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ABSTRACT OF THE DISSERTATION

Navigating Security Challenges in Web3:
From Ethereum Smart-Contracts to IPFS Content

by

Christos Karapapas
Doctor of Philosophy in Computer Science
Athens University of Economics and Business, Athens, 2025

Professor George C. Polyzos, Chair

Web3 is not merely a technological evolution but a radical shift with deep
philosophical implications. It envisions an Internet where users are at the center,
yet without a centralized authority. Its goal is to ensure that users have full
ownership of the data they generate, as well as the value—whether economic or
informational—that arises from it.

This paradigm shift finds applications in various fields, such as Decentral-
ized Storage, which enables secure, distributed, and censorship-resistant data stor-
age solutions; Non-Fungible Tokens (NFTs), which guarantee ownership and au-

thenticity of digital assets; and Decentralized Gaming, which leverages blockchain
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technology to enable player-owned economies, provable asset scarcity, and trans-
parent game mechanics.

These, along with numerous other innovations, are shaping the next era of
the Internet. As expected, Web3 has drawn the attention of researchers who are
striving to establish it from the ground up using emerging, still-maturing tech-
nologies. Naturally, this has also caught the eye of malicious actors, who take
advantage of the novelty and complexity of these interconnected systems for their
own gain. The challenge now is to ensure that security advances in parallel with
the growth of the Web3 ecosystem, preventing it from becoming an unstable or
hostile environment.

The contribution of this dissertation to this effort is multifaceted. First,
we study the literature on Ethereum blockchain, NFTs, and the Interplanetary
File System (IPFS), which serves as a cornerstone of the Web3 data storage layer.
Our goal is to identify vulnerabilities and analyze whether — and to what extent
— malicious activity exists. Next, from the perspective of malicious actors, we
anticipate how they might exploit these technologies. We document potential
attack vectors, making them easier to detect and mitigate. Finally, we propose
design improvements that enhance the availability and scalability of key Web3
application-layer services, laying the groundwork for more scalable, resilient, and

future-proof decentralized applications.
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Chapter 1
Introduction

The Web3 concept has attracted significant attention in recent years. One
of the main attractions of Web3 is an emphasis on returning control of data to
their owners, empowering them to determine who can access their data and en-
abling monetization of the information they generate. Central to achieving these
objectives are Distributed Ledger Technologies (DLTs) along with token based
economics. Web3 also envisions decentralized services that cater to the Internet
of Things (IoT) era, integrating cryptocurrencies to facilitate peer-to-peer (P2P)
financial interactions and digital value exchange. Web3 is often conceptualized as
comprising different stacks, each consisting of various protocols that collaborate to
deliver services to users. These protocols cover areas such as data storage, name
resolution, Decentralized Identifiers (DIDs), and, at a higher level, services like
social media, gaming, and marketplaces. The growing adoption of Web3 is re-
flected across multiple domains, including NFT marketplaces, gaming, the Meta-
verse, lending, and investment platforms. The total number of users engaging with
Web3 services already exceeds two million [1], underscoring its increasing impact
on digital economies and decentralized infrastructures. Looking ahead, recent pro-
jections estimate that Web3 will reach approximately one billion users by 2027 [2],
while its market size is expected to grow from $7.23 billion in 2025 to over $42
billion by 2030.

Blockchain was born in 2008 with the release of the Bitcoin whitepaper [3]

'https://www.mordorintelligence.com/industry-reports/web-3-blockchain-market



and serves as the foundation of the Web3 paradigm. It is a ledger of blocks crypto-
graphically linked together. While its primary application has been in cryptocur-
rency technology, in recent years, blockchain has expanded into various other fields,
including voting systems, supply chain management, the Internet of Things (IoT),
and even healthcare. Furthermore, cryptocurrencies have evolved technologically,
integrating with smart contracts to facilitate smoother interactions between these
emerging technologies. As of January 2025, there are over 10,000 different cryp-
tocurrencies,? reflecting their growing popularity and increasing integration into
everyday applications. While the vast number of cryptocurrencies could be per-
ceived as a challenge rather than a weakness, as it creates a highly fragmented
market and increases the difficulty for users to identify reliable assets, it does not
hinder the dominance of major cryptocurrencies. In fact, the top 20 cryptocurren-
cies account for nearly 90% of the total market capitalization, demonstrating their
strong establishment in the financial ecosystem, with the total crypto market cap
reaching $2.8 trillion.?

Data storage is another crucial component of the Web3 ecosystem, en-
abling decentralized, secure, and tamper-resistant storage solutions through tech-
nologies such as InterPlanetary File System (IPFS), Filecoin, Storj, SIA, and oth-
ers. Among these, IPFS stands out as one of the most significant protocols in
decentralized storage. Developed by Protocol Labs® as an open-source project,
it has gained considerable attention in recent years. Notably, in January 2024,
the Filecoin Foundation, in collaboration with Lockheed Martin, successfully de-
ployed IPFS in space by transmitting data to and from an orbiting satellite using
a space-adapted version of the protocol. Beyond high-profile experiments, IPFS
is seeing widespread adoption, with more than 3 million web client accesses and
over 300,000 unique nodes serving content in the P2P network every week [4].
Furthermore, the growing number of research papers with “IPFS” in their titles

highlights its increasing prominence among researchers, with the Semantic Scholar

Zhttps://www.statista.com/statistics/863917/number-crypto-coins-tokens/

3https://www.protocol.ai/

“https://www.lockheedmartin.com/en-us/news/features/2024/smartsat-equipped-
satellite-uploads-new-mission-on-orbit.html



tool returning more than 800 results for such publications over the past two years.

These advancements highlight the rapid evolution of Web3 technologies and
their growing influence across multiple industries. However, despite the potential
benefits, Web3 still faces significant scalability, security, and adoption challenges.
As decentralized ecosystems expand, new vulnerabilities emerge, raising concerns
about data integrity, privacy, and regulatory compliance. Addressing these chal-
lenges is crucial to ensuring a stable and sustainable Web3 infrastructure. Given
these complexities, the following section delves into the motivation behind this
research, exploring the key challenges that Web3 must overcome to fulfill its vision

of a decentralized and user-centric digital world.

1.1 Motivation for the dissertation

Web3 comes with very ambitious promises for the technological future of
the Internet, which explains its mass adoption and the growing interest from both
the public and researchers. However, like every coin has two sides, Web3 has char-
acteristics that, if misused, can become disadvantages. One of the most critical
challenges Web3 faces is the lack of oversight and regulatory authority, a factor
that has already led to significant financial losses in cases of fraud and unregulated
protocols. The absence of regulatory frameworks makes it difficult to prevent illicit
activities, increasing the risks for users. Additionally, most Web3 components rely
on peer-to-peer (P2P) networks, which, while promoting decentralization, also cre-
ate fertile ground for privacy leakage. The anonymity promised by Web3, though
intended to ensure fairness and equality, has also been leveraged for illicit activities,
such as money laundering, fraud, and darknet transactions. This raises concerns
about the balance between privacy and security in decentralized environments.
From a technical perspective, the immaturity of many Web3 technologies makes
them vulnerable to frequent security breaches. With most blockchain-based ap-
plications still in experimental stages, attacks exploiting smart contract bugs and
consensus mechanism weaknesses are increasingly common. Even Web3’s open-

source philosophy, meant to foster transparency and community engagement, has



been turned against itself. Malicious actors have leveraged publicly available code
to orchestrate attacks and exploit vulnerabilities, raising the question of whether
complete transparency can coexist with security in a decentralized ecosystem. This
paradox underscores the ongoing debate between openness and protection in Web3
development.

Blockchain serves as the foundational technology of Web3 and is integral to
the functionality of cryptocurrencies. It offers features such as transparency, de-
centralization—which mitigates single points of failure—data integrity safeguarded
by cryptographic methods, and transaction anonymity. However, these attributes
have also been exploited for malicious purposes. For instance, ransomware attack-
ers commonly demand payments in cryptocurrencies to maintain their anonymity.
The immaturity of certain blockchain technologies has led to significant security
breaches; a notable example is “The DAO hack” in 2016, where vulnerabilities
in smart contract code resulted in the theft of approximately $60 million worth
of Ether.” Beyond financial transactions, blockchain has also been misused as a
communication channel and data storage medium by malware authors [5]. These
instances highlight the dual-edged nature of blockchain technology: while it pro-
vides robust solutions for secure and decentralized applications, it also presents
new vectors for cyber threats that necessitate vigilant security measures.

Decentralized storage is also a key component of Web3, as it aims to replace
or complement the functionality of major cloud services. So far, there have been
many contenders for this role, with the InterPlanetary File System (IPFS) emerg-
ing as the most prominent solution. Its application spans various fields, with NFT
storage being one of the most significant use cases, contributing to its widespread
recognition and popularity. Due to its extensive daily usage, many traditional
Web 2.0 companies have found ways to integrate or leverage decentralized storage
solutions. However, as expected, this popularity has also attracted the attention
of malicious actors. For instance, the Storm botnet has been reported to use the
IPFS network for malicious purposes [6], and there have been multiple phishing

attacks exploiting the system.® Furthermore, the P2P nature of IPFS makes it

Shttps://www.gemini.com/cryptopedia/the-dao-hack-makerdao
Shttps://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/ipfs-the-



susceptible to privacy leakage. Numerous reports indicate that a user’s identity
or activity within the network can become exposed, raising concerns about data
confidentiality [7]. Thus, it becomes evident that there is a pressing need to study
how malicious actors exploit IPFS, develop countermeasures against its misuse,
and enhance its privacy mechanisms to ensure more secure decentralized storage
solutions. As decentralized storage solutions like IPFS continue to evolve, their
integration with blockchain technology further complicates the security landscape.
While blockchains ensure immutability and decentralized trust, they alone cannot
handle large-scale data storage, leading to the growing reliance on external de-
centralized storage networks. However, this interdependence also introduces new
security risks, reinforcing the need for a holistic approach to securing the Web3
ecosystem.

The application layer of Web3 has seen significant growth, with NFTs and
decentralized gaming playing a major role in its expansion. These applications have
also given rise to a new economic model known as play-to-earn (P2E), where play-
ers can generate real-world value through in-game assets and interactions. They
leverage blockchain technology for transparency, immutability, and programmabil-
ity, while also relying on decentralized storage solutions to ensure persistent and
tamper-resistant data availability. The integration of these technologies enables
Web3 to redefine digital ownership, virtual economies, and interactive experiences.
In a gaming environment, where user interaction is fundamental, metrics such as
response time play a crucial role in ensuring a seamless experience. Meanwhile, the
increasing popularity of decentralized gaming puts pressure on developers to build
scalable infrastructures that can accommodate growing demand.” Finally, since
NFTs and digital ownership are integral to these ecosystems, ensuring long-term
availability of assets remains a critical requirement. To achieve this, companies
should avoid relying on centralized data storage solutions, which suffer from single
points of failure, and instead adopt decentralized storage networks that enhance

resilience and data permanence.

new-hotbed-of-phishing
"https://dappradar.com/blog/blockchain-gaming-reaches-new-record-4-2-
million-daily-active-users/



Web3’s rapid expansion presents both opportunities and challenges, as its
decentralized nature enhances security, ownership, and scalability while also in-
troducing critical vulnerabilities. The increasing reliance on Web3 for finance,®’
digital ownership, and gaming underscores the urgency of addressing security risks,
availability constraints, and scalability limitations. To this end, our research fo-
cuses on identifying attack vectors, analyzing malicious activity, and developing
countermeasures to strengthen resilience and enhance scalability and availability,

ensuring the efficiency and sustainability of decentralized technologies.

1.2 Contributions

While Web3 is often perceived as secure, built upon trustlessness, cryp-
tographic guarantees, and transparent protocols, this dissertation challenges that
premise by showing that even its core infrastructures can be exploited to support
malicious activities. It presents original empirical evidence of real-world IPFS mis-
use, and introduces, for the first time, a fully functional Ransomware-as-a-Service
architecture built with Ethereum and IPFS.

This central thesis is supported by a series of technical contributions that
aim to address both the security risks and performance limitations of Web3 infras-
tructure. In this work, we analyze and address security and scalability challenges
of Web3 by identifying new attack vectors and propose solutions to enhance avail-

ability and scalability. Our contributions can be summarized as follows:

e We provide a comprehensive overview of the Web3 ecosystem, focusing on its
key components, including Ethereum, IPFS, and its core mechanisms such
as Bitswap and IPNS, as well as Non-Fungible Tokens (NFTs) and their role

in decentralized applications.

e We map key blockchain security threats reported in the literature, including

structural, network, and application-level vulnerabilities, and categorize the

8https://www.whitehouse.gov/fact-sheets/2025/03/fact-sheet-president-donald-
j-trump-establishes-the-strategic-bitcoin-reserve-and-u-s-digital-asset-
stockpile/

9nttps://fortune.com/2025/02/14/elon-musk-us-treasury-blockchain-technology/



misuse of blockchain in malicious contexts such as malware, criminal smart

contracts, and fraud.

We realize the Ransomware as a Service (RaaS) attack vector, demonstrating
how blockchain and decentralized storage enhance its resilience and anonymity.
By leveraging Ethereum smart contracts for payments and IPFS for hosting
malicious infrastructure, we highlight the challenges in disrupting such a

system due to its decentralized nature.

We analyze the IPFS network to detect suspicious activity, anomalous files,
and potential abuse. By crawling and monitoring nodes, we assess network
behavior and the ethicality of stored content, proposing countermeasures to

mitigate associated risks.

We investigate how malicious actors can exploit existing IPF'S technologies to
anonymously upload content. By analyzing the mechanisms for adding and
accessing files through public services, we identify attack vectors that enable
anonymity in IPFS, assess their feasibility through experimental evaluation,

and discuss potential countermeasures to mitigate such exploits.

We propose a method to improve the effectiveness of Bitswap, reducing re-
liance on the slower DHT. Through extensive experiments, we identify perfor-
mance bottlenecks and introduce enhancements that increase the likelihood
of locating content via Bitswap. This reduces response time from a median

of 8 seconds to <1 second, particularly for less popular content.

We design and implement a fully decentralized and self-sustaining game sys-
tem that orchestrates heterogeneous decentralized services, embodying the
Web3 paradigm. Our system introduces a decentralized “mint-in-sealed-box”
mechanism using threshold cryptography and blockchains, ensures long-term
availability of NF'T assets via IPFS and Filecoin, and introduces the concept
of evolvable NFTs, enabling asset transformation over time through name
resolution services. It also facilitates new business models by enabling roy-

alty payments at every resale of in-game assets.



1.3 Dissertation outline

The remainder of the dissertation is organized as follows. Chapter 2 pro-
vides an overview of the Web3 ecosystem, with a focus on Ethereum and IPFS.
Chapter 3 reviews common blockchain vulnerabilities across multiple layers and
analyzes the Ransomware-as-a-Service (RaaS) attack vector in decentralized en-
vironments. A proof-of-concept RaaS model is presented, leveraging Ethereum
smart contracts and IPFS to demonstrate how decentralization enhances the re-
silience, anonymity, and trustlessness of such attacks, making disruption signifi-
cantly more challenging. Chapter 4 investigates the security of IPFS through two
complementary approaches. First, it analyzes network activity to detect suspicious
behavior, anomalous files, and signs of abuse, using large-scale crawling and node
monitoring to assess content distribution and ethical implications. Second, it ex-
plores how malicious actors could exploit IPFS to anonymously and persistently
disseminate content by identifying and experimentally evaluating attack vectors
that leverage public gateways and core protocols. Potential countermeasures are
discussed in both contexts. Chapter 5 introduces a decentralized gaming system
that features evolvable NFTs with royalty support, a mint-in-sealed-box mecha-
nism, and NFT availability via IPFS and Filecoin. It also proposes optimizations
to Bitswap that improve scalability and reduce retrieval latency by addressing per-
formance bottlenecks. Chapter 6 discusses the application of blockchain and IPFS
in broader security domains. It examines a system that combines the WoT frame-
work with Ethereum to enable digital twins for access control in IoT environments,
and describes a privacy-enhancing scheme for IPFS based on triple hashing, which
protects content lookup operations from inference by intermediate nodes. Finally,

Chapter 7 draws the final conclusions of this dissertation.



Chapter 2
Overview of the Web3 Ecosystem

Web 1.0 is often referred to as the read-only Web. For many years, the
World Wide Web primarily served an informational and educational role through
static content, where a small number of creators produced material for a broad
audience. As users became more familiar and engaged with the Web, their desire
to generate content increased. This shift led to the emergence of Web 2.0, a more
interactive and participatory version of the Web. Despite its widespread adoption,
Web 2.0 has faced significant challenges, including single points of failure, security
vulnerabilities, and centralized control by large entities. Additionally, privacy
concerns, such as the exploitation of personal data for marketing, have been long-
standing issues due to centralized data storage. Web 3.0, which should not be
confused with Web3 and is often referred to as the Semantic Web, emphasizes
greater efficiency and intelligence by enabling the reuse and interconnection of
data across websites through semantic technologies. Its core objective is to make
Web content not only accessible to humans but also interpretable by machines,
allowing for more accurate search results, personalized services, and automated
reasoning [8].

Web3, positioned as the next phase in the evolution of the Internet, aspires
to reshape the digital landscape by promoting decentralization, enhancing user
agency, and fostering innovation across various sectors; including finance, gov-
ernance, data privacy, and digital identity. At its core, Web3 envisions a more

equitable, secure, and interoperable online ecosystem that prioritizes user owner-
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ship and trustless interactions. Notably, Web3 is evolving and maturing in parallel
with Web 3.0, with which it shares certain foundational technologies, such as linked
data structures and machine-readable metadata. Figure 2.1 illustrates the histori-
cal trajectory of the Web’s development, highlighting the distinct phases from Web
1.0 to Web3.

read- write Web read - write - own Web

user-generated content,
dynamic websites, social

blockchain-based architecture,
smart contracts, token economy,
user data ownership

Web 1.0 platforms
(1989)

)

Web 3.0
(2006)

) ) )

J

read - only Web

static content,
minimal user interaction

U A\ A\
Web 2.0 - Web3
(2004) semantic Web (2014)

linked data, machine-
readable content, ontologies

Figure 2.1: Chronological evolution of the Web through its distinct eras.

Web3 is often conceptualized as a layered architecture, where each level is
responsible for specific functionalities that enable a decentralized, secure, and user-
centric digital ecosystem. At the foundation of the Web3 architecture lies a robust
infrastructure layer composed of P2P internet overlay protocols, such as libp2p,*
which facilitate direct communication between nodes without the need for central-
ized intermediaries. Complementing this, platform-neutral computation descrip-
tion languages—most notably WebAssembly (WASM)—enable the definition and
execution of logic across heterogeneous systems in a secure and portable manner.
Building upon this base, the next layer introduces zero-trust interaction protocols,
including consensus-driven networks like Ethereum [9] and Bitcoin, alongside data
distribution technologies such as IPFS. In addition, transient messaging tools like
Waku? support secure, ephemeral communication without relying on persistent
storage. Further up the stack, we encounter mechanisms designed for performance
and scalability. These include state channels, encrypted off-chain storage, e.g.,
Filecoin [10], Plasma protocols for handling intensive computation, decentralized

oracles, and distributed secret management systems—all of which contribute to

'https://1libp2p.io/
’https://waku.org/
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enabling high-throughput, privacy-preserving applications. For developers, the ar-
chitecture provides an interface layer offering protocol access through extensible
tools and SDKs such as Web3.js* and Solidity,* simplifying the creation and de-
ployment of decentralized applications (DApps). At the top of the stack lies the
user interaction layer, where protocol-extensible interfaces like MetaMask® em-
power end-users to interact seamlessly with decentralized services across browsers,
mobile devices, and desktop environments. The layered structure of Web3 [11] is

depicted in Figure 2.2.

Protocol-Extensible User-Interface Cradle ("Browser”) Level 4
Protocol-Extensible Developer APIs and Languages Level 3
Second Layer Protocols Level 2

- - - .

F2P Internet Duerlay F'Iatrmm—hleuiml Computation
Protocols Description Language

Level O

Figure 2.2: Protocol Architecture Overview

As previously discussed, Web3 introduces a more user-centric paradigm of
the Internet compared to its predecessors. However, the immaturity of both the
underlying technologies and the user base introduces significant risks, many of
which stem from the very foundational features that define Web3. The absence
of centralized oversight and regulatory frameworks has led to a rise in scams, rug
pulls, and various forms of exploitation, with the burden often falling entirely on
end-users. Additionally, the P2P nature of information dissemination accelerates
the spread of inaccurate or harmful content, making it significantly more difficult

to control or remove. Privacy risks are also a growing concern. As data is often

3https://docs.web3js.org/
‘https://soliditylang.org/
Shttps://metamask.io/
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replicated and stored across multiple user-operated nodes, the potential for leakage
of sensitive information increases, especially in systems where participants may
not fully understand the implications of storing or sharing encrypted or personal
data [12].

The following sections delve into two central pillars of the Web3 architec-
ture’s Level 1: the decentralized ledger infrastructure provided by Ethereum and

the distributed file storage capabilities enabled by IPFS.

2.1 Distributed Ledger Technologies

A ledger is a structured and chronological record of transactions whose
origins date back to ancient Mesopotamia around 3200 BC. Throughout history,
ledgers have served as a foundational tool to record economic activity and maintain
trust among trading parties. From early inscriptions on clay tablets and stone to
today’s digital systems embedded within the financial sector, ledgers have played
a central role in the evolution of capitalist economies. In modern times, they are
deeply institutionalized within banking and financial infrastructures, forming the
backbone of transaction processing, auditing, and financial accountability.® How-
ever, traditional ledgers, particularly those maintained by centralized institutions,
are not without shortcomings. A major limitation lies in their lack of transparency,
as access is typically restricted to trusted intermediaries or internal systems. This
opacity can lead to information asymmetries, reduced accountability, and, in some
cases, to manipulation or fraud. Transactions recorded in a centrally owned ledger
may have been altered or tampered with, and records may not be complete or veri-
fiable, especially in the absence of independent audit mechanisms. Moreover, such
ledgers often operate within a homogeneous infrastructure environment, where
all components—software, hardware, and networking—are standardized. While
this may offer operational efficiency, it introduces a critical risk: an attack or
failure affecting one part of the system can cascade through the entire network,

potentially compromising all stored data [13]. Additionally, centralized systems

Shttps://medium.com/unraveling-the-ouroboros/a-brief-history-of-ledgers-
b6ab84a7ff41
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introduce single points of failure, making them vulnerable to data loss, cyberat-
tacks, or institutional collapse. The reliance on intermediaries for validation and
record-keeping also increases cost, latency, and bureaucratic overhead, particularly
in multiparty or cross-border transactions. These limitations have motivated the
search for alternative systems that ensure integrity, transparency, and resilience
without relying on centralised control.

In 2008, a groundbreaking proposal emerged to address many of the limi-
tations associated with centralized ledger systems. The publication of the white
paper “Bitcoin: A Peer-to-Peer Electronic Cash System” [3] by the pseudony-
mous author Satoshi Nakamoto introduced a novel technological paradigm: the
blockchain. This innovation presented a decentralized, append-only ledger that
operates without the need for a central authority. By combining cryptographic
techniques, peer-to-peer networking, and a consensus mechanism known as Proof
of Work, the proposed system enables participants to validate and record transac-
tions in a transparent, tamper-resistant, and censorship-resistant manner. Beyond
solving the double-spending problem in digital currencies,” Nakamoto’s design laid
the foundation for a new class of trustless systems—capable of ensuring data in-
tegrity, resilience, and transparency without relying on any single entity or homoge-
neous infrastructure. Since the publication of Nakamoto’s white paper, blockchain
technology has undergone significant evolution and adoption across a wide range
of domains beyond digital currencies [14]. Numerous blockchain networks have
emerged, each with unique designs, consensus models, and use cases—extending
from decentralized finance (DeFi) and supply chain management, to identity ver-
ification, governance, and data storage. As blockchain technology has matured,
researchers and practitioners have proposed several classification models to cap-
ture the diversity of architectures. According to the literature [15], blockchains
are most commonly categorized as public, private, hybrid, and consortium. Public
blockchains, such as Bitcoin and Ethereum, are fully open, permissionless, and
decentralized. Anyone can participate, verify transactions, and access the ledger’s

history, making them highly transparent but often limited in scalability and en-

"https://en.wikipedia.org/wiki/Double-spending
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ergy efficiency. Private blockchains, like Hyperledger Fabric [16] and Corda [17],
are restricted systems operated by a single organization or a closed group. They
offer greater control, speed, and scalability, but at the cost of decentralization and
transparency. Hybrid blockchains combine elements of both public and private
models. They allow specific data and processes to remain private while others
are made publicly accessible, offering flexibility for applications that require se-
lective transparency, for example, in supply chain tracking or identity systems.
Consortium blockchains are governed by a group of organizations rather than a
single entity. These semi-decentralized networks are often used in sectors where

collaborative data sharing is essential, such as banking or energy markets.
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Figure 2.3: Classification of Blockchain Types

At the core of any blockchain system lies the block, the fundamental unit
of data that collectively forms the chain. Each block consists of two main compo-
nents: a block header and a body containing a set of validated transactions. The
header stores crucial metadata that links each block to its predecessor, ensuring
the chronological and cryptographic integrity of the entire chain. This typically
includes the hash of the previous block, a hash representation of the transactions
in the block, a timestamp, a nonce, and other fields depending on the consensus

algorithm used. The body of the block contains a list of transactions that have
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been validated and confirmed by the network, representing state changes such as
token transfers, contract executions, or data uploads. By chaining blocks together
through cryptographic hashes, the blockchain achieves immutability, where modi-
fying any part of a previous block would require recalculating all subsequent blocks,
a computationally infeasible task in most networks.

Another core component of blockchain systems is the consensus mechanism,
i.e., the process by which distributed nodes in the network agree on the validity
and ordering of transactions. In the absence of a central authority, consensus pro-
tocols are essential for maintaining a consistent and tamper-resistant ledger across
potentially untrusted participants. These mechanisms address the fundamental
problem of Byzantine Fault Tolerance [18], ensuring that the network can operate
correctly even when some nodes behave maliciously or unpredictably. The choice
of consensus algorithm often varies depending on the type of blockchain. Pub-
lic, permissionless blockchains, such as Bitcoin and Ethereum, typically employ
Proof-of-Work (PoW) or Proof-of-Stake (PoS), which are designed to be open and
decentralized. These models rely on economic incentives, such as block rewards
and staking, to secure the network. In contrast, permissioned blockchains, such as
Hyperledger Fabric, adopt more efficient and deterministic algorithms like Practi-
cal Byzantine Fault Tolerance (PBFT), where a limited set of known participants
coordinate to reach consensus. These models offer higher throughput and lower
latency but trade off some decentralization for performance and control.

The concept of smart contracts was first introduced by Nick Szabo in 1994,
long before the advent of blockchain technology. Szabo envisioned a system in
which contractual clauses could be automatically enforced by computer programs,
thereby eliminating the need for trusted intermediaries in various domains. The
core idea behind smart contracts is that the execution of an agreement is not man-
aged by a person, but rather by code, which ensures that the terms are carried
out precisely and transparently once predefined conditions are met [19]. Today,
smart contracts have become a fundamental component of blockchain platforms,
particularly in networks such as Ethereum. Technically, a smart contract consists

of two core elements: its code, which defines the logic and rules of execution, and
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its state, which reflects its current data or configuration. When a smart contract is
triggered, typically by a transaction, its code is executed deterministically across
all validating nodes in the network. If all participating nodes reach the same re-
sult and reach consensus on the outcome, the resulting change in the contract’s
state is recorded on the blockchain. This ensures that smart contracts operate in
a trustless, transparent, and tamper-resistant manner, enabling the automation of
agreements without reliance on centralized authorities. Their tamper-resistance
stems from the fact that, once deployed to the blockchain they cannot be altered.
The programming language used to develop smart contracts varies depending on
the underlying blockchain platform. Additionally, in many blockchain networks,
the user or external agent triggering the smart contract is required to pay a trans-
action fee—commonly referred to as gas—to compensate for the computational
resources consumed by the network during contract execution. These fees serve
both as a spam prevention mechanism and as an economic incentive for validators
or miners.

Despite its transformative potential, blockchain technology faces several
inherent limitations. Low transaction throughput and high latency hinder scala-
bility, particularly in public networks. PoW-based systems are often criticized for
energy inefficiency, raising concerns about sustainability and the potential misuse
of computational resources. Moreover, the threat of quantum computing further
challenges the long-term security of existing cryptographic schemes [20]. Addi-
tionally, the growing storage requirements of blockchain ledgers, combined with
the permanent visibility of transactional data, raise privacy and scalability con-
cerns. Finally, smart contracts, while offering automation and trust minimization,
are non-updatable once deployed, which can lead to persistent vulnerabilities if
errors exist in their code [13, 14]. While blockchain technology offers a compelling
vision for decentralized, transparent, and trustless systems, its widespread adop-
tion will depend on the ability to address its current limitations—ensuring that

innovation is matched with scalability, security, and responsible design.
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2.1.1 Ethereum

Launched in 2015 by Vitalik Buterin and a team of co-founders, Ethereum [9]
is a decentralized, general-purpose blockchain platform designed to enable the cre-
ation and execution of smart contracts and decentralized applications (DApps).
Unlike Bitcoin, which was conceived solely as a peer-to-peer digital currency,
Ethereum was developed as a programmable infrastructure, allowing developers to
encode arbitrary logic into the blockchain using its built-in Turing-complete lan-
guage. Ethereum leverages blockchain technology not only to maintain a secure
and immutable record of transactions but also as a decentralized execution envi-
ronment for smart contracts. This ensures that the contract logic is transparently
executed and tamper-resistant, with every state change recorded and agreed upon
across the network. At the core of Ethereum’s architecture lies the Ethereum Vir-
tual Machine (EVM), a Turing-complete runtime environment that allows contract
code to be executed deterministically across all nodes in the network. Develop-
ers typically write smart contracts in Solidity, a high-level programming language
designed specifically for Ethereum. This design enables the creation of complex
logic on-chain, supporting a wide variety of applications, from DeFi to governance
systems and identity management tools. Although it initially operated under a
PoW consensus model, Ethereum transitioned to PoS through a series of upgrades
collectively known as Ethereum 2.0, a process that culminated in “The Merge”
on September of 2022, significantly improving the protocol’s energy efficiency and
laying the groundwork for future scalability [21].

The native cryptocurrency of the Ethereum network, Ether (ETH), serves
not only as a medium of exchange and store of value, but also as the fuel that powers
the execution of smart contracts and transactions through a mechanism known as
gas. Gas represents the unit of computational effort required to perform operations
such as executing smart contracts, processing transactions, or interacting with
decentralized applications. Every operation in EVM is assigned a specific gas cost,
and users must specify a gas limit and gas price when submitting a transaction.
The total fee paid—denominated in ETH—is calculated as the product of these two

values. This mechanism serves several key purposes: it prevents abuse of network
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resources, ensures that computation is priced proportionally to its complexity, and
incentivizes validators to prioritize and include transactions in blocks. Gas fees can
fluctuate significantly depending on network congestion and demand, which has

led to scalability challenges and motivated the development of Layer 2 solutions.

Non-Fungible Tokens (NFTs)

Ethereum’s development and standardization process is driven by commu-
nity proposals known as Ethereum Improvement Proposals (EIPs). These docu-
ments define suggested changes or enhancements to the protocol, covering areas
such as consensus rules, virtual machine specifications, and network upgrades. A
subset of EIPs, known as Ethereum Request for Comments (ERCs), establishes
application-level standards, particularly for smart contracts. The most well-known
examples include ERC-20, which defines a standard interface for fungible tokens,
and ERC-721 [22], which introduced the concept of non-fungible tokens (NFTs).
NFTs are digital assets that represent ownership of a wide range of unique items,
tangible or intangible, often associated with digital goods such as images, mu-
sic, virtual land, or identity credentials. On the Ethereum platform, NFTs are
most commonly implemented via the ERC-721 standard, which defines a set of
functions that a smart contract must implement to create, transfer, and manage
NFTs. Beyond the core interface, ERC-721 includes an optional extension known
as the metadata extension, which enables NFTs to be associated with external
metadata—such as a name, description, or link to off-chain content—further en-
riching the token’s utility and uniqueness. NFTs gained widespread popularity
due to their versatility and found numerous applications across various industries,
including gaming, digital collectibles, digital art, and fashion [23]. Their rapid
adoption led to an explosive growth in market value, reaching a total market cap-
italization of over $400 billion in March 2022.%

This surge in popularity also attracted the attention of malicious actors,
who sought to exploit the inherent vulnerabilities of NFT ecosystems for personal

gain. One of the major concerns relates to intellectual property rights, as it is

8https://coinmarketcap.com/nft/
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often unclear whether a seller truly owns the rights to the NFT they are offering.
Verifying authenticity and rightful ownership before purchase remains a critical
challenge. In addition, imitation and fraud are widespread: malicious users have
impersonated well-known NFT artists to sell counterfeit works, while others engage
in fake airdrops, phishing campaigns, and scam giveaways. Another significant
vulnerability lies in the smart contracts that underpin NFTs. Poorly audited or
insecure contract code can lead to exploits, permanent loss of assets, or abuse
of platform mechanisms. Finally, NFTs are being used for money laundering?,
e.g., exploiting the lack of proper KYC practices. As the ecosystem continues
to evolve, addressing these risks is essential for the long-term sustainability and

trustworthiness of NFTs [24].

Ethereum Name Service (ENS)

Another widely adopted standard is EIP-137 [25], which defines the Ethereum
Name Service (ENS), a distributed naming system built on the Ethereum blockchain.
Similar in purpose to the Domain Name System (DNS) of the traditional Web, ENS
maps human-readable names to Ethereum addresses, other cryptocurrency ad-
dresses, content hashes and other resources. The ENS architecture comprises three
core components: the ENS registry, a smart contract that maintains mappings be-
tween names and resolvers; the resolvers, which are responsible for performing
lookups and returning the associated data; and the registrars, which handle the
allocation and management of domain names to users. By simplifying blockchain
interactions and enhancing usability, ENS plays a crucial role in improving the ac-
cessibility of decentralized applications and services, yet it has already been abused

by threat actors for phishing and other malicious activities [26].

2.2 Decentralized Storage Networks

In recent years, the digitization of all aspects of everyday life has led to a

rapid increase in the volume of data being generated. As a result, the demand

‘https://home.treasury.gov/news/press-releases/jy2382
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for data storage capacity has grown significantly. The emergence of cloud services
introduced new solutions offered by major technology companies such as Google,
Amazon, and Microsoft. Through cloud services, users can store their data on
platforms they trust, often at a lower cost compared to maintaining their own
infrastructure, while also enjoying ubiquitous access to their files from any Internet-
connected device.

In the era of Web3, where the user is at the centre of the digital experience,
traditional cloud services stand in contrast to the principles of user autonomy and
data ownership [27]. Issues such as documented cases of service outages,'®, and
well-known incidents of data leakage, where sensitive user information was exposed
due to misconfigurations or breaches, underscore the risks associated with central-
ized infrastructures. At the same time, centralized data silos represent attractive
targets for attackers aiming to breach systems and monetize stolen data, further
compromising security and privacy. Finally, pricing models that resemble cartel-
like behavior!! further reinforce the growing need for decentralized storage solutions
that align with the core values of Web3. In the past, P2P data-sharing networks
have enjoyed considerable popularity, with systems such as Napster, Gnutella, and
later BitTorrent leading the way. BitTorrent, in particular, was the first to in-
troduce incentive mechanisms to encourage participation, improve file availability,
and create a more robust and resilient network architecture. Nevertheless, ensur-
ing long-term availability of content remained one of the key limitations of such
P2P systems, especially in the absence of persistent incentives or reliable node
uptime [28]. Since the advent of Bitcoin in 2008 and the subsequent rise of other
blockchain technologies, P2P networks have experienced a renewed resurgence.
They have become integral in supporting a wide range of Web3 applications, in-
cluding DApps, NFTs, decentralized gaming, and many other emerging use cases
that have arisen in the Web3 paradigm. Among the most prominent decentral-
ized storage platforms are IPFS, Filecoin, Storj, Arweave, and SIA. Decentralized

storage networks aim to implement three key characteristics: proof of storage,

Ohttps://www.crn.com/news/cloud/2024/the-10-biggest-cloud-outages—-of-2024
Uhttps://iclg.com/news/21598-germany-s-federal-cartel-office-intensifies-
microsoft-scrutiny
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consensus mechanisms, and incentive structures that ensure reliability and partic-

ipation.

2.2.1 InterPlanetary File System (IPFS)

The InterPlanetary File System (IPFS) [29] is a P2P protocol for file stor-
age and sharing. It was developed by Protocol Labs as an open-source project in
2015, and has since undergone continuous development and improvement. IPFS
is considered a cornerstone of the Web3 ecosystem, as it is widely supported and
adopted across multiple domains, including NFT's, decentralized gaming, and so-
cial media platforms. Since 2018, public gateways for IPFS have been introduced,
serving as bridges between the traditional Web and the emerging Web3 ecosystem.
These gateways allow users to access IPFS content through conventional browsers
without running a full IPFS node, significantly enhancing accessibility. As a re-
sult of these factors, IPF'S has experienced significant adoption, with more than
three million Web client accesses and more than 300,000 unique nodes actively
serving content on the P2P network each week [4]. It is worth mentioning that,
in alignment with the principles of Web3, IPFS was used in 2017 to disseminate
and preserve information related to the Catalan independence referendum, after
attempts by the Spanish government to censor online content.!?

IPFS employs a content-addressable model in which each piece of content
is identified by a unique Content Identifier (CID) generated through cryptographic
hashing. Unlike traditional Web protocols such as HTTP, which use URLs that
point to specific servers, IPFS CIDs refer directly to the content itself, making the
system independent of storage location and promoting decentralized data distribu-
tion. A CID consists of four components: the base encoding format (e.g., Base32),
the version of the CID (either v0O or v1), the multicodec, which indicates how the
content is encoded (such as protobuf, JSON, or CBOR), and the multihash, which
encodes the hash function, length, and content hash.

A core component of IPFS is the Distributed Hash Table (DHT), a tailored

2https://edri.org/our-work/no-justification-for-internet-censorship-during-
catalan-referendum/
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version of the Kademlia DHT [30], specifically adapted to the needs and proper-
ties of the IPFS network. The DHT manages three types of mappings, including
Provider Records, which indicate which peer stores a given piece of content; Peer
Records, which contain information about the network addresses of peers; and
IPNS Records, which enable the mapping of persistent identifiers to dynamically
changing content. The DHT used in IPFS is based on the XOR metric, which
is employed to organize the network’s routing and lookup functions. Specifically,
each peer and each piece of content is assigned a unique identifier which is 256 bits
long. Moreover, every IPFS peer maintains at most 256 KBuckets, which are data
structures used to store information about known remote peers. The z** KBucket
of a node contains peers whose IDs share a common prefix of length x — 1 with the
node’s own ID. When given a target ID, IPFS uses Kademlia’s XOR-based dis-
tance metric to locate the closest peers in a logarithmic number of steps, enabling
fast and decentralized peer discovery.

Once a new node connects to the IPFS network, it is designated as a DHT
Server if it has a public IP address. Otherwise, e.g., if it is behind a NAT—it
operates as a DHT Client. This distinction is managed by a mechanism called
Autonat, which determines a node’s reachability. DHT Servers are responsible for
storing and serving content, while DHT Clients only issue queries, a separation
that enhances the network’s overall efficiency. When a user publishes a file to
IPFS, the file is first split into chunks, typically 256 KB each. Each chunk receives
a unique CID and is organized into a Merkle Directed Acyclic Graph (DAG) before
being added to the network where the root CID represents the entire file. This
cryptographic linking ensures that content is tamper-proof and verifiable, since
even the slightest modification will result in a completely different CID. As part of
this process, two types of records are stored in the DHT, each distributed across 20
different nodes. The first, known as the Provider Record, identifies which node is
hosting the content. It includes two important parameters: a republish interval (12
hours by default), which reallocates the record if original nodes become unavailable;
and an expiration interval (24 hours by default), which verifies that the content

provider is still online. The second, the Peer Record, maps the peer’s ID to its
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physical network address. Notably, when content is added to IPFS, the file itself
is not replicated across the network. Instead, only routing records pointing to the
uploader are distributed. The uploader’s node automatically pins the file locally,
ensuring its availability only while the uploader remains online. Replication occurs
opportunistically, i.e., if another user retrieves the file, it is cached locally. If the
original uploader disconnects, the file’s continued availability depends entirely on
whether other peers have cached it. Figure 2.4 illustrates the aforementioned
process.

In TPFS, each node maintains a set of active peer connections called the
swarm, typically consisting of 600 to 900 peers, with the lower and upper bounds
known as the low and high water marks, respectively. When a user requests a
file, the Bitswap protocol is triggered. It broadcasts a “want-have <root CID>"
message to peers within the swarm. Each peer checks locally whether it holds the
corresponding CID, and if so, responds with a “have” message. Upon receiving
a “have” message, IPFS initiates a dedicated session for that CID, including all
peers that indicated content availability. From that point forward, only these peers
participate in the data exchange session [31]. If no peer responds within one sec-
ond, the query is escalated to the DHT. The DHT operates in two phases: first,
it searches for the Provider Record. Upon retrieving it, it fetches the correspond-
ing Peer Record. Once the lookup is complete, Bitswap resumes, establishing a

direct exchange with the peer that holds the desired data [4]. A notable recent
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development in the IPFS ecosystem is the introduction of InterPlanetary Network
Indexers (IPNI), a more centralized alternative to the DHT, specifically designed
for efficient indexing of provider records. Targeted primarily at large-scale content
providers, IPNI complements the DHT by offloading the responsibility of provider
discovery, while trying to maintain the decentralized structure of the broader net-

work [32].

InterPlanetary Name System (IPNS)

IPNS' is the component of IPFS responsible for creating persistent ad-
dresses that can point to mutable data. Each IPNS address is essentially the
hash of a public key, and to use it, the user must first generate a corresponding
asymmetric key pair. Updates to the underlying content can be made by sim-
ply publishing new data using the same key, thus maintaining the same address
while modifying the linked content. IPNS records are both stored in the DHT
and propagated through it, enabling decentralized name resolution. These records
are versioned, so when a node queries the DHT for a particular IPNS address,
it receives the most recent version of the associated data. It is also important
to note that IPNS records have a default lifetime of 24 hours, requiring periodic

republishing to ensure that the address remains resolvable and up to date.

Bhttps://docs.ipfs.tech/concepts/ipns/



Chapter 3

Security Threats and Malicious
Use Cases in the Blockchain

Ecosystem

Blockchain technology has rapidly evolved from a novel mechanism un-
derpinning cryptocurrencies into a foundational layer for decentralized systems
and digital trust. However, as adoption has accelerated, so too has the discovery
of security weaknesses, both inherent in the underlying protocols and emergent
through complex applications such as smart contracts. This chapter aims to ex-
plore the security landscape of blockchain ecosystems by presenting a two-fold ex-
amination. First, it provides a comprehensive overview of vulnerabilities that have
been identified across various layers of blockchain architecture, including consensus
mechanisms, networking protocols, and application-level components. This part
highlights the technical and operational challenges faced by both public blockchain
deployments. Second, the chapter focuses on a concrete and evolving threat sce-
nario: the abuse of blockchain and decentralized storage platforms such as the
InterPlanetary File System (IPFS) to support Ransomware-as-a-Service (RaaS)

operations.
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3.1 Blockchain Vulnerabilities

Blockchain systems are inherently multi-layered, and each layer introduces

specific security challenges [33]. These layers can broadly be categorized as follows:
e Protocol Layer: Includes cryptographic primitives, and block validation logic.

e Peer-to-Peer (P2P) Network Layer: Governs node connectivity and message

propagation.

e Consensus Layer: Defines how agreement is reached across distributed nodes
(e.g., PoW, PoS).

e Application Layer: Encompasses smart contracts, wallets, and decentralized

applications.

While each of these layers exposes unique attack surfaces, this work focuses pri-
marily on vulnerabilities in the P2P Network Layer and the Application Layer, as

these are commonly exploited in real-world blockchain abuse scenarios.

3.1.1 P2P System Attacks
Majority Attack

Majority Attack, also known as 51% attack, is mostly a threat for PoW-
based systems. For this attack to be achieved, the attacker has to come with hash
rate greater than the network’s majority. This gives the attacker the ability to
cancel transactions, double spend or even fork the main blockchain. There is also
a special version of this attack, known as rental attack, during which the attacker

rents computing resources in order to achieve the 51% of consensus.

Network Attacks

Network-layer attacks target the P2P communication protocols of blockchain
systems, aiming to disrupt node connectivity, isolate participants, or manipulate

the propagation of information across the network [33].
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Name Symbol | Hash Rate | Attack cost per Hour
Bitcoin BTC 915,565 PH/s $1,527,672
Bitcoin Cash BCH 2,831 PH/s $4,724
EthereumClassic | ETC 284 TH/s $7,159
LiteCoin LTC 2 PH/s $89,757

Table 3.1: https://www.crypto5l.app/

1. DNS Attacks
When a node connects to the network for the first time, it doesn’t have any
knowledge of the active peers’ IPs. To discover and communicate with at
least one of them, DNS seeds are used, or an active IP has to be entered
manually. For a successful attack, the attacker should tamper the seeds and

inject an invalid list in the open source Blockchain software or poison the
DNS cache.

2. BGP Hijacks and Spatial Partitioning
Most Blockchain applications have two types of nodes, full nodes which keep
an updated and complete version of the blockchain and lightweight nodes
which contact full nodes to acquire a snapshot of the Blockchain. When
a full node is compromised then its related lightweight nodes will also be.
The centralization of Bitcoin nodes, as highlighted by Apostolaki et al. [34],
increases the network’s vulnerability to BGP routing attacks, which can have
severe implications for both network reliability and security. Mining pools use
stratum protocol for bitcoin mining. Stratum servers, which collect mining
outcome, have a public IP. As a result, they are also vulnerable to routing
attacks, which would delay the block propagation up to 20 minutes. This

scenario raises the risk of doublespending or intentional forks.

3. Eclipse Attacks
The P2P Protocol used by blockchain is vulnerable to the so-called Eclipse
Attacks. In this attack, a group of malicious nodes isolates a neighbor node

in order to tamper its incoming and outgoing traffic and change their view
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of blockchain. While the victim is connected with at least one honest node,
it keeps the normal version of blockchain. When the connection is lost, mali-
cious nodes have the opportunity to surround it. In Bitcoin every node has 8
active connections, in contrast to Ethereum, where it would have 13. Because
of this, Ethereum is seemingly more secure. Unlike Bitcoin, Ethereum em-
ploys a Kademlia-based peer discovery protocol, which is ID-oriented rather
than IP-oriented. This design introduces certain vulnerabilities, as shown
by Marcus et al. [35], who successfully executed an Eclipse attack on the
Ethereum network using only a single machine and multiple virtual node

identities, effectively exploiting the protocol’s reliance on node IDs.

DoS Attacks

Denial-of-Service (DoS) attacks in blockchain networks aim to overwhelm
nodes or the entire network with excessive data or computation requests, poten-
tially degrading performance, delaying consensus, or causing temporary unavail-

ability of services.

1. Stress Testing
A version of DoS attack is Stress testing, which is caused by the limited
capacity of transactions per block at a given time. For example, Bitcoin can
process up to 7 transactions per second, which is very low compared to VISA
Credit which can process up to 2000 transactions per second. An attacker
may exploit this shortcoming using Sybil identities or multiple wallets to flood
the network with dust transactions (= 0.001 BTC/tx) so that the legitimate

users will not be served.

2. Mempool Flooding
Another version of DoS attack is caused by mempool resulting in augmenta-
tion of the mining fee. Mempools, or transaction pools, are cache memories
of unconfirmed transactions and their size is watched by the miners. When
there are many unconfirmed transactions, the competition for mining raises

and thus users pay greater mining fee. Saad et al. [36] introduced an attack
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in which sybil nodes flood the mempool with unconfirmed transactions. Such
an attack causes panic to the users who have to pay higher mining fee whilst

the attacker’s transactions are not mined.

Time Related Attacks

1. Consensus Delay
In this attack the attacker injects faulty blocks to delay the peers from reach-
ing consensus. This can be achieved with stale blocks or double spend trans-
actions. The nodes which are unaware of the faulty blocks will spend some

time for verification.

2. Timejacking Attack
In blockchain applications, full nodes keep an internal counter which denotes
the network time. Network time is given to a node during the bootstrapping
procedure. If the median of the network time is given and overcomes 70
minutes, then the network time is set to the system time. This situation
creates an attack opportunity: as long as the attacker sends to the victim
different timestamps from sybil nodes, the median of which overcomes 70
minutes, and siphons the network blocks with time difference 50 minutes.
Hence, the blocks arriving at the victim have a time difference of 120 minutes
to the victim’s clock and get automatically rejected. As a result, the victim

becomes isolated from the network.

3.1.2 Application Oriented Attacks

The application layer encompasses the components that interact directly
with end users, such as wallets, smart contracts, and DApps. While enabling key
blockchain functionalities, this layer also exposes a broad attack surface, making
it a common target for threats like cryptojacking, private key theft, and contract-

level exploits [33].
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Cryptojacking

Cryptojacking is a kind of attack in which the attacker performs PoW for
blockchain-based cryptocurrencies without consent, while the victim is unaware of

this action.

1. Cloud-based Cryptojacking
Malicious miners have found a way to expand their hash power by hijacking
processors of remote devices for mining. It involves hijacking a target device
to perform PoW calculations for the attacker. Initially, these attacks were
launched against cloud service providers, where malicious users performed

covert mining operations on virtual machines and exhausted cloud resources.

2. Web-based Cryptojacking
Web-based cryptojacking is used by attackers who inject malicious JavaScript
code into websites that secretly mine tokens without the consent of their
visitors. In browser-based cryptojacking, the web browser on the client device
executes JavaScript code that establishes a WebSocket connection with a
remote server. The server collects the computed PoW hashes on behalf of
the attacker. Throughout this process, the device owner remains unaware of

this background activity and seamlessly continues to browse the website.

3. Malware Cryptojacking
Malware cryptojacking! is another way that cryptojackers have found to en-
slave users’ processors. It spreads like a classic malware through corrupted
software either on a computer platform or a mobile platform. When the
victim executes the infected application, a miner is loaded onto the memory
and it starts mining while staying hidden in the victim’s device. Two-dozen
Android applications whose code turns user’s phones into cryptocurrency
mining workers recently appeared in Google Play. Some of those have tar-
geted users in the US by using the guise of educational tools. Combined,

they have been downloaded more than 120,000 times.?

https://www.malwarebytes.com/cryptojacking/
2https://nakedsecurity.sophos.com/2018/02/01/cryptomining-is-it-the-new-
ransomware-report/
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Wallet Theft

A wallet is a software program that stores private and public keys and
interacts with blockchain platforms to enable users to send and receive digital
currency and monitor their balances. However, wallet theft remains a chronic
threat: in February 2025, approximately $1.5 billion in Ether were stolen from
a Bybit exchange wallet during a routine cold-to-warm transfer,® in an attack
attributed to the Lazarus-linked TraderTraitor group. More broadly, over $1.8
billion in cryptocurrency losses have been reported in the first half of 2025 alone,

due to private key compromise.*

1. Key Exposure and Theft
Having possession of the private key and keeping it secret is critical because
in most cryptocurrencies using private key, someone can sign transactions,
spend money or tokens and deploy smart contracts on the blockchain. If
attackers acquire the private key belonging to a user, then they can spend

all of the user’s balance.

2. Software Client Vulnerabilities
Public blockchains like Bitcoin and Ethereum have open source software,
which users use to connect to the network. This software is vulnerable to
many attacks and, although new software versions are being released, many
users do not update to the newer versions. This situation gives the attacker
the opportunity to take control of the wallet software and the victim’s bal-

alnce.

3. Weak Private Keys

In Ethereum the procedure for generating credentials is as follows:

(a) The Private Key is generated from a random number between 1 and

2256 ysing the OS random number generator.

3https:/ /www.reuters.com /technology /cybersecurity /cryptos-biggest-hacks-heists-after-15-
billion-theft-bybit-2025-02-24/
4https://cointelegraph.com/news/otal-hacks-down-q2-after-record-losses-2025-h1
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(b) The public key is calculated from the private key using elliptic curve

multiplication.

(c) Address is derived from the Keccak-256 hash of the public key keeping
the last 20 bytes.

ISE,® a security research group, made an experiment in which they scanned the
Ethereum Blockchain to find keys that are weak or lack randomness due to key
truncation [37]. Key truncation is the process according to which a random 256-
bit key is generated but only a subset is used due to coding, compiler or framework
errors. Since scanning all the potential addresses is impossible, ISE split the 256-
bit space in 8 intervals and performed a brute force scan for each one of them

setting the other intervals to zero.

H |G |F |[E |[D |C |[B |A

256 224 192 160 128 96 64 32 O

Table 3.2: The intervals of a 256-bit key

Group A: 000...00000001 to 000...0FFFFFFFF

Group B: 000...100000000 to 000...FFFFFFFF00000000

Group H: 00000001...0000 to FFFFFFFF00...00000

The group found more than 750 weak keys, 450 of which are in group A, responsible
for 49060 transactions. They also noted that there is a specific address, to which
they gave the alias blockchain bandit, which interacts with many of the weak ad-
dresses. ISE sent an amount $1 worth of Ethereum to one of those weak addresses
and it was instantly transferred to the blockchain bandit. This address has once
held almost $54 million worth of ether and currently owns $6 million due to market

correction. Finally, ISE found a shortcoming in the Parity Wallet which generates

Shttps:/ /www.securityevaluators.com/
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the public key using a user’s passphrase as randomness. They found out that
Parity accepts an empty passphrase as a valid passphrase and generates a specific
address. There have been 8772 transaction on this address, and every incoming

transaction is transferred to one of many keyholders monitoring this address.

Smart Contract Attacks

Smart contracts, while offering programmable logic and automation within
blockchain environments, have introduced a new class of security vulnerabilities.
Due to their immutable and public nature, any flaw in their design or implementa-
tion can be permanently exploitable, often leading to significant financial losses and
systemic risks. Some of the most well-known smart contract vulnerabilities, which
have been repeatedly documented and exploited in real-world attacks, include the

following [38]:

1. Reentrancy
Fallback function is the only unnamed, no argument function a contract can
have. It is executed on a call to the contract if none of the other functions
match the given function identifier or when the contract receives plain ether.
In a reentrancy attack, the attacker calls recursively the fallback function
before its termination, so that the balance is not updated before sending

ether. This act usually leads to loss of ether.

2. Stack Size Limit
Every time a contract invokes another contract, the call stack associated
with the transaction grows by one frame. The call stack cannot grow larger
than 1024 frames and, when the limit is reached, possible further invocation
throws an exception. Until October 18th 2016, it was possible to exploit this
vulnerability. Since then this flaw has been resolved by a hard fork. The
best known attack exploiting Stack Size Limit is the Governmental Ponzi

Scheme.

3. Keeping Secrets

Fields in contracts can be public, i.e. can be read by everyone, or private,
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i.e. other users or smart contracts cannot access them. However, declaring a
field as private does not guarantee it’s secrecy. The main reason for that is
Blockchain’s transparency, as a result of which, the state of a smart contract

is visible to anyone using a Blockchain explorer.

. Immutable Bugs

Once a contract is deployed on the Blockchain, it cannot be edited. If a
contract contains a bug there is no way to fix it. Programmers, during
the coding phase, have to foresee and provide the user with the option to

terminate a vulnerable smart contract.

. Generating Randomness

The execution of EVM bytecode is deterministic, which means that every
transaction mined by every miner should have the same result in the state
of a contract. In order to generate randomness, programmers usually take
advantage of the hash or the timestamp of a block, either the present block
or a future one. A malicious miner could craft his/her block to predetermine

the result of random generator.

. Time Constraints

Programmers in many cases use time constraints to decide whether some ac-
tions are permitted or not. To achieve these constraints they take advantage
of block timestamps. Since the miner who crafts the block is responsible for
choosing its timestamp within a degree of arbitrariness, the contract may be

exposed to attacks.

. Integer Overflow/Underflow

When an unsigned integer reaches its byte size, the next element added will
return the first variable element. Programmers using high level languages
are not familiar with this situation which may expose the smart contract to

attacks.

The most known Smart Contract attack is the D.A.O. attack performed on

June 18th 2016. The attacker exploited a combination of vulnerabilities to take
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under his possession $60 million. This attack was the reason Ethereum had a hard

fork and its price was reduced from $20 to $13.

3.2 Malicious Use Of Blockchains

While blockchain technologies are primarily designed to enhance trans-
parency, integrity, and decentralization, their architectural features can also be
exploited for malicious purposes. The immutability, censorship resistance, and
pseudonymity they offer have attracted not only developers and innovators, but
also cybercriminals. This section explores the malicious applications of blockchain
systems, from malware distribution and botnet coordination to criminal smart

contracts and financial fraud.

3.2.1 Blockchain and Malware

In 2015, Harsh Patel® wrote about a new kind of malware which utilizes
blockchain, the Blockchainware. In his article he mentioned that there are two

different ways in which malware and blockchain can cooperate:
e Blockchain as a storage for malware components.

e Blockchain as a command and control center.

Proof of Existence for malware components.

Moubarak et al. [39] studied the blockchain potential in a K-ary malware.
A K-ary malware instead of holding the virus instructions in a single file, consists
of k parts which union results to the malware. Each one of these parts is executable

and seems to be an innocent file. There are two main categories of k-ary malware:
e First category: The k parts are working sequentially.

e Second category: The k parts are working in parallel.

Shttps://www.linkedin.com /pulse/blockchain-ware-next-stage-malware-evolution-harsh-
patel/
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In their paper they leveraged blockchain to create a 4-ary malware of the first
category, they used blockchain technology with Proof Of Existence. They split
the viral payload into 4 chunks and they deployed each one of them on to the
Blockchain. The blockchain, keeps a record of each file that anyone can verify
simply by using a blockchain explorer. The OP_RETURN opcode [3] is a script
opcode which can be found in a transaction. It allows a user to add 80 bytes of
arbitrary data into the blockchain. Another important aspect of OP_RETURN
is that the transaction’s output is unspendable so it does not belong to UTXO
and thus is not transferred to a node’s cache. The latter makes the OP_RETURN
transactions less expensive for the network and a way to burn BTCs. Proof of
Existence is a way for someone to prove that a file existed at a specific time.
Someone can exploit the OP_RETURN opcode and insert into the blockchain the
file’s hash value [40].

Malware coordination using Blockchain

Some malware, such as ransomware, must keep in touch with their owner,
either to receive orders from him or to be able to send him some loot from the
victim. Initially, the owner’s IP was hardcoded to malware, so it was easy to make
communication perceived and blocked by the host. Then, the malware writers hid
the communication via the IRC protocol, but with the passage of time it became
obsolete, so it was again easy to make the communication perceived by the host.
Recently, malware writers hide communication under the HT'TP protocol, mixing
it with the rest of the host’s communication with the web. To avoid blocking the
IP by the host, they apply a technique called domain fluxing. They use a Do-
main Generation Algorithm (DGA), which for a specific time interval, produces a
long list of potential domains and one of them leads to the Command & Control
server (C2). The problem in this case is the many look -ups that lead to NXDo-
main, a pattern in network traffic that an anti-virus can easily discover. Pletinckx
et al. [41] report a completely new group of DGA that locate the C2 server in-

formation in the bitcoin blockchain without generating any NXDomain responses.
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This technique is actively used by Cerber ransomware,” as follows:

1. The first time the host runs the malware, it connects to a block explorer and
asks for the transactions of a wallet, the wallet address is hardcoded to the

malware.

2. This wallet, let it be W, appears to trade with some other wallets, let them
be W;. In these transactions W sends some money to W, which is instantly
returned to W. However, W, are temporary because the first six characters of

their address followed by .top TLD is the address to connect with C2 server.

3. The latter address does not host the C2 server but is a gateway for the Tor

network.

Finally, the authors report that this malware could be a typical example
of a ransomware -as -a-service model. In a system in which affiliates propagate
malware to potential victims, which are led to a malware writer’s microsite. Upon
the victim’s payment, the writer gives the percentage that corresponds to the

affiliate.

Managing Botnets using Bitcoin

Botnet is a network of computers infected with malicious software and con-
trolled as a group, without the owner’s knowledge, by an entity known as the
botmaster. Every bot needs to communicate with the botmaster or the C2 center
to receive commands. This communication channel can make the botnet perceived
by the host. Like ransomware, botnets have followed various C2 techniques such
as IRC chatrooms, HTTP rendezvous points or P2P networks. Ali et al. [42] claim
that bitcoin is an ideal means of spreading commands for a botnet. The advan-
tages of bitcoin include the small cost of maintaining the C2 infrastructure, relative
anonymity, and more importantly, that no entity can shut down the bitcoin net-
work or address. The authors leveraged bitcoin to implement their own botnet

named ZombieCoin. ZombieCoin’s main points of operation are:

"https://www.avast.com/c-cerber
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1. The botmaster creates a Bitcoin key pair (pk, sk) and then hardcodes the
pk in the bot file. The bots are also equipped with a set of commands to

translate and execute the commands sent by the C2 center.

2. The botmaster using classic infection techniques or a zero-day exploit spreads
the botnet. When a host becomes infected the bot generates a unique bot

identifier.

3. Bots then connect to the bitcoin network as Simplified Payment Verifica-

tion (SPV) nodes, receive and propagate incoming transactions.

4. The botmaster periodically sends commands embedded in transactions. The
bots to discover commands scan the ScriptSig field of transactions with the
pk input of the master. Commands are part of the 80 bytes available for

OP_RETURN opcode. Finally, bots decode and execute commands.

To validate ZombieCoin, the authors built a 14-node botnet using BitcoinJ. Their
application is 7 MB in size and stored locally about 626 KB of blockchain data.
They issued over 250 instructions with an average response time of = 6 seconds
and total cost of $ 7.50. The latter is a trivial cost compared to the profits he may
have renting the botnet. The price for 50,000 bots, which will constantly attack
a target for a duration of 3,600 seconds with a 5-10 minute cool down timer set
for 2 weeks, is between $3000 - $4000.% Finally, for upstream communication they
used the rendezvous points technique, in which the botmaster sends an IP address

available for a short time so that bots upload data through this address.

3.2.2 Criminal Smart Contracts

Juels et al. [43] conducted a study on criminal smart contracts. They con-
tend that Bitcoin may be a criminal playground for two main reasons. Because
of its anonymity and because it does not need a trusted 3rd party. Thus, no en-
tity can interfere and interrupt a transaction, as for example, a bank could do.

However, apart from simple transactions, it’s scripting language does not allow

8https://anonhq.com/mirai-ddos-botnet-is-back-for-renting /
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more complex activities. The authors argue that by using Non-Interactive Zero-
Knowledge (NIZK) proofs and smart contracts over Ethereum, more sophisticated

transactions can be made with even stronger anonymity:.

Darkleaks

Darkleaks is a decentralized black market where one can sell or buy in-
formation. There is no identity, no central operator, and no interaction between
leaker and buyers. Hollywood movies, government secrets and zero-day exploits

are some of the goods to be sold on Darkleaks. How Darkleaks works:
1. The Contractor C prepares the offering:

(
(

a) Partitions the secret M into n segments M = mq||ms...||m,

)
b) Encrypts each m; under a symmetric key ;
(c) Publishes ciphertexts C' = ¢1]|ca ... ||cy

)

(d) Reveals keys for random subset 2 = {k;},7 € N*

2. Potential purchasers P decrypt the sample.

3. If purchasers like the sample, they give offer.

4. On accepting offer, C reveals a full set of keys K = {k;},7 € N and thus M.
Darkleaks approach for fair exchange:

1. Contractor creates a Bitcoin private key sk; = SH A256(m;)

2. Public key PK; and address Addr; are generated.

3. C derives a symmetric key k; = SHA256(SH A256(PK;))

4. P deposits offer for m; to Addr;

5. To spend offer from Addr;, C must reveal PK; thus k;, making decryption

of m,; available.
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The authors contend that Darkleaks suffer from some shortcomings. For example,
C can refrain from spending payments until M loses its value, or C can choose
to avoid disclosing some of M’s segments. To overcome these shortcomings, the
authors propose a smart contract on top of Ethereum written in Serpent. Their
implementation integrates a withdraw function in case C aborts, a function to
return the donations unless all the secret keys are simultaneously revealed. Finally,
they leverage the NIZK proofs technology to verify that x; can decrypt ¢;. Smart

contract plays the role of the verifier.

Calling Card Crimes

Calling card is a signature token or a characteristic of a crime used by a
serial criminal. The authors have presented an authenticated data feed system
called Town Crier (TC), to act as bridge between smart contracts and existing
websites. They argue that calling cards, alongside authenticated data feeds, can
support a general framework for a wide variety of Criminal Smart Contracts. They
propose a protocol for construction of a criminal smart contract based on a calling

card.
1. Perpetrator (P) provides a commitment to a calling card to a smart contract.

2. After the commission of the crime, P proves that calling card corresponds to

his initial commitment.

3. Smart contract refers to some trustworthy and authenticated data feed to

verify that the crime was committed, and the calling card matches the crime.
4. If both conditions are met, the smart contract pays a reward to P.

Exploiting this protocol, many calling-card crimes become available, like website
defacement, DoS attack, assassination, kidnapping and terrorist attacks. Again,
using smart contracts there is no need for direct communication between the per-

petrator and the criminal.
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3.2.3 Financial Frauds

With the interest of the public towards electronic currencies increasing,
many skilled frauds have found the opportunity to deceive users in order to steal
their money. In this section, we will make a summary about the distinct cases of

financial frauds.

Fraudulent ICOs

ICO stands for Initial Coin Offering, it is a procedure by which an entity,
usually a person or a company, sells tokens for an amount of cryptocurrency. One
could buy such a token, hoping that it will get used a lot and its high circulation
will raise its value. In the short history of cryptocurrencies, many fraudulent ICOs
have happened. Investors bought tokens in order to increase their profits, but they
ended up owning worthless tokens. Fraudulent ICOs have costed over $35 million

to cryptocurrency users.”

Fake Wallets

Fake wallets, usually met as Android apps, steal user’s private key or seed
and consequently transfer his/her funds. In many cases they have been found in

Play Store as clones of known wallets.

Ponzi Schemes

Ponzi scheme is a fraudulent investment operation where the operator gen-
erates returns for older investors through revenue paid by new investors, rather
than from legitimate business activities or profits of financial trading. Chen et
al. [44] propose an approach to detect Ponzi schemes on blockchain by using data
mining and machine learning methods. Using combined account data and smart
contract’s bytecode the authors built a classification model in order to distinguish

Ponzi schemes from other smart contracts.

9https://www.businessinsider.in/ The-SEC-is-charging-two-cash-and-car-loving-crypto-
founders-with-fraud-after-their-32-million-initial-coin-offering /articleshow /63588096.cms
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3.3 Ransomware-as-a-Service Usings Smart Con-

tracts and IPFS

The emergence of Ransomware-as-a-Service (RaaS) represents a significant
development within the broader evolution of Malware-as-a-Service (MaaS) [45]. As
part of this commodified cybercrime ecosystem, RaaS exemplifies the shift from
bespoke malware campaigns to modular, subscription-based offerings. This trans-
formation reflects wider trends in the digital economy, where complex tools and
attack infrastructures are repackaged as services accessible to a broader range of
actors, including those with minimal technical skills. RaaS is, in essence, a “ran-
somware affiliation program”: affiliates spread ransomware to potential victims
who, upon infection, pay an amount to the ransomware author in exchange for a
(file) decryption key; the affiliate who performed the infection receives a percent-
age of the ransom. RaaS platforms typically offer not only ransomware payloads,
but also backend infrastructure, payment handling, user documentation, and even
technical support. We argue that while the model works, we expect it to shift to
more enterprise status. The shift is expected since it is known that Law Enforce-
ment Agencies (LEAs) and other organizations try to monitor or even backdoor
forums and, as a result, reveal the identity of malware authors. We believe that
the key future venue would be further exploitation of decentralized models. Hence,
a model where the various func- tionalities are split, operate individually, and are
orchestrated through a blockchain is a viable alternative that we will face more
in the near future. The research question is therefore to predict this trend and
identify weaknesses and gaps to be used to counter such threats. In this work [46],
we demonstrate a RaaS attack vector that leverages blockchain and decentralized
storage technologies to enhance operational resilience and anonymity. By utilizing
Ethereum smart contracts for ransom payments and IPFS to host malicious in-
frastructure components, we illustrate how the decentralized architecture of such
systems significantly complicates mitigation and takedown efforts. In the consid-
ered system, we fully utilize blockchain and IPFS technologies. We take advantage

of the Ethereum blockchain by using smart contracts as a registration and ran-
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som payment service for robust, low cost, fair and anonymous transactions. We
also leverage IPFS to reliably host Web pages used for interacting with Ethereum
smart contracts, as well as the malicious executable files. This system achieves
the following: (1) The amount of time a ransomware author needs to be online
is minimal. (2) The ransomware author does not have to have a stable network
address. (3) The identities of the ransomware authors and the affiliates are hidden.
(4) Affiliates do not have to pay money upfront; instead, malware authors receive
a commission from the ransom. (5) Once up and running, it is too hard to take

offline the RaaS system, as well as the registration and payment systems.

3.3.1 Related Work

The works discussed in Section 3.2 demonstrate that blockchains and de-
centralized infrastructures can be misused as persistence, coordination, or commu-
nication channels for malware. However, these efforts remain limited compared to
a complete Ransomware-as-a-Service (RaaS) ecosystem.

Early work by Moubarak et al. [39] focused on integrity validation by storing
only hashes of malware components on the Bitcoin blockchain, without providing
distribution or monetization. Subsequent studies such as ZombieCoin [42] and Cer-
ber [41] leveraged Bitcoin for botnet C2 and ransomware coordination, respectively,
showing resilience against takedowns but limiting decentralization to communica-
tion; Cerber further introduced an affiliate model, though revenue sharing was
managed centrally. Zhong et al. [47] extended this line with duplex and stealthy
communication across the Bitcoin main and test networks. In parallel, Patsakis
and Casino [48] explored IPFS for malware coordination, showing how its content
addressing and replication properties could be abused to host and disseminate
malicious content.

Table 3.3 summarizes these approaches across key dimensions, including
the underlying platform, utilization of infrastructure, support for decentralized
storage and file distribution, monetization, and their potential to enable MaaS. As
illustrated, prior works either lacked decentralized storage, relied on centralized

rendezvous points, or did not integrate payment mechanisms. Among them, Cerber
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Figure 3.1: An overview of the considered blockchain-based architecture.

stands out as the only concrete RaaS, yet revenue sharing with affiliates remained
manual and centralized. By contrast, our work is the first to combine decentralized
storage and distribution via IPFS with automated monetization through Ethereum
smart contracts, supporting asynchronous communication and trustless revenue
sharing, thereby delivering the first fully decentralized RaaS ecosystem. Crucially,
the use of smart contracts eliminates the need for backend servers, making the

operator location-agnostic and further strengthening resilience against takedowns.

3.3.2 System Design

We now present the design of the considered architecture (illustrated in Fig-
ure 3.1). The system is composed of the following entities: the ransomware author
who creates the original ransomware, some affiliates who buy the ransomware from
an author and try to infect victims. From a high-level perspective, these entities
interact with each other as follows. Authors store their ransomware in IPFS and
make it available using an Ethereum smart contract. Affiliates obtain it and try
to infect other users. Infected users (i.e., the victims) use another Ethereum smart
contact to pay the ransom and receive the decryption key. The author and the
corresponding affiliate share the ransom. This functionality is implemented using

the following steps.
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Setup

During the setup phase, the author creates an Ethereum account and stores
it in a wallet. We will refer to the Ethereum address of the author as Agjdress-
Then, she creates a registration Web page, a payment Web page, and a ransomware
builder, and uploads them on IPFS. Moreover, she has to create the corresponding
smart contracts and deploy them on the Ethereum blockchain. In order for the
author to upload the created files in IPFS, she needs an IPFS node running on a
computer under her control, but after the files are received by other IPFS nodes,
her local node is no longer required. The registration Web page is used by affiliates
to join the affiliates program, whereas the payment page is used by victims to pay
the ransom. Both pages interact with the corresponding smart contracts and are
realized on IPFS for robustness. Finally, the author sets up a C2 application which
interacts with all other components only through the Ethereum smart contracts.
The C2 application is connected to the Ethereum network and it is configured to

“listen” for specific events.

Affiliate registration

An affiliate joins the affiliation program through the registration page. Dur-
ing this process, the affiliate registers his Ethereum address, which is stored in the
corresponding smart contract, and downloads the builder. For each user he wishes
to infect, the affiliate uses the builder to create a ransomware sample. Whenever
a new sample is created, it uses the registration smart contract to request a public
key PKggmpie- This request creates an event which is broadcasted in the Ethereum
network; hence it is received by the C2 application; the C2 application generates a
public-private key pair using as seed the transaction hash, and returns the public
key to the smart contract. The smart contract verifies that PKumpe Was sent
by Agddress- The smart contract stores all PKgqmpe associated with an affiliate

address in a data structure.
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Victim infection

An affiliate may distribute the ransomware using various mechanisms, e.g.
exploiting a system vulnerability, spear phishing, etc.; however, the means to do it
are beyond the scope of this work. When the ransomware is executed by a victim, it
creates a symmetric encryption key Keyyem,, which is used to encrypt some critical
for the victim files. Then, the ransomware encrypts Keyiem, using PKggmpe and
stores the ciphertext locally. Finally, the ransomware notice is presented to the
user containing the P K qmpe, the URL of the payment page, and the amount of
money, in ether, that the victim must pay to get his files decrypted.

Ransom payment

In order for the victim to get his files decrypted, he has to visit the payment
page and enter PKumpre, as well as to deposit the predetermined amount. This
amount is transferred from his Ethereum wallet to the smart contract’s balance,
which in return transfers a proportion of the ransom to the affiliate and the rest to
the ransomware author. This action emits an event, which is received by the C2
application. The application retrieves the corresponding secret key SKumpie and
sends it to the smart contract. The smart contract verifies that SKqmpe Was sent
by Agddress- The ransomware uses SKggmpre to decrypt Keyiemp, and then it uses

Keytemp to decrypt the files of the victim.

3.3.3 Implementation

We developed a proof of concept implementation of the blockchain-based
architecture and we deployed it on the Rinkeby test network. Ethers in the Rinkeby
network do not have any real value. Furthermore, the deployed system does not
contain a true infection mechanism and is thus not directly usable, i.e., harmless.

The smart contracts of the system were developed using Solidity. These
contracts implement seven functions, corresponding to the actions of the system.
The first function is used for the affiliate registration; it stores the necessary in-

formation in the blockchain, and it emits an event when the process is completed.
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Two other functions are used for setting and getting a P K gqmpre. A fourth function
implements ransom payment, and it is responsible for triggering the corresponding
event. A fifth function is responsible for splitting the ransom between the affiliate
and the author. Finally, there are two functions for setting and getting S K sampie-

As we have already mentioned, the ransomware author is expected to cre-
ate the two sites and upload them to IPFS. The sites are implemented as React
applications with a simple user interface. The sites are interacting with the smart
contracts, using the web3 JavaScript library.

Finally, the implementation of this system includes the C2 application that
is executed on behalf of the ransomware author. This is a script developed in

Node.js.

3.3.4 Evaluation

Performance and Cost Evaluation

All actions performed in the system involve the invocation of the smart
contract functions discussed in the previous section. Two of them only read the
state of the blockchain; thus, they have no cost, no significant delay, or serious
overhead. The deployment of the smart contract in the blockchain network (in our
experiments was the Rinkeby test network), as well as the cost (measured in gas)

for invoking the contract’s functions, are shown in Table 3.4.

Actor Operation Cost measured in gas
Deployment 505822
PK sompie Upload 29881
Ransomware Author
S K sample Upload 22144
Ransom Split 37515
Affiliate Affiliate Registration 22796
Victim Ransom Payment 28326

Table 3.4: Cost of the construction building blocks

Three of those five operations are initiated by the ransomware author, one
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by the affiliate, and one by the victim. Therefore the malware author is billed with
a total cost of TC' = 505822 + 29881 - p + 22144 - § + 37515 - pu gas units, where
p is the number of registrations, J is the number of SKympe keys generates, and
1 is the number of payments received. At the time of writing, the equivalent of 1
Ether in fiat currency is $175,591° and the gas price is set to 1Gwei. Assuming that
p =0 = pu = 100, the total cost for the ransomware author for 100 registrations
and payments will be ~ $1, 67 which is minimal by any standard.

In addition to the gas cost, Ethereum also adds an execution time overhead
related to the time a transaction needs to be mined. This time depends on the gas
price, which is the amount of Ether that a user pays per unit of gas. The higher
the gas price, the faster the transaction will be mined. On average, an operation

in Ethereum is executed in ~ 13 seconds.

Security and Privacy Properties

The system has some intriguing security and privacy properties. The Ethereum
blockchain offers a high degree of anonymity, as it is hard to track an Ethereum
address back to its real-world owner. Therefore, authors and affiliates cannot be
easily detected. Similarly, once the ransomware and the Web pages are stored in
IPFS, the author does not have to participate in the IPFS P2P network.

An author does not have to be constantly online; neither has he to use
the same device or network location. An author’s C2 application is triggered by
Ethereum events; however, these events are broadcast on the whole Ethereum
network. The smart contract controls who can write PK/SKqmpie- This access
control is implemented by examining the Ethereum address of the entity that made

the corresponding transaction; hence it does not reveal any real-world information.

3.3.5 Discussion

Two key properties of our system are that a) it can easily bootstrap, and

b) it is hard to take it offline.

Ohttps://coinmarketcap.com/currencies/ethereum/



90

The system can be easily adopted, since it does not require any upfront
payment by the affiliate, apart from the cost for interacting with the blockchain.
Instead, affiliates share the ransom with the ransomware author. Ransom sharing
is done automatically by a smart contract.

IPFS and Ethereum are two robust systems where information is perma-
nently stored. Therefore, once the ransomware and the Web pages are in the IPFS,
and the smart contracts are deployed in Ethereum, they cannot be removed. IPFS
provides a “blacklisting” functionality, which is optional. Similarly, smart con-
tracts can only be removed using chain “forking”, which is an extremely unlikely
process. On the other hand, smart contracts cannot be modified; hence they must
be carefully designed so as to be bug-free. The major drawback, for criminals,
of the proposed scheme is the fact that all the transactions are visible from any
participating node of the blockchain. Therefore, a LEA can identify, for instance,
when a new affiliate has been recruited, a payment has been made, etc. Never-
theless, the same applies to many wallets which have already been identified with
criminal activity. This is the reason for the rise of crypto laundry services, which
can efficiently anonymize such revenues [49].

It is important to mention that field values in smart contracts, even though
they are not declared as public, are still accessible. A smart contract’s state is
visible to anyone using a blockchain explorer [38]. It is also important to note
that even if the smart contract stores only information about the last registration,
someone can find information about the previous registrations on the blockchain.
But note that every piece of information sent through the smart contract can be
encrypted with the recipient’s public key so that only he can decrypt it using his
private key, locally.



Chapter 4

Security Threats in IPFS

The InterPlanetary File System (IPFS) has emerged as a key building
block for the Web3, offering content-addressable, peer-to-peer file storage and re-
trieval. Designed to overcome the limitations of traditional client-server architec-
tures—such as centralized control, single points of failure, and high infrastructure
costs, IPFS aims to provide increased availability, censorship resistance, and re-
silience. However, these benefits come with a host of new security and privacy
challenges that remain insufficiently addressed.

This chapter aims to explore these multifaceted threats by (i) analyzing the
architecture and design choices that expose IPFS to abuse, (ii) presenting real—
world examples of malicious activity and privacy leakage, (iii) discussing current

and proposed countermeasures for securing the IPFS ecosystem.

4.1 Malicious IPFS nodes under the magnifying
glass

As IPFS becomes increasingly integrated into Web3 infrastructures, its
open-access and decentralized architecture is being leveraged not only by legiti-
mate users but also by malicious actors. Unlike traditional web infrastructures,
IPFS lacks centralized oversight, allowing any node to participate freely in content

storage and distribution. This raises pressing questions regarding the integrity and

o1
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trustworthiness of the nodes that constitute the network. To this end, we aim to
unravel the structural elements of the IPFS net- work, and the nodes, focusing
on suspicious activity. Initially, we crawl the IPFS network to enumerate it and
make the first contact with the nodes. Following that, we collect intelligence from
different sources regarding the aforementioned nodes. Moreover, we collect the
exchanged data by nodes and analyse them to have a deeper understanding of the
consistency of the network. Finally, we try to determine the extent of possible

abuse of IPFS for copyright infringement [50].

4.1.1 Background

JARM [51] is an open-source, active fingerprinting tool by salesforce. JARM
uses TLS to identify a target host and extract information from it. Specifically,
JARM crafts ten different Client Hello packets of the TLS handshake process
and collects all data from the process, e.g. cipher negotiation and supported ci-
pher suites. The corresponding responses received from the host vary depending
on the underlying operating system, software, libraries, version, order of calling
the libraries etc. Consequently, JARM aggregates the responses and produces a
hybrid fuzzy hash which are 62 characters long. This hash can be broken down
into two parts. The first 30 bytes try to describe how the server reacted to each
of the ten client hello messages. The rest 32 characters are a SHA256 hash which
summarises the extensions sent by the server without the certificate data. JARM
is used by the community as a software-wise host clustering tool, therefore it is also
eligible to detect malware Command & Control (C2) servers as their fingerprints

are often very unique and therefore distinguishable.

4.1.2 Related Work

P2P networks have been of interest to the scientific community for many
years, and while their popularity fluctuates, they have never been outdone. In
recent years, the advent of cryptocurrencies and blockchain technology has brought

them back into the limelight. Thus, while P2P node profiling has been extensively
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studied in the past, research in the context of Web3 is minimal. Web3 is in a very
early phase and its decentralised components are still under heavy development.
Hence, the current research regarding its nodes is still in its infancy. Henningsen
et al. in [52] make one of the first attempts to explore the IPFS network. Adopting
a hybrid design, passively and actively, they aim to enumerate the IPFS network
and profile its nodes. The authors note that the overlay network outperforms
the overlay induced by buckets. Furthermore, they observe that an overwhelming
percentage of nodes, i.e. 94%, did not react to the authors’ attempt to connect
to them. The reason this happens is twofold. The first is because many nodes
are behind NAT and thus advertise their local IP address. The second is that a
large portion of users uses IPFS in an opportunistic way, therefore their footprint
remains in buckets for longer than they remain online and connected.

Recently, researchers discovered a botnet hiding in the IPF'S ecosystem [6].
The latter, named InterPlanetary Strom (IPStorm) and estimated size of 9000
devices, utilises IPFS at multiple levels. Initially, the researchers found that it
uses the libp2p DHT to discover nodes. Bots identify each other with the attribute
Agent Version: “storm”. In addition, the botnet utilises the Pub/Sub protocol
as a communication channel over specific topics. Finally, the botnet uses IPFS to
share files so that it can be updated to a newer version.

Trautwein et al. [4] further to providing a basic guide of IPFS’ design, they
collected data from three different sources to shed light on various metrics related to
IPFS performance. Initially, they crawled the IPFS network to gather information
about peers. Among the conclusions drawn is that IPFS nodes are geographically
distributed in 152 countries, yet more than 50% are located in just two countries,
US and China. Furthermore, more than 50% of the IPs are covered by five auto-
mated systems, yet only 2.3% of the nodes are in some cloud infrastructure. The
last insight extracted from this dataset is that the IPFS network suffers from high
rates of churn, with 87.6% of peers having an uptime of less than 8 hours. Finally,
the authors wanted to study the time performance in downloading data. To this
end, they experimented with different AWS regions and recorded the download

duration from the data they produce each time. In 50% of the cases, the download
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took less than 3s, and in 90% of the cases, less than 4.5s.

4.1.3 Profiling IPFS nodes

Data collection methodology

To enumerate the IPFS network we used the IPFS Crawler [52]. The IPFS
crawler is a tool written in Go and is based on libp2p (v0.11.0).

Acting as a Kademlia node the crawler uses precomputed keys to extract
all the entries from most buckets for every node it encounters. In essence, it
invokes FINDNODE actions repeatedly using the appropriate precomputed keys.
Finally, the crawler produces two files: (i) a JSON file storing the tuple <PeerID,
multiaddress, agent, reachability> for every distinct node met, and (ii) a
CSV file containing all the pairs of connected nodes.

We conducted a series of consecutive crawls. Initially, the crawls were
performed iteratively, every ten days during the period from March to April 2022.
Each crawl series spanned over a day (24h) totalling about 360 crawls in a row
per day. From the data in the JSON file, for each PeerID we extracted the IP
addresses. Fach IPFS node maintains an address book retaining information for
the nodes it encounters. If any of the encountered nodes advertises a new address,
then it is appended in the address book for reachability purposes. As a result,
a single PeerID may correspond to more than one IP address. We studied each
different address considering it as a unique node. Moreover, nodes behind a firewall
or NAT use p2p-circuit, a libp2p relay transport protocol, to avoid connectivity
barriers. In essence, these nodes advertise addresses through relay nodes. As a
consequence, they do not reveal their real IP address but the IP address of the relay.
The aforementioned peers as well as those which advertise only local IP addresses
are excluded from our analysis. Clearly, the absence of such IP addresses prevents

us from studying or fingerprinting the corresponding hosts.
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Node Profiling

In this section, we present general information regarding the IPFS network
and its nodes. We should mention that in the following findings, every different IP
address is considered a different node. Although, we found that unique Peer IDs
advertise multiple IP addresses since our study focuses on the “fabric” of the IPFS

network. Thus, we want to enumerate and analyse every different IP address.

B Malicious ¥ Benign /Unknown

T

100 000

50 000

T

Crawll Crawl2 Crawl3

Figure 4.1: Malicious nodes per crawl.

Figure 4.1 illustrates the nodes per crawl and the count of malicious nodes
for which we collected intelligence. In Figure 4.2a, the exact results of IP addresses
per crawl can be found. Moreover, from the same figure, we can observe that 16783
were found online in all three crawls. We can assume that the aforementioned nodes
were found online at least once a day in the span of the whole month. Given the
periodic changes of IPs, we can assume that most of these IPs belong to some
infrastructure that has been devoted to constantly working with IPFS.

A node’s agent version can be an indication of malicious activity. Nodes’
agent version is public and advertised, thus, it can act as an identifier for malicious
nodes to discover and track each other. The latter is a technique already imple-
mented by “storm” agents. Figure 4.3 illustrates the ten most used agent versions
we found in each crawl. We should highlight that the counts depicted correspond to
the agents from the nodes we managed to connect to. In each crawl we found 50%,
61%, 49% respectively, unreachable peers, i.e., we found their address stored in the
DHT but they were offline. Moreover, IPFS is open-source software; therefore, it

is at the user’s discretion whether to display the agent version. The latter results
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Figure 4.2: Crawl statistics.

are aligned with the ones in [4]. In the third crawl we observe that there is an
increase in nodes using the agent called Hydra Booster.! Hydra Booster is a node
having many different Peer IDs over a common routing table. It is designed to ac-
celerate IPFS’ processes carried out through DHT-like content resolution, routing
and discoverability. The existence, as well as the operation of these nodes, brought
about an increase in the number of nodes of the third crawl. One of the features of
open software, which has been hotly debated lately, is that upgrading to a newer
version is at the user’s discretion. Observing the crawling results of Figure 4.3, one
can observe that there are many different software versions running and commu-
nicating simultaneously. For example, go-ipfs 7.0 was released in July of 2020
while go-ipfs 11.0 in August of 2021. Moreover, although the measurements
were made in mid-2022, and version go-ipfs 12.0 had already been released, we
can conclude from the bar charts that the versions which are more widely used
are the older ones. In addition, we must mention that agent storm, which has
been found in all three crawls with a non-negligible number, is characteristic of
the nodes belonging to the IPStorm botnet we have already mentioned.

In what follows, we study the maliciousness of nodes, so we used Virus Total

'https://github.com/libp2p/hydra-booster/
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Figure 4.3: The ten most commonly used agent versions in each crawl. The *. *

denotes varying subversions combined.

to assess the corresponding IPs. Nevertheless, Virus Total also provides valuable
insights regarding the geographic distribution of the various nodes, regardless of
whether they are malicious or not. The vast majority of the nodes are located in
two countries, namely the United States and China. We notice that our results
are aligned with [4].

To conduct a more in-depth analysis, we passed the crawling results to
intelligence services. Namely, we used Shodan,? a network monitoring tool, to fin-
gerprint each node. Shodan returned intelligence for approximately 40960 unique
nodes. Figure 4.4 illustrates the ten most commonly used ports by the total of
nodes we examined. Port 22, the most widely used port by IPs related to IPFS,
is typically used for Secure Shell (SSH) connections, which allow users to log in
to a host and execute commands remotely. Port 80 is used as the default port for
HTTP (Hypertext Transfer Protocol) traffic, port 8080 is an alternative to port
80 and moreover the default port of the IPFS gateway, and port 443 for HTTPS.
Port 3389 is typically used by hosts running Microsoft Remote Desktop Protocol
(RDP) to allow remote access to the host’s desktop. Finally, port 4001 is used
by default for IPFS traffic, but users can also set up a custom port. Regarding

’https://www.shodan.io/
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the operating system running on IPFS nodes, Shodan’s results, depicted in Fig-
ure 4.2c, indicate that the lion’s share uses Ubuntu Linux. The next runner-up is
Microsoft Windows 10, followed by Debian Linux. The latter is also exhibited by
the most used services, Figure 4.5, where most hosts appear to be using SSH as
opposed to RDP. Moreover, most of them seem to have a web server (nginx and

then Apache).

21 22 80 443 3389 4001 5001 7547 8080 8081

Figure 4.4: The ten most common ports.
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Figure 4.5: The ten most commonly used services.

JARM [51] is an open-source fingerprinting tool that generates a string
based on the response of the host to ten TLS packets. JARM is used by the
community as a software-wise host clustering tool, therefore it is also eligible to
detect malware Command & Control (C2). We use JARM strings, extracted from
Shodan and Virus Total, to detect any similarities among the different nodes.
Finally, we combined them since for the same IP different services can provide
varying information. For 1002 IP addresses, we found information in both services,

so we considered both records. The JARMs indicate that there are several clusters
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of IPs in which servers have the same TLS configuration, which implies that the

same entity is behind them. The most common ones are illustrated in Table 4.1.

JARM # IPs

2ad2ad0002ad2ad00042d42d0000008aec5bb03750a1d7eddfa29fb2dideea 2070
2ad2ad16d2ad2ad22c2ad2ad2ad2adfd9c9d14e4£f4£67£94£0359f8b28£532 1378
15d3£d16d29d29d00042d43d000000£e02290512647416dcf0a400ccbcOb6b 77
15d3£fd16d29d29d00042d43d0000009ec686233a4398bea334babe62e34a01 562
15d3£d16d21d21d00042d43d000000£e02290512647416dcf0a400ccbcOb6b 489

Table 4.1: Most common JARMs.

Malicious Activity

In this section, we investigate the moral character of IPFS nodes, i.e., we
examine whether and to what extent there are malicious nodes. To this end,
we collect and leverage existing intelligence to create and present their profile.
Our goal is to assess the network structure, keeping IPFS users and the related
community alert to the existence of malicious activity in the IPFS network. Due
to the current IPFS rules, every node maintains several active connections varying
from 600 to 900 peers. Thus, we argue that it is very important for each node to
know what kind of alignment, i.e. neutral or malicious, the node it interacts with
has.

Initially, we leveraged the intelligence provided by two popular services,
namely Virus Total (https://virustotal.com/) and SpamHaus (https://www.
spamhaus.org/), to get a baseline for the reputation and past activity of nodes.
SpamHaus uses several methods to find information about an Internet resource.
It uses sensors in large networks, i.e. a data-sharing community, from which it
collects data about network traffic. In addition, SpamHaus deploys honeypots to
attract malicious users. Along the same lines as SpamHaus and VT, in addition to
monitoring more than 70 anti-malware and IP blocking services, it relies on data

generated and shared by an already large community. Both the aforementioned
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services provide APIs to interact with their knowledge base and generate a JSON
formatted output for each request. We combine the extracted output information
with the SpamHaus output and we consider malicious those nodes with at least
one record in one of the aforementioned services.

Moreover, in Figure 4.2b, we notice that from the 27861 different IP ad-
dresses we encountered during the first crawl, 5126 of them, ~ 18% remained online
throughout the whole month. The latter indicates that there is a number of nodes
that constantly utilise the IPFS network for malicious purposes. Compared to the
16783 found online in all three crawls, as depicted in Figure 4.2a, a significant
part of them, i.e., 30.5%, are known to be malicious. Based on SpamHaus’ results,
we conclude that the majority of malicious nodes were discovered using the DNS
Sinkhole technique. According to this technique, security researchers create, at
various levels, a DNS record of a known malicious URL pointing to an address they
own, usually a sinkhole server. The gain from applying this technique is twofold:
On the one hand, they prevent communication between bot and C2, and on the
other hand, researchers can find which computers are infected, i.e. ask to connect
to known malicious URLs.

In Table 4.2a, the five most commonly requested and sinkholed URLs in
the number of unique IP addresses are illustrated. Note that several URLs such
as differentia.ru, atomictrivia.ru, amnsreiuojy.ru and restlesz.su are
known to be leveraged as C2 by malware. disorderstatus.ru is a relatively
newly created domain reported to be mostly used for spamming. To draw deeper
conclusions about the URLs, we isolated the Top Level Domain (TLD) of the
different requested URLs. To our surprise, while most requested URLs have a “.ru”
TLD, this is not reflected among the unique TLDs. On the contrary, we notice
that the most commonly encountered is “.xyz”, a relatively new TLD offering many
domains that would traditionally be registered by legitimate users. The fact that
they are new and cheap and that traditional domain names are available has led

xyz domains to be widely exploited®. Given that 11227 xyz domains are hosted

3https://www.spamhaus.com/resource-center/getting-the-1low-down-from-xyz-
registry-on-combating-domain-abuse/https://www.bleepingcomputer.com/news/
security/these-are-the-top-level-domains-threat-actors-like-the-most/



61

by these addresses makes us conclude that some adversaries use nodes of IPFS for
hosting malicious domains in addition to C2 infrastructure.Tinba a portmanteau
of the words Tiny Banker, is a trojan that leverages packet sniffing to determine
whether the user visits a bank’s webpage. In that case, the trojan tries to steal
the keystrokes and sends them to a C2. Nymaim and Ranbyus are well-known
trojans, which steal information from the user and consequently send them to a
C2. Some of their variants have been found to use domain fluxing to communicate
with their orchestrator, and some have been found in DoS attacks. Mirai is used to
infect Internet of Things (IoT) devices and turn them into bots that can be used
to launch large-scale network attacks. The Mirai botnet was initially discovered
in 2016 and was part of various high-profile cyberattacks, including distributed
denial-of-service (DDoS) attacks that brought down popular websites and online

services. The most frequently displayed campaigns are gathered in Table 4.2b.

Campaigns Count

URL Count tinba 30019
differentia.ru 38681 conflicker 22650
disorderstatus.ru 15504 nymaim 22228
atomictrivia.ru 7049 andromeda 6403
amnsreiuojy.ru 5662 ranbyus 4845
restlesz.su 2180 mirai 3750

(a) The five most sinkholed URLs (b) Malware campaigns with the
and the number of unique requests.  largest participation from the en-

countered nodes.

Table 4.2: Extroversion of malicious nodes: Which groups do they belong to and
what webpages they seek to visit.

Finally, we studied the JARMs of malicious nodes to better frame our re-
search. As we have already mentioned, we combined knowledge from all intelligence
services to produce the results. Notably, among them, we found a cluster of 68

nodes corresponding to the JARM fingerprint 15d3fd16d429d29d00042d43d00
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00009ec686233a4398bea334babe62e34a01 which is attributed to the notorious
emotet botnet.

As already mentioned, the crawler we used, in addition to information about
the nodes encountered, produces an edge list with each pair of connected nodes.
Based on this, we constructed a mapping from one PeerID to the several PeerIDs
we found connected during the second day. In essence, we built for each peer its
buckets expanded to the span of a day. Consequently, we converted the aforemen-
tioned mapping to the corresponding IP addresses. This way, we can investigate
whether there is a clique between the malicious nodes. The findings indicate that
there is no such clique, as the median percentage of malicious nodes in the buckets
of a malicious node is 7%, and the average is 9.5%. Along the same lines, the
median percentage of nodes in the buckets of a benign node is also 7%, with the

average being 9.2%.

4.1.4 File Investigation

Despite the processes and functionality IPFS offers through libp2p and its
other components, its main purpose is undeniably storage-related. The largest
NFT marketplaces use IPFS for the data storage and integrity it provides, while
its widespread utilisation has already brought about the need for cooperation with
other Web3 layers, such as ENS, which natively offers names corresponding to
CIDs. No wonder the increasing popularity has also caught the eye of cyber crim-
inals. A recent research® highlights that the volume of malware samples hosted in
IPFS has increased during 2022. Moreover, researchers report the Agent Tesla
malware, which using phishing techniques, leads to an IPFS public gateway, dis-
guising the download of malicious content. To better frame our research into the
storage of the IPFS ecosystem, we also researched the file side. Our research is
twofold, in the first case, we eavesdropped on the files requested by IPFS users,
while in the second, more actively, we searched for files we randomly downloaded

from well-known torrent sites.

‘https://blog.talosintelligence.com/ipfs-abuse/
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Bitswap Eavesdropping

According to the operating rules of IPFS, when a user searches for a file, a
one-hop inquiry is first performed through Bitswarm, requesting it from nodes with
an active connection to the initiator. If none of them responds, the query is then
served by the DHT. To collect data, we tweaked our node so that it maintains ac-
tive connections with around 4000 nodes; that is, according to our measurements,
approximately 20% of the network’s active nodes at that time. So when one of
those nodes was looking for a file, thanks to Bitswap’s functionality, that infor-
mation would also go through us. This way, we could eavesdrop on about 20% of
the network’s requests and, in turn, request back to retrieve them. In total, we
monitored the requests for 24 hours while we set each request to last no more than
15 seconds. This way, we avoided downloading very large files while, on the other
hand, we cancelled the search in case it was routed through the DHT. In total, we
collected 49155 files with a size of about 13.7 GB. To have a more complete picture
of the type of files requested, we used the Python mimetypes module® to find the
MIME type of each file. We shall mention that it managed to classify 13691 of the
files. The latter can be attributed to Bitswap’s design. When a user requests a file
from Bitswap, the search is performed by the root CID of the file. The aforemen-
tioned file contains links to the chunks of which it is composed. Thus, when the
requester receives the root CID and learns the CIDs of the chunks that make up the
file, it requests through Bitswap consecutively all the chunks, which are essentially
blocks of data. The file results illustrate that 3716 are image files with MIME
types “image/png”, “image/gif”, “image/jpeg”, and 9148 are JSON files, which
is the most common format for NFT metadata. The latter clearly demonstrates
and confirms our initial statement that IPF'S is a cornerstone of NFT data storage
and Web3 in general. Among others, we fetched 177 Javascript files and 27 videos
of type “video/mp4”. We then fed the image files to the Python Not Suitable
For Work (NSFW) Detector module to determine whether IPFS is being used for

inappropriate content. From the 1636 image files it examined successfully, it found

Shttps://docs.python.org/3/library/mimetypes.html
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33 unsuitable.® The above indicates that some users leverage IPFS’ anonymity to

host inappropriate content that is difficult for LEAs to track and take down.

Torrent Files

Very often, inappropriate files are found in the form of torrent files dis-
seminated through torrent search engines. We downloaded a sample from various
widespread torrent sites, ten popular torrents in total. We computed their CIDs
locally to determine whether they are shared on the IPFS. This way, not only did
we not add any illegal files to the IPFS network, but we also limited the possibility
of tampering with the results of our upcoming searches. The ten different torrent
files yielded 72 different root CIDs. Each torrent file can contain a video file, a
cover image for the video file, a text file with information about the file, etc. In
turn, we made 72 requests to the DHT for providers of these CIDs. We found
providers for seven of them, and in fact, for most of them, more than one. The
latter implies that IPFS users may also share the same content in torrents and

that intellectual infringement content is also distributed through IPFS.

4.1.5 Countermeasures

The amount of malicious nodes connected to IPFS is alarmingly high. Given
the P2P nature of IPFS and its continuous exploitation, we believe that pruning
nodes from the network might provide an initial measure of sanitising the network;
otherwise, the benign peers facilitate the malicious ones. To this end, we opt for a
periodical blacklist approach that is resolved through InterPlanetary Name System
(IPNS). In essence, we propose using the proposed data crawling methodology to
monitor the nodes on a daily basis, the IPs are collected and using intelligence
services, we determine whether the IP should be blocked or not. Each IP is four
bytes long, so the expected size is rather small and easy to manage. For instance,
using our experiments as a baseline, using the worst estimate of 32000 malicious
nodes, the blocklist would be around 125KB if the IPs were directly stored (4

bytes per IP). Given its size and possible optimisations (e.g. use binary search

Shttps://pypi.org/project/nsfu-detector/
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over the sorted list), searching whether the connected peers are malicious can be
very efficient. Moreover, since the amount of nodes is tolerable, the collection of
data from intelligence services can be rather fast. Of course, one could hide the
IPs using approaches based on Bloom filters [53]. In this case, one would need less
than half of this storage (almost 56KB) to store these IPs with 0.01% possible false
positive. However, the issue is that this error would be persistent, meaning that
the nodes that would be false positives would be considered malicious by everyone
without being able to rectify this error. Nevertheless, with the growth of IPFS
and the increase of malicious nodes, probabilistic structures such as Bloom filters
might be more optimal.

IPFS is becoming institutional, after all, many organisations are participat-
ing in it and supporting it. Recent research efforts indicate that it could frame the
existing banking system [54], while at the same time, it constitutes a cornerstone
of Decentralised Finance (DeFi). Our research does not intend to act as a brake
on its use; on the contrary, it intends to inform, alert and promote its secure use.
For instance, the network administrator of an organisation participating in the
IPFS network can block the traffic towards and from a suspicious IP address by
adding a rule to the firewall. Note that it can also remove alert fatigue from SOCs
who might observe malicious IPs connected to the monitored infrastructure due to
IPFS traffic. Finally, while IPFS provides the ability to disconnect from a node,

it does not provide natively the option for the user to maintain a blacklist.

4.1.6 Conclusions

Open and decentralised systems are, by their very nature, prone to sev-
eral attacks. However, given the crucial role of IPFS for Web3, it is essential to
protect the ecosystem. Our measurements indicate that an alarming number of
IPs reported as malicious through intelligence services are using IPFS. Rather than
making it centralised, we opt for soft measures that allow nodes to isolate malicious
ones selectively. We argue that this isolation can significantly benefit the network
as the content of most of these nodes may be malicious, leading legitimate ones

to facilitate nefarious acts and malicious campaigns. Therefore, their isolation, in
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the long run, may increase the robustness of the network and trust in it.

IPFS seems to have sacrificed part of the privacy to succeed in terms of
performance, speed, and robustness [7]. This shortcoming can be exploited for
malicious purposes, but it can also be leveraged by security analysts to monitor
malicious nodes. Thus, apart from the fact that we can obtain critical information
regarding a malicious node, such as its [P address, we can also monitor it from a
content point of view, i.e., its requests as well as what it provides. Therefore, a
future direction of this work is an extension of the implementation of the proposed

filter so that it associates malicious nodes with the corresponding content.

4.2 Investigating Anonymity Abuse in IPFS

As IPFS continues to grow in popularity, a variety of supporting services—such
as pinning services and public gateways—have emerged to enhance its functionality
and accessibility. Pinning services play a crucial role in maintaining file availability
across the network. These services allow users to ensure that specific files remain
accessible by hosting them on dedicated nodes, even if the original uploader goes
offline. In parallel, public gateways act as bridges between the IPFS network
and the traditional Web, enabling users to retrieve IPFS-hosted content through
standard HTTP protocols without running a local node.

Recent works have shown that malware increasingly leverages benign In-
ternet services to distribute payloads and evade detection. This includes both
centralized platforms such as GitHub and Dropbox [55], and large-scale abuse of
cloud services like Discord, Mediafire, and Google Drive [56]. Our work extends
this threat model to decentralized infrastructures like IPFS, where anonymity,
content immutability, and the absence of centralized moderation create an even
more permissive environment for abuse. In the following analysis we investigate
how malicious actors can exploit existing technologies within the IPFS ecosystem
to anonymously upload and distribute content. We begin by mapping the current
landscape of tools and protocols used to add and access content on IPFS, including

pinning services and public gateways. We then design and evaluate practical at-
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tacks that leverage these mechanisms to achieve anonymity and persistence within
the network. Finally, we explore potential countermeasures to mitigate such ex-

ploits.

4.2.1 Adding a File to IPFS

There are several ways to add a file to IPFS. In this section, we explore
different methods and their respective modi operandi. Additionally, we examine
the information about the original uploader that can be retrieved for each method

and the duration that the files remain online.

IPFS Node For the average user, the primary option for connecting to the
IPFS network is the IPFS Desktop application, which supports the most operating
systems and includes the functionality of an IPFS node within a user-friendly
graphical interface. There is also a command-line version available called Kubo.
A detailed description of this process can be found in Section 2.2.1. It is also
worth mentioning that the Brave Browser natively supports the use of IPFS in
conjunction with a local node [57], yet earlier versions provided the ability to add

files via Public Gateways.

Pinning Services IPFS, according to its design principles, does not provide a
mechanism to ensure that files added to the network remain online if the original
uploader deletes them or disconnects from the network. Files are primarily cached
by requesters to ensure their availability to other nodes. The more popular a file
is, the higher its chances of staying online for an extended period. Additionally,
every IPFS node runs a garbage collector to free up storage space. As a result,
cached files are periodically removed, leading some files to disappear from the
network over time [28]. To prevent the garbage collector from removing a file, the
user must pin it. Pinning can be categorized into two types: local pinning, where
the user configures their node to retain the file, though it will fade once the node
disconnects from the network; and remote pinning, where an external provider

takes the responsibility to ensure that the file remains pinned [58].
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A plethora of pinning services is available, with Pinata, Filebase, Fleek, and
4EVERLAND being among the most popular. These platforms offer user-friendly
graphical interfaces for adding files to the IPFS network, simplifying the process
for the average user. Moreover, they provide free storage space for uploading and
pinning files, making them accessible to a wide range of users. Once added, the
files can be retrieved through public gateways, which act as HT'TP access points
to the IPFS network.

Although Web3.Storage and NFT.Storage” are not strictly classified as pin-
ning services, their functionality closely resembles traditional pinning solutions, so
we include them in this section for completeness. These open-source services, de-
veloped by Protocol Labs, are designed to store general and NFT-related data,
respectively, in the Web3 era. Both services operate decentralized, leveraging
IPFS for content addressing and Filecoin for long-term data preservation rather
than offering a pinning service. Web3.Storage is notably free for the community,
while NFT.Storage operates under a paid model. NFT.Storage was excluded from
further experiments, as it specializes exclusively in NFT metadata storage, which

falls outside the scope of our analysis focusing on general-purpose file uploads.

Public Gateways Public gateways act as HI'TP entry points to the IPFS net-
work, bridging the Web2 and Web3 ecosystems. They process HI'TP requests
containing CIDs and relay them to an IPFS node, enabling broader access to the
network through conventional Web protocols. Although users cannot directly up-
load files through a gateway, indirect methods enable this functionality, justifying
their classification in this section. Furthermore, the HT'TP servers underpinning
these gateways leverage caching mechanisms, most commonly the Least Recently
Used (LRU) strategy which optimizes performance and user experience by evicting
the least recently accessed content when the cache reaches its capacity [4]. Based
on the above, it is evident that even if the original uploader disconnects from
the IPFS network, the file may remain accessible, cached by gateways, with its

persistence primarily influenced by its popularity. During the preparation of this

"https://nft.storage/
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study, we identified 10 online gateways.® Using the fingerprinting tool WhatWeb,°
we found that nine gateways utilize either Nginx software or Cloudflare proxies,
which employ the LRU caching strategy to manage content efficiently.

The fact that public gateways serve as a bridge between the traditional
Web and the P2P ecosystem of IPFS makes them very crucial for launching and
countering several attacks. For instance, an adversary may host a phishing page
on IPFS; however, the content must be rendered from the victim’s browser. Thus,
the bridge fetches the content from IPFS and brings it to the Web. It must be
noted that while there is no official deletion mechanism for IPFS [59], some public
gateways follow blocking mechanisms to prevent specific content from reaching the
Web [60]. Nevertheless, not all gateways follow the same blocking mechanism and,

of course, this does not remove the content from IPFS.

4.2.2 Exploiting IPFS for Anonymity: Attack Scenarios

The anonymity offered by IPFS can be exploited by malicious actors. In
this section, we analyze how attackers leverage methods discussed in Section 4.2.1

to achieve anonymity, presenting and evaluating two distinct attack scenarios.

The Pinning Service Attack

Pinning services ensure that a file remains online. Therefore, it is logical to
consider that an attacker could exploit these services to upload a file and guarantee
its availability. However, since our focus is on evaluating the level of anonymity,
we first examine the information each pinning service requires from users to allow
file uploads, i.e., the Know Your Customer (KYC) procedure. We selected Pinata,
Filebase, Fleek, Web3.Storage, and 4EVERLAND based on a systematic Internet
search. Specifically, we performed Google queries such as “top IPFS pinning ser-
vices” and “most popular IPFS pinning services,” identifying the services most
frequently mentioned in developer documentation, technical articles, and commu-

nity discussions. Academic literature specifically evaluating IPFS pinning services

8https://ipfs.github.io/public-gateway-checker/
“https://github.com/urbanadventurer/whatweb
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remains limited, further justifying the need to consult current developer ecosys-
tems and real-world service availability. Besides the selected providers, our search
also highlighted Infura and Temporal. However, Infura currently restricts access to
pre-qualified customers,!® and Temporal appears to have discontinued operations.
Thus, our study focuses exclusively on active and publicly available services, realis-
tically representing the infrastructure accessible to potential anonymous attackers.

The Pinata, Fleek, and Filebase services require an email address for user
registration. To achieve higher levels of anonymity, we attempted to use a tempo-
rary email service. A temporary email is a disposable email address that allows
users to receive emails for a short period, often used to maintain anonymity or
avoid spam during registration processes. During December 2024 and January
2025, we tested the registration process on Pinata, Fleek, and Filebase using email
addresses generated by the service TempMail (https://temp-mail.org). Both
Pinata and Fleek accepted the first temporary email we generated, allowing us to
create accounts successfully. After four attempts with different temporary email
addresses, Filebase accepted the registration, suggesting that its filtering against
disposable emails may be incomplete.

In all three cases, the platforms required us to verify the email address
using a one-time password (OTP). 4dEVERLAND, on the other hand, does not
use email-based registration but instead requires a cryptocurrency wallet. Using
Metamask, we successfully created an account on the platform, noting that even for
creating the Metamask wallet, no email was needed. Finally, while Web3.storage
accepted the temporary registration email, uploading files required linking a pay-
ment account, even though the platform also offers a free plan. This suggests that,
although temporary emails are allowed, the payment account requirement serves as
an additional verification step for users, limiting its suitability for fully anonymous
abuse scenarios. Table 4.3 presents a summary of these findings.

To simulate malicious behavior, we developed a Python script compiled
into a Windows executable (~ 7 MB) using PylInstaller.'! Tt mimicked keylogging,

dummy process injection, basic file manipulation, and failed network connections.

Ohttps://docs.metamask.io/services /reference /ipfs/
Uhttps://pyinstaller.org/
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Table 4.3: Registration requirements & free storage for pinning services.

Pinning URL KYC Temp Mail Free Registered DMCA
Service Accepted | Storage Country Compliant
Pinata https://pinata.cloud E-mail v 1 GB USA v
Filebase https://filebase.com E-mail v 5 GB USA v
Fleek https://fleek.co E-mail v 5 GB USA v
Web3.Storage | https://web3.storage Credit Card v 5 GB USA

4EVERLAND | https://4everland.org | Crypto Wallet N/A 5 GB AUS v

The file was safe by design, yet flagged by multiple antivirus engines on VirusTo-
tal'? due to behavioral heuristics. No harmful payload or external communication
was included. To ensure unique Content Identifiers (CIDs), we created a dis-
tinct version of each script for each pinning service under evaluation. One of the
key questions explored in this section is how pinning services handle files clearly
marked as malicious, aiming to better replicate the perspective and actions of a
potential attacker. In addition to the simulated malware, we also tested uploading
known deprecated malware, specifically the WannaCry ransomware, to the pin-
ning services. The result was identical: the file was successfully uploaded, and its
CID was generated. Furthermore, we confirmed its accessibility through the pub-
lic gateways. Notably, all files, including WannaCry, were immediately accessible,
highlighting the absence of mechanisms in public gateways to evaluate the mali-
ciousness of uploaded content. This raises significant concerns about the potential
misuse of the IPFS network.

As previously discussed, in IPFS, the physical address of the node host-
ing a file can be identified. However, when files are hosted by pinning services,
attackers are not concerned about their own address being exposed. The only po-
tential exposure point is during the interaction with the pinning service’s website
for registration and file upload. To mitigate this risk, an attacker could use a
public network or leverage the Tor [61] network to enhance their anonymity prior
to registering and uploading files to the pinning services. Since many services im-
plement protections that restrict access via Tor, we conducted a series of tests to

verify the feasibility of using Tor to access these services. Our tests confirmed that

Phttps://www.virustotal.com/
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files could be successfully uploaded, and the recorded IP address differed from our
actual address, ensuring the attacker’s anonymity.

It is important to note that visitors to these files, once uploaded by the
attacker, may include either unsuspecting users who were targeted by phishing [60]
or malware campaigns, or, in CyberCrime-as-a-Service scenarios [46], collaborators
of the attacker, such as affiliates. Even in the latter case, leveraging the Tor
network can effectively mitigate the risk of exposing their identities or the nature

of their activities.
(6) visits public gateway (5) advertises it
to obtain the file N owns the file
=0
Public Network
Tor Network

Public Gateways
E {2) acquires temporary e-mail address (1) connects to network
e (3) registers using temporary e-mail address

Temporary Mail
Service Attacker (4) uploads file

Pinning
Service

Collaborator / Affiliate Victim

Figure 4.6: Design of the “Pinning Service Attack”.

Figure 4.6 presents the steps that a malicious actor must follow to execute
the “Pinning Service Attack”. It allows the attacker to leverage the Tor network
for anonymity and anonymously upload files to IPFS. By utilizing pinning services,

the attacker ensures that uploaded files remain persistently online.

The Public Gateway Attack

As mentioned, Public Gateways of IPF'S do not provide a direct method for
uploading a file to the network. However, their caching might indirectly serve as
a pinning service, providing file availability. In this section, we initially examine
whether and for how long a file remains cached.

To better understand this phenomenon, we conducted a systematic exper-

iment focusing on caching behavior across multiple gateways. The methodology
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we followed is as follows. From the 10 gateways identified in Section 4.2.1, we
selected five based on their strong association with well-known Web companies
(e.g., Pinata, Infura) and official status within the IPFS ecosystem. Specifi-
cally, we chose (a) ipfs.io (the official gateway maintained by Protocol Labs),
(b) gateway.pinata.cloud, (c) infura-ipfs.io, (d) f1k-ipfs.xyz and (e) 4everland.io.
For each selected gateway, we created four different files resulting in 20 different
files. First, we wanted each gateway to have different files to avoid cross-caching
scenarios. Second, for each of these, we created four different files corresponding to
the 4 time scenarios we are studying: 1 hour, 6 hours, 12 hours, and 24 hours. We
use these intervals to request the respective files from the gateways to understand
how popular a file needs to be to remain cached.

Subsequently, we used an IPFS node to add the files, ensuring our node
ran as a DHT server. Then, to confirm that all the gateways cached all files, we
sent up to four requests per file to verify their caching status. The four requests
were performed in a negligible amount of time, less than five minutes, and the files
became available. After successfully ensuring that all files were cached across the
gateways, we disconnected the node from the network, leaving the gateways as
the sole source of file hosting. The latter allows us to isolate the role of gateway
caching in maintaining file availability independent of the original node. By doing
so, we could analyze how the caching mechanisms of public gateways sustain file
accessibility over time.

We automated the process of sending requests to the gateways based on
the aforementioned periods and recorded the responses for more than three days.
The results indicate that caching duration varies significantly between gateways,
with some maintaining availability longer than others, which could be attributed to
differences in caching strategies or the relative popularity of each gateway. Figure
4.7 illustrates the ratio ¥ per hour, where v represents the number of gateways
caching our files at a given time across the different time scenarios. As depicted,
two out of the five gateways removed our files from their cache shortly after 16
hours, while the remaining three continued to retain them online. For ethical

reasons, we refrain from disclosing which ones retained or removed the files.
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Figure 4.7: Time-Dependent File Availability Analysis.

In conclusion, we have demonstrated that a malicious actor could poten-
tially exploit Public Gateways to maintain files on the IPFS network anonymously.
The process involves first uploading the files to the IPFS network and generating
artificial traffic by repeatedly requesting these files. This ensures that the Public
Gateways cache the files. Once the files are cached, the actor can sustain their
availability by periodically sending requests for the files, preventing them from
being removed from the cache due to inactivity. This approach allows the actor to
leverage the distributed infrastructure of Public Gateways to maintain file avail-
ability while preserving anonymity, eliminating the need for a dedicated pinning
service. At this point, it should be noted that during the attack, the attacker only
risks revealing their physical address while uploading the files via the local node.
As previously mentioned, this process requires minimal time, significantly reducing
the exposure window for the attacker. Additionally, the attacker could perform this
step through a public network to further obscure their physical location. The sub-
sequent periodic requests to the public gateways can also be accomplished through
a public network or Tor. Additionally, the attacker could utilize a botnet under
their control to generate artificial traffic towards the files without revealing their
identity. By distributing requests across multiple geographically dispersed nodes,
the botnet obscures the origin of the traffic, making it significantly harder to trace
back to the attacker. Note that in the past, the IPFS network has been a victim of
such botnet activity [6]. A step-by-step implementation of the attack is illustrated
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Figure 4.8: Design of the “Public Gateway Attack”.

in Figure 4.8.

Double Extortion Attack

Typically, ransomware attacks encrypt the victim’s files and demand a ran-
som to be paid to hand over the decryption key. Nevertheless, modern organi-
zations have invested in backup systems that limit the damages of a potential
ransomware attack, significantly decreasing the amount of ransom they would be
willing to pay. As a countermeasure, ransomware gangs siphon sensitive data to
their premises, threatening their victims by leaking the data and creating what is
often called a “double extortion”.

The siphoning of the data can be performed in multiple ways, however,
methods like DNS tunneling, while effective, can be very slow. Therefore, ran-
somware gangs tend to abuse cloud service providers to upload their “loot”. For
example, the notorious Conti group used RClone to upload data to multiple cloud
storage providers. * With IPFS and the poor KYC practices of pinning services,
ransomware gangs can have another more robust option. They may harvest sensi-

tive information from the infected hosts and upload them to IPFS through pinning

13https://news.sophos.com/en-us/2021/02/16/conti-ransomware-attack-day-by-
day/
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services. Beyond exploiting KYC to gain the necessary storage, ransomware gangs
may also exploit whitelisted domains and the lack of content takedown mecha-
nisms. Note that cloud service providers respond to takedown notices, e.g., the
victim notifies the cloud service provider that leaked sensitive data are hosted and
must be taken down. However, pinning services cannot remove content from the
IPFS once it has been uploaded. Although pinning services comply with DMCA
policies and can remove a pinned file from their hosted storage, this does not
translate into the deletion of the file from the IPFS network. The decentralized
nature of IPFS makes this nearly impossible, while the existence of public gate-
ways, many of which do not adhere to the badbits list (as mentioned in 4.2.2),

further complicates takedown efforts. Figure 4.9 illustrates this abuse scenario.
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Figure 4.9: Design of the “Double Extortion Attack”.

Real-Life Evidence of Malicious Exploitation

While previous work such as [60] investigated the presence of malicious or

illegal content across the IPFS network, our approach specifically targets pinning
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services, i.e., entities that intentionally maintain long-term availability of hosted
content. By focusing on CIDs advertised by major pinning providers, our analysis
offers a more precise view into deliberate, persistent misuse of the IPFS ecosystem,
and links it directly to infrastructures that facilitate anonymity and permanence.

We utilized ipni-cli'* to monitor CIDs advertised by Pinata, Filebase, and
Fleek pinning services on the cid.contact indexer for 24 hours. For all providers,

we repeatedly executed the following command:

ipni ads get --ai=<provider addr> --head

This command retrieves information about the latest advertisement from the spec-
ified provider, including the number of CIDs it contains. Once we obtained this

information, we proceeded to extract the actual CIDs using:

ipni random <provider addr>

With the parameter n, this command returns m CIDs from a random selection of
the most recent n advertisements. By setting n=1, we ensured that the selection
always targeted the most recent advertisement. Since the previous command had
already provided us with the exact number of CIDs, we could request all of them
at once. This approach enabled us to systematically retrieve all hashes from every
advertisement recorded since the beginning of the experiment. By continuously
executing these queries and storing the results, we effectively built a historical
record of all advertisements and their associated CIDs from each provider. During
the 24-hour interval, we collected (i) 1,124,780 CIDs from Pinata, (ii) 718,578
from Filebase, and (iii) 339,684 from Fleek. For each of these, we standardized
the format of the CIDs to match the entries in the Bad Bits Denylist,!® en-
suring compatibility for an accurate comparison. The Bad Bits Denylist is a list
maintained by Protocol Labs, updated upon email recommendations to filter unde-
sirable files, such as malware, phishing content, or copyright-infringing materials.
Note that the list is enforced on the public gateways operated by Protocol Labs
but is advisory for all other nodes within the IPFS network. By matching the mon-
itored CIDs against the entries in the denylist, we discovered that within 24 hours,

“https://github.com/ipni/ipni-cli
https://badbits.dwebops.pub/
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the pinning services advertised five CIDs included in the Bad Bits Denylist. It is
worth mentioning that one of these CIDs was advertised by all three services, while
two were common to two services. We consider the presence of these blocked CIDs
—and even more so their simultaneous advertisement on the same day by multiple
pinning services— a strong indication of malicious actors’ organized exploitation of
the anonymity provided by pinning services. Finally, we managed to retrieve three
of them, discovering that one was a JavaScript file involved in a Bank of Amer-
ica phishing scam, the second was a login phishing webpage targeting a Korean

webmail service, and the third was an image, likely used for malicious purposes.

4.2.3 Related Work

A growing body of research has shown that malware increasingly abuses
centralized Web and cloud platforms for infrastructure, persistence, and evasion.
Yao et al. [55] propose Marsea, a concolic execution engine that detects malware
interaction with benign Web applications such as GitHub and Dropbox, revealing
how these services are repurposed for malicious use. At a broader scale, Allegretta
et al. [56] analyze threat intelligence from 36 vendors and identify over 22,000
abused benign domains, including services like Discord and Google Drive, used to
distribute malware. These works demonstrate that even trusted, centrally man-
aged services are vulnerable to abuse. In this work, we show that decentralized
infrastructures like IPFS introduce new and arguably more permissive abuse sur-
faces, due to their inherent anonymity, lack of content moderation, and resistance
to takedown.

In recent years, Web3 has emerged as a new paradigm for the Internet,
prioritizing user anonymity and privacy. These features are especially significant
as concerns about user privacy and tracking escalate. However, numerous stud-
ies indicate that these features are often compromised. Kshetri [62] highlights
several vulnerabilities within Web3 and the metaverse, particularly the extensive
data collection and exposure of personal and sensitive data due to numerous se-
curity breaches on Web3. Furthermore, the author points out that anonymity

may be compromised through the traceability of blockchain transactions on Web3
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platforms, potentially linking personal identities and actions to public transaction
records.

On the other hand, other studies focus on how anonymity and privacy
are compromised on Web3. Wang et al. [63] explore how Web3 social platforms,
such as friend.tech,'® impact user privacy and anonymity. In particular, they
identified that the integration between Web3 and legacy Web2 platforms could
significantly undermine Web3 anonymity and lead to privacy leakage. This occurs
because user actions on Web2 platforms can be associated with accounts on Web3
platforms since these actions are immutably written on blockchains. Then, the
recorded actions can be linked and traced back to the users. To address these
problems, the authors argue that a balanced approach between transparency and
privacy in Web3 is needed. Additionally, Torres et al. [64] focus on how wallets
and Decentralized Applications (DApps) manage user data. The authors conclude
that current privacy measures are insufficient, highlighting that Web3 applications,
particularly wallets, often expose sensitive user data, such as wallet addresses.
This exposure directly contradicts the foundational privacy promises of Web3 by
compromising user anonymity and privacy.

A central element of Web3 and a core focus of our study are distributed
file systems, with IPFS being the most prominent. Previous research has demon-
strated that IPFS can be exploited by malicious actors across various domains.
For instance, studies have shown its use in Malware as a Service systems [46],
while others have reported the presence of phishing files or copyright violations
within the IPFS network [60]. Moreover, IPFS also has some privacy violations.
In particular, Balduf et al. [7] showcase a privacy attack on the IPFS network by
leveraging the Bitswap protocol and introducing a set of attack vectors. The au-
thors state that every IPFS node is susceptible to each of the introduced attacks,
and moreover, they succeed in exploiting it by deploying a number of nodes with
extended connectivity to passively monitor the Bitswap channel and demonstrate
their attack methodology by discovering the Peerld of the public IPFS HTTP

gateways.

https://www.friend.tech/
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In addition to attackers, security analysts can leverage Bitswap’s privacy
shortcomings. Son et al. [65] propose IF-DSS, a digital forensics investigation
framework for Decentralized Storage Services (DSSs). They analyze the most
critical DSSs from the point of view of digital forensics and apply the proposed
framework to IPFS. To collect appropriate and sufficient data, they separate them
into those that exist on the local side as well as remotely. Finally, they suggest
tackling the dissemination of illegal material in three steps: (i) Content filtering,
i.e., blacklisting of the inappropriate content, (ii) stop content sharing, i.e., turn
the node from server to client, and finally, (iii) shutting down the node.

On the other hand, some works try to enhance IPFS privacy. Katsantas
et al. [66] focus on hiding the identity of content on IPFS by using only hash
functions. The authors aim to prevent intermediaries from detecting the retrieved
contents without relying on trusted third parties. Furthermore, Daniel et al. [67]
point out that as IPFS follows the ICN paradigm, a client requests content directly
rather than visiting an address. Thus, Bitswap queries all the client’s neighbors for
content, resulting in the client’s interest leaking. Aiming to reduce interest leakage,
the authors propose three privacy-enhanced standards for content discovery. By
using these protocols, on the one hand, the level of privacy of the client is improved,
but that of the provider is reduced. More specifically, they propose Bloom-Swap, a
solution using bloom filters in which the provider sends its inventory to the client,
and he, in turn, checks locally whether the requested content is a Bloom Filter
member to ask the block directly. PSI-Swap, which uses Private Set Intersection
(PSI), reduces and improves privacy levels on the provider’s side as well. Finally,
the BEPSI-Swap, which combines the two previous ones, improves the efficiency of
PSI-Swap, at the cost of making PSI probabilistic. The authors then implement a
proof of concept of the proposed protocols and study them from the security and

efficiency perspectives.

4.2.4 Countermeasures & Conclusions

The decentralized nature of the technologies we study, combined with the

fact that the majority of the software is open-source, makes enforcing rules for
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implementing countermeasures challenging. From the perspective of pinning ser-
vices, KYC practices must become stricter. Measures such as filtering temporary
emails, implementing blockchain-based identity systems, e.g., cryptocurrency wal-
lets with benign transaction history, applying stricter criteria for users operating
through Tor networks, enabling content scanning mechanisms, and adhering to
a centralized deny list like Bad Bits should be enforced. Public gateways act as
bridges for Web2 users to access the Web3 ecosystem. For the average user, requir-
ing a blockchain-based identity would deter them from utilizing these gateways.
However, all gateways could be required to comply with the Bad Bits, a policy
currently enforced only on gateways managed by Protocol Labs. Moreover, even
if a CID is listed on the Bad Bits Denylist, a malicious actor can circumvent it by
simply choosing an alternative chunking size when adding the file to IPFS (RQ5).
This approach generates a different CID that is not associated with the blacklisted
one [60], making content filtering on gateways significantly more challenging.

In this study, we examined the vulnerabilities of IPFS pinning services and
public gateways, highlighting how malicious actors can exploit their anonymity
features or lack of proper KYC policies to share undesirable content. By imple-
menting and testing two distinct attack methodologies, we demonstrated not only
their feasibility (RQ3) but also observed instances of malicious activity occurring
within the IPFS ecosystem (RQ4). Our findings reveal critical issues, including
the lack of robust KYC practices in pinning services (RQ1), insufficient content
filtering mechanisms (RQ2), and the challenges posed by the decentralized and
open-source nature of the IPFS ecosystem. These gaps enable attackers to take
advantage of the anonymity features of the system while avoiding accountability.
Since current KYC practices in pinning services can be easily bypassed, the use
of stricter measures, of even the consideration of blockchain-based identity verifi-
cation methods, such as zero-knowledge proofs (ZKPs), e.g., zkLogin [68], would
allow users to verify their legitimacy without exposing their full identity.

It should be stressed that the decentralized nature of IPFS raises signif-
icant legal and regulatory challenges, particularly in the enforcement of content

moderation and compliance with existing digital laws. While platforms operating
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in centralized environments are bound by regulations such as the Digital Services
Act (DSA),'" decentralized systems like IPFS lack clear accountability structures.
This creates a regulatory gap that malicious actors can exploit to distribute illicit
content while avoiding legal repercussions. One of the main concerns is jurisdic-
tional ambiguity. Since IPFS content is hosted on a distributed network of peers; it
is often unclear which jurisdiction has the authority to enforce takedown requests
or prosecute offenders. This is especially true on platforms like IPFS, where there
is no deletion mechanism and data ownership is not always known. Pinning ser-
vices, many of which operate in different countries with varying legal requirements,
further complicates the enforcement process.

Nevertheless, this sparks the debate surrounding IPFS security and other
such platforms regarding the trade-off between privacy and censorship resistance.
While decentralization offers increased resilience against state-sponsored censor-
ship, it also enables unmoderated content proliferation, including, but not limited
to, extremist propaganda, child sexual abuse material, and malware distribution.
The ability of malicious actors to exploit anonymity for illegal activities creates
a dilemma where content moderation mechanisms must be introduced without
undermining the fundamental principles of decentralized storage.

Strengthening the security of IPF'S and the surrounding ecosystem is essen-
tial not only to prevent its misuse but also to promote its adoption as a reliable
and privacy-preserving tool for decentralized file sharing, which is fundamental to
the Web3 paradigm. To this end, future research could focus on the development
of automated tools to detect malicious CIDs in a decentralized and scalable way.
Another approach would be decentralized content moderation, where community-
driven flagging mechanisms allow for voluntary filtering rather than direct deletion.
Likewise, user-driven reputation systems for pinning services and nodes could help
differentiate legitimate operators from malicious ones. By assigning trust scores
to nodes based on their activity and compliance with community standards, users
could make informed choices about which nodes to trust for content retrieval and

caching.

"https://eur-lex.europa.eu/eli/reg/2022/2065/0j/eng



Chapter 5

Security Challenges and Solutions

in the Web3 Application Layer

The Web3 application layer constitutes the uppermost tier of the Web3
stack, enabling user-facing DApps that leverage blockchain technologies, decen-
tralized storage systems, and cryptographic protocols. This layer abstracts the
complexity of the underlying infrastructure, e.g., smart contracts, DLTs, naming
systems, and focuses on delivering secure, user-driven services across domains such
as Decentralized Finance (DeF1i), social media, and gaming. The application layer
is responsible for orchestrating secure asset interactions, enforcing ownership logic,
ensuring long-term availability, and preserving digital content through P2P infras-
tructures. In this chapter, we investigate security concerns specific to the Web3
application layer, with a focus on decentralized gaming and peer-to-peer content
retrieval. First, we introduce a fully decentralized NFT-based gaming architecture
that addresses trust, ownership, and sustainability through smart contracts, IPFS,
and name resolution mechanisms. We then turn our attention to the foundational
infrastructure that supports such applications: IPFS and its Bitswap protocol. We
present a protocol enhancement that improves both retrieval latency and content
availability, critical properties for scalable and reliable DApps. Together, these
two contributions demonstrate how application-layer design and P2P storage op-
timization can jointly address core security requirements such as asset integrity,

content availability, and decentralized control.
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5.1 The case of Blockchain Gaming

Distributed Ledger Technologies (DLTs) have found application in many
aspects of our lives, as they promise secure, trustworthy, and decentralized trans-
actions with the use of cryptographic techniques. Thanks to their fast growing
popularity, DLTs have lately caught the eyes of game development industry. Of-
fering solid proof of uniqueness and ownership for assets, they are fertile ground
for the development of various types of games.

Gaming models have changed over the years, targeting to keep pace with the
evolution of technology, trying to be attractive to users, and at the same time more
profitable for the gaming industry. The traditional Pay-to-Play model, where users
pay upfront for the game and/or the console, has lately been replaced by the Free-
to-Play model. In the Free-to-Play model, users acquire the game at no cost, but
they are incentivized to spend money for in-game assets. The latter has brought
to the fore the gaming career path and the eSports industry. The advent of DLT's
combined with the trend of gamers to earn an additional income from gaming,
has given birth to the Play-to-Earn (P2E) model. In the P2E gaming model,
not only do users play for free, but they can potentially earn cryptocurrencies.
All in-game merchandise they earn playing rely on Non-Fungible Tokens (NFTs)
owned by them, and not by the company, which can be sold or exchanged for
cryptocurrency. In 2017, blockchain trading games made their appearance using
NFTs and since then, they have been growing in popularity, as well as in market
capitalization. From the pioneering Cryptokitties,! to Axie Infinity,> the most
recent pokemon-like game following the P2E model with over $1,100,000,000 total
volume.? As player communities continue to grow, an increasing number of game
categories are adopting the NFT model, making it clear that NFT-based games
are not a fleeting trend. In the third quarter of 2023, the blockchain gaming
sector experienced 12% growth, with average daily unique active wallets reaching

786,766 [69]. By August 2024, the industry had reached a new record of 4.2

Thttps://www.cryptokitties.co/
https://axieinfinity.com/
3https://nomics.com/assets/axs2-axie-infinity /
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million daily unique active wallets.* This exponential growth underscores the
rising importance and permanence of blockchain gaming within the broader digital
entertainment ecosystem. As these applications scale, the Web3 application layer is
increasingly challenged to deliver robust, secure, and highly available infrastructure
for managing digital assets. Ensuring ownership persistence, content integrity, and
resistance to central points of failure is not only critical for user trust, but also for
the long-term sustainability of decentralized gaming platforms. Therefore, secure
storage, naming, and interaction mechanisms become central design concerns at
the application layer.

Blockchain games are classified as DApps, offering new models for owner-
ship and interaction. Although they utilize blockchain-based asset representation,
the centralization of media files, such as game artwork and metadata, has been a
critical limitation. In most implementations, these assets are hosted on the servers
of the game companies, introducing risks related to long-term availability, content
integrity, and user ownership [70]. To address these issues, a prior system [71]
was proposed, introducing a fully decentralized trading game architecture. The
system leveraged the InterPlanetary File System (IPFS) to ensure that in-game
assets remain available and verifiable, regardless of the status of the game operator.
This initial design sought to answer foundational questions such as: “Who truly
owns the artwork of a game?”, “What happens if the gaming company discontin-
ues the service?”, and “Does the asset retain any value independently?”. Building
on that foundation, the extended work [72] identified key limitations in the use of
IPFS alone, particularly regarding storage incentives and update mechanisms. As
a response, it integrated Filecoin to enhance long-term availability via economic
incentives, and replaced IPNS with the Ethereum Name Service (ENS), offering
improved robustness and user-friendly management of evolving NFT metadata.
In parallel with the rapid expansion of NFT-based gaming and the Play-to-Earn
(P2E) model, the system architecture was enhanced to support decentralized in-
teraction between gaming companies, artists, and players in a tamper-resistant,

auditable, and trustless manner. Core technologies underlying this design include

“4https://dappradar.com/blog/blockchain-gaming-reaches-new-record-4-2-million-daily-
active-users
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smart contracts on Ethereum, IPFS/Filecoin for decentralized storage, and thresh-
old cryptography for secure asset control. To meet the evolving requirements of
decentralized gaming under the expanding P2E paradigm, the proposed system
introduces a fully decentralized and self-sustainable architecture. By orchestrating
heterogeneous Web3 components such as blockchains, decentralized storage (IPFS
and Filecoin), and naming services (ENS), the system addresses limitations re-
lated to asset availability, ownership guarantees, and trustless interaction. No-
tably, it implements a decentralized version of the “mint-in-sealed-box” concept
using threshold cryptography, preserving asset secrecy and uniqueness until explic-
itly revealed. The system also supports evolvable NFTs, allowing in-game assets to
dynamically change over time. This is achieved through the use of mutable name
resolution mechanisms, for which ENS was selected over IPNS due to its enhanced
robustness and performance. Finally, the architecture supports royalty-aware as-
set resale, enabling new business models where artists and other stakeholders can

receive automatic compensation for secondary market activity.

5.1.1 Background
IPFS Ecosystem

Web3.storage and NF T .storage are open-source services created by Protocol
Labs targeting to store general data and NFT related data, respectively, in the
Web3 era. Both work in a decentralized manner, leveraging IPFS and Filecoin
and are framed by Javascript libraries. It is notable to mention that both services

are provided to the community at no cost to the user.

Shamir’s Secret Sharing

Shamir’s Secret Sharing (k,n) [73] is a threshold cryptography scheme, used
to secure a secret. Initially, the secret is divided into n fragments, called shares.
For the secret to be revealed, at least k of the shares are required. Thus, if the n
shares were distributed to n actors, at least k of them must coalite to recover the

secret.
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Figure 5.1: An overview of the system’s architecture.

5.1.2 System Design

In this section, we present the architecture of our proposed system, which

is illustrated in Figure 5.1. Our architecture is composed of the following entities:

e The Ethereum blockchain, the IPFS, and Filecoin infrastructure

e The required smart contracts, one that creates and manages the NFTs and
the smart contracts that implements the ENS (registry, resolver, and regis-

trars)

e The gaming company (game administrator/creator) that owns the trading

game
e The artists that create the digital arts

e The clients that want to purchase and trade the NFT's and the corresponding
digital arts
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The actors of the system, namely the game administrator, the artists, and
the clients, should own a blockchain wallet in order to be able to interact with the
blockchain network. This wallet is also used as an address on the blockchain net-
work and as a secure storage for the acquired NFTs. Moreover, for the encryption
part of the digital assets, a symmetric key is generated, split, and shared among
the three actors. Finally, the game administrator should own an API key to be able
to upload the metadata file and the corresponding digital art on the Web3.storage
and the NFT .storage respectively. From a high level perspective, the entities of our
system interact with each other as follows. The artist creates the digital art and
sends it to the gaming company. Then, the gaming company creates the NFTs,
initializes the corresponding ENS entries, and uploads the encrypted digital art
and the appropriate metadata file on the IPFS. Finally, clients can acquire NFTs
by paying the defined amount of money (in ethers) on the smart contract. The

flow of the system is described in more detail in the following phases.

Setup

Initially, the gaming company implements the smart contract that creates
and manages the NFTs, based on the ERC-721 token standard, and deploys it on
the Ethereum blockchain. We settled on ERC-721, despite the variety of token
standards, e.g., ERC-1155, due to its popularity among the blockchain games.
Moreover, it is considered as a perfect fit for our system, since we are focusing
purely on NFTs, and not on both fungible and non-fungible tokens. The address
of the smart contract is considered well-known. Then, the gaming company mints
the tokens, receives the media files (e.g., character avatars), which are created by
the artists, and it initializes the corresponding ENS entries.

We now describe the flow that happens for each NF'T and the correspond-
ing media file. The gaming company generates a symmetric encryption key to
encrypt the media file and uploads it on the NFT.storage (the gaming company
is considered a trusted entity). Subsequently, the gaming company uploads the
metadata file on the Web3.storage. The metadata file contains information about

the NF'T. Namely, it contains the name and the description of the NF'T, the CID of
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the encrypted media file that corresponds to this NF'T, and the CID of the sample
cover file. The metadata file contains also a map showing the current owner of
the NFT, and a value that shows whether the media file has been downloaded and
decrypted. These information are also stored in the smart contract that handles
the NFTs. Upon uploading the media file on the NFT.storage and the metadata
file on the Web3.storage, the gaming company modifies the ENS entry to point to
the IPF'S hash (CID) of the metadata file, in which there is an entry with the hash
of the media files on the NFT.storage on IPFS. Finally, it modifies the token URI
field of the NF'T in the blockchain to point to the corresponding ENS entry.

NFT purchase

From this point on, a client can acquire NF'T's, either from the gaming com-
pany or from another client. For the first case, the client can read the blockchain,
by invoking the appropriate function of the token smart contract to find out the
available NF'Ts. Then, if she wants to purchase an NFT, she has to pay the defined
amount of money (in ethers) on the smart contract. Subsequently, the token is
“transferred” to her account (blockchain wallet) and she is able to see the meta-
data file of the token stored on IPFS. When a client acquires an NFT, sold for
the first time, the gaming company, using Shamir’s Secret Sharing (2,3) threshold
scheme, splits the decryption key into three parts, and each role of the system,
artist, gaming company, and client, gets one.

On the other hand, if a client wants to acquire an NFT that is already owned
by another client the following flow occurs. She should come to an agreement with
the client that owns the NFT for its price. If they come to an agreement, then she
has to pay the agreed amount of money, which is transferred to the smart contract’s
address. The NFT is “transferred” on the smart contract’s address too. The client
that sold the NFT, has to send his share of the decryption key to the client that
bought the NFT, through the smart contract. Then, an event is generated that
eventually is “caught” by the gaming company, which verifies that the key is the
actual key and not a fake one. Finally, if everything is as expected, the gaming

company sends a transaction on the blockchain, to “transfer” the money on the
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previous owner’ address and the NFT on the new owner’s address. Otherwise, the
NFT is transferred back to the previous owner and the money is transferred back
to the client wanted to acquire the NFT. Due to our design, there is no need for
generating a new encryption key or for keeping this specific share secret, since it
does not matter if the previous owner of the NFT copies the key or anyone else
read the blockchain and acquire the key, as the media file cannot be decrypted
with only one share of the key.

NFT retaining

In this phase, we assume that a client has already acquired an NFT. If the
client wants to download and decrypt the media file, she has to ask the other two
parts (artist and gaming company) for their decryption keys. Then, the gaming
company checks from the metadata file or the smart contract that the client is
indeed the owner of the NFT that she wants to decrypt, and if that is the case,
the gaming company and/or artist send their part of the key to the client, offline
and off-chain. After that, the list on the metadata file, as well as the appropriate
fields of the smart contract, is updated and shows that the client downloaded and
decrypted the media file. The price of the token is adjusted accordingly, based on
the status of the media file, e.g., if an asset has not been decrypted by any client

yet, its price remains high (“mint in sealed box” feature, see below).

5.1.3 Implementation

To better illustrate the advantages of our system and to fully quantitative
evaluate it, we developed a proof of concept implementation.” The developed sys-
tem is composed of two main parts; the core service module and the smart contracts
that exist on the blockchain network. The core service module is a piece of soft-
ware developed in Node.js. It implements several functions that enable the gaming
company to interact with the IPFS-related services, such as the NFT.storage and

Web3.storage, as well as with the ENS smart contracts. Moreover, we provide

Shttps://github.com/mmlab-aueb/Tokenmon



91

OLD token metadata NEW token metadata

QmW5rY 6kkgbA7zesLTeDf... QmZ6qW7ttqbA7zesMSkLw...

S
X

XYZ.Eokenmon.etIB

unique token ID ‘ game company domain

Figure 5.2: Diagram illustrating the use of an ENS address in our system.

an alternative implementation using IPFS’ native name resolution service, IPNS,

instead of ENS.

Core Service Module

As we have already mentioned above, the core service module runs on be-
half of the gaming company and implements functions for managing the IPFS and
ENS related services. The first function, called uploadToken, is used for uploading
a token’s full sized encrypted artwork, a low quality sample cover, and the token’s
attributes on IPFS, and in particular on the NFT.storage. Other auxiliary infor-
mation about the tokens, such as its name, its description, the encrypted artwork
file’s CID on IPFS, the sample cover file’s CID, etc., are included on the metadata
file, which is uploaded on the Web3.storage, using the same function. In order
for the game administrator to use the two services, two different API keys are re-
quired - one for NFT.storage and one for Web3.storage. Each key can be acquired
through the each service’s website by creating an account. The metadata file also
contains information about the owner of the NFT, and whether the digital artwork
has been decrypted. This file is encoded using JSON.

The second function of the core service module is called createToken and
is used to create a unique static ENS address for a token. This function is used
whenever either a completely new NFT is generated or a token’s metadata changes

due to a system feature, i.e., evolution and fusion. The function claims a new sub-
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domain, which is used together with the gaming company’s domain to identify the
NFT. This is illustrated in Figure 5.2. Another basic function of our system is the
updateToken function. This function is used to update the CID of the previously
mentioned static ENS address associated with the NFT. Every time that an NFT’s
metadata is changed, this function is used to update the address to point to the
latest version of the metadata file. Finally, the last function is the decryptToken,
which downloads an NF'T’s encrypted artwork from the NFT.storage and decrypts
it, using two of the stakeholder’s shares of the key.

Two other important functions are implemented separately in a crypto-
graphic module; an encrypt and decrypt function. Both of them utilize the
Advanced Encryption Standard (256-bit AES) via Shamir’s threshold secret shar-
ing scheme. The encrypt function is used to encrypt the artist’s artwork before
going public on the IPFS, via the uploadToken function. A random key is gen-
erated and three separate shares are created and distributed to the three entities
participating; the gaming company, the artist, and the owner of the NFT. At its
current state, the information regarding the keys is stored in a database hosted by
the gaming company. Finally, the function results in a fully encrypted file, which
can be uploaded on NFT.storage. On the other hand, the decrypt function is used

to decrypt the token’s artwork using two out of the three secret shares.

1b) Core Service Module using IPNS

As we have already mentioned, every IPNS address is in essence the hash
of the public key of a key pair. Thus, for every NF'T, a public-private key pair
must have been generated in advance. The differences between the two implemen-
tations are minimal and are located in the createToken and updateToken func-
tions. createToken generates a new pair of public-private keys that is directly
associated with the token’s ID. After the creation, the IPFS node automatically
saves the pair and an IPNS address is generated via publishing the token’s meta-
data CID by hashing its public key. Finally, a new entry is inserted in the game
company’s local database including the token’s ID, its current metadata CID, and

its static IPNS address.
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On the other hand, considering that a key pair already exists and that
the goal is to update a token, updateToken publishes the new metadata CID via
the already existing token’s public key. At this stage, the static IPNS address
points to the newest version of the token’s metadata. Then, the function proceeds
to update the token’s metadata CID field in the local database. In order for
the implementation to work properly during its early production stages, between
random time intervals, a support function iterates the database and republishes
the CID for every token ID stored in the database. This is done as a precaution

to the IPNS records exceeding their life time.

Blockchain

The other part of our presented system is related to the Ethereum blockchain
and the smart contracts. The core smart contract of our system is the NFT smart
contract, which is developed using the Solidity programming language and it is de-
ployed on the Rinkeby Ethereum test network (ethers in this test network do not
have real value). This smart contract implements the functions that the ERC-721
token standard dictates. In addition to these functions, our smart contract imple-
ments three more functions that correspond to the system’s actions; createToken,
fuseTokens and breakSeal. The createToken function is used to mint an NF'T,
given a specific URI that corresponds to the ENS address pointing to the meta-
data file. The fuseTokens function is used to merge two NFTs and mint a new
one (evolvability feature). Lastly, the breakSeal function is used to simulate the
seal of a non-digital collectible being broken, thus supporting the “mint in sealed
box” feature. As we have already mentioned, the owner of an NFT is able to
choose whether she wants to download and decrypt the digital artwork, namely
revealing the NFT’s full scale artwork. If such a decision is made, then the break
seal function is called, and an event is emitted. The event is eventually “caught”
by the core service module software, which updates the metadata file accordingly.
Furthermore, the smart contract implements some (view) functions (introduce zero
cost) in order to allow the actors of the system to read and learn auxiliary informa-

tion about the NFTs. The software that interacts with the blockchain network and
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the smart contract uses the web3.js JavaScript library. The gaming company can
develop its own smart contracts based on the core contract that we implemented,

to support more complex game mechanics.

5.1.4 Evaluation

One of the contributions of our work is that it provides evolvability. We
argue that to achieve this desired feature, a name resolution service is necessary.
In particular, we consider two naming systems; IPNS and ENS. In this section, we
present the findings from the experiments we conducted, of our twofold implemen-

tation, the first using ENS and the second using IPNS.

ENS

The usage of blockchain technology is obvious and has a significant impact
on the time performance and responsiveness of the system. Furthermore, the
invocation of a smart contract function introduces some monetary cost measured
in gas units. Various tests have been conducted on the Ethereum Rinkeby test
network to estimate the average response times and the cost of the fundamental

functions of the core smart contract. The results are are shown in Table 5.1.

Smart Contract Function | Average Response (sec) | Cost (gas)
createToken 27.27 85532
fuseTokens 22.10 99005
breakSeal 17.29 48394
transferFrom 18.35 61523

Table 5.1: Average response times and costs in the Rinkeby network.

It must be noted that the presented average response times are significantly
exaggerated by sparse long waiting times. By excluding those infrequent spikes,
the pure-average waiting times are near the 15 second mark. Other important

time measurements have been conducted regarding the ENS-based implementation.
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One of the most substantial differences between the ENS-based and IPNS-based
implementation is accessing the blockchain more frequently to claim a subdomain,
update, and retrieve its content hash field. The three functions have also been

tested on the Rinkeby test network. The results for these three functions are

shown in Table 5.2.

ENS Function | Average Response (sec)
setSubnodeRecord 27.23
setContenthash 14.67
getContenthash 1.69

Table 5.2: Average rsponse times of ENS functions.

IPNS

To have a clear picture, in order to compare the two different name resolv-
ing systems, we conducted the same measurements in the IPNS network. What
we observe in Table 5.3 is the time duration from the moment NFT’s address is
announced over IPNS up to the moment an average user can visit it, through
a public gateway. As we have already mentioned, IPNS leverages the DHT. So,
the aforementioned times vary, depending on the number of active connections
the announcing node keeps. To have a better understanding of the IPNS’ ro-
bustness and consistency, we conducted the experiments in different versions re-
garding the number of active connections. Moreover, to have unbiased results
every HT'TP request is made among a set of different public gateways, and more
specifically: (i) https://gateway.ipfs.io, (ii) https://cloudflare-ipfs.com,
(iii) https://gateway.pinata.cloud, (iv) https://ipfs.io and finally,

(v) https://ipfs.fleek.com.

In Table 5.3, we can see that even using the default settings of IPFS 56% of

the total queries timed out, meaning it took more than 5 or 10 minutes, depending

on the gateway, to respond. Moreover, we observe that even in the extreme case
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of over 3000 active connections, which was about the 20% of nodes found online®,
the 27% of requests were not served. From those served, the average response can
be also found at Table 5.3. Both the percentage of non-served requests, as well as
the average response time cannot be considered negligible and increase the chance
that our system will malfunction. Additionally, we should point out that every
IPNS record has by default a 24h validity, therefore the game company should

reannounce it periodically.

Active Connections | Served | Timed Out | Average Response(sec)
250 - 600] 28% 2% 23.9
(600 - 900] 44% 56% 20
[3000 - 4000] 73% 27% 15.9

Table 5.3: Response metrics using IPNS.

Finally, it is worth mentioning that measuring the exact waiting times of
the various combinations of the system functions is at some level meaningless and
misleading. For example, the creation, update, and other token mechanisms of-
fered, rely heavily on the user’s connection speed. The average mechanism waiting
time was observed to be around 1 minute with the create mechanism waiting time
being the longest one of them all due to its nature. Measuring such a quantity can
be helpful to determine the user waiting times of the application that is going to be
developed by the gaming company. One can easily observe that blockchain waiting
times are very noticeable and need to be dealt with in a clever way by the decen-
tralized application in order to ensure the user is immersed. The response times

presented in Tables 5.1 and 5.2 are expected to be longer in the Main Network.

5.1.5 Discussion
Properties

Our system has many compelling security properties. Initially, it provides

availability of metadata. Usually, in games as the one presented there, the gam-

Shttps://trudi.weizenbaum-institut.de/ipfs_crawler.html
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ing company that produced the game hosts the in-game assets locally, on their
(centralized) servers, in order to make them available to customers. However, if an
outage happens, the servers would become unreachable and the data would become
unavailable, causing the whole system to collapse. This is the case also if a gaming
company uses IPFS. The gaming company has to provide the media files and the
metadata of the in-game assets to the IPFS through their servers. On the other
hand, our presented system achieves increased availability due to Filecoin’s repli-
cation rules, in the sense that data will remain online in any case, even after the
game company loses interest or goes bankrupt. Moreover, the proposed system is
immune to single points of failure and resilient to Denial of Service (DoS) attacks,
as all of its components are decentralized. Furthermore, it is tamper-resistant since
all the data are stored on the blockchain and the metadata on IPFS, which is con-
tent addressable, i.e., for every chunk of data uploaded a unique CID is generated.
Last but not least, thanks to Ethereum’s blockchain, it is highly auditable and
provides a degree of anonymity known in the literature as pseudonymity. Every
NFT includes a metadata field pointing to the related asset, provided by the ERC-
721 standard. For integrity reasons, the aforementioned should not be modified
or else NFT loses a part of its value. Dat et al. [24] state that there is a num-
ber of marketplaces, among the most popular, which allow tampering with NFT’s
metadata. Our system considers evolvable in-game assets paired with the corre-
sponding evolvable metadata. To achieve the aforementioned property, we leverage
a decentralized name resolution service, i.e., ENS. Thus, when the digital art is up-
dated, there is no need for change in the smart contract, keeping the cost from gas
consumption low. The introduction of ENS to the system has offered two crucial
advantages: a significantly more user-friendly appearance to the NFT’s metadata
and lower transaction fees. In order to update NFT’s metadata, its ENS address
content field has to be changed. The transaction fee for this action is on average
56854,25 Gwei ($0.10) and it is lower than directly updating NFT’s URI via the
smart contract, which costs on average 90546,66 Gwei ($0,16).” While the differ-

ence might seem insignificant, it greatly increases the game company’s long term

Tas measured on June 4, 2022.



98

revenue, considering the amount of transactions that might occur once the game
grows in popularity. On the other hand, it is evident that ENS increases the com-
plexity of the system. Despite the initial implications, mentioned in section 5.1.5,
the advantages outweigh the disadvantages.

As we have explained in Section 5.1.2, the owner of the NFT is able to choose
whether she wants to reveal the NFT’s full scale artwork. This mechanism enables
variable token prices, according to their seal state (closed or opened) and could
have a significant impact on the revenue generated from the platform both for the
business and the artist. Furthermore, the use of decentralized storage combined
with the (2,3) threshold cryptosystem guarantees that even if the company stops
supporting the game the owner will be able to fetch and decrypt the artwork.

We have already discussed that the vast majority of blockchain games that
utilize NFTs suffer from many shortcomings concerning the actual ownership of
the metadata files. For example, a CryptoKitties NFT is a digital, collectible
“kitten” built on the Ethereum blockchain. It can be bought and sold using ether
and bred to create new cats with different traits. The concept is very simple,
but as the creators mention in their whitepaper, NFTs fail to succeed due to
“Provider Dependency; The existence of a digital collectible is dependent upon the
existence of the issuing authority. If a digital collectible is created and the creator
ceases to exist, the digital collectibles also cease to exist” [74]. Our solution focuses
heavily on the decentralization and preservation of the NFT metadata, breaking
the dependency of the issuing authority. If the game company that minted the
NFTs ceases to exist, the token continues to live on, as its artwork and metadata
are safely stored on IPFS via the NFT.storage and Web3.storage services. The
rights of ownership are also preserved by the smart contract on the Ethereum
blockchain. Other games, such as Sorare® and Axie Infinity focus on using their
own instance of the blockchain and do not specify the exact technology used to
store NFT artworks and metadata. More importantly, the creators do not clarify
what would happen in case of a server failure.

Another issue with legacy games is the general lack of NFTs use outside the

8https://sorare.com/
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game environment, also pointed out in [74], as another reason of failure; “Lack of
Function; Physical collectibles are popular because of their intended purpose. Art
s a great example: people collect it, it can be worth a lot of money, and it serves
a purpose by hanging on the wall as a thing of beauty”. Such a claim can now be
considered outdated, due to the growing adoption of NFTs. The popular social
media platform “Twitter” has initiated its own integration of NFT's, as user profile
pictures in late January 2022.° This is just one of the many examples concerning
the future usage of NF'Ts in various other applications outside of their original
uses. However, it is obvious that such a rapid integration by third parties can
compromise the integrity of NF'Ts. For example, if a user displays their NF'T as a
profile picture, the original full-size artwork is available to the public. A malicious
user, e.g., a forger, could steal the original artwork and mint their own token.
Suddenly, two identical looking versions of the NFT exist and the forger could
contest ownership rights. This problem is successfully addressed in our system,
as the full-size original artwork gets uploaded on IPFS encrypted. A smaller, low
quality version of the artwork gets uploaded on IPFS unencrypted, as a sample
of the original. The above description fits the purpose of a profile picture; a low
quality picture being used to represent the account. Of course, forgers could also
download the sample used as a profile picture, but it lacks the quality of the
original. If they decide to mint a copy, the result would be poor and evident of

fraud.

Challenges

All these different Web3 components are still in their infancy. So, it is
unsurprising that their orchestration would lead to various challenges. Initially,
the content hash processing algorithm of ENS automatically converted the CID
vl provided by NFT.storage to CID v0. The latter turned out to cause an error
because NFT.storage produces an encoded (“dag-cbor”) object, which cannot be
translated to v1. To address this issue, we host the metadata file on Web3.storage

and the artwork on NFT.storage. In the metadata file, there is a field pointing to

‘https://twitter.com/twitterblue/status/14842264947086622737s=21
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the address of the artwork.

We have previously stated that a name resolution service is an essential
component of the proposed system, which provides updatability and evolvability
to in-game assets. Both ENS and IPNS complete our system and the use of
each brings some advantages as well as some disadvantages. So, while in [71], we
proposed the use of IPNS, ENS is proven to be more robust than IPNS, in the
sense that every request to it is served. On the other hand, as we have seen, even
with a large number of active connections, there is a high probability that a request
will not be processed in IPNS, causing inconvenience to the users of the system.
However, IPNS seems to be slightly faster than ENS under some circumstances,
i.e., in case of extremely high number of active connections. Furthermore, it is very
important to mention that the usage of IPNS comes at no monetary cost, unlike
ENS, in which every registration or update action incurs fees. Finally, we observed
that IPNS increases the complexity of using and supporting the system, since, due
to the expiration of IPNS registrations, they should be announced regularly on the
network. We claim that, overall, the use of ENS is a more rational choice than the
choice of IPNS, as there are more points, where it has an advantage, keeping our

system more sustainable.

5.1.6 Related Work

The research regarding blockchain and NFT gaming is still in its infancy.
Pittaras et al. [75] discuss the feasibility of blockchain-based games. They per-
form an extensive evaluation of blockchain gaming to showcase the advantages
and disadvantages. Min et al. [76] also conduct an in-depth review of blockchain
gaming area, categorizing games based on the way they benefit from blockchains;
rule transparency, asset ownership, asset reusability and user-generated content.
Although they have included various NFT games in the category that leverages
blockchains for asset ownership, they do not take into consideration actual owner-
ship of the digital art. Moreover, the reviewed architecture is centralized, storing
game assets on a company'’s file server.

Wang et al. [76] present an overview of the NFT domain. They study the
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NFT ecosystem from multiple points of view, they conduct a security evaluation
and demonstrate opportunities and challenges. The authors present two different
protocols for NF'T creation. In the first protocol, the artist creates tokens and sells
them directly to potential buyers, while in the second, an NFT template is created
and NFTs are produced utilizing the aforementioned template. Our system can
serve more complex business models, based on decentralization for all interactions.
Finally, the authors conclude that NFTs have a great potential in the gaming
industry.

On the same wavelength, Rehman et al. [77] conduct a very detailed review
of the NFT research area. They propose a categorization of NFTs based on their
applications to digital art, fashion, collectibles, games (boosting game potential),
domain names, virtual worlds and finally sports. Although we believe that the
boundaries of the various categories are ambiguous, our system can be seen as
a member of more than one of these categories, i.e., collectibles, digital art, and
games. Moreover, the authors present multiple challenges NFT technology is called
upon to overcome, e.g., security issues, legal issues, etc.

Fowler et al. [78] study the potential of NFTs for game development. They
perform an in-depth investigation from different perspectives. They state that
using NFTs in gaming can boost players’ motivation through consumer-created
content in addition to professional artists. Both can benefit by the use of NFTs,
due to royalties at every resale in open or in-game markets. Finally, the authors
highlight their severe security concerns. Cases in which the company stops hosting
the file or the artwork is altered after being sold are some of them. Our scheme
overcomes these obstacles, as it considers decentralized storage which is, thanks to
IPFS, tamper-resistant and thanks to Filecoin, robust and permanent.

Finally, Muthe et al. [79] highlight the multiple shortcomings arising from
game centralization. They argue that centralized storage and computation may
lead to privacy leakage and cause high latency. To overcome the aforementioned
barriers, they propose an architecture based on proxies for computing and IPFS
for storing data. The proposed architecture incentivizes proxies with rewards on

Ethereum. Although the design is generic enough, it cannot serve different business
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models, e.g. outsourcing artwork of the game to artists, who are paid royalties.
Moreover, the authors leverage IPFS for data storage without taking into consid-
eration that with the current rules of IPFS, files are hosted (essentially only) by
the original uploader; data get disseminated and cached by other nodes only if
they become popular. Our proposed system instead supports artist royalties and
deals with IPFS limitations utilizing Filecoin and in particular Web3.storage and

NFT.storage.

5.1.7 Conclusions and Future Work

We developed and presented here an architecture that aims to create a fully
decentralized and self-sustainable system using various Web3 components. More
specifically, we leveraged NFTs backed by the Ethereum blockchain in the role of
collectibles, as well as the IPFS ecosystem as decentralized file storage. We com-
pared two different name resolution services, namely ENS and IPNS and selected
ENS because of its robustness, even though it introduces monetary cost. The pro-
posed system manages to overcome past obstacles related to NFT artwork, not
only by giving the NFT owner the full-control of the file, but also the opportunity
to keep its value high by choosing not to “open the box.”

We realized a proof of concept implementation of our solution to evaluate it
under realistic conditions and to compare the two versions of the name resolution
service. Furthermore, an API is provided that enables users to easily set up such
a system. Two radically different architectures are made available in order for
users—typically, gaming companies—to select which one is more appropriate for
their specific needs.

Lately, intense discussion is under way regarding the value of an NFT’s
digital art.! Although our system supports adding value to the artwork with
the sealed-box emulation, another very interesting direction is the utilization of
steganography. We argue that the use of steganographic techniques will be well

suited to provide solid proof of authenticity of the digital art.!’ Thus, it is in our

Ohttps://www.bbc.com/news/technology-59262326
"Uhttps://hackernoon.com/hiding-secrets-steganography-in-digital-arts-and-
nfts-531z35£0
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immediate plans to experiment with and support these techniques in our solution.
Finally, an intriguing extension of our architecture would be a decentralized and
company independent way for NFT-related actors (artists, buyers, et al.) to com-
municate with each other, not only for NFT-related topics, but also through a

secure channel to exchange keys.

5.2 Enhancing Availability and Performance in

IPFS Bitswap

The Web3 application layer depends not only on secure and decentralized
infrastructures, but also on systems that can ensure the persistent availability
of data over time while maintain a smooth user experience. IPFS, as the core
storage protocol in this stack, supports content-addressed data retrieval over a
P2P network. However, its performance and availability guarantees degrade in the
presence of low-content popularity, limited replication, or peer churn. Swift service
provision is imperative for IPFS-dependent applications to meet their demands.
To enhance IPFS efficiency we propose a method to refine the Bitswap system [80],
reducing dependence on the DHT, which can be adversely influenced by network
dynamics. To this end, we initially conducted a sequence of experiments intending
to assess the DH'T’s response time to a query aiming to locate providers for content
that we had previously added to the network, thus making it unique. Our findings
from 1800 experiments reveal that the median response time is 8 seconds, which
is considered non-negligible. We then introduced our own enhancements to boost
the chances that a content search will employ Bitswap rather than have to resort
to the DHT. This strategy aims to decrease the total response time to < 1 second.
Our findings demonstrate that our method significantly increases the likelihood of

finding content via Bitswap, especially for content that is not widely popular.
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5.2.1 Measuring Times

In our experimental setup, we employed two distinct nodes: a client and
a server. The server, situated on a workstation with a public IP address and not
confined behind a firewall, played a crucial role. This server was responsible for
generating random files, adding them to the IPFS network, and then announcing
the respective root CID on a database (to avoid direct communication between the
nodes).

The client node was utilized to retrieve the CID from the database and
subsequently inquire the IPFS network for the corresponding content through the
DHT. We meticulously measured the time it took for the DHT to respond to each
inquiry. Specifically, the client, after the server added the file to the network, ex-
ecuted the command ipfs dht findprovs <hash> which returns up to 20 Peer
IDs corresponding to providers of the requested file. The aforementioned exper-
iment was systematically repeated for 24 hours, with a total of approximately
1,800 randomly generated files. By executing this series of experiments, we aimed
to evaluate the efficiency and responsiveness of the IPFS network in handling re-
quests for randomly generated files. The measured response times from the DHT
provide insights into the performance of IPFS in the context of file retrieval for a
substantial dataset.

To enhance the objectivity of our results, we excluded 105 experiments out
of the initial 1,800 that experienced timeouts, i.e., more than 2 minutes. Among
the experiments that were successfully served, the average response time was 12
seconds, with a median of 8.4 seconds. These values, regardless of the specific
metric used, are considered non-negligible. More detailed information regarding
the distribution of response times are depicted in Figure 5.3.

This curation of results, by excluding timed-out experiments, ensures that
the analysis is based on a subset of data where interactions with the IPFS network
were successfully completed. The average and median response times provide
insights into the typical performance observed during the retrieval of files from

the IPFS network in our experimental setup.
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Figure 5.3: Cumulative Distribution Function plot of response times in seconds.

5.2.2 The know message

In Section 5.2.1, we observed that DHT response times in IPFS are not
negligible and can potentially impact the functionality of an IPFS-based service.
To address this issue, we propose an enhancement to Bitswap aimed at reducing
the likelihood of a query going unanswered by Bitswap, which would cause the
requester to resort to the, much slower, DHT. The proposed enhancement involves
introducing a new message type called know to the list of Bitswap messages.

The process unfolds as follows: when a client broadcasts a request for a root
CID, the nodes within the swarm individually check if they locally store the file. If
so, they respond with a have message, as usual. As an additional step, we suggest
that nodes check if they store a Provider Record for this CID, that is, if they know
someone that stores the content (as opposed to having the content themselves). If
a Provider Record is found, the node responds with a message in the format know
PeerID, where PeerID is the identifier of the node that, at some point, advertised
that it provides the file. Subsequently, the client incorporates that Peer ID into

the ongoing session. The aforementioned procedure is depicted in Figure 5.4.



Figure 5.4: Bird’s-eye view of the proposed method.

Merely possessing the provider’s PeerID is insufficient for establishing con-
tact; what is required is the network address of the peer. To avoid immediately
resorting to peer discovery, such as a DHT walk to locate the Peer Record, we
propose utilizing the nodes’ address books. The process is as follows: When a
node gets a want-have message, it first checks if the file is stored locally and, if so,
replies with a have message. If the file is not found, the node checks for a Provider
Record associated with that Content Identifier (CID) and responds with a know
message. Additionally, the node consults its address book to see if it stores a
Peer Record, which, if found, is sent along with the know message. Consequently,
when the requester receives the know message, they will also be informed of the
Peer ID and, ideally, obtain the Peer Record, enabling them to link the Peer ID to
a physical address. If this information is not available, the process transitions to
the Peer discovery stage, where the requester first checks for a stored peer record
for the specific Peer ID before turning to the DHT for more information. The flow
of the aforementioned procedure is depicted in Figure 5.5.

This proposed modification aims to enhance the efficiency of Bitswap by
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providing the client with information about nodes that have previously advertised
their capability to provide the requested file. By introducing the know message,
the client can potentially reduce its reliance on the DHT and improve the success

rate of queries served by Bitswap, contributing to a more reliable and responsive

IPFS-based service.

5.2.3 Evaluation

To estimate the impact of our proposed scheme, we first need to have an
estimate of the size of the IPFS network. For this reason we used the Nebula
DHT Crawler [81]. The measurements show that during the measurement period
the network size was about v = 15300 nodes. Let p be the probability that
a node storing the provider record of the original uploader, is also part of the
client’s swarm. We approach the problem as follows. We consider each of the

broadcasted messages as an attempt to select at least one Peer from the 20 that

have the provider record. The probability of finding no one on the first try is %,
the second is % etc. So in general the probability of not selecting even one

Vs

15280 — ¢
is ¢ = H WG—;’ where vy = # peers in the swarm. The probability we are

looking;:fgr is p = 1 — ¢, which is the probability to find at least one.

We also conducted a series of Monte Carlo experiments to delve into the
performance nuances of two versions of Bitswap, the baseline and the proposed.
The primary objective was to ascertain the probability of a query receiving a
response from Bitswap across these two distinct versions.

Recognizing the multifaceted nature of network dynamics, particularly in
relation to file availability and peer participation, we meticulously designed our
experiments to incorporate varying levels of file popularity. Additionally, we ex-
plored the impact of swarm size, which as we mentioned before ranges from 600
to 900 participants. We categorized swarm sizes into three distinct scenarios: a
conservative setting with vy, = 600 peers, representing a constrained network en-

vironment; an intermediate scenario with v, = 750 peers, reflecting an average

network configuration; and an optimistic scenario with v, = 900 peers. Each sce-
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nario underwent rigorous evaluation through 100,000 iterations, ensuring robust
statistical analysis and reliable conclusions. The results are illustrated in Figure

5.6.
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Figure 5.6: The probability of response per popularity of file.

Our analysis reveals a marked improvement in the likelihood of query re-
sponses with the introduction of the proposed solution, particularly evident in
scenarios featuring files with low popularity levels. To illustrate, when examining
files with a popularity rating of 1 and a swarm size of 600, the probability of re-
ceiving a response under the current system stands at a mere 4%. However, with
the implementation of the proposed solution, this probability surges to a notable
55%. Similarly, for files boasting a popularity rating of 10 under the same swarm
size conditions, the probability escalates from 32% with the existing system to an
impressive 99.2% with the proposed upgrade.

It is worth noting that as file popularity increases, the gap in probability
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between the current and proposed solutions gradually narrows. Nevertheless, the
substantial improvement afforded by the proposed version remains evident across
the entire spectrum of file demand. This enhancement signifies a significant ad-
vancement in the IPFS, particularly in its ability to facilitate efficient file exchange,
especially in scenarios characterized by low file traffic.

Another significant limitation confronting Bitswap under its current rules
of operation is scalability. In order to maintain its present level of effectiveness,
the swarm’s size must remain in proportion to the network’s size. For instance,
if we imagine a scenario where the network comprises 15,000 nodes and each
node’s swarm has 600 active connections, then if the network expands to 60,000
nodes, each node’s active connections should increase to 2,400 in order to sus-
tain the same success rate. We conducted a series of experiments which indicate
that leveraging the know message enhances Bitswap’s efficiency without needing
to expand the swarm size. In our experiments, we maintained file popularity at
an average level [82], with 5 replicas, and examined how response probabilities
changed with larger network sizes. These tests were carried out for three differ-
ent swarm sizes, comparing the standard operation to the operation utilizing the
know message, each over 100,000 iterations. As shown in Figure 5.7, even when
the network size reaches 65,000 nodes—roughly four times larger than our initial
measurements—the standard method with v, = 600 only achieves a success rate
below 10%, whereas the modified approach achieves a 60% success probability. In
the extreme scenario where the network expands to 100,000 nodes, the suggested
approach maintains a 45% success rate, significantly outperforming the baseline’s
modest 3% probability, making Bitswap futureproof. The findings of the experi-

ments are elaborately presented in Figure 5.7.

5.2.4 Conclusions and Future Work

Given the crucial importance of IPFS in the Web3 ecosystem, we contend
that operational efficiency is paramount. Despite ongoing upgrades, there remains
room for improvement, particularly concerning response times. In our paper, we

introduce a method aimed at enhancing the performance of Bitswap. Our goal
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Figure 5.7: The probability of response with growing network size.

is to ensure that queries are resolved by Bitswap itself, eliminating the need to
rely on the DHT, which, as observed, can be time-consuming. In the near future,
our objective is to conduct measurements using Testground,'? a simulation tool
tailored for the IPFS network. Through this initiative, we aim to validate the

efficacy of the proposed method and assess benefits that stem by its use.

2https://docs.testground.ai/master/



Chapter 6

Security Advancements in

Decentralized Architectures

Building upon the technical foundations, architectures, and implementa-
tion strategies discussed in the preceding chapters, this chapter provides a the-
matic synthesis and reflective discussion of the dissertation’s core contributions.
It explores how blockchain technologies can serve as enablers of secure and au-
ditable IoT systems, and how privacy-preserving techniques can be integrated into
decentralized storage infrastructures like IPFS. By revisiting select case studies
and complementary research works, the chapter highlights the broader implica-
tions of decentralized architectures for real-world security and privacy challenges.
The two sections that follow analyze, respectively, the role of blockchain-enabled
digital twins in IoT control, and the enhancement of privacy in peer-to-peer stor-
age protocols. Together, they demonstrate how the key research themes of this
thesis, trust decentralization, system interoperability, and privacy awareness, can

be realized in practical, scalable ways.
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6.1 Blockchain-Enabled Security Architectures for
the Internet of Things

The Internet of Things (IoT) is envisioned as a networked environment
where interconnected devices seamlessly integrate the physical and digital domains,
offering a wide spectrum of services aimed at enhancing human life. Nevertheless,
the IoT landscape is marked by several enduring challenges. A fundamental issue
is fragmentation, as the ecosystem comprises a multitude of heterogeneous devices
from different manufacturers, each employing distinct communication protocols
and standards.

To address this, the Web of Things (WoT) initiative,! developed by the
W3C working group, proposes a standardized, Web-based framework to achieve in-
teroperability across diverse loT platforms. WoT builds upon widely adopted Web
technologies—such as RESTful APIs and HTTP(s)—facilitating device discovery,
access, and integration within a common application layer. This approach effec-
tively mitigates the fragmentation and interoperability issues that plague many
[oT deployments.

Beyond interoperability, security in IoT systems presents a complex chal-
lenge. Traditional cryptographic mechanisms are often ill-suited for the resource-
constrained nature of IoT devices, many of which lack the computational power
required for executing heavyweight security protocols. Consequently, there is a
pressing need for lightweight and efficient security solutions that align with the
inherent limitations of IoT hardware. Additionally, the direct interaction between
[oT systems and the physical world elevates concerns related to security, safety,
and privacy. Devices are frequently deployed in publicly accessible environments
and are exposed to potential manipulation or misuse. One promising approach to
mitigating these risks is the introduction of digital twins—virtual representations
of physical IoT entities [83]. Although traditionally used for testing, monitoring,
and simulation purposes, digital twins in this context are proposed as intermedi-

ary layers of abstraction and protection. Rather than interacting with the physical

"https://www.w3.org/WoT/
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device itself, users engage solely with its digital twin. Any validated changes to
the digital twin’s state are then securely propagated to the actual device, which
performs the corresponding actions. This design introduces a layer of indirection
that enhances both control and security in IoT deployments.

Building upon this and aiming to overcome the limitations previously dis-
cussed in work [84], we propose a system in which the WoT framework and the
Ethereum blockchain collaborate to implement digital twins for IoT environments.
In this system, consumers do not directly interact with IoT gateways or devices.
Instead, they communicate exclusively with the digital twin of the virtual en-
tity, which is implemented as a smart contract and deployed on the Ethereum
blockchain. When a consumer wishes to trigger an actuation operation, they de-
posit a specific number of tokens into the smart contract, which holds them in
escrow, and submit a transaction containing the desired action and its parameters.
The consumer can query the blockchain freely to discover the available actions and
their expected parameters. The smart contract verifies the validity of the transac-
tion and the sufficiency of the escrow tokens; if both checks pass, it emits an event.
[oT gateways are configured to monitor the blockchain for such events. Once de-
tected, the gateway maps the event to a concrete actuation task and forwards the
appropriate command to the IoT device(s), based on vendor-specific communica-
tion protocols. In the same spirit, the work presented in [85] explores the use of a
permissioned blockchain, namely Hyperledger Fabric, instead of Ethereum. This
design choice is motivated by the need to mitigate performance-related limitations
such as high transaction latency, scalability constraints, and elevated operational
costs. Moreover, permissionless blockchains may be unsuitable for certain use
cases—such as smart home environments—due to their inherently public and trans-
parent nature, which may conflict with privacy or control requirements. Finally,
the work presented in [86] summarizes and extends our previous efforts by imple-
menting the proposed solution on two distinct blockchain platforms: Ethereum and
Hyperledger Fabric, each offering unique advantages tailored to different applica-
tion contexts. Specifically, we design, implement, and evaluate an IoT system that

employs smart contract-based digital twins to enable secure sensing and actuation
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in distributed environments.

6.2 Enhancing IPFS Privacy

IPFS is a P2P system, and as is often the case with such architectures,
privacy is frequently sacrificed in favor of performance. Numerous studies have
shown that IPFS exhibits significant privacy shortcomings, as it tends to expose
user and content-related information openly across the network. Researchers in [7]
demonstrate a privacy attack on the IPFS network by exploiting the Bitswap pro-
tocol. They introduce a set of attack vectors which give the attacker the ability
to track nodes that are requesting a specific content identifier (CID), monitor the
full set of data a particular node is attempting to retrieve, and reveal the historical
content interests of a node. In addition to malicious attackers, security analysts
can also take advantage of the privacy limitations inherent in the Bitswap protocol.
In [65] researchers propose IF-DSS, a digital forensics investigation framework for
Decentralized Storage Services (DSSs). Their work includes a comparative anal-
ysis of major DSS platforms from a digital forensics perspective and applies the
proposed methodology specifically to IPFS, demonstrating how its design choices
expose useful artifacts for forensic investigation. One proposed privacy-enhancing
solution tailored to IPFS involves the use of Bloom filters instead of plain CIDs, in
order to obfuscate request and response messages exchanged via the Bitswap pro-
tocol [67]. This approach aims to conceal the exact data interests of nodes, thereby
mitigating exposure to tracking attacks. In our work [66], we enhance IPF'S privacy
by introducing a triple hashing scheme for content storage and lookup operations.
This approach obscures the identity of the content being requested, particularly
from intermediate peers, who are unable to infer what a node is searching for.
During the actual content exchange phase, the mechanism transitions to single or
double hashing, ensuring efficiency without compromising privacy.

To make an object available on IPFS, an uploader begins by generating the
object’s Content Identifier (CID), derived by hashing the content along with some
metadata. Then, using the Kademlia Distributed Hash Table (DHT), it identifies
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the k& nodes whose PeerIDs are closest to the CID and stores at each of them a
Provider Record pointing to itself, along with a corresponding Peer Record. In our
approach, uploader additionally computes a triple hash of the object, resulting in
what we denote as CID3. It repeats the DHT insertion process, this time using
CID? instead of the original CID. For clarity, we refer to the original content hash
as CID!, the double hash as CID?, and the triple hash as CID?. When a client
attempts to retrieve the object, it starts from the known CID!, which may have
been obtained through previous access, a web source, or another reference. The
client computes CID? and sends a FINDVALUE RPC to the three closest nodes to
CID? in its routing table. If the first node contacted does not store the content,
it responds with a referral to a closer node. The latter, being among the k closest
to CID3, responds with a Provider Record indicating the node that holds the
requested object. At this stage, the client switches to the Bitswap protocol to
initiate the actual data transfer. It sends a WANT_HAVE message to provider node
using CID3. The node replies with a HAVE message, this time including CID?
The client verifies the validity of this response by computing CID? from CID?,
confirming that the provider node possesses the correct content. Finally, the client
sends a WANT_BLOCK message containing the true CID!. Node verifies that the
client had prior knowledge of the original CID and returns the object in a BLOCK
message.

Our solution supports optional content encryption, which can facilitate
privacy-preserving caching. Moreover, the privacy and security analysis demon-
strates that, beyond improving anonymity, the proposed scheme is effective against
a variety of DDoS attacks targeting IPFS. Importantly, the design introduces no
routing delays, avoids reliance on trusted third parties, and incurs negligible com-

putational overhead, making it practical and scalable.



Chapter 7
Conclusions and Future Work

In this chapter, we provide an overview of the core findings and conclusions
drawn from the studies discussed in the previous chapters. We also suggest possible
paths for future research, building on the theoretical and empirical groundwork laid

by this dissertation.

7.1 Conclusions

Web3 has emerged as the next evolutionary phase of the Internet, empha-
sizing user empowerment across multiple dimensions, including financial ownership
and control over personal data. While the vision of Web3 may appear utopian, in
practice it faces significant challenges. Many of these stem from user behavior in
environments lacking centralized regulatory or governance structures. Moreover,
the Web3 ecosystem remains vulnerable to malicious actors—who are by no means
a new phenomenon—but who now exploit both the technological immaturity of the
infrastructure and the inexperience of its users for their own gain. With these con-
siderations in mind, we investigated potential attack vectors that combine various
components of the Web3 stack, such as DLTs and IPFS. Our study also exam-
ined the ethical alignment of IPFS nodes. Finally, we propose application-layer
solutions, specifically within the domain of blockchain gaming, one of the most
prominent sectors at this layer, to enhance system availability and improve overall

performance.
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Initially, we observed that the Ransomware-as-a-Service model is being re-
alized within the decentralized ecosystem through the use of smart contracts de-
ployed on Ethereum and content hosted on IPFS. We found that malicious actors
benefit significantly from this setup, as it enables them to automate transactions
at minimal cost, maintain a high degree of privacy, and operate in an environ-
ment where takedown by LEAs is considerably more difficult. Beyond this specific
attack vector, we also explored how malicious actors can leverage components of
the IPFS ecosystem, such as public gateways and pinning services, to distribute
and persist malicious content. Through empirical measurements, we found that
due to the inherent characteristics of these entities, it is indeed possible for an
attacker to anonymously share and sustain the availability of malicious files within
the network. In addition, we investigated the presence of malicious activity within
the IPFS ecosystem at the node and file levels, and found clear evidence of ex-
ploitation by malicious actors. A significant portion of nodes were identified as
malicious by reputable threat intelligence services, and many of these nodes re-
mained active for extended periods—often longer than a month—leveraging the
network for their own benefit. Furthermore, we identified malicious usage at the
file level by passively monitoring the content exchanged between nodes as well as
the files uploaded to public pinning services.

Alongside this, we designed and proposed application-layer solutions within
the Web3 ecosystem, specifically focusing on the blockchain gaming domain, with
the objective of ensuring reliable file availability. Our approach addresses previous
challenges related to NFT artwork by giving NF'T owners not only full control over
their associated files, but also the ability to maintain or even increase the value of
their digital assets. We also propose a complementary solution targeting the IPFS
layer, which enhances both availability and performance, ultimately leading to a
smoother user experience at the application level.

In summary, this dissertation highlights the dual nature of decentralization
in Web3: while offering enhanced user empowerment and innovation, it simul-
taneously introduces complex security and trust challenges. By identifying and

analyzing emerging attack vectors and misuse within decentralized infrastructures
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like IPF'S and Ethereum, we provide a deeper understanding of the current threat
landscape. At the same time, our proposed application-layer solutions demonstrate
that resilience and performance can be achieved without compromising decentral-
ization. Ultimately, this work aspires to contribute both to the critical assessment

and the responsible advancement of Web3 technologies.

7.2 Future Work

While this dissertation provides a foundational analysis of security and
availability challenges in the Web3 ecosystem, several avenues remain open for
further exploration. First, future research could focus on the development of more
robust and decentralized countermeasures against malicious activity in content-
addressed networks such as IPFS. Importantly, these solutions should aim to pre-
serve the peer-to-peer and decentralized nature of such systems, avoiding reliance
on centralized mechanisms like global blacklists, which undermine core Web3 prin-
ciples. Investigating reputation-based or community-driven verification mecha-
nisms could offer effective alternatives. Extending this analysis to other peer-
to-peer storage networks—such as Filecoin and Storj—would provide a broader
understanding of how similar infrastructures handle availability, persistence, and
resistance to malicious actors.

Moreover, the proposed application-layer solutions—particularly in the con-
text of blockchain gaming and NFT file availability—could be further evaluated
under real-world deployment conditions. Emphasis should be placed on assess-
ing their scalability, user experience, and resilience against adversarial behaviors
in live environments. Expanding these mechanisms to additional domains—such
as decentralized social media, distributed scientific data sharing, or decentralized
finance platforms, could further validate their utility and adaptability.

A final promising direction could focus on designing adaptive threat detec-
tion mechanisms that operate effectively in peer-to-peer contexts, without central-
ized control or identity verification. In particular, developing decentralized trust

models, anomaly detection frameworks, and abuse-resistant incentive schemes will
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be essential to safeguarding the long-term viability of Web3 infrastructures.



Appendix A

Acronyms

C2 Command and Control

CIA Confidentiality - Integrity - Availability
CID Content ID

DAG Directed Acyclic Graph

DAO Decentralized Autonomous Organization
DApp Decentralized Application

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DHT Distributed Hash Table

DIDs Decentralized Identifiers

DLT's Distributed Ledger Technologies
DNS Domain Name System

DoS Denial of Service

DSA Digital Services Act

DSS Decentralized Storage Service

DeF'i Decentralized Finance

EIPs Ethereum Improvement Proposals
ENS Ethereum Name Service

ERCs Ethereum Request for Comments
ETH Ethereum
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EVM Ethereum Virtual Machine
HTTP Hypertext Transfer Protocol
IPF'S InterPlanetary File System
IPNI InterPlanetary Name Index
IPNS InterPlanetary Naming System
IoT Internet of Things

KYC Know Your Customer

LEAs Law Enforcement Agencies
LRU Least Recently Used

MaaS Malware as a Service

NFT Non-Fungible Token

NIZK Non-Interactive Zero-Knowledge
OTP One-Time Password

P2E Play to Earn

P2P Peer to Peer

PBFT Practical Byzantine Fault Tolerance
PoS Proof of Stake

PoW Proof of Work

RDP Remote Desktop Protocol
RaaS Ransomware as a Service

SP Service Provider

SPV Simplified Payment Verification
SSH Secure Shell

TLS Transport Layer Security
WASM WebAssembly

WoT Web of Things
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