challenges

Ethereum

Figure 5.4: Time scalability for Ethereum-based scenarios in the scavenger hunt

location-based mobile game.

Finally, the last KPI refers to time scalability, which is shown in Figure 5.4

for the public Ethereum, and in Figure 5.5 for Fabric, respectively. We define time

scalability as the ratio of time over the number of challenges. From the figures, we

observe that the time scalability for all types of blockchain is a stepwise function,

which macroscopically becomes linear. Again, the time scalability is similar for

points, in-app tokens, etc.

All the results for all the KPIs and scenarios are summarized in Table 5.5.

The results in the table are the average of all the corresponding actions of all exper-

iments. Furthermore, for the fourth emulation scenario, which utilizes both public

Ethereum and Fabric, the results presented in the table are for both blockchains.

It is clear that the use of public ledger (Scenario 1) is expensive and demonstrates

poor performance results, especially in terms of response times and throughput.

Using a single private ledger (Scenario 3) is way better than using a single public

ledger, in terms of cost and performance. However, this alternative lacks some im-

portant properties of the public ledger, such as transparency, wide-scale trust, and

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

124

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160

Ti
m

e
(s

ec
on

ds
)

Number of challenges

Fabric

Figure 5.5: Time scalability for Hyperledger Fabric-based scenarios in the scav-

enger hunt location-based mobile game.

openness. Thus, the best solution is to combine these two types of blockchains,

the private ledger in order to implement all the gaming functionality for which

time is a crucial factor, while the public blockchain in order to implement other

actions, such as advertisements and assets specific actions that require higher levels

of trust, transparency, and openness in order for the entities to be able to join the

ecosystem easily. So, since Fabric demonstrates better performance results than

a private instance of Ethereum, we end up that the private ledger should be the

Fabric blockchain, thus, the fourth emulation scenario is more suitable than the

second that utilizes public and private Ethereum.

5.1.3 Discussion

We have showed that blockchains have many useful properties, including

decentralization, replication, transparency, non-repudiation, immutability, and au-

ditability. All these properties and features make DLTs a promising technology for

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

125

KPIs Scenario 1 Scenario 2 Scenario 3 Scenario 4

KPI 1 50164 36437 0 0 & 36437

KPI 2 13.89 sec. 13.89 sec. 2.189 sec. 2.197 & 13.89 sec.

KPI 3 1.105 sec. 1.105 sec. 0.024 sec. 0.025 & 1.124 sec.

KPI 4 N/A N/A N/A N/A

KPI 5 4 write TPS 4 write TPS 200 write TPS Scenario 1 & 2

KPI 6 Linear Linear N/A Linear

KPI 7 Step-wise Step-wise Step-wise Step-wise

Table 5.5: System performance evaluation results for all the emulation scenarios

for the scavenger hunt location-based mobile game.

the mobile gaming industry. Blockchains can enhance mobile games with game

and rules transparency, assured asset ownership, secured asset trade, easy and se-

cure asset reusability, and support for secure and robust User Generated Content

(UGC).

Everyone participating in a blockchain network can read all the records

stored in the blockchain, as well as the source code of the smart contracts. Thus,

if the functionality of a game or the rules of a game are written in a smart contract

deployed on the blockchain, everyone, including players can access and read these

data. This is a great improvement compared to legacy systems, where usually

these data are stored in private servers and are provided to the players by the

game company only indirectly, often not even explicitly. So, in a blockchain-based

game the players can be sure that the rules of the game will be respected and

that the game is played fairly by everyone. One such example is a dice game

that generates a random number from one to six, in order to choose a winner.

If the functionality that implements the generation of the number is in the smart

contract, then the players can audit this process and be sure that no one will cheat,

not even the gaming company that provides the game.

Furthermore, different game organizations can join the same blockchain

platform and cooperate, in the sense that one company can develop a game based

on the content of the game of another company (logic extension and asset reusabil-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

126

ity), like the KotoWars game.12 If the assets of a game, e.g., shields and guns are

represented as tokens in a public blockchain, which is open to everyone, then these

tokens will “live” in the blockchain network, and not in the server of the specific

game. Thus, everyone can also (re)use them outside the game, e.g., in another

game that supports the same assets, without the intervention of the first gaming

company. Furthermore, this guarantees asset ownership with transparency and

consistency of asset rules, and other similar useful properties, leading to trusted

and simpler trading transactions of assets among players. More importantly, this

can also be done across games. Note that distrust about rare and expensive assets

has been a limiting factor in some cases in the past and a key motivating factor

for the introduction of DLTs.

Blockchain technology can also improve in-game features and solve some

of the problems faced by the (mobile) gaming industry. A game that leverages

blockchain technology can expand and improve in-app payments using cryptocur-

rencies. Until recently, mobile games used mostly conventional payment meth-

ods that require a third trusted party in order to be reliable. With the use of

blockchains and smart contracts, and in particular due to the transparency and

openness they provide, in-app payments become transparent without needing a

trusted third party.

With regards to advertisements, using the blockchain technology to track in-

app advertisements can strengthen this process. Companies from the advertising

sector or individual advertisers can provide personalized and more importantly

context-aware advertisements. In an IoT mobile game (as the one described above),

advertising companies can provide advertisements based on the users’ location, in

addition to other game context-related information, both macroscopic, e.g., the

game or type of game, or the specific state in the game or past history and choices of

the player if these become observable to all or specific parties (e.g., the advertisers).

Perhaps the most intriguing benefit of blockchains in the (mobile) gaming

industry is the support for UGC. In traditional gaming all the assets of a player in

the game belong to the game company, even in games, where a player can create

12https://kotowars.com/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

127

on her own her items. With the help of blockchains, this can change and lead

to an open community, where any player will be able to create, own, and trade

her own items. Furthermore, the items that are generated by the users will be

owned by the users themselves, even if they stop playing the game. Also, DLTs

can secure and strengthen this community through the aforementioned properties,

e.g., avoiding incidents of stolen assets. All these properties can help the gaming

industry to attract many more players and to engage them more by allowing them

to create and trade assets and more generally UGC.

Therefore, it is clear that blockchains have the potential to help in the cre-

ation of new and open mobile gaming ecosystems, especially when they are com-

bined with IoT technologies, where many different organizations (e.g., advertising

companies, game studios, PoI companies, and others) can cooperate with each

other to develop novel, fun, and context-aware mobile games. In our use case, it

is easy for a cafeteria or a mall or any other company interested in a particular

location (PoI), to deploy IoT beacons in its location, design challenges, and add

them in the smart contract, without the intervention of a middleman, since there

are no barriers to entry, and anyone with an Ethereum address can add a challenge.

Of course, the initiator of the game smart contract, typically the gaming company,

can introduce conditions to be checked automatically by the smart contract. With

a case like that, new business opportunities are created, since the players will be

attracted to the PoI in order to complete a challenge and may buy something from

a particular store. The same also applies for the advertising sector. It is easy to

create open ecosystems for the advertisers, in order to add their advertisements in

the game, by just adding the URL of the advertisement within the smart contract.

Of course these benefits come with costs. Firstly, and as we show in the pre-

vious section, public blockchains involve monetary and communication overhead,

which in many cases can be prohibitive. Secondly, the immutability property of

the blockchain makes hard for developers to fix bugs in their code, since deployed

smart contracts cannot be modified. Thirdly, the openness and transparency of

blockchain makes hard to protect intellectual property or any other trade secrets.

In this paper we developed an emulation environment in order to evaluate

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

128

the performance and various other aspects (e.g., open ecosystems) of a location-

based mobile game. Through emulation, it is easier and simpler to develop and

implement different scenarios, as the ones presented above, which utilize different

blockchain technologies. However, our emulation environment has some limita-

tions. First of all, in our emulation environment, we did not consider IoT related

actions. So, we did not measure the fourth KPI (see Table 5.1), which is the BLE

beacon detection time. However, the detection time of beacons is one of the most

important performance metrics for the specific mobile game, as if a beacon takes

too long to sense a player’s smartphone and send the appropriate tasks, then the

player might be confused and think that she is not in the appropriate location.

However, authors in [90] have calculated that the average delay is 5.8 seconds.

Furthermore, in our evaluation, we did not consider business related metrics and

KPIs, such as DAU and ARPU, since these metrics are addressable only through

a real implementation. On the other hand, in our emulation we focused on the

technologies used in the presented mobile game and how these technologies affect

the performance of the system. However, we briefly describe the new business

opportunities that arise with a game like the one presented above, (due to the

use of IoT and blockchain technology) for the PoI companies (restaurants, cafes,

and malls among others), advertisers, game developers, and even for the players.

Finally, in our emulation environment, we have one application (Web app) that

all actors, players, game administrators, and advertisers use to interact with the

system. Also, all the functionality of the game is implemented in the three smart

contracts and the ILG. In a real implementation of the game, this is not the case.

The game company should have an application that will manage the game (e.g.,

managing the users accounts), another one to manage the challenges and so on.

However, these (architectural) modifications will not affect the performance results

presented above, and the results will remain at the same order of magnitude, as

the bottleneck of the system is the blockchain technology.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

129

5.1.4 Related work

Companies in the gaming industry have already integrated blockchains into

their products. One of the first blockchain-based games, introduced in 2014, is

Huntercoin.13 Huntercoin is a game, where players control a “hunter”, who ex-

plores a 2D virtual universe residing within the blockchain. The goal of this

game is to collect coins, which can be exchanged with fiat currency. Thus, the

blockchain is used mainly for mining, storing, and trading these in-game coins. As

we have mentioned earlier, the first blockchain-based game that became a success

is CryptoKitties. It is a game that players can buy and “breed” kitties, which are

represented by blockchain-based tokens. In particular, the game uses the ERC 721

token standard to create and manage tokens that represent the in-game assets. An-

other game is Decentraland,14 which is a distributed platform for a shared virtual

world that enables players to build on top of it. It uses the Ethereum blockchain

and utilizes the ERC-20 token standard in order to allow players to trade goods

and services provided by themselves. Finally, another recent game that shows the

benefits of blockchains in gaming is KotoWars. In this game, players are able to

duel each other, using their assets (“kitties”) earned from the CryptoKitties game.

This game is of particular interest, as it demonstrates how blockchain technology

can enable interoperability among different games. It is clear that many games

that utilize blockchains have been developed, which take advantage of the features

and properties of the DLTs. However, there are not games or mobile games that

combine DLTs with the IoT. In this paper, we present and evaluate various aspects

of a context-aware mobile game that has been developed for the SOFIE project

and combines IoT devices and blockchains.

In addition to gaming companies, many research efforts have considered

utilizing blockchain technology within gaming. Min et al. [91] survey and cate-

gorize existing blockchain-based games according to the properties and features

of the blockchain they use, while Min and Cai [92] explore architectures used in

blockchain-based games and the security issues that arise, and Cai and Wu [93]

13https://xaya.io/huntercoin-legacy/
14https://decentraland.org/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

130

propose a gaming avatar framework that provides interoperability across multiple

games and blockchains. On the other hand, Kalra et al. [94] have used blockchain

technology, not for the game itself, but for implementing auxiliary functionalities

for the games. In particular, they have designed an application that addresses

two seemingly different problems in online gaming, cheating and DDoS attacks to

game servers. Although all these efforts illustrate the advantages, as well as the

potential for using blockchain in gaming, they do not provide insights about the

impact of this technology in gaming applications. In this work, we fill this gap by

discussing and evaluating the impact of the inclusion of blockchains to mobile gam-

ing and propose the use of interledger technology in order to exploit both public

and private ledgers, while achieving the high performance expected in gaming.

This work summarizes our efforts in evaluating a context-aware mobile

game, as part of the H2020 project SOFIE. Manzoor et al. [90] describe in detail

this location-based mobile game. They present an architecture for such games and

then they describe a specific game, which they have designed and implemented,

investigating the latency and the throughput aspects of the system. The game

is a full implementation with a user interface and can be played on real mobile

devices, using real Bluetooth beacons or Wi-Fi access points as beacons. Because

of their approach, they have to make specific implementation decisions and limit

the choices and parameters they investigate, but they also obtain concrete (but

technology and solution specific) performance metrics, e.g., for the (mean) time

to detect a beacon and the number of players that can be supported. In our

work, we use mainly emulation in order to investigate a larger universe and poten-

tial applications and mobile gaming ecosystem (but we do actual implementation

for all smart contracts and related DLT functionality). This allows us to research

many more architectural scenarios that jointly utilize public and private blockchain

technologies, determine the corresponding trade-offs, and investigate many more

performance metrics.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

131

5.1.5 Conclusions and future work

In this work, we have discussed how DLTs and IoT devices can be uti-

lized to enable and expand novel mobile gaming ecosystems and improved in-game

features, such as in-app payments without third parties, and personalized and

context sensitive advertisements, in an open and secure manner. Furthermore, we

described a specific prototype of a location-based mobile game and we evaluated

it from various aspects based on defined KPIs.

At a high level, our evaluation shows the gains that can be achieved in

terms of cost and performance, when public and private ledgers are combined.

We concluded that using only one permissioned ledger is better in terms of time

and cost. However, using two ledgers, a public one and a private one, is better

in terms of transparency, trust, and openness. In particular, we claim that using

(public) Ethereum for increased trust and convenient payments and Fabric for high

performance, scalability, and low cost, is better than using only one type of ledger

for many types of games and business logic situations.

Our paper is a first step towards assessing the impact of the IoT and DLTs

in the mobile gaming industry. Our findings indicate great potentials and for this

reason, it is in our future plans to further investigate this field. Our emulations

can be complemented by experimentation with real mobile games and more IoT

devices, which will provide us with insights about potential deployability issues,

as well as by analytical evaluation through system modeling, which can helps us

evaluate large scale scenarios, as well as predict market directions.

5.2 Smart contract-based digital twins

IoT is envisioned to be an ecosystem of interconnected devices meaning

to provide a multitude of services to improve the quality of our lives. However,

as we have mentioned, there are some IoT challenges that need to be addressed.

First of all, IoT systems are fragmented. There is a plethora of IoT devices from

different manufacturers that use different protocols and standards. In order to

deal with that, the WoT W3C working group [17] leverages Web technologies and

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

132

standards to deal with interoperability issues among different types of IoT devices

and platforms by developing an interoperable IoT architecture. The WoT builds

on well known Web protocols and enables IoT device discovery and access using

REST-based APIs, over popular application layer protocols, such as HTTP(s).

The WoT comes with a lot of benefits and address the problems of fragmentation

and lack of interoperability in IoT.

In addition, securing IoT services, i.e., sensing and in particular actuation,

requires complex security solutions, using advanced cryptographic techniques and

algorithms. However, these solutions have not been designed for the IoT, in which

many IoT devices are usually less powerful than typical computers, hence they

cannot perform complex security and cryptographic operations. Therefore, more

lightweight solutions that take into consideration the limitations of IoT devices

are required. Furthermore, since the real world can be directly impacted by the

IoT, and the IoT devices are even physically exposed to many, if not to all users,

security, safety, and privacy are serious concerns. One solution in the direction

of securing IoT systems and IoT devices is the use of digital twins. A digital

twin is the virtual replica of a physical (IoT) device, system, or asset [95]. In

most IoT systems, digital twins are typically used for testing, monitoring, and

simulating IoT devices. On the contrary, we propose the use of digital twins as

an isolation, protection, and indirection mechanism, instead of interacting directly

with the actual IoT devices. In particular, users instead of communicating with

the actual IoT device, they communicate only with its digital twin. Then, all valid

state modifications of the (virtual) digital twin will be securely transmitted to the

actual IoT devices, which will consequently perform the requested actions.

Digital twins usually operate in a more powerful and secure network location

than the actual device, such as a Web server or a Cloud. Many companies, such

as Amazon and Microsoft, are already providing such services.15,16 Nonetheless,

these solutions are vendor specific and often result in “vendor lock-in” situations.

Furthermore, these services lack transparency; given the pervasiveness of IoT sys-

tems and their access to sensitive and private data, security and privacy concerns

15https://aws.amazon.com/iot-core/?c=i&sec=srv
16https://azure.microsoft.com/en-us/services/digital-twins

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

133

arise. Finally, these systems may occasionally suffer from outages due to their

centralized nature, making IoT devices inaccessible.17 To address all these, we

propose using DLTs to create and “host” secure and reliable digital twins.

In this work [96], we summarize our efforts presented in [97, 98] for designing

smart contract-based digital twins for WoT-enabled IoT devices and using them

as transparent proxies to perform actions (actuation and sensing) on physical IoT

devices. In particular, the contributions of this work are:

• We design and present secure, decentralized, reliable, auditable, and flexible

smart contract-based digital twins of WoT “virtual entities”, i.e., entities

that integrate one or more IoT devices.

• We implement our solution in two different blockchain, Ethereum and Fabric.

Each one of them constitutes a better fit for different use cases and purposes.

• We design, implement, and evaluate an IoT system that uses the smart

contract-based digital twins to offer secure sensing and actuation.

Our solution achieves the following. It improves interoperability, by adopt-

ing the WoT architecture, auditability, since every interaction is recorded im-

mutably on the DLT, enhances security by removing the need for a trusted entity

that hosts the digital twin, and increases system availability by implementing its

core functionality in a smart contract. In addition, we make consumers oblivious

to IoT devices and IoT device (vendor-)agnostic, since they communicate with the

digital twin and not the actual IoT devices, allowing abstractions and virtualiza-

tion.

5.2.1 Background – Web of Things

The WoT architecture [99] structures well-known Web protocols and tools

for connecting IoT devices to the Web. In the WoT architecture communication

model, IoT devices are made available through REST-based APIs, which are used

17https://www.theverge.com/2021/12/7/22822332/amazon-server-aws-down-disney-plus-

ring-outage

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

134

by consumers to access device properties, to trigger device actions, as well as,

to receive device-generated events. In order to improve the interoperability and

usability of IoT platforms, the WoT model uses a common format for describing

IoT devices, referred to as the Thing Description (TD) [100]. The TD is machine-

readable and includes metadata about the IoT device, such as its identifier, a title,

and security definitions among others, as well as, IoT device properties, actions,

and events that can be accessed or invoked through Web links and forms.

Listing 5.1: Thing Description for a smart lamp.

{ ‘ ‘ @context ’ ’ : ‘ ‘ ht tps : //www.w3 . org /2019/wot/ td/v1 ’ ’ ,

‘ ‘ id ’ ’ : ‘ ‘ lamp1 ’ ’ ,

‘ ‘ t i t l e ’ ’ : ‘ ‘My lamp ’ ’ ,

‘ ‘ s e c u r i t yDe f i n i t i o n s ’ ’ : { . . . } ,

‘ ‘ s e cu r i t y ’ ’ : [. . .] ,

‘ ‘ p r ope r t i e s ’ ’ : {
‘ ‘ s tatus ’ ’ : {

‘ ‘ type ’ ’ : ‘ ‘ s t r i ng ’ ’ ,

‘ ‘ forms ’ ’ : [{ ‘ ‘ hre f ’ ’ :

‘ ‘ . . . / th ing s /lamp1/ status ’ ’ }]
}

} ,
‘ ‘ a c t i ons ’ ’ : {

‘ ‘ togg l e ’ ’ : {
‘ ‘ type ’ ’ : ‘ ‘ boolean ’ ’ ,

‘ ‘ forms ’ ’ : [{ ‘ ‘ hre f ’ ’ :

‘ ‘ . . . / th ing s /lamp1/ togg le ’ ’ }]
}

} ,
‘ ‘ events ’ ’ : { . . . } }

Listing 5.1 provides an example of a WoT TD for a smart lamp, which

is encoded using JSON-LD. This TD includes information about how this IoT

device can be accessed, i.e., via an HTTP request to the specified URI. In par-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

135

ticular, to switch on/off the smart lamp, a POST HTTP request should be sent

to https://example.com/things/lamp1/toggle. Similarly, in order for someone to

read the current status of the smart lamp, a GET HTTP request has to be sent

to https://example.com/things/lamp1/status.

5.2.2 Smart contract-based digital twins design

In this section, we present the design of the smart contract-based digital

twins of IoT devices. As IoT devices, we consider sensors and actuators that

follow the WoT standards and specifications, namely, they expose a TD. The use

of WoT addresses the problems of fragmentation and interoperability that IoT

faces, by providing a set of standardized technologies, following the well-known

Web paradigm. Furthermore, we follow the most typical architectural pattern in

legacy IoT systems, where the IoT devices are paired with a more powerful device

than them, a gateway. In this pattern, users instead of interacting directly with

the IoT devices, they interact with the gateway. Therefore, in our design, we

consider IoT devices that are paired with WoT gateways. Each one of the WoT

gateways in the system represents a WoT “virtual entity.” A virtual entity is the

composition of one or more IoT devices, e.g., a building consisting of several IoT

devices. A virtual entity provides a single WoT TD that includes the actions, the

properties, and the events of all its IoT devices. So, if in our system there are two

WoT gateways, including many IoT devices, then we have two virtual entities and

two TDs accordingly. This is depicted in Figure 5.6. IoT devices are identified

by URIs (see Listing 5.1) that can be used for performing sensing and actuation

processes. In our design, the URIs are composed of the URL of the WoT gateway,

plus the name of the IoT device, plus the action or data that is provided from the

corresponding IoT device, e.g., http://gw1.iot/lamp1/toggle.

We design and implement digital twins on the two most popular represen-

tatives of public/permissionless and private/permissioned blockchains, Ethereum

and Fabric, taking under consideration the limitations and the challenges intro-

duced by each type.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

136

Floor 2

Floor 1

Floor 2 Gateway

Floor 1 Gateway

Thing Description 2

Thing Description 1

Building

Figure 5.6: The Internet of Things/Web of Things architecture considered in the

smart contract-based digital twins design.

Ethereum-based digital twins

First, we introduce the design based on the public, permissionless Ethereum

blockchain. Since Ethereum smart contracts cannot communicate (or send re-

quests, call a REST API, etc.) with an application, or anything that is off-chain,

we cannot consider a design, in which the smart contract communicates with the

WoT gateway directly to learn the available actions and properties of the virtual

entity. Thus, we decide to embed the TD of the virtual entities in the smart con-

tract. However, in Ethereum, it is too costly to store the actual TD in the smart

contract. To avoid having enormous monetary costs, we store in the smart con-

tract a stripped down version of the virtual entities’ TDs. Each action of the TD is

stored in a data structure in the smart contract, called actionsList. This structure

contains (a) an action name, (b) the input parameters, including the type and the

number of parameters, (c) the defined price for each action, expressed in ERC-20

tokens, and (d) the status. This is shown in Figure 5.7. and in Figure 5.8, where

the design and the source code of the smart contract is illustrated. The action

name is composed by the name of the gateway underscore the name of the IoT

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

137

Ethereum blockchain

IoT Devices

IoT Gateways

actionName parameters price status

http://gw1.iot/lamp1/
toggle

[bit] 3 true

http://gw1.iot/temper
atureController/read

[int] 5 20

actionsList

http://gw1.iot http://gw2.iot
http://gw1.iot

IoT device action

lamp1 toggle

temperatureController read

temperatureController modify

Send event
Send request

Figure 5.7: Smart contract-based digital twin’s structure on the Ethereum.

device underscore the name of the action. The parameters field is essentially the

dataschema that describes the data format of the actions, properties, and events

of a TD.18

Finally, since Ethereum is public and everyone can have access to the smart

contracts deployed on it, to restrict the access on the IoT devices, we propose a form

of access control. Consumers can gain access to the smart contract-based digital

twin, by obtaining some owner-specific tokens (owner is the person, who owns

the virtual entity), implemented using the ERC-20 token standard. Therefore,

only the consumers that have obtained these tokens can perform operations on

the virtual entity. To obtain some tokens, consumers have to communicate with

the owner directly, offline, and off-chain. This feature can also enable various

business models. For example, depending on the use case, the owner can define

a price for these tokens and sell them to consumers, or consumers may sell their

18https://www.w3.org/TR/wot-thing-description/#dataschema

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

138

pragma solidity >=0.4.16 <0.9.0;
import “./ERC20DT.sol”;

contract DigitalTwin is ERC20DT {
 struct Actions { string actionName; string[] parameters; uint price; string status; }
 Actions[] public actionsList;
 event PerformAction(strin actionName, string[] parameters, address client);

 function performAction(uint actionIndex, string[] parameters) public {
 require(actionIndex < actionsList.length);
 Actions action = actionsList[actionIndex];
 require(balances[msg.sender] > action.price);
 require(parameters.length == action.parameters.length);

 balances[msg.sender] = balances[msg.sender] – action.price;
 balances[address(this)] = balances[address(this)] + action.price;
 emit PerfromAction(action.actionName, action.parameters, msg.sender); }

 function endOfAction(uint actionIndex, address client, bool success, string status) public {
 require(msg.sender == owner);
 Actions action = actionsList[actionIndex];
 if (success) {
 balances[owner] = balances[owner] + action.price;
 balances[address(this)] = balances[address(this)] – action.price;
 status = status; }
 else {
 balances[client] = balances[client] + action.price;
 balances[address(this)] = balances[address(this)] – action.price; } }

 function getAction() { … }

 function addAction(string actionName, string[] parameters, uint price, string status) public {
 Actions action = Actions(actionName, parameters, price, status);
 actionsList.push(action); }

 function deleteAction() { … }
 function modifyAction() { … }
}

Figure 5.8: Source code of the smart contract-based digital twin on the Ethereum.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

139

Thing Description

Hyperledger Fabric blockchain

IoT Devices

IoT Gateways

http://gw1.iot http://gw2.iot

Emit actuation event

Figure 5.9: Smart contract-based digital twin’s structure on Hyperledger Fabric.

tokens to other consumers, or even consumers can form “alliances” and purchase a

large amount of tokens, potentially achieving a discount and forming a secondary

market.

As we observe from the simplified smart contract, shown in Figure 5.8, the

owner, in order to “create” a digital twin of an IoT device, he should call the

addAction function and insert all the actions with the corresponding parameters

and the price for these actions that the IoT device supports. Similarly, to modify an

action, e.g., change the price of an action, or remove completely an action, he calls

the modifyAction and the deleteAction functions, which just modify accordingly

the actionsList. Then, consumers can call the performAction function of the

smart contract-based digital twin to request and perform actions on the provided

IoT devices (a more detailed flow on how consumers request to perform actuation

or sensing processes is presented in the next section).

Hyperledger Fabric-based digital twins

In the previous subsection, we presented the design of smart contract-based

digital twins in a public blockchain. However, using public blockchains may be

inappropriate in some use cases, where privacy is needed, since anyone can inspect

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

140

Const { Contract } = require(‘fabric-contract-api’);

Class DigitalTwin extends Contract {

 //initialize ledger with the TDs
 async initLedger (ctx) {
 const TDs = [{…}, {…}];
 for (let i=0; i<TDs.length; i++) {
 //write to the ledger
 await ctx.stub.putState(TDs[i]);
 } }

 async performActuation (ctx, tdNumber, action, parameters) {
 //read the appropriate TD from the ledger
 const tdAsBytes = await ctx.stub.getState(tdNumber);
 const tdAsJSON = JSON.parse(tdAsBytes.toString());

 //check that action exists in the TD
 //check that the number of the parameters are correct

 tdAsJSON.Actions.action = parameters.action;
 tdAsBytes = Buffer.from(JSON.stringify(tsAsJSON));
 //send event
 ctx.stub.setEvent(‘performActuation, tdAsBytes);
 //write the result of actuation on the ledger
 ctx.stub.putState(tdAsBytes);}

 async getThingDescription (ctx) { … }
 async getAction (ctx, tdNumber, action) { … }
 async addAction (ctx, tdNumber, actionName, action) { … }
 async getProperty (ctx, tdNumber, property) { … }
 async addProperty (ctx, tdNumber, propertyName, property) { … }
 async addTD (ctx, tdNumber, td) {
 const temp = JSON.parse(td);
 await ctx.stub.putState(tdNumber, Buffer.from(JSON.stringify(temp))); }
}

Figure 5.10: Source code of the smart contract-based digital twin on the Hyper-

ledger Fabric.

and read a public blockchain. The latter, in our case, means that anyone can find

out the provided actions, as well as, who has invoked which actions. Therefore, to

avoid that, we have also designed and implemented smart contract-based digital

twins in a private, permissioned blockchain, and in particular in Fabric.

Fabric does not introduce monetary costs, as opposed to Ethereum, so it

is not critical to have a minimal design for the digital twin. Thus, in this design,

we can store the whole TD of the virtual entities in the smart contract, making

the implementation of the smart contract much simpler and straightforward. The

design in Fabric is shown in Figure 5.9 and a simplified version of its source code

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

141

is shown in Figure 5.10. Additionally, in Fabric, smart contracts can communicate

directly with the “outside” world. Thus, in the Fabric-based design, the smart con-

tract can communicate directly with the WoT gateways, instead of communicating

indirectly, through events. However, in a design like that, every peer participating

in the network that has deployed the smart contract, would send a request on the

gateways. So, if in a system there are 100 peers and everyone has to execute the

smart contract, then all will send a request on the gateway. The gateway will

eventually end up receiving 100 requests for the same actuation/sensing request.

This can lead in DoS attack to the WoT gateways, if there are too many peers in

the network. In order to address this challenge, the smart contract does not send

directly any request to the WoT gateway, but as in the Ethereum-based design, it

generates an event, which is caught by the WoT gateways. Furthermore, in Fabric,

there is no need for creating an external access control mechanism, as we did in

Ethereum using the ERC-20 tokens, since Fabric is a permissioned blockchain and

the access is already checked by the MSP, which is a trusted authority. Finally, in

this design we do not have an end actuation function, since this function is useful

to return the tokens back to the consumer in case that the action does not com-

pleted successfully. In Fabric, we do not introduce any tokens, thus this function

is useless.

5.2.3 IoT system overview

In this section, we present an overview of the proposed IoT system, as a

whole, and its architecture, which integrates the proposed smart contract-based

digital twins to offer secure and interoperable sensing and actuation services to

consumers. The architecture of the system is illustrated in Figure 5.11. The

system is composed of the following entities and components:

• WoT gateways and IoT devices

• The blockchain network

• The smart contract-based digital twins

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

142

Owner

Blockchain network

IoT Devices

IoT Gateways

Consumer

http://gw1.iot
http://gw2.iot

Figure 5.11: An overview of the IoT system’s architecture that includes smart

contract-based digital twins.

• Owner(s) that administer the WoT gateways and the IoT devices

• Consumer(s) that interact with IoT devices

• An ERC-20 token smart contract (applied only in the Ethereum-based de-

sign)

As we observe from the Figure 5.11, consumers do not access IoT devices

directly, instead they interact with their smart contract-based digital twins, which

are deployed on the blockchain (either on Ethereum or Fabric). Consumers, to

interact with the blockchain, should own a blockchain wallet.

As we mentioned above, each WoT gateway constitutes a WoT virtual entity

and each virtual entity provides a single WoT TD, which contains the capabilities

of all IoT devices. The actions of the virtual entity can be implemented either

by a single IoT device, or by orchestrating multiple IoT devices. Similarly, an

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

143

action may correspond to multiple interactions with an IoT device, enabling mass

actuation or sensing. For example, an action “turn on all the lights of the floor”

results in instructing multiple light bulbs to be switched on. The WoT gateways

are responsible for mapping an action of the virtual entity to the corresponding

action(s) of the real IoT device(s).

From a high level perspective, the entities in our system interact with each

other as follows. Initially, the owner physically deploys the IoT devices and pairs

them with a WoT gateway. Then, she creates the digital twin of the virtual entity,

composed of all IoT devices paired with the corresponding gateway, and deploys

them on the blockchain network. Depending on the use case, the design of the

digital twin slightly changes. When the setup has been completed, a consumer

can gain access to the provided actions, hence to the IoT devices. To that end,

he has to obtain permission from the owner. Then, the consumer learns from

the smart contract all the available actions and the required parameters. From

this point on, a consumer can perform an IoT device access request by sending a

transaction to the smart contract-based digital twin. The smart contract verifies

the transaction and forwards the request to the appropriate WoT gateway. Finally,

the WoT gateway forwards the request to the appropriate IoT device(s), which

eventually perform the requested action. The communication between the WoT

gateway and the IoT devices is specified by the device vendor (which is out of

the scope of this work). The requested action may lead IoT devices to produce

(sensitive) data. We should note here, that these data are not stored in the smart

contract nor in the ledger. As in legacy IoT systems, data can be stored in a

cloud, in the (WoT) gateways, in the endpoint devices, or even in a decentralized

storage system, such as the IPFS. This choice does not affect our design (in both

digital twins implementations) or the system as a whole. However, depending on

the selected option, small changes might be needed. The life-cycle of the system

involves the following phases.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

144

Setup phase

Initially, the owner physically deploys the IoT devices and the corresponding

WoT gateways. A WoT gateway includes the TD of the virtual entity and exposes

all the actions, properties, and events of that virtual entity. Furthermore, the owner

creates a smart contract (depending on the use case, she chooses the appropriate

design, Ethereum-based or Fabric-based), which represents the digital twin of the

virtual entity and she deploys it on the blockchain network. The smart contract’s

address on the blockchain is considered well-known.

In both cases, the owner has also to configure the WoT gateways to “watch”

the blockchain for events generated by the corresponding smart contract. In case

of the Ethereum blockchain, she should also create and deploy another smart

contract, which creates and manages the owner-specific tokens, implementing the

ERC-20 token standard. A consumer, in order to acquire tokens, contacts the

owner to come to an agreement on the price of a token. Then, he has to pay the

agreed amount of money to the owner, in fiat currency. The payment can also be

done with cryptocurrencies, e.g., ether or btc, with small changes on the source

code of the ERC-20 smart contract. In the current design, this process takes place

offline and off-chain using fiat currency in order to keep consumers-owner business

relationship private. When the payment is completed, the owner transfers the

agreed amount of the blockchain-based tokens to the consumer’s blockchain wallet.

This process does not happen in the Fabric-based design, since Fabric is a private

blockchain. Thus, in Fabric, a consumer, in order to be able to interact with the

smart contract-based digital twin, he has to obtain an identity, namely a X.509

certificate. To do so, he communicates with the admin of the network and the

corresponding CA to obtain the certificates.

Finally, consumers can learn all the available operations provided by the

IoT devices, the appropriate parameters, and the cost for each action (this only

applies to the Ethereum-based design), by just calling a function of the smart

contract, called getAction, which returns them.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

145

IoT device access

From this point on, a consumer can perform an IoT device actuation re-

quest, or access data request. To do so, he sends a transaction to the smart

contract-based digital twin that includes the requested action and the correspond-

ing parameters. The smart contract-based digital twin verifies that the transaction

is valid. Namely, it checks that the action exists in the actionsList or in the TD

and that the parameters are correct. From now on, depending on the case, the

flow slightly changes.

(a) Ethereum-based design. In case of the Ethereum-based design, the con-

sumer has to purchase the required number of ERC-20 tokens. To do so, the con-

sumer pays the owner and the owner calls the transfer function of the ERC-20

smart contract to transfer the agreed tokens to consumer. So, the smart contract-

based digital twin has to verify also that the blockchain address of the consumer

has the required number of tokens. In order to perform this verification, it in-

teracts with the smart contract that manages the ERC-20 tokens, and calls the

balanceOf function, which returns how many tokens an address has. Then, these

tokens are deposited to the smart contract’s address. If all requirements are met,

then an event, named PerformAction is triggered, as we can see from Figures 5.7

and 5.8. The event includes the action name, the parameters, and the blockchain

address of the consumer. The address of the consumer is needed in order to send

the tokens back to him, if the action will not be completed successfully.

The event is eventually “caught” by the appropriate WoT gateway, which

finds out which device should serve the request. Subsequently, the WoT gateway

forwards the request to the appropriate IoT device(s), which perform the requested

action. When the action has been completed, the WoT gateway configured with

the owner’s blockchain wallet, sends a transaction to the blockchain. In particular,

it calls the function endOfAction to transfer the tokens from the smart contract-

based digital twin’s address to the owner’s address, if the action was completed

successfully, otherwise, it transfers the tokens back to the consumer’s blockchain

wallet. Furthermore, it sends to the blockchain the new status of the device. In

case of consumer not spending all of his ERC-20 tokens and he does not want to

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

146

use the provided services anymore, he has two options. The first option is to give

back the remaining tokens to the owner and receive back fiat currency. The second

option is to sell his tokens to other consumers. The latter allows the creation of

secondary markets and enables various new business structures.

(b) Hyperledger Fabric-based design. In Fabric, the flow is the same with

small differences. After the validation of the transaction, the smart contract-based

digital twin generates an event, which is “caught” by the WoT gateway. Then, the

WoT gateway forwards the request directly to the appropriate IoT devices, which

eventually perform the requested action.

IoT device management

The smart contract-based digital twins include either the whole TD or a

stripped-down version of it, the actionsList. Both of them contain all the proper-

ties, actions, events, and status of the virtual entity. These structures in the smart

contracts can only be modified by the owner. In particular, the owner can add

a new entry, as well as, modify, or even delete an existing one. These operations

do not involve any interaction with the consumers. Additionally, an owner can

replace a physical IoT device; since the consumer interacts with the virtual entity,

which is device independent. This replacement affects only the configuration of

the corresponding WoT gateway and its smart contract-based digital twin.

Ephemeral interactions and revocation

There might be cases, where the owner should grant ephemeral permissions

to guests. These cases concern mainly the Ethereum-based design, which is a public

blockchain and this design is used in use cases, where many mutually non-trusting

entities interact with the IoT devices. In such cases, the guest should come to an

agreement with the owner for the price of tokens and the period that they need

them. Then, the owner sends to the guest the agreed amount of tokens and adds

the guest to a list, called guestList, along with the corresponding period. This list

exists in the WoT gateways. From now on, the guest can interact with the IoT

devices as any other consumer. The difference is that when the agreed period is

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

147

up, the owner calls the withdraw function of the smart contract that manages the

ERC-20 tokens, to take back the remaining tokens from the guest. This function

can only be invoked by the owner and in essence resets the token balance of a

consumer, returning all the tokens back to the owner’s blockchain wallet. Thus,

this function can also be used in cases of security breaches. Therefore, the withdraw

function can also act as a revocation mechanism. The consumers, whose tokens

are revoked, can no longer have access to IoT devices and perform any action, thus

the revocation is instantaneous.

The Fabric-based design also supports revocation. In the Fabric blockchain,

the admin of the network (who can be the owner of the IoT devices/gateways) can

revoke the certificate of a consumer. This process creates a Certificate Revocation

List (CRL), which includes the revoked consumers. Then, this CRL is included in

the Fabric’s network configuration and the consumer can no longer have access to

the blockchain’s network nor to the deployed smart contracts.

5.2.4 Implementation and evaluation

Implementation

We developed a proof of concept implementation of the presented IoT sys-

tem. Our WoT gateway is based on Eclipse’s Thingweb. As IoT device, we em-

ulated a smart lamp. The smart contract-based digital twin in Ethereum was

implemented using Solidity, while in Fabric, it was implemented using JavaScript.

Both implementations of the smart contract-based digital twins are open-source

and available at GitHub,19 while a simplified version of them is show in Figures 5.8

and 5.10. Furthermore, our client application for Fabric, which is responsible for

acquiring the certificate, and interacting with the smart contract-based digital twin

through the Fabric gateway, is implemented in JavaScript using the Fabric SDK,

while the client application for Ethereum is also implemented in JavaScript using

the web3.js library. Similarly, the corresponding event listeners (i.e., the piece

of software that “catches” events generated by the smart contract-based digital

19https://github.com/mmlab-aueb/DLT-DigitalTwins

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

148

twins) are implemented in JavaScript too.

Cost and performance evaluation

Cost evaluation concerns only the Ethereum-based design, since only Ethereum

introduces monetary costs. First of all, all actions performed in our system involve

the invocation of a function implemented in a smart contract. In order to measure

the cost required by our smart contracts, we deployed the smart contracts on the

Rinkeby Ethereum test network. The cost, measured in gas units, for each of the

functions is shown in Table 5.6.

Smart contract Operation Cost measured in gas

Digital twin

contract deployment 2341723

performAction 52329

endOfAction 43628

addAction 119934

modifyAction 41064

removeAction 46632

getActions -

getAction -

ERC-20

contract deployment 805618

balanceOf -

transfer 33664

mintTokens 34786

withdraw 29450

Table 5.6: Ethereum Virtual Machine execution cost (gas) of the construction

building blocks of the IoT system utilizing smart contract-based digital twin.

The functions that only access the blockchain for reading introduce zero

cost. As we observe from Table 5.6, the cost introduced by some functions is

not negligible. The most expensive functions are those required for deploying the

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

149

smart contracts on the blockchain (≈ $49.46 and $17.02),20 which however take

place only once. The function that is responsible for adding a new action in the

actionsList, i.e., the addAction function, costs ≈ $2.53. Similalry, the function

used by consumers for invocation, i.e., the performAction function, costs around

$1.10. However, we should note here that the price of the actions expressed in

fiat currency is not stable, since it depends heavily on the price of the Ethereum’s

cryptocurrency, which fluctuates highly. Thus, given a high price of ether, the cost

may be prohibitive for some use cases, such as the use case of a smart home. In

addition to gas, the use of the public Ethereum blockchain incurs a transaction

delay, which is ≈ 15. On the other hand, read transactions do not depend on the

block mining time, thus they do not incur any transaction delay.

To evaluate the performance of our Fabric-based design, we conducted some

experiments to find out whether the overhead of the blockchain is bearable or not.

The first experiment measures the time required for requesting an actuation/sens-

ing process. In particular, we measured the time from the moment a user sends a

request to the digital twin, until that request ends up at the WoT gateway. For

comparison, we implemented an instance of our system without blockchain, i.e.,

the digital twin is just a Web service, as well as, an instance of the solution with-

out digital twin, i.e., the user sends the request directly to the WoT gateway. We

conduct this experiment 1000 times, i.e, we send 1000 transactions sequentially, in

a single-node local testbed, i.e., the whole Fabric network runs in a single machine.

The results from this experiment are presented in Figure 5.12. The average time

required for the smart contract-based design is 88ms, for the non smart contract-

based design is 61ms, and for non digital twin-based is 16ms. As we observe from

the results, the overhead added from the blockchain is ≈ 20 milliseconds, which is

tolerable in almost any case. In Figure 5.12, we observe that there are several high

spikes that happen often in the smart contract-based digital twin scenario. This

is happening due to the ordering service of Fabric. As we have already mentioned

(Section 2.1.2), transactions are sent to the orderer node in order to be ordered

into blocks and then, blocks are sent back to peers to be appended in the ledger. A

20Prices for December 2022.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

150

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000

Ti
m

e	
(s

)

Number	of	requests

Smart	contract-based	digital	twin
Non	smart	contract-based	digital	twin

Without	digital	twin

Figure 5.12: Time required for requesting an actuation/sensing process through

the smart contract-based digital twin in Hyperledger Fabric blockchain.

block is created either after an adequate number of transactions has been collected,

or after the expiration of a configurable timeout period. Because our experiment

does not always generate many transactions, in some cases the orderer has to wait

for the whole timeout period: this is a spike.

Security evaluation

Our design provides increased protection to WoT gateways. In particular,

since digital twins act as an indirection mechanism between the consumers and

the WoT gateways, the location of WoT gateways does not have to be known to

the consumers; the gateway can even be unreachable through the Internet and

disconnected from the outside world. In the Ethereum-based design, where the

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

151

smart contract-based digital twins and the WoT gateways communicate through

events generated by the digital twins, the URLs of the WoT gateways are not

included in the smart contract. On the other hand, on Fabric-based design, the

URLs are included in the smart contracts, since the whole TD is included. However,

since Fabric is a permissioned blockchain, we assume that consumers, who have

access to the smart contract-based digital twins are considered trusted by the

owner. Furthermore, since the communication with the WoT gateways is achieved

through events, we can remove completely the URL of the WoT gateways from the

TD. Therefore, our design secures the WoT gateways from a variety of risks and

attacks that are common to Web services, such as DoS attacks

Moreover, in both our designs, we provide a form of access control. In the

Fabric-based design, we rely on the permission system of Fabric. In the case of the

Ethereum-based design, we leverage the ERC-20 tokens standard. In particular,

only users that have acquired the owner-specific tokens can request and invoke the

available actions. Thus, these tokens, except for enabling new business models, also

act as ACTs, offering many properties as shown in Section 4.1. However, consumers

once they acquire ERC-20 tokens, they can transfer them to anyone they want. In

order to avoid this, the corresponding ERC-20 smart contract can be configured to

allow consumers to transfer their tokens only to the owner’s address, e.g., to got

reimbursed.

In addition, our system inherits all the properties of blockchains. DLTs

offer reliability, robustness, and increased availability by design. Therefore, there

is no single point of failure and the data, the actions, and the smart contracts

are always available to the consumers. Thus, by implementing the digital twins

as smart contracts, we guarantee that they will always be live and they will not

depend on trusted third parties. Blockchains also offer auditability, in the sense

that every interaction with an IoT device is recorded and can be revisited at any

time. Therefore, in case of security incidents, blockchains can provide undeniable

auditing information, offering non-repudiation.

Except of the properties, our design inherits also the security threats of

the blockchains. In case of the first design (Ethereum-based), the most important

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

152

security threats are the 51% attacks, long-range attacks, eclipse and routing at-

tacks, and private key attacks. In 51% attacks, an attacker controls the 51% of

the blockchain and he can rewrite the history of the blockchain, or refuse to add

transactions to it, performing a DoS attack against its users. With these attacks,

the attacker gains full control of the blockchain. In addition, by compromising

a user’s private key, an attacker can generate transactions or perform actions on

his behalf. On the other hand, Fabric’s security threats differ from the popular

public, permissionless blockchains. For example, 51% attacks are not significant

threats, since in Fabric users are known and access is managed by ACLs. The most

significant security threats on Fabric are DoS attacks, MSP compromise, private

key attacks, consensus manipulation, and smart contract exploitation [101].

The only part of the system that does not involve the blockchain is the

communication between the WoT gateways and the IoT devices. The security of

this communication is managed by the protocols used by each vendor.

Discussion

Our proposed system has many desirable usability properties, particularly

compared to legacy IoT systems. Firstly, new IoT devices can be seamlessly added

in our system, since the owner has only to update the WoT gateways and the TDs

or the actionsList in the smart contract-based digital twins, without having to

redeploy the smart contract or the client application. Similarly, the owner can add

newWoT gateways that expose new TDs, without having to change anything to the

underlay system. Furthermore, consumers are IoT device (vendor-)agnostic, since

they communicate with the IoT devices through the blockchain infrastructure.

Consumers do not need to know anything specific about the IoT devices, except the

actions or data they provide, which they can easily learn from their digital twins.

In addition, consumers do not have to deploy and use different client applications

for the IoT devices, which is otherwise a very common case. Therefore, to interact

with any IoT device of any vendor, they just have to send a transaction to the

smart contract-based digital twin.

Our system does not inherit only the benefits of the blockchain technol-

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

153

ogy but also its drawbacks. Firstly, as we showed in the performance evaluation,

blockchains incur a transaction cost and delay, which in some use cases can be

intolerable. Another drawback, especially in the Ethereum-based design, is the

need for storage. Blockchain nodes need to store the whole blockchain, which in

Ethereum is over 1219.20GB. However, this does not affect directly our system.

Furthermore, there are many workarounds, e.g., light nodes, RPC nodes, etc. In

addition, the scalability of our system is also affected. Blockchain scalability is

the ability of a blockchain network to process many transactions. Towards this

direction, many solutions have been proposed for scaling blockchains. Regard-

ing the Fabric blockchain some findings show that Fabric can scale up to 20k

TPS [102]. On the other hand, many scaling solutions have also been proposed for

the Ethereum blockchain, such as sharding, proof of stake variations, or Layer-2

(off-chain) solutions. In our design, the issue regarding scalability lies to the fact

that in the smart contract-based digital twin, we use a mapping (actionsList) to

store the provided actions. So, the question arises as to whether the system is

affected by the size of this mapping. Nevertheless, as we insert more actions in

the actionsList, the gas cost and the transaction delay will not be affected or in-

creased, as Solidity reserves the maximum storage when creating and initializing

the mapping (which is 2256 slots of 32 bytes).

Next, we discuss the differences between the two implementations of the

smart contract-based digital twins. Fabric smart contracts include the whole TD

of the “virtual entities” as opposed to the Ethereum smart contracts, which should

not store the whole TD, since that would be too costly. Furthermore, Fabric

presents better performance than Ethereum, as we have shown. Moreover, Fabric

can serve many different use cases, since it introduces the concept of organizations.

In a Fabric network, there can be two, or more, organizations. Each organization

can have their digital twins, without the others knowing anything about them. In

Fabric, we can even have smart contracts within the same organization that cannot

be accessed by some peers of the same organization through the use of private

channels, a mechanism introduced by Fabric. This is something that cannot be

achieved with the use of the Ethereum blockchain, in which everything is public

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

154

and everything recorded on the ledger can be accessed and inspected by anyone.

Therefore, Fabric is a much better fit performance and cost-wise. However, as

a permissioned blockchain, it is not appropriate for use cases, where openness,

decentralization, and full transparency is desired.

5.2.5 Related work

In recent times, digital twins have witnessed increasing attention. There

are several research efforts that try to integrate digital twins in IoT applications.

Chevallier et al. [103] present an architecture for creating and managing digital

twins for smart buildings. Liu et al. [104] propose a framework based on digital

twins for an indoor safety management system. Moreover, Mohamadi et al. [105]

propose a smart city digital twin paradigm. Similarly, White et al. [106] present

a design for digital twins of smart cities. These works use digital twins mainly as

monitoring tools and for performing simulations, which cannot be performed in

the actual IoT systems. However, in our work, we are using the digital twin as an

indirection mechanism to the actual IoT devices. We are using them to perform

real actions on the IoT devices, instead of using them to extract information about

the physical devices.

On the other hand, many efforts investigate the intersection of blockchains

and digital twins, i.e., blockchain-based digital twins. Yaqoob et al. [107] present

some potential use cases, architectures, and technologies that can enhance digi-

tal twins to be more effective in industrial problems. They use the blockchain

as storage for digital twin’s data. Similarly, Khan et al. [108] propose a frame-

work, which uses the blockchain to securely store digital twin data. More recent

efforts [109, 110, 111] are using the blockchain to address the problem of sharing

the data generated by the digital twins. In particular, Putz et al. [109] introduce a

Decentralized Application (DApp) that facilitates digital twin data sharing among

multiple parties, without the need for trusted third parties. Dietz et al. [110] try

to address the same problem by examining how DLTs can be used to provide se-

cure sharing of data generated by the digital twins. All these efforts highlight

the advantages of integrating DLTs and digital twins. However, these works use

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

155

the blockchain as a means for digital twin data sharing, while we are using the

blockchain to implement the actual digital twins as smart contracts to isolate and

secure the physical IoT devices.

5.2.6 Conclusions and future work

In this work, we presented a novel design of secure, available, and reliable

smart contract-based digital twins of IoT devices that combines the WoT stan-

dards and blockchain technology. By using the WoT standards, we address suc-

cessfully the problems of interoperability and fragmentation of the IoT. Moreover,

by implementing digital twins as smart contracts, we achieve decentralization, high

availability, robustness, flexibility, and auditability. To cover a wide range of IoT

use cases and applications, we offer designs in two different blockchains, a public

and a private blockchain, each one introducing different properties. Furthermore,

to verify the feasibility of these digital twins, we designed and developed an IoT

system prototype that offers secure sensing and actuation. Our solution secures

the real IoT devices and the corresponding WoT gateways by allowing consumers

to interact with them only through their smart contract-based digital twins. It

also makes the users oblivious to the actual IoT device details and IoT device

vendor-agnostic.

We presented the design and the implementation of smart contract-based

digital twins and showed how they can be used in an IoT system. However, we

have not tested and evaluated our proposed system in a real-world scenario. For

this reason, a next step would be to implement and evaluate the solutions in a real

life smart home testbed, or to a larger testbed, e.g., a smart-city or district, to

experiment with it in a real setting and assess its performance, efficiency, usability,

and scalability. Another direction would be to implement the smart contract-based

digital twins in more blockchains, such as the Solana blockchain [112].

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Chapter 6

Blockchain as enabling

technology: Broader implications

In the previous chapters, we have thoroughly explored the benefits of in-

tegrating blockchain technology within the IoT, particularly emphasizing its ro-

bust capabilities in enhancing IoT access control and overall IoT architecture se-

curity and interoperability. Having proposed many solutions demonstrating the

blockchain’s benefits in these applications, we now discuss and demonstrate the ver-

satility and transformative potential of the blockchain technology across a broader

spectrum of domains. This chapter delves into its innovative applications beyond

the realm of IoT, including the development of novel blockchain-based games and

the facilitation of transparent marketplaces. By discussing these varied imple-

mentations, we aim to underscore blockchain’s capacity as an enabler of modern

technological solutions, illustrating its profound impact across diverse industries.

6.1 Blockchain-based games

DLTs have found application in many aspects of our lives, as they promise

secure, trustworthy, and decentralized transactions with the use of cryptographic

techniques. Lately, they have also caught the eyes of game and mobile game

development industry. Offering solid proof of uniqueness and ownership for assets

and rules transparency, they are fertile ground for the development of various types

156

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

157

of games, as we have shown in Section 5.1 or other types of games, such as trading

games and mobile games.

Gaming models have changed over the years, targeting to keep pace with

the evolution of technology, trying to be attractive to users, and at the same time

be more profitable for the gaming industry. The traditional Pay-to-Play model,

where users pay upfront for the game, has lately been replaced by the Free-to-Play

model. In the Free-to-Play model, users acquire the game at no cost, but they are

incentivized to spend money for in-game assets and services. The advent of DLTs

combined with the trend of gamers to earn an additional income from gaming,

has given birth to the Play-to-Earn (P2E) model. In the P2E gaming model, not

only do users play for free, but they can potentially earn cryptocurrencies. All

in-game merchandise they earn playing rely on NFTs owned by them, and not by

the company, which can be sold or exchanged for cryptocurrencies.

6.1.1 Trading games

In 2017, blockchain trading games made their appearance using NFTs and

since then, they have been growing in popularity, as well as in market capital-

ization. From the pioneering Cryptokitties, to Axie Infinity,1 the most recent

pokemon-like game following the P2E model with over $1,100,000,000 total vol-

ume.2 As these players communities grow, more game categories seem to adopt

the concept and it is abundantly clear that NFT games are here to stay. Al-

though these games are considered to be DApss, centralization of their media files

(relating to or representing the game environment) has been a thorn in the com-

munity’s side for years. Artwork and metadata are typically stored in the game

company’s servers, making the need for decentralized storage crucial. To overcome

the latter, in [113], we presented a “fully decentralized” trading game in order

to answer arising questions like “Who owns the artwork of the game?,” “What

happens if the game company loses interest in the game?,” “Does the artwork

have any value?,” etc. In [114], we extended this work, realizing a fully decentral-

1https://axieinfinity.com/
2https://nomics.com/assets/axs2-axie-infinity/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

158

IPFS

Ethereum blockchain

Client

Game Company

Metadata

Digital art

Artist

ERC721

ENS

Web3.storage

Attributes

image bafyb.../artwork.jpg.enc

cover bafyb.../artwork.jpg

... ...

seal True

Figure 6.1: An overview of the architecture of a fully decentralized trading game.

ized trading game that follows the P2E model, through a proposed system, where

the gaming company, artists, and users cooperate and interact over decentralized

tools, in a tamper-proof and auditable manner. Blockchain, IPFS, and threshold

cryptography are key mechanisms of the system.

In these works, the proposed system, illustrated in Figure 6.1, uses the

Ethereum blockchain as the underlying infrastructure and two smart contracts,

one that implements the ERC-721 token standard and one that implements the

Ethereum Name Service (ENS). The ERC-721 smart contract is responsible for

creating and managing the NFTs. For every NFT, there is a media file, e.g.,

character avatars, which is created by other entities, such as artists, and a metadata

file, which shows information about the NFT. Anyone having an Ethereum wallet

can acquire a NFT, through the smart contract, by paying the defined amount of

money in ethers. From a high level perspective, the entities of our system interact

with each other as follows. The artist creates the digital art and sends it to the

gaming company. Then, the gaming company creates the NFTs, initializes the

corresponding ENS entries, encrypts the digital art, using threshold cryptography,

and uploads the encrypted digital art and the appropriate metadata file on the

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

159

IPFS. The NFT’s field tokenURI shows to the ENS entry, while the ENS entry

is showing to the CID of the metadata file on IPFS. Finally, clients can acquire

NFTs by paying the defined amount of money (in ethers) on the smart contract.

Our design leverages blockchain technology and other decentralized services,

such as the IPFS, to introduce several novel features and intriguing properties that

enhance the gaming experience. Key among these is the evolvability of in-game

characters, represented as NFTs. With our design, there is no need for any change

in the smart contract but only on the ENS entry, keeping the cost from gas con-

sumption as low as possible. Additionally, our system realizes a digital equivalent

of the “mint in sealed box” practice, commonly used by collectors of tangible,

rare assets. By utilizing threshold cryptography alongside the blockchain’s im-

mutability, we ensure that the status of a NFT, whether encrypted or decrypted,

is verifiably recorded. Furthermore, the use of smart contracts enables new and

innovative business models, such as ensuring artists and other involved entities

receive royalties on each resale of an in-game asset. Lastly, the fully decentralized

nature of our system and the use of threshold cryptography guarantees its sustain-

ability, even if the gaming company discontinuous support or ceases operations.

In such cases, all game assets will remain accessible and recoverable (the owner

will be able to decrypt them), as they are stored on the blockchain and IPFS,

addressing a significant limitation in current gaming ecosystems.

6.1.2 Mobile games

Another example that showcases the benefits of blockchain technology in

gaming is detailed in [115]. In this work, we integrate the IPFS with blockchain

technology to develop a transparent and decentralized mobile game, named R?ddle.

In this game, players compete in posing and solving mathematical riddles, designed

by anyone, in order to earn rewards based on their performance. Our solution

supports the P2E gaming model, as players are getting rewards for solving riddles.

The game consists of two smart contracts, the game smart contract and the player

smart contract. The player smart contract implements all the actions for creating

and managing players, while the game smart contract includes functions for playing

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

160

the game, e.g., play, reward, etc., and for managing the riddles and the tokenomics

of the game, i.e., when someone adds a challenge, she should be get some tokens.

The riddles along with the hints are stored on IPFS. The use of smart contract

ensures that the game’s rules are transparent and immutable, guaranteeing that

they cannot be altered by anyone, including the gaming company itself, and they

are always respected. Additionally, leveraging the Ethereum blockchain combined

with IPFS for storing the riddles, ensures that the game remains permanently

accessible and operational.

6.2 Blockchain-based data marketplaces: A privacy-

preserving approach

We are living in a globalized, cyber connected society, where users have

a plethora of choices. In this highly competitive environment, service providers

try to offer as many personalized and consumer-tailored services as possible. In

order to achieve their goal, they seek access to user profiling information. How-

ever, increased privacy concerns, as well as legislation, such as EU’s General Data

Protection Regulation (GDPR), have made the collection of such information a

thorny challenge. Of course, this comes as no surprise, since such activities not

only jeopardize users’ privacy, but also, as we have recently witnessed, the collected

information can be used for manipulating users’ choices.3 Hence, the research ques-

tion “how can sensitive data be securely shared?” still remains open.

Traditionally, the collection of sensitive information has been protected us-

ing anonymization techniques. However, large-scale privacy breaches from suppos-

edly anonymized datasets, such as those involving Netflix [116], have questioned

the ability of those techniques to effectively protect user privacy. In this work [117],

we propose a privacy-preserving solution that allows a “data consumer” to extract

meaningful statistics from sensitive data protected using “local differential pri-

vacy” [118]. Local differential privacy enables “data providers” to add noise to

3https://georgetownlawtechreview.org/online-manipulation-hidden-influences-in-a-digital-

world/GLTR-01-2020/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

161

Figure 6.2: An overview of a blockchain-based marketplace for privacy-preserving

statistics.

their (sensitive) data by themselves, and share them with untrusted 3rd party data

consumers without jeopardizing their privacy. Additionally, our solution considers

an intermediate entity, referred to as the “system operator,” that coordinates the

whole process and applies filtering rules. With our approach, and as opposed to

the state of the art, data providers are protected even against “curious” system

operators. This is achieved by having the data providers send their (noisy) data

directly to the data consumers.

Nevertheless, our approach leads inevitably to some tussles. For instance,

a data consumer may be tempted to not pay the required fee. Similarly, data

providers may indicate their interest to participate in a data collection process,

receive the corresponding fee, but refuse to provide the actual data. Finally, a

system operator may incorrectly filter out the responses of certain data providers.

In order to resolve these tussles, we rely on the blockchain technology. In particular,

as shown in Figure 6.2, we leverage Ethereum smart contracts to provide a privacy-

preserving immutable log of operations, by storing hashes of the actions, that can

be used for dispute resolution, as well as to provide “fair exchange” of data and

service fees.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Chapter 7

Conclusions and Future work

In this chapter, we first summarize the key findings and conclusions drawn

from the studies reported in the preceding chapters. We then outline potential

directions for future research, building upon the groundwork laid by this disserta-

tion.

7.1 Conclusions

The IoT has emerged as a promising solution to enhance the quality of

our lives, yet it significantly reshapes the existing landscape of the Internet and

the Web. While the IoT offers numerous benefits, it also introduces new security

threats and challenges. The first step into addressing these challenges is through

access control. Traditional access control solutions, however, are deemed inappro-

priate for the IoT, due to it’s peculiarities. We argue that DLTs can address these

challenges, thanks to their inherently security properties. To this end, we revisited

key blockchain systems and blockchain-based IoT access control solutions, we gath-

ered security requirements for IoT access control, and we designed, implemented,

and proposed novel blockchain-based access control solutions tailored to the IoT.

Additionally, we designed, developed and proposed secure IoT architectures lever-

aging the blockchain technology.

Initially, we introduced IoT access control solutions backed by DLTs. The

first presented solution is a token-based access control system utilizing the ERC-

162

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

163

20 blockchain-based tokens as ACTs. We showed that our solution has many

intriguing security properties, notably secure, instantaneous, and effective revoca-

tion. Furthermore, our solution enables many novel features, such as panic mode,

clients in probation period, and two-step access control. We demonstrated the

feasibility of our solution through two real-life use cases, a large-scale IoT manage-

ment solution and a multi-tenant smart city scenario. Subsequently, we proposed

another type of ACT using the ERC-721 Ethereum token standard, demonstrating

its applicability and feasibility by integrating it within the OAuth 2.0 authorization

protocol. We showed that our design supports auditing, accountability, proof-of-

possession, and added value token management. The last presented IoT access

control solution is a consensus-based access control solution for multi-party collab-

orative environments. In particular, we proposed two approaches for consensus-

based access control, one that utilizes smart contracts to act as PDPs and another

that makes the actual consensus mechanism of Fabric to act as PDP. With our

solution, we managed to decentralized the PDP and allow collaboration among

many mutually non-trusting entities.

Additionally, we explored the broader integration of blockchain technology

in the IoT. In particular, we proposed and developed blockchain-based IoT archi-

tectures for two use cases, the IoT mobile gaming and digital twins for IoT devices.

Our evaluations indicate that the blockchain technology offers significant benefits,

with the most notable of them being interoperability, while imposing minimal per-

formance and cost overhead. Finally, we discussed the innovative applications of

blockchains and smart contracts beyond the IoT. This includes blockchain-based

gaming and transparent marketplaces, where we highlighted the key advantages

and features enabled by blockchain technology, such as asset ownership and fair

exchange.

In summary, this dissertation demonstrates that the IoT, while enhancing

the quality of our life, introduces significant shifts in the Internet, accompanied by

new security threats. Our research has shown that DLTs can effectively address

these challenges through novel access control solutions, tailored to the IoT’s unique

needs. Furthermore, our exploration into the broader application of blockchain

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

164

technology within IoT systems revealed substantial benefits, particularly in en-

hancing interoperability and security and enabling new business models. However,

it is crucial to acknowledge that blockchain technology presents certain limita-

tions, necessitating a careful evaluation of the trade-offs in its application. The

dissertation’s findings underscore blockchain’s transformative potential in the IoT,

paving the way for the development of more secure, interoperable, and efficient

IoT architectures and systems.

7.2 Future work

In this dissertation, we demonstrated that while blockchain-based solutions

offer robust security features, they can also be very costly and exhibit poor per-

formance, which may be unbearable for real-life IoT applications, especially the

public blockchains, such as Ethereum. Therefore, a promising direction for future

research involves exploring the viability of the presented blockchain-based solu-

tions, on newer blockchains, such as Solana, which offer lower transaction costs

and higher throughput. Investigating such blockchains could enhance the perfor-

mance and efficiency of the presented solutions. This exploration will not only

aid in understanding how different blockchain characteristics impact the perfor-

mance and effectiveness of these solutions, bu also broaden the range of blockchain

technologies that can be effectively integrated into IoT environments.

An interesting future direction in IoT access control research would be to in-

tegrate context-awareness into blockchain-based access control solutions. Context-

aware access control systems adjust permissions based on the context of the access

request, such as the users’ location, time of access, etc. Efficiently combining

context-awareness with blockchain technology could lead to more adaptive and

complete access control solutions. Exploring these possibilities could significantly

enhance the functionality and security of access control systems in complex and

dynamic environments like the IoT.

Finally, an aspect of access control systems not covered in our studies is

the attenuation mechanisms. Therefore, future research could focus on enhancing

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

165

these mechanisms through the use of blockchain technology and smart contracts.

Smart contracts are particularity well-suited for enforcing attenuation rules in a

decentralized and transparent manner, ensuring that access rights are dynamically

adjusted and restricted based on predefined rules. This approach could significantly

improve the security of IoT systems, by strictly adhering to the principle of least

privilege across decentralized environments.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Appendix A

Acronyms

ABAC Attributed-Based Access Control

ACL Access Control List

ACT Access Control Token

API Application Programming Interface

AR Augmented Reality

ARPU Average Revenue Per User

AS Authorization Server

BFT Byzantine Fault Tolerance

BLE Bluetooth Low Energy

CA Certificate Authority

CapBAC Capability-Based Access Control

CFT Crash Fault Tolerant

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environment

CRL Certificate Revocation List

DAC Discretionary Access Control

DAG Directed Acyclic Graph

DAO Decentralized Autonomous Organization

DApp Decentralized Applications

DAU Daily Active Users

166

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

167

DID Decentralized Identifier

DLT Distributed Ledger Technology

DDoS Distributed Denial of Service

DoD Department of Defense

DoS Denial of Service

EIP Ethereum Improvement Proposal

ENS Ethereum Name Service

ERC Ethereum Request for Comments

ESO Environmental Situation Oracle

EVM Ethereum Virtual Machine

GDPR General Data Protection Regulation

HTTP HyperText Transfer Protocol

ILG Interledger Gateway

IoT Internet of Things

IPFS InterPlanetary File System

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation - Linked Data

JWT JSON Web Tokens

KPI Key Performance Indicator

MAC Mandatory Access Control

MAU Monthly Active Users

MSP Membership Service Provider

M2M Machine-to-Machine

N/A Not Applicable

NFT Non-Fungible Token

OrBAC Organization-Based Access Control

OSN Online Social Network

PAP Policy Administration Point

pBFT practical Byzantine Fault Tolerance

PDP Policy Decision Point

PEP Policy Enforcement Point

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

168

PIP Policy Information Point

PKI Public Key Infrastructure

PoA Proof of Authority

PoI Point of Interest

PoS Proof of Stake

PoW Proof of Work

P2E Play-to-Earn

P2P Peer to Peer

RBAC Role-based Access Control

RDE Reverse-Discoverable Encryption

ReBAC Relationship-Based Access Control

REST Representational State Trasnfer

RPC Remote Procedure Call

SFE Secure Function Evaluation

SOFIE Secure Open Federation for Internet Everywhere

TD Thing Description

TCSEC Trusted Computer System Evaluation Criteria

TPS Transactions Per Second

UCON Usage Control

URI Uniform Resource Identifier

UAV Unmanned Aerial Vehicle

UGC User Generated Content

URL Uniform Resource Locator

VC Verifiable Credential

WIBE Wildcard Identity-based Encryption

WoT Web of Things

XACML eXtensible Access Control Markup Language

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

Bibliography

[1] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of Things appli-
cations: A systematic review,” Computer Networks, vol. 148, pp. 241–261,
2019.

[2] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security, privacy and
trust in Internet of Things: The road ahead,” Computer Networks, vol. 76,
pp. 146–164, 2015.

[3] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain Technology
Overview,” NIST, NIST Interagency/Internal Report (NISTIR) 8202, 2018.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[5] S. Voulgaris, N. Fotiou, V. A. Siris, G. C. Polyzos, A. Tomaras, and S. Kara-
chontzitis, “Hierarchical Blockchain Topologies for Quality Control in Food
Supply Chains,” in 2020 European Conference on Networks and Communi-
cations (EuCNC), 2020.

[6] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. Mc-
Callum, and A. Peacock, “Blockchain technology in the energy sector: A
systematic review of challenges and opportunities,” Renewable and Sustain-
able Energy Reviews, 2019.

[7] M. S. Devi, R. Suguna, A. S. Joshi, and R. A. Bagate, “Design of IoT
Blockchain Based Smart Agriculture for Enlightening Safety and Security,”
in Emerging Technologies in Computer Engineering: Microservices in Big
Data Analytics. Springer Singapore, 2019.

[8] N. Fotiou and G. C. Polyzos, “Smart Contracts for the Internet of Things:
Opportunities and Challenges,” in 2018 European Conference on Networks
and Communications (EuCNC), 2018, pp. 256–260.

[9] J. Cohn, P. Finn, S. Nair, and P. Sanjai, “Device democracy: Saving the
future of the Internet of Things,” IBM Institute for Business Value, 2014.

169

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

170

[10] R. Sandhu and P. Samarati, “Access control: principle and practice,” IEEE
Communications Magazine, vol. 32, no. 9, pp. 40–48, 1994.

[11] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture,”
NIST, Tech. Rep., 2020.

[12] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, 2014.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralid-
haran, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger
fabric: a distributed operating system for permissioned blockchains,” in Pro-
ceedings of the Thirteenth EuroSys Conference, ser. EuroSys ’18. New York,
NY, USA: Association for Computing Machinery, 2018.

[14] V. Vogelsteller and B. Vitalik, “ERC-20 Token Standard,” Tech. Rep.,
2015. [Online]. Available: https://eips.ethereum.org/EIPS/eip-20

[15] W. Entriken, D. Shirley, J. Evans, and N. Sachs, “ERC-721 Non-
Fungible Token Standard,” Tech. Rep., 2018. [Online]. Available:
https://eips.ethereum.org/EIPS/eip-721

[16] D. Hardt (ed.), “The OAuth 2.0 Authorization Frame-
work,” IETF, RFC 6749, 2012. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6749

[17] W3C. (2017) Web of Things. [Online]. Available:
https://www.w3.org/WoT/

[18] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proceed-
ings of the Third Symposium on Operating Systems Design and Implemen-
tation, ser. OSDI ’99. USA: USENIX Association, 1999, p. 173–186.

[19] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, p. 382–401, 1982.

[20] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing Safety
of Smart Contracts,” in Procceedings of Network and Distributed System
Security Symposium, 2018.

[21] P. Aithal, P. Saavedra, S. Aithal, and S. Ghoash, “Blockchain technology
and its types-a short review,” International Journal of Applied Science and
Engineering, vol. 9, pp. 189–200, 2021.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

171

[22] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” 2019.
[Online]. Available: https://arxiv.org/abs/1710.09437

[23] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” 2014.
[Online]. Available: https://arxiv.org/pdf/1407.3561

[24] E. Androulaki, A. De Caro, M. Neugschwandtner, and A. Sorniotti, “En-
dorsement in Hyperledger Fabric,” in 2019 IEEE International Conference
on Blockchain (Blockchain), 2019.

[25] P. Samarati and S. C. de Vimercati, “Access Control: Policies, Models, and
Mechanisms,” in Foundations of Security Analysis and Design. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001, pp. 137–196.

[26] J. K. Biba, “Integrity Considerations for Secure Computer Systems,” Bed-
ford, MA, 1977.

[27] D. E. Bell and L. LaPadula, “Secure Computer Systems: Mathematical
Foundations,” 1973.

[28] D. 5200.28-STD, Trusted Computer System Evaluation Criteria, Dod Com-
puter Security Center, December 1985.

[29] D. D. Downs, J. R. Rub, K. C. Kung, and C. S. Jordan, “Issues in Discre-
tionary Access Control,” in 1985 IEEE Symposium on Security and Privacy,
1985, pp. 208–208.

[30] Y. Jiang, C. Lin, H. Yin, and Z. Tan, “Security analysis of mandatory access
control model,” in 2004 IEEE International Conference on Systems, Man
and Cybernetics (IEEE Cat. No.04CH37583), vol. 6, 2004, pp. 5013–5018
vol.6.

[31] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access
control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[32] E. Yuan and J. Tong, “Attributed based access control (ABAC) for Web
services,” in IEEE International Conference on Web Services (ICWS’05),
2005, p. 569.

[33] A. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miege, C. Saurel, and G. Trouessin, “Organization based access control,”
in Proceedings POLICY 2003. IEEE 4th International Workshop on Policies
for Distributed Systems and Networks, 2003, pp. 120–131.

[34] R. Sandhu and J. Park, “Usage Control: A Vision for Next Generation Access
Control,” in Computer Network Security, V. Gorodetsky, L. Popyack, and
V. Skormin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.
17–31.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

172

[35] N. Sivaselvan, W. Asif, B. K. Vivekananda, and M. Rajarajan, “Authentica-
tion and Capability-based Access Control: An Integrated Approach for IoT
Environment,” in 2020 12th International Conference on Communication
Software and Networks (ICCSN), 2020, pp. 110–117.

[36] C. E. Gates, “Access Control Requirements for Web 2.0 Security and Pri-
vacy,” in IEEE Web2.0 Privacy and Security Workshop (W2SP’07), 2007.

[37] “eXtensible Access Control Markup Language (XACML) Version
1.0,” OASIS, Standard, 2003. [Online]. Available: https://www.oasis-
open.org/committees/xacml/repository/oasis-xacml-1.0.pdf

[38] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A Vision of IoT: Applications,
Challenges, and Opportunities With China Perspective,” IEEE Internet of
Things Journal, vol. 1, no. 4, pp. 349–359, 2014.

[39] S. Ravidas, A. Lekidis, F. Paci, and N. Zannone, “Access control in Internet-
of-Things: A survey,” Journal of Network and Computer Applications, vol.
144, pp. 79–101, 2019.

[40] “eXtensible Access Control Markup Language (XACML) Version
3.0,” OASIS, Standard, 2013. [Online]. Available: https://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[41] F. Chen, Z. Xiao, L. Cui, Q. Lin, J. Li, and S. Yu, “Blockchain for Internet
of Things applications: A review and open issues,” Journal of Network and
Computer Applications, vol. 172, p. 102839, 2020.

[42] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang, “A Survey on Access
Control in the Age of Internet of Things,” IEEE Internet of Things Journal,
vol. 7, no. 6, pp. 4682–4696, 2020.

[43] M. P. Andersen, S. Kumar, M. AbdelBaky, G. Fierro, J. Kolb, H.-S. Kim,
D. E. Culler, and R. A. Popa, “WAVE: A Decentralized Authorization
Framework with Transitive Delegation,” in 28th USENIX Security Sympo-
sium (USENIX Security 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 1375–1392.

[44] R. Schuster, V. Shmatikov, and E. Tromer, “Situational Access Control
in the Internet of Things,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 1056–1073.
[Online]. Available: https://doi.org/10.1145/3243734.3243817

[45] H. Chi, Q. Zeng, X. Du, and L. Luo, “PFirewall: Semantics-Aware Customiz-
able Data Flow Control for Smart Home Privacy Protection,” in NDSS, 01
2021.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

173

[46] Y. Liu, M. Qiu, J. Liu, and M. Liu, “Blockchain-Based Access Control Ap-
proaches,” in 2021 8th IEEE International Conference on Cyber Security
and Cloud Computing (CSCloud)/2021 7th IEEE International Conference
on Edge Computing and Scalable Cloud (EdgeCom), 2021.

[47] A. Ouaddah, A. A. E. Kalam, and A. A. Ouahman, “FairAccess: a new
Blockchain-based access control framework for the Internet of Things,” Se-
cur. Commun. Networks, vol. 9, pp. 5943–5964, 2016.

[48] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of Trust:
A decentralized blockchain-based authentication system for IoT,” Computers
& Security, vol. 78, pp. 126–142, 2018.

[49] O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access Man-
agement in IoT,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–
1195, April 2018.

[50] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart Contract-
Based Access Control for the Internet of Things,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1594–1605, 2019.

[51] H. Liu, D. Han, and D. Li, “Fabric-iot: A Blockchain-Based Access Control
System in IoT,” IEEE Access, vol. 8, pp. 18 207–18 218, 2020.

[52] N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos, “Se-
cure IoT Access at Scale Using Blockchains and Smart Contracts,” in 2019
IEEE 20th International Symposium on ”A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM), 2019, pp. 1–6.

[53] I. Pittaras and G. C. Polyzos, “Multi-tenant, Decentralized Access Control
for the Internet of Things,” in 2023 IEEE International Conference on In-
ternet of Things and Intelligence Systems (IoTaIS), 2023, pp. 28–34.

[54] A. Rahman and E. Dijk, “Group communication for the constrained
application protocol (CoAP),” IETF, RFC 7390, 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7390

[55] C. Amsüss, Z. Shelby, M. Koster, C. Bormann, and P. V. der Stok, “Con-
strained RESTful Environments (CoRE) Resource Directory,” IETF, RFC
9176, 2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9176

[56] V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C.
Polyzos, “Interledger Approaches,” IEEE Access, vol. 7, 2019.

[57] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for IoT
security and privacy: The case study of a smart home,” in 2017 IEEE Inter-
national Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops), March 2017, pp. 618–623.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

174

[58] Y. Hanada, L. Hsiao, and P. Levis, “Smart Contracts for Machine-to-Machine
Communication: Possibilities and Limitations,” in 2018 IEEE International
Conference on Internet of Things and Intelligence System (IOTAIS), Nov
2018, pp. 130–136.

[59] N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos, “OAuth
2.0 Authorization using Blockhain-based Tokens,” in 3rd NDSS Workshop
on Decentralized IoT Systems and Security (DISS), 2020.

[60] M. B. Jones and D. Hardt, “The OAuth 2.0 Authorization Framework:
Bearer Token Usage,” IETF, RFC 6750, 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6750

[61] M. B. Jones, J. Bradley, and N. Sakimura, “JSON Web Token
(JWT),” IETF, RFC 7519, 2015. [Online]. Available: https://www.rfc-
editor.org/info/rfc7519

[62] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” Network
Working Group, RFC 4648, 2006. [Online]. Available: https://www.rfc-
editor.org/info/rfc4648

[63] J. Richer, M. B. Jones, J. Bradley, M. Machulak, and P. Hunt, “OAuth 2.0
Dynamic Client Registration Protocol,” IETF, RFC 7591, 2015. [Online].
Available: https://www.rfc-editor.org/info/rfc7591

[64] T. Lodderstedt, S. Dronia, and M. Scurtescu, “OAuth 2.0 Token
Revocation,” IETF, RFC 7009, 2013. [Online]. Available: https://www.rfc-
editor.org/info/rfc7009

[65] M. B. Jones, J. Bradley, and H. Tschofenig, “Proof-of-Possession Key
Semantics for JSON Web Tokens (JWTs),” IETF, RFC 7800, 2016.
[Online]. Available: https://www.rfc-editor.org/info/rfc7800

[66] S. Dziembowski, L. Eckey, and S. Faust, “FairSwap: How To Fairly Exchange
Digital Goods,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 967–984.

[67] M. Sporny, D. Longley, D. Chadwick, and O. Steele, “Verifiable Credentials
Data Model v2.0,” W3C, W3C Recommendation, 2025. [Online]. Available:
https://www.w3.org/TR/vc-data-model-2.0/

[68] G. Ali, N. Ahmad, Y. Cao, M. Asif, H. Cruickshank, and Q. E. Ali,
“Blockchain based permission delegation and access control in Internet of
Things (BACI),” Computers & Security, vol. 86, pp. 318 – 334, 2019.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

175

[69] D. Di Francesco Maesa, P. Mori, and L. Ricci, “A blockchain based
approach for the definition of auditable Access Control systems,”
Computers & Security, vol. 84, pp. 93–119, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404818309398

[70] V. A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, and G. C. Polyzos,
“OAuth 2.0 meets Blockchain for Authorization in Constrained IoT Environ-
ments,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT),
2019, pp. 364–367.

[71] T. Hardjono, “Decentralized Service Architecture for OAuth2.0,”
IETF, Internet-Draft draft-hardjono-oauth-decentralized-02, 2018. [On-
line]. Available: https://datatracker.ietf.org/doc/draft-hardjono-oauth-
decentralized/02/

[72] F. Paci, A. Squicciarini, and N. Zannone, “Survey on Access Control for
Community-Centered Collaborative Systems,” ACM Comput. Surv., vol. 51,
no. 1, jan 2018.

[73] A. C. Squicciarini, S. M. Rajtmajer, and N. Zannone, “Multi-Party Access
Control: Requirements, State of the Art and Open Challenges,” in Pro-
ceedings of the 23nd ACM on Symposium on Access Control Models and
Technologies, ser. SACMAT ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 49.

[74] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong, “Access Control in Collabo-
rative Systems,” ACM Comput. Surv., vol. 37, no. 1, mar 2005.

[75] H. Shen and P. Dewan, “Access Control for Collaborative Environments,” in
Proceedings of the 1992 ACM Conference on Computer-Supported Coopera-
tive Work, ser. CSCW ’92. New York, NY, USA: Association for Computing
Machinery, 1992.

[76] B. W. Lampson, “Protection,” SIGOPS Oper. Syst. Rev., vol. 8, no. 1, p.
18–24, Jan. 1974.

[77] S. Damen, J. den Hartog, and N. Zannone, “CollAC: Collaborative access
control,” in 2014 International Conference on Collaboration Technologies and
Systems (CTS), 2014.

[78] B. Carminati and E. Ferrari, “Collaborative access control in on-line so-
cial networks,” in 7th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), 2011.

[79] R. Mahmudlu, J. den Hartog, and N. Zannone, “Data Governance and Trans-
parency for Collaborative Systems,” in Data and Applications Security and

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

176

Privacy XXX, S. Ranise and V. Swarup, Eds. Cham: Springer International
Publishing, 2016, pp. 199–216.

[80] M. Sheikhalishahi, G. Tillem, Z. Erkin, and N. Zannone, “Privacy-Preserving
Multi-Party Access Control,” in Proceedings of the 18th ACM Workshop on
Privacy in the Electronic Society, ser. WPES’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1–13.

[81] D. R. George, S. Sciancalepore, and N. Zannone, “Privacy-Preserving Multi-
Party Access Control for Third-Party UAV Services,” in Proceedings of the
28th ACM Symposium on Access Control Models and Technologies, ser. SAC-
MAT ’23. New York, NY, USA: Association for Computing Machinery, 2023,
p. 19–30.

[82] A. Gouglidis and I. Mavridis, “domRBAC: An access control model for mod-
ern collaborative systems,” Computers & Security, vol. 31, no. 4, pp. 540–556,
2012.

[83] S. Rouhani and R. Deters, “Blockchain Based Access Control Systems: State
of the Art and Challenges,” in IEEE/WIC/ACM International Conference
on Web Intelligence, ser. WI ’19. New York, NY, USA: Association for
Computing Machinery, 2019.

[84] Y. Zhang, A. Memariani, and N. Bidikar, “A Review on Blockchain-based
Access Control Models in IoT Applications,” in 2020 IEEE 16th Interna-
tional Conference on Control & Automation (ICCA), 2020.

[85] I. Riabi, H. K. B. Ayed, and L. A. Saidane, “A survey on Blockchain based
access control for Internet of Things,” in 2019 15th International Wireless
Communications & Mobile Computing Conference (IWCMC), 2019.

[86] G. Gan, E. Chen, Z. Zhou, and Y. Zhu, “Token-Based Access Control,” IEEE
Access, vol. 8, pp. 54 189–54 199, 2020.

[87] Ahmad Raza Khan, “Zero trust-based blockchain based iot security with
consensus and access control framework,” Journal of Intelligent Systems and
Internet of Things, vol. 12, pp. 110–128, 01 2024.

[88] V. A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, and G. C. Polyzos,
“Interledger smart contracts for decentralized authorization to constrained
things,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), 2019, pp. 336–341.

[89] I. Pittaras, N. Fotiou, V. A. Siris, and G. C. Polyzos, “Beacons and
Blockchains in the Mobile Gaming Ecosystem: A Feasibility Analysis,” Sen-
sors, vol. 21, no. 3, 2021.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

177

[90] A. Manzoor, M. Samarin, D. Mason, and M. Ylianttila, “Scavenger Hunt:
Utilization of Blockchain and IoT for a Location-Based Game,” IEEE Access,
vol. 8, 2020.

[91] T. Min, H. Wang, Y. Guo, and W. Cai, “Blockchain Games: A Survey,” in
2019 IEEE Conference on Games (CoG), 2019.

[92] T. Min and W. Cai, “A Security Case Study for Blockchain Games,”
in 2019 IEEE Games, Entertainment, Media Conference (GEM), 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8811555

[93] W. Cai and X. Wu, “Demo Abstract: An Interoperable Avatar Frame-
work Across Multiple Games and Blockchains,” in IEEE INFOCOM 2019
- IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2019.

[94] S. Kalra, R. Sanghi, and M. Dhawan, “Blockchain-Based Real-Time Cheat
Prevention and Robustness for Multi-Player Online Games,” in Proceedings
of the 14th International Conference on Emerging Networking EXperiments
and Technologies, ser. CoNEXT 2018. New York, NY, USA: Association
for Computing Machinery, 2018.

[95] B. R. Barricelli, E. Casiraghi, and D. Fogli, “A Survey on Digital Twin:
Definitions, Characteristics, Applications, and Design Implications,” IEEE
Access, pp. 167 653–167 671, 2019.

[96] I. Pittaras, N. Fotiou, C. Karapapas, V. A. Siris, and G. C. Polyzos, “Secure
smart contract-based digital twins for the Internet of Things,” Blockchain:
Research and Applications, vol. 5, no. 1, p. 100168, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S209672092300043X

[97] ——, “Secure, Mass Web of Things Actuation Using Smart Contracts-Based
Digital Twins,” in 2022 IEEE Symposium on Computers and Communica-
tions (ISCC), 2022, pp. 1–6.

[98] I. Pittaras and G. C. Polyzos, “Secure and Efficient Web of Things Digital
Twins using Permissioned Blockchains,” in 2022 7th International Confer-
ence on Smart and Sustainable Technologies (SpliTech), 2022, pp. 1–5.

[99] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and
K. Kajimoto, “Web of Things Architecture,” W3C, W3C Recommendation,
2020. [Online]. Available: https://www.w3.org/TR/wot-architecture/

[100] S. Kaebish, T. kamiya, M. McCool, V. Charpenay, and M. Kovatsch,
“Web of Things Thing Description,” W3C, W3C Recommendation, 2023.
[Online]. Available: https://www.w3.org/TR/wot-thing-description/

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

178

[101] Christopher Cordi, “Hyperledger Fabric Security Threats: What
to Look For,” 2021, (Accessed Dec. 22). [Online]. Avail-
able: https://www.hyperledger.org/blog/2021/11/18/hyperledger-fabric-
security-threats-what-to-look-for

[102] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scaling hyper-
ledger fabric to 20000 transactions per second,” International Journal of
Network Management, 2020.

[103] Z. Chevallier, B. Finance, and B. C. Boulakia, “A reference architecture for
smart building digital twin,” in 2020 International Workshop on Semantic
Digital Twins, SeDiT 2020, vol. 2615, France, 2020.

[104] Z. Liu, A. Zhang, and W. Wang, “A Framework for an Indoor Safety Man-
agement System Based on Digital Twin,” Sensors, 2020.

[105] N. Mohammadi and J. E. Taylor, “Smart city digital twins,” in 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), 2017.

[106] G. White, A. Zink, L. Codecá, and S. Clarke, “A digital twin smart city for
citizen feedback,” Cities, 2021.

[107] I. Yaqoob, K. Salah, M. Uddin, R. Jayaraman, M. Omar, M. Imran,
“Blockchain for Digital Twins: Recent Advances and Future Research Chal-
lenges,” IEEE Network, 2020.

[108] A. Khan, F. Shahid, C. Maple, A. Ahmad, and G. Jeon, “Toward Smart
Manufacturing Using Spiral Digital Twin Framework and Twinchain,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 2, pp. 1359–1366, 2022.

[109] B. Putz, M. Dietz, P. Empl, and G. Pernul, “EtherTwin: Blockchain-based
Secure Digital Twin Information Management,” Information Processing &
Management, p. 102425, 2021.

[110] M. Dietz, B. Putz, and G. Pernul, “A Distributed Ledger Approach to Digital
Twin Secure Data Sharing,” in 33th IFIP Annual Conference on Data and
Applications Security and Privacy (DBSec), vol. LNCS-11559, 2019, pp. 281–
300.

[111] W. Shen, T. Hu, C. Zhang, and S. Ma, “Secure sharing of big digital twin
data for smart manufacturing based on blockchain,” Journal of Manufactur-
ing Systems, 2021.

[112] A. Yakovenko, “Solana: A new architecture for a high performance
blockchain,” Whitepaper, 2018.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

179

[113] C. Karapapas, I. Pittaras, and G. C. Polyzos, “Fully Decentralized Trading
Games with Evolvable Characters using NFTs and IPFS,” in 2021 IFIP
Networking Conference (IFIP Networking), 2021, pp. 1–2.

[114] C. Karapapas, G. Syros, I. Pittaras, and G. C. Polyzos, “Decentralized NFT-
based Evolvable Games,” in 2022 4th Conference on Blockchain Research &
Applications for Innovative Networks and Services (BRAINS), 2022, pp. 67–
74.

[115] A. M. Papathanasiou, C. D. N. Kyriakidou, I. Pittaras, and G. C. Poly-
zos, “R?ddle: A Fully Decentralized Mobile Game for Fun and Profit,” in
Blockchain and Applications, 4th International Congress, 2023.

[116] A. Narayanan and V. Shmatikov, “Robust De-anonymization of Large Sparse
Datasets,” in 2008 IEEE Symposium on Security and Privacy (sp 2008),
2008, pp. 111–125.

[117] N. Fotiou, I. Pittaras, V. A. Siris, G. C. Polyzos, and P. Anton, “A
privacy-preserving statistics marketplace using local differential privacy
and blockchain: An application to smart-grid measurements sharing,”
Blockchain: Research and Applications, vol. 2, no. 1, p. 100022, 2021.

[118] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to
Sensitivity in Private Data Analysis,” in Theory of Cryptography, S. Halevi
and T. Rabin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 265–284.

Attribution-NonCommercial-NoDerivatives 4.0 International

http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.26219/heal.aueb.9346

