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Professor George C. Polyzos, Chair

Web3 is not merely a technological evolution but a radical shift with deep

philosophical implications. It envisions an Internet where users are at the center,

yet without a centralized authority. Its goal is to ensure that users have full

ownership of the data they generate, as well as the value—whether economic or

informational—that arises from it.

This paradigm shift finds applications in various fields, such as Decentral-

ized Storage, which enables secure, distributed, and censorship-resistant data stor-

age solutions; Non-Fungible Tokens (NFTs), which guarantee ownership and au-

thenticity of digital assets; and Decentralized Gaming, which leverages blockchain
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technology to enable player-owned economies, provable asset scarcity, and trans-

parent game mechanics.

These, along with numerous other innovations, are shaping the next era of

the Internet. As expected, Web3 has drawn the attention of researchers who are

striving to establish it from the ground up using emerging, still-maturing tech-

nologies. Naturally, this has also caught the eye of malicious actors, who take

advantage of the novelty and complexity of these interconnected systems for their

own gain. The challenge now is to ensure that security advances in parallel with

the growth of the Web3 ecosystem, preventing it from becoming an unstable or

hostile environment.

The contribution of this dissertation to this effort is multifaceted. First,

we study the literature on Ethereum blockchain, NFTs, and the Interplanetary

File System (IPFS), which serves as a cornerstone of the Web3 data storage layer.

Our goal is to identify vulnerabilities and analyze whether – and to what extent

– malicious activity exists. Next, from the perspective of malicious actors, we

anticipate how they might exploit these technologies. We document potential

attack vectors, making them easier to detect and mitigate. Finally, we propose

design improvements that enhance the availability and scalability of key Web3

application-layer services, laying the groundwork for more scalable, resilient, and

future-proof decentralized applications.
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Chapter 1

Introduction

The Web3 concept has attracted significant attention in recent years. One

of the main attractions of Web3 is an emphasis on returning control of data to

their owners, empowering them to determine who can access their data and en-

abling monetization of the information they generate. Central to achieving these

objectives are Distributed Ledger Technologies (DLTs) along with token based

economics. Web3 also envisions decentralized services that cater to the Internet

of Things (IoT) era, integrating cryptocurrencies to facilitate peer-to-peer (P2P)

financial interactions and digital value exchange. Web3 is often conceptualized as

comprising different stacks, each consisting of various protocols that collaborate to

deliver services to users. These protocols cover areas such as data storage, name

resolution, Decentralized Identifiers (DIDs), and, at a higher level, services like

social media, gaming, and marketplaces. The growing adoption of Web3 is re-

flected across multiple domains, including NFT marketplaces, gaming, the Meta-

verse, lending, and investment platforms. The total number of users engaging with

Web3 services already exceeds two million [1], underscoring its increasing impact

on digital economies and decentralized infrastructures. Looking ahead, recent pro-

jections estimate that Web3 will reach approximately one billion users by 2027 [2],

while its market size is expected to grow from $7.23 billion in 2025 to over $42

billion by 2030.1

Blockchain was born in 2008 with the release of the Bitcoin whitepaper [3]

1https://www.mordorintelligence.com/industry-reports/web-3-blockchain-market

1
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and serves as the foundation of the Web3 paradigm. It is a ledger of blocks crypto-

graphically linked together. While its primary application has been in cryptocur-

rency technology, in recent years, blockchain has expanded into various other fields,

including voting systems, supply chain management, the Internet of Things (IoT),

and even healthcare. Furthermore, cryptocurrencies have evolved technologically,

integrating with smart contracts to facilitate smoother interactions between these

emerging technologies. As of January 2025, there are over 10,000 different cryp-

tocurrencies,2 reflecting their growing popularity and increasing integration into

everyday applications. While the vast number of cryptocurrencies could be per-

ceived as a challenge rather than a weakness, as it creates a highly fragmented

market and increases the difficulty for users to identify reliable assets, it does not

hinder the dominance of major cryptocurrencies. In fact, the top 20 cryptocurren-

cies account for nearly 90% of the total market capitalization, demonstrating their

strong establishment in the financial ecosystem, with the total crypto market cap

reaching $2.8 trillion.2

Data storage is another crucial component of the Web3 ecosystem, en-

abling decentralized, secure, and tamper-resistant storage solutions through tech-

nologies such as InterPlanetary File System (IPFS), Filecoin, Storj, SIA, and oth-

ers. Among these, IPFS stands out as one of the most significant protocols in

decentralized storage. Developed by Protocol Labs3 as an open-source project,

it has gained considerable attention in recent years. Notably, in January 2024,

the Filecoin Foundation, in collaboration with Lockheed Martin, successfully de-

ployed IPFS in space by transmitting data to and from an orbiting satellite using

a space-adapted version of the protocol.4 Beyond high-profile experiments, IPFS

is seeing widespread adoption, with more than 3 million web client accesses and

over 300,000 unique nodes serving content in the P2P network every week [4].

Furthermore, the growing number of research papers with “IPFS” in their titles

highlights its increasing prominence among researchers, with the Semantic Scholar

2https://www.statista.com/statistics/863917/number-crypto-coins-tokens/
3https://www.protocol.ai/
4https://www.lockheedmartin.com/en-us/news/features/2024/smartsat-equipped-

satellite-uploads-new-mission-on-orbit.html
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tool returning more than 800 results for such publications over the past two years.

These advancements highlight the rapid evolution of Web3 technologies and

their growing influence across multiple industries. However, despite the potential

benefits, Web3 still faces significant scalability, security, and adoption challenges.

As decentralized ecosystems expand, new vulnerabilities emerge, raising concerns

about data integrity, privacy, and regulatory compliance. Addressing these chal-

lenges is crucial to ensuring a stable and sustainable Web3 infrastructure. Given

these complexities, the following section delves into the motivation behind this

research, exploring the key challenges that Web3 must overcome to fulfill its vision

of a decentralized and user-centric digital world.

1.1 Motivation for the dissertation

Web3 comes with very ambitious promises for the technological future of

the Internet, which explains its mass adoption and the growing interest from both

the public and researchers. However, like every coin has two sides, Web3 has char-

acteristics that, if misused, can become disadvantages. One of the most critical

challenges Web3 faces is the lack of oversight and regulatory authority, a factor

that has already led to significant financial losses in cases of fraud and unregulated

protocols. The absence of regulatory frameworks makes it difficult to prevent illicit

activities, increasing the risks for users. Additionally, most Web3 components rely

on peer-to-peer (P2P) networks, which, while promoting decentralization, also cre-

ate fertile ground for privacy leakage. The anonymity promised by Web3, though

intended to ensure fairness and equality, has also been leveraged for illicit activities,

such as money laundering, fraud, and darknet transactions. This raises concerns

about the balance between privacy and security in decentralized environments.

From a technical perspective, the immaturity of many Web3 technologies makes

them vulnerable to frequent security breaches. With most blockchain-based ap-

plications still in experimental stages, attacks exploiting smart contract bugs and

consensus mechanism weaknesses are increasingly common. Even Web3’s open-

source philosophy, meant to foster transparency and community engagement, has
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been turned against itself. Malicious actors have leveraged publicly available code

to orchestrate attacks and exploit vulnerabilities, raising the question of whether

complete transparency can coexist with security in a decentralized ecosystem. This

paradox underscores the ongoing debate between openness and protection in Web3

development.

Blockchain serves as the foundational technology of Web3 and is integral to

the functionality of cryptocurrencies. It offers features such as transparency, de-

centralization—which mitigates single points of failure—data integrity safeguarded

by cryptographic methods, and transaction anonymity. However, these attributes

have also been exploited for malicious purposes. For instance, ransomware attack-

ers commonly demand payments in cryptocurrencies to maintain their anonymity.

The immaturity of certain blockchain technologies has led to significant security

breaches; a notable example is “The DAO hack” in 2016, where vulnerabilities

in smart contract code resulted in the theft of approximately $60 million worth

of Ether.5 Beyond financial transactions, blockchain has also been misused as a

communication channel and data storage medium by malware authors [5]. These

instances highlight the dual-edged nature of blockchain technology: while it pro-

vides robust solutions for secure and decentralized applications, it also presents

new vectors for cyber threats that necessitate vigilant security measures.

Decentralized storage is also a key component of Web3, as it aims to replace

or complement the functionality of major cloud services. So far, there have been

many contenders for this role, with the InterPlanetary File System (IPFS) emerg-

ing as the most prominent solution. Its application spans various fields, with NFT

storage being one of the most significant use cases, contributing to its widespread

recognition and popularity. Due to its extensive daily usage, many traditional

Web 2.0 companies have found ways to integrate or leverage decentralized storage

solutions. However, as expected, this popularity has also attracted the attention

of malicious actors. For instance, the Storm botnet has been reported to use the

IPFS network for malicious purposes [6], and there have been multiple phishing

attacks exploiting the system.6 Furthermore, the P2P nature of IPFS makes it

5https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
6https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/ipfs-the-
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susceptible to privacy leakage. Numerous reports indicate that a user’s identity

or activity within the network can become exposed, raising concerns about data

confidentiality [7]. Thus, it becomes evident that there is a pressing need to study

how malicious actors exploit IPFS, develop countermeasures against its misuse,

and enhance its privacy mechanisms to ensure more secure decentralized storage

solutions. As decentralized storage solutions like IPFS continue to evolve, their

integration with blockchain technology further complicates the security landscape.

While blockchains ensure immutability and decentralized trust, they alone cannot

handle large-scale data storage, leading to the growing reliance on external de-

centralized storage networks. However, this interdependence also introduces new

security risks, reinforcing the need for a holistic approach to securing the Web3

ecosystem.

The application layer of Web3 has seen significant growth, with NFTs and

decentralized gaming playing a major role in its expansion. These applications have

also given rise to a new economic model known as play-to-earn (P2E), where play-

ers can generate real-world value through in-game assets and interactions. They

leverage blockchain technology for transparency, immutability, and programmabil-

ity, while also relying on decentralized storage solutions to ensure persistent and

tamper-resistant data availability. The integration of these technologies enables

Web3 to redefine digital ownership, virtual economies, and interactive experiences.

In a gaming environment, where user interaction is fundamental, metrics such as

response time play a crucial role in ensuring a seamless experience. Meanwhile, the

increasing popularity of decentralized gaming puts pressure on developers to build

scalable infrastructures that can accommodate growing demand.7 Finally, since

NFTs and digital ownership are integral to these ecosystems, ensuring long-term

availability of assets remains a critical requirement. To achieve this, companies

should avoid relying on centralized data storage solutions, which suffer from single

points of failure, and instead adopt decentralized storage networks that enhance

resilience and data permanence.

new-hotbed-of-phishing
7https://dappradar.com/blog/blockchain-gaming-reaches-new-record-4-2-

million-daily-active-users/
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Web3’s rapid expansion presents both opportunities and challenges, as its

decentralized nature enhances security, ownership, and scalability while also in-

troducing critical vulnerabilities. The increasing reliance on Web3 for finance,89

digital ownership, and gaming underscores the urgency of addressing security risks,

availability constraints, and scalability limitations. To this end, our research fo-

cuses on identifying attack vectors, analyzing malicious activity, and developing

countermeasures to strengthen resilience and enhance scalability and availability,

ensuring the efficiency and sustainability of decentralized technologies.

1.2 Contributions

While Web3 is often perceived as secure, built upon trustlessness, cryp-

tographic guarantees, and transparent protocols, this dissertation challenges that

premise by showing that even its core infrastructures can be exploited to support

malicious activities. It presents original empirical evidence of real-world IPFS mis-

use, and introduces, for the first time, a fully functional Ransomware-as-a-Service

architecture built with Ethereum and IPFS.

This central thesis is supported by a series of technical contributions that

aim to address both the security risks and performance limitations of Web3 infras-

tructure. In this work, we analyze and address security and scalability challenges

of Web3 by identifying new attack vectors and propose solutions to enhance avail-

ability and scalability. Our contributions can be summarized as follows:

• We provide a comprehensive overview of the Web3 ecosystem, focusing on its

key components, including Ethereum, IPFS, and its core mechanisms such

as Bitswap and IPNS, as well as Non-Fungible Tokens (NFTs) and their role

in decentralized applications.

• We map key blockchain security threats reported in the literature, including

structural, network, and application-level vulnerabilities, and categorize the

8https://www.whitehouse.gov/fact-sheets/2025/03/fact-sheet-president-donald-

j-trump-establishes-the-strategic-bitcoin-reserve-and-u-s-digital-asset-

stockpile/
9https://fortune.com/2025/02/14/elon-musk-us-treasury-blockchain-technology/
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misuse of blockchain in malicious contexts such as malware, criminal smart

contracts, and fraud.

• We realize the Ransomware as a Service (RaaS) attack vector, demonstrating

how blockchain and decentralized storage enhance its resilience and anonymity.

By leveraging Ethereum smart contracts for payments and IPFS for hosting

malicious infrastructure, we highlight the challenges in disrupting such a

system due to its decentralized nature.

• We analyze the IPFS network to detect suspicious activity, anomalous files,

and potential abuse. By crawling and monitoring nodes, we assess network

behavior and the ethicality of stored content, proposing countermeasures to

mitigate associated risks.

• We investigate how malicious actors can exploit existing IPFS technologies to

anonymously upload content. By analyzing the mechanisms for adding and

accessing files through public services, we identify attack vectors that enable

anonymity in IPFS, assess their feasibility through experimental evaluation,

and discuss potential countermeasures to mitigate such exploits.

• We propose a method to improve the effectiveness of Bitswap, reducing re-

liance on the slower DHT. Through extensive experiments, we identify perfor-

mance bottlenecks and introduce enhancements that increase the likelihood

of locating content via Bitswap. This reduces response time from a median

of 8 seconds to ≤1 second, particularly for less popular content.

• We design and implement a fully decentralized and self-sustaining game sys-

tem that orchestrates heterogeneous decentralized services, embodying the

Web3 paradigm. Our system introduces a decentralized “mint-in-sealed-box”

mechanism using threshold cryptography and blockchains, ensures long-term

availability of NFT assets via IPFS and Filecoin, and introduces the concept

of evolvable NFTs, enabling asset transformation over time through name

resolution services. It also facilitates new business models by enabling roy-

alty payments at every resale of in-game assets.
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1.3 Dissertation outline

The remainder of the dissertation is organized as follows. Chapter 2 pro-

vides an overview of the Web3 ecosystem, with a focus on Ethereum and IPFS.

Chapter 3 reviews common blockchain vulnerabilities across multiple layers and

analyzes the Ransomware-as-a-Service (RaaS) attack vector in decentralized en-

vironments. A proof-of-concept RaaS model is presented, leveraging Ethereum

smart contracts and IPFS to demonstrate how decentralization enhances the re-

silience, anonymity, and trustlessness of such attacks, making disruption signifi-

cantly more challenging. Chapter 4 investigates the security of IPFS through two

complementary approaches. First, it analyzes network activity to detect suspicious

behavior, anomalous files, and signs of abuse, using large-scale crawling and node

monitoring to assess content distribution and ethical implications. Second, it ex-

plores how malicious actors could exploit IPFS to anonymously and persistently

disseminate content by identifying and experimentally evaluating attack vectors

that leverage public gateways and core protocols. Potential countermeasures are

discussed in both contexts. Chapter 5 introduces a decentralized gaming system

that features evolvable NFTs with royalty support, a mint-in-sealed-box mecha-

nism, and NFT availability via IPFS and Filecoin. It also proposes optimizations

to Bitswap that improve scalability and reduce retrieval latency by addressing per-

formance bottlenecks. Chapter 6 discusses the application of blockchain and IPFS

in broader security domains. It examines a system that combines the WoT frame-

work with Ethereum to enable digital twins for access control in IoT environments,

and describes a privacy-enhancing scheme for IPFS based on triple hashing, which

protects content lookup operations from inference by intermediate nodes. Finally,

Chapter 7 draws the final conclusions of this dissertation.



Chapter 2

Overview of the Web3 Ecosystem

Web 1.0 is often referred to as the read-only Web. For many years, the

World Wide Web primarily served an informational and educational role through

static content, where a small number of creators produced material for a broad

audience. As users became more familiar and engaged with the Web, their desire

to generate content increased. This shift led to the emergence of Web 2.0, a more

interactive and participatory version of the Web. Despite its widespread adoption,

Web 2.0 has faced significant challenges, including single points of failure, security

vulnerabilities, and centralized control by large entities. Additionally, privacy

concerns, such as the exploitation of personal data for marketing, have been long-

standing issues due to centralized data storage. Web 3.0, which should not be

confused with Web3 and is often referred to as the Semantic Web, emphasizes

greater efficiency and intelligence by enabling the reuse and interconnection of

data across websites through semantic technologies. Its core objective is to make

Web content not only accessible to humans but also interpretable by machines,

allowing for more accurate search results, personalized services, and automated

reasoning [8].

Web3, positioned as the next phase in the evolution of the Internet, aspires

to reshape the digital landscape by promoting decentralization, enhancing user

agency, and fostering innovation across various sectors; including finance, gov-

ernance, data privacy, and digital identity. At its core, Web3 envisions a more

equitable, secure, and interoperable online ecosystem that prioritizes user owner-

9
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ship and trustless interactions. Notably, Web3 is evolving and maturing in parallel

with Web 3.0, with which it shares certain foundational technologies, such as linked

data structures and machine-readable metadata. Figure 2.1 illustrates the histori-

cal trajectory of the Web’s development, highlighting the distinct phases from Web

1.0 to Web3.

Figure 2.1: Chronological evolution of the Web through its distinct eras.

Web3 is often conceptualized as a layered architecture, where each level is

responsible for specific functionalities that enable a decentralized, secure, and user-

centric digital ecosystem. At the foundation of the Web3 architecture lies a robust

infrastructure layer composed of P2P internet overlay protocols, such as libp2p,1

which facilitate direct communication between nodes without the need for central-

ized intermediaries. Complementing this, platform-neutral computation descrip-

tion languages—most notably WebAssembly (WASM)—enable the definition and

execution of logic across heterogeneous systems in a secure and portable manner.

Building upon this base, the next layer introduces zero-trust interaction protocols,

including consensus-driven networks like Ethereum [9] and Bitcoin, alongside data

distribution technologies such as IPFS. In addition, transient messaging tools like

Waku2 support secure, ephemeral communication without relying on persistent

storage. Further up the stack, we encounter mechanisms designed for performance

and scalability. These include state channels, encrypted off-chain storage, e.g.,

Filecoin [10], Plasma protocols for handling intensive computation, decentralized

oracles, and distributed secret management systems—all of which contribute to

1https://libp2p.io/
2https://waku.org/



11

enabling high-throughput, privacy-preserving applications. For developers, the ar-

chitecture provides an interface layer offering protocol access through extensible

tools and SDKs such as Web3.js3 and Solidity,4 simplifying the creation and de-

ployment of decentralized applications (DApps). At the top of the stack lies the

user interaction layer, where protocol-extensible interfaces like MetaMask5 em-

power end-users to interact seamlessly with decentralized services across browsers,

mobile devices, and desktop environments. The layered structure of Web3 [11] is

depicted in Figure 2.2.

Figure 2.2: Protocol Architecture Overview

As previously discussed, Web3 introduces a more user-centric paradigm of

the Internet compared to its predecessors. However, the immaturity of both the

underlying technologies and the user base introduces significant risks, many of

which stem from the very foundational features that define Web3. The absence

of centralized oversight and regulatory frameworks has led to a rise in scams, rug

pulls, and various forms of exploitation, with the burden often falling entirely on

end-users. Additionally, the P2P nature of information dissemination accelerates

the spread of inaccurate or harmful content, making it significantly more difficult

to control or remove. Privacy risks are also a growing concern. As data is often

3https://docs.web3js.org/
4https://soliditylang.org/
5https://metamask.io/
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replicated and stored across multiple user-operated nodes, the potential for leakage

of sensitive information increases, especially in systems where participants may

not fully understand the implications of storing or sharing encrypted or personal

data [12].

The following sections delve into two central pillars of the Web3 architec-

ture’s Level 1: the decentralized ledger infrastructure provided by Ethereum and

the distributed file storage capabilities enabled by IPFS.

2.1 Distributed Ledger Technologies

A ledger is a structured and chronological record of transactions whose

origins date back to ancient Mesopotamia around 3200 BC. Throughout history,

ledgers have served as a foundational tool to record economic activity and maintain

trust among trading parties. From early inscriptions on clay tablets and stone to

today’s digital systems embedded within the financial sector, ledgers have played

a central role in the evolution of capitalist economies. In modern times, they are

deeply institutionalized within banking and financial infrastructures, forming the

backbone of transaction processing, auditing, and financial accountability.6 How-

ever, traditional ledgers, particularly those maintained by centralized institutions,

are not without shortcomings. A major limitation lies in their lack of transparency,

as access is typically restricted to trusted intermediaries or internal systems. This

opacity can lead to information asymmetries, reduced accountability, and, in some

cases, to manipulation or fraud. Transactions recorded in a centrally owned ledger

may have been altered or tampered with, and records may not be complete or veri-

fiable, especially in the absence of independent audit mechanisms. Moreover, such

ledgers often operate within a homogeneous infrastructure environment, where

all components—software, hardware, and networking—are standardized. While

this may offer operational efficiency, it introduces a critical risk: an attack or

failure affecting one part of the system can cascade through the entire network,

potentially compromising all stored data [13]. Additionally, centralized systems

6https://medium.com/unraveling-the-ouroboros/a-brief-history-of-ledgers-

b6ab84a7ff41
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introduce single points of failure, making them vulnerable to data loss, cyberat-

tacks, or institutional collapse. The reliance on intermediaries for validation and

record-keeping also increases cost, latency, and bureaucratic overhead, particularly

in multiparty or cross-border transactions. These limitations have motivated the

search for alternative systems that ensure integrity, transparency, and resilience

without relying on centralised control.

In 2008, a groundbreaking proposal emerged to address many of the limi-

tations associated with centralized ledger systems. The publication of the white

paper “Bitcoin: A Peer-to-Peer Electronic Cash System” [3] by the pseudony-

mous author Satoshi Nakamoto introduced a novel technological paradigm: the

blockchain. This innovation presented a decentralized, append-only ledger that

operates without the need for a central authority. By combining cryptographic

techniques, peer-to-peer networking, and a consensus mechanism known as Proof

of Work, the proposed system enables participants to validate and record transac-

tions in a transparent, tamper-resistant, and censorship-resistant manner. Beyond

solving the double-spending problem in digital currencies,7 Nakamoto’s design laid

the foundation for a new class of trustless systems—capable of ensuring data in-

tegrity, resilience, and transparency without relying on any single entity or homoge-

neous infrastructure. Since the publication of Nakamoto’s white paper, blockchain

technology has undergone significant evolution and adoption across a wide range

of domains beyond digital currencies [14]. Numerous blockchain networks have

emerged, each with unique designs, consensus models, and use cases—extending

from decentralized finance (DeFi) and supply chain management, to identity ver-

ification, governance, and data storage. As blockchain technology has matured,

researchers and practitioners have proposed several classification models to cap-

ture the diversity of architectures. According to the literature [15], blockchains

are most commonly categorized as public, private, hybrid, and consortium. Public

blockchains, such as Bitcoin and Ethereum, are fully open, permissionless, and

decentralized. Anyone can participate, verify transactions, and access the ledger’s

history, making them highly transparent but often limited in scalability and en-

7https://en.wikipedia.org/wiki/Double-spending
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ergy efficiency. Private blockchains, like Hyperledger Fabric [16] and Corda [17],

are restricted systems operated by a single organization or a closed group. They

offer greater control, speed, and scalability, but at the cost of decentralization and

transparency. Hybrid blockchains combine elements of both public and private

models. They allow specific data and processes to remain private while others

are made publicly accessible, offering flexibility for applications that require se-

lective transparency, for example, in supply chain tracking or identity systems.

Consortium blockchains are governed by a group of organizations rather than a

single entity. These semi-decentralized networks are often used in sectors where

collaborative data sharing is essential, such as banking or energy markets.

Figure 2.3: Classification of Blockchain Types

At the core of any blockchain system lies the block, the fundamental unit

of data that collectively forms the chain. Each block consists of two main compo-

nents: a block header and a body containing a set of validated transactions. The

header stores crucial metadata that links each block to its predecessor, ensuring

the chronological and cryptographic integrity of the entire chain. This typically

includes the hash of the previous block, a hash representation of the transactions

in the block, a timestamp, a nonce, and other fields depending on the consensus

algorithm used. The body of the block contains a list of transactions that have
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been validated and confirmed by the network, representing state changes such as

token transfers, contract executions, or data uploads. By chaining blocks together

through cryptographic hashes, the blockchain achieves immutability, where modi-

fying any part of a previous block would require recalculating all subsequent blocks,

a computationally infeasible task in most networks.

Another core component of blockchain systems is the consensus mechanism,

i.e., the process by which distributed nodes in the network agree on the validity

and ordering of transactions. In the absence of a central authority, consensus pro-

tocols are essential for maintaining a consistent and tamper-resistant ledger across

potentially untrusted participants. These mechanisms address the fundamental

problem of Byzantine Fault Tolerance [18], ensuring that the network can operate

correctly even when some nodes behave maliciously or unpredictably. The choice

of consensus algorithm often varies depending on the type of blockchain. Pub-

lic, permissionless blockchains, such as Bitcoin and Ethereum, typically employ

Proof-of-Work (PoW) or Proof-of-Stake (PoS), which are designed to be open and

decentralized. These models rely on economic incentives, such as block rewards

and staking, to secure the network. In contrast, permissioned blockchains, such as

Hyperledger Fabric, adopt more efficient and deterministic algorithms like Practi-

cal Byzantine Fault Tolerance (PBFT), where a limited set of known participants

coordinate to reach consensus. These models offer higher throughput and lower

latency but trade off some decentralization for performance and control.

The concept of smart contracts was first introduced by Nick Szabo in 1994,

long before the advent of blockchain technology. Szabo envisioned a system in

which contractual clauses could be automatically enforced by computer programs,

thereby eliminating the need for trusted intermediaries in various domains. The

core idea behind smart contracts is that the execution of an agreement is not man-

aged by a person, but rather by code, which ensures that the terms are carried

out precisely and transparently once predefined conditions are met [19]. Today,

smart contracts have become a fundamental component of blockchain platforms,

particularly in networks such as Ethereum. Technically, a smart contract consists

of two core elements: its code, which defines the logic and rules of execution, and
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its state, which reflects its current data or configuration. When a smart contract is

triggered, typically by a transaction, its code is executed deterministically across

all validating nodes in the network. If all participating nodes reach the same re-

sult and reach consensus on the outcome, the resulting change in the contract’s

state is recorded on the blockchain. This ensures that smart contracts operate in

a trustless, transparent, and tamper-resistant manner, enabling the automation of

agreements without reliance on centralized authorities. Their tamper-resistance

stems from the fact that, once deployed to the blockchain they cannot be altered.

The programming language used to develop smart contracts varies depending on

the underlying blockchain platform. Additionally, in many blockchain networks,

the user or external agent triggering the smart contract is required to pay a trans-

action fee—commonly referred to as gas—to compensate for the computational

resources consumed by the network during contract execution. These fees serve

both as a spam prevention mechanism and as an economic incentive for validators

or miners.

Despite its transformative potential, blockchain technology faces several

inherent limitations. Low transaction throughput and high latency hinder scala-

bility, particularly in public networks. PoW-based systems are often criticized for

energy inefficiency, raising concerns about sustainability and the potential misuse

of computational resources. Moreover, the threat of quantum computing further

challenges the long-term security of existing cryptographic schemes [20]. Addi-

tionally, the growing storage requirements of blockchain ledgers, combined with

the permanent visibility of transactional data, raise privacy and scalability con-

cerns. Finally, smart contracts, while offering automation and trust minimization,

are non-updatable once deployed, which can lead to persistent vulnerabilities if

errors exist in their code [13, 14]. While blockchain technology offers a compelling

vision for decentralized, transparent, and trustless systems, its widespread adop-

tion will depend on the ability to address its current limitations—ensuring that

innovation is matched with scalability, security, and responsible design.
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2.1.1 Ethereum

Launched in 2015 by Vitalik Buterin and a team of co-founders, Ethereum [9]

is a decentralized, general-purpose blockchain platform designed to enable the cre-

ation and execution of smart contracts and decentralized applications (DApps).

Unlike Bitcoin, which was conceived solely as a peer-to-peer digital currency,

Ethereum was developed as a programmable infrastructure, allowing developers to

encode arbitrary logic into the blockchain using its built-in Turing-complete lan-

guage. Ethereum leverages blockchain technology not only to maintain a secure

and immutable record of transactions but also as a decentralized execution envi-

ronment for smart contracts. This ensures that the contract logic is transparently

executed and tamper-resistant, with every state change recorded and agreed upon

across the network. At the core of Ethereum’s architecture lies the Ethereum Vir-

tual Machine (EVM), a Turing-complete runtime environment that allows contract

code to be executed deterministically across all nodes in the network. Develop-

ers typically write smart contracts in Solidity, a high-level programming language

designed specifically for Ethereum. This design enables the creation of complex

logic on-chain, supporting a wide variety of applications, from DeFi to governance

systems and identity management tools. Although it initially operated under a

PoW consensus model, Ethereum transitioned to PoS through a series of upgrades

collectively known as Ethereum 2.0, a process that culminated in “The Merge”

on September of 2022, significantly improving the protocol’s energy efficiency and

laying the groundwork for future scalability [21].

The native cryptocurrency of the Ethereum network, Ether (ETH), serves

not only as a medium of exchange and store of value, but also as the fuel that powers

the execution of smart contracts and transactions through a mechanism known as

gas. Gas represents the unit of computational effort required to perform operations

such as executing smart contracts, processing transactions, or interacting with

decentralized applications. Every operation in EVM is assigned a specific gas cost,

and users must specify a gas limit and gas price when submitting a transaction.

The total fee paid—denominated in ETH—is calculated as the product of these two

values. This mechanism serves several key purposes: it prevents abuse of network
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resources, ensures that computation is priced proportionally to its complexity, and

incentivizes validators to prioritize and include transactions in blocks. Gas fees can

fluctuate significantly depending on network congestion and demand, which has

led to scalability challenges and motivated the development of Layer 2 solutions.

Non-Fungible Tokens (NFTs)

Ethereum’s development and standardization process is driven by commu-

nity proposals known as Ethereum Improvement Proposals (EIPs). These docu-

ments define suggested changes or enhancements to the protocol, covering areas

such as consensus rules, virtual machine specifications, and network upgrades. A

subset of EIPs, known as Ethereum Request for Comments (ERCs), establishes

application-level standards, particularly for smart contracts. The most well-known

examples include ERC-20, which defines a standard interface for fungible tokens,

and ERC-721 [22], which introduced the concept of non-fungible tokens (NFTs).

NFTs are digital assets that represent ownership of a wide range of unique items,

tangible or intangible, often associated with digital goods such as images, mu-

sic, virtual land, or identity credentials. On the Ethereum platform, NFTs are

most commonly implemented via the ERC-721 standard, which defines a set of

functions that a smart contract must implement to create, transfer, and manage

NFTs. Beyond the core interface, ERC-721 includes an optional extension known

as the metadata extension, which enables NFTs to be associated with external

metadata—such as a name, description, or link to off-chain content—further en-

riching the token’s utility and uniqueness. NFTs gained widespread popularity

due to their versatility and found numerous applications across various industries,

including gaming, digital collectibles, digital art, and fashion [23]. Their rapid

adoption led to an explosive growth in market value, reaching a total market cap-

italization of over $400 billion in March 2022.8

This surge in popularity also attracted the attention of malicious actors,

who sought to exploit the inherent vulnerabilities of NFT ecosystems for personal

gain. One of the major concerns relates to intellectual property rights, as it is

8https://coinmarketcap.com/nft/
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often unclear whether a seller truly owns the rights to the NFT they are offering.

Verifying authenticity and rightful ownership before purchase remains a critical

challenge. In addition, imitation and fraud are widespread: malicious users have

impersonated well-known NFT artists to sell counterfeit works, while others engage

in fake airdrops, phishing campaigns, and scam giveaways. Another significant

vulnerability lies in the smart contracts that underpin NFTs. Poorly audited or

insecure contract code can lead to exploits, permanent loss of assets, or abuse

of platform mechanisms. Finally, NFTs are being used for money laundering9,

e.g., exploiting the lack of proper KYC practices. As the ecosystem continues

to evolve, addressing these risks is essential for the long-term sustainability and

trustworthiness of NFTs [24].

Ethereum Name Service (ENS)

Another widely adopted standard is EIP-137 [25], which defines the Ethereum

Name Service (ENS), a distributed naming system built on the Ethereum blockchain.

Similar in purpose to the Domain Name System (DNS) of the traditional Web, ENS

maps human-readable names to Ethereum addresses, other cryptocurrency ad-

dresses, content hashes and other resources. The ENS architecture comprises three

core components: the ENS registry, a smart contract that maintains mappings be-

tween names and resolvers; the resolvers, which are responsible for performing

lookups and returning the associated data; and the registrars, which handle the

allocation and management of domain names to users. By simplifying blockchain

interactions and enhancing usability, ENS plays a crucial role in improving the ac-

cessibility of decentralized applications and services, yet it has already been abused

by threat actors for phishing and other malicious activities [26].

2.2 Decentralized Storage Networks

In recent years, the digitization of all aspects of everyday life has led to a

rapid increase in the volume of data being generated. As a result, the demand

9https://home.treasury.gov/news/press-releases/jy2382
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for data storage capacity has grown significantly. The emergence of cloud services

introduced new solutions offered by major technology companies such as Google,

Amazon, and Microsoft. Through cloud services, users can store their data on

platforms they trust, often at a lower cost compared to maintaining their own

infrastructure, while also enjoying ubiquitous access to their files from any Internet-

connected device.

In the era of Web3, where the user is at the centre of the digital experience,

traditional cloud services stand in contrast to the principles of user autonomy and

data ownership [27]. Issues such as documented cases of service outages,10, and

well-known incidents of data leakage, where sensitive user information was exposed

due to misconfigurations or breaches, underscore the risks associated with central-

ized infrastructures. At the same time, centralized data silos represent attractive

targets for attackers aiming to breach systems and monetize stolen data, further

compromising security and privacy. Finally, pricing models that resemble cartel-

like behavior11 further reinforce the growing need for decentralized storage solutions

that align with the core values of Web3. In the past, P2P data-sharing networks

have enjoyed considerable popularity, with systems such as Napster, Gnutella, and

later BitTorrent leading the way. BitTorrent, in particular, was the first to in-

troduce incentive mechanisms to encourage participation, improve file availability,

and create a more robust and resilient network architecture. Nevertheless, ensur-

ing long-term availability of content remained one of the key limitations of such

P2P systems, especially in the absence of persistent incentives or reliable node

uptime [28]. Since the advent of Bitcoin in 2008 and the subsequent rise of other

blockchain technologies, P2P networks have experienced a renewed resurgence.

They have become integral in supporting a wide range of Web3 applications, in-

cluding DApps, NFTs, decentralized gaming, and many other emerging use cases

that have arisen in the Web3 paradigm. Among the most prominent decentral-

ized storage platforms are IPFS, Filecoin, Storj, Arweave, and SIA. Decentralized

storage networks aim to implement three key characteristics: proof of storage,

10https://www.crn.com/news/cloud/2024/the-10-biggest-cloud-outages-of-2024
11https://iclg.com/news/21598-germany-s-federal-cartel-office-intensifies-

microsoft-scrutiny



21

consensus mechanisms, and incentive structures that ensure reliability and partic-

ipation.

2.2.1 InterPlanetary File System (IPFS)

The InterPlanetary File System (IPFS) [29] is a P2P protocol for file stor-

age and sharing. It was developed by Protocol Labs as an open-source project in

2015, and has since undergone continuous development and improvement. IPFS

is considered a cornerstone of the Web3 ecosystem, as it is widely supported and

adopted across multiple domains, including NFTs, decentralized gaming, and so-

cial media platforms. Since 2018, public gateways for IPFS have been introduced,

serving as bridges between the traditional Web and the emerging Web3 ecosystem.

These gateways allow users to access IPFS content through conventional browsers

without running a full IPFS node, significantly enhancing accessibility. As a re-

sult of these factors, IPFS has experienced significant adoption, with more than

three million Web client accesses and more than 300,000 unique nodes actively

serving content on the P2P network each week [4]. It is worth mentioning that,

in alignment with the principles of Web3, IPFS was used in 2017 to disseminate

and preserve information related to the Catalan independence referendum, after

attempts by the Spanish government to censor online content.12

IPFS employs a content-addressable model in which each piece of content

is identified by a unique Content Identifier (CID) generated through cryptographic

hashing. Unlike traditional Web protocols such as HTTP, which use URLs that

point to specific servers, IPFS CIDs refer directly to the content itself, making the

system independent of storage location and promoting decentralized data distribu-

tion. A CID consists of four components: the base encoding format (e.g., Base32),

the version of the CID (either v0 or v1), the multicodec, which indicates how the

content is encoded (such as protobuf, JSON, or CBOR), and the multihash, which

encodes the hash function, length, and content hash.

A core component of IPFS is the Distributed Hash Table (DHT), a tailored

12https://edri.org/our-work/no-justification-for-internet-censorship-during-

catalan-referendum/
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version of the Kademlia DHT [30], specifically adapted to the needs and proper-

ties of the IPFS network. The DHT manages three types of mappings, including

Provider Records, which indicate which peer stores a given piece of content; Peer

Records, which contain information about the network addresses of peers; and

IPNS Records, which enable the mapping of persistent identifiers to dynamically

changing content. The DHT used in IPFS is based on the XOR metric, which

is employed to organize the network’s routing and lookup functions. Specifically,

each peer and each piece of content is assigned a unique identifier which is 256 bits

long. Moreover, every IPFS peer maintains at most 256 KBuckets, which are data

structures used to store information about known remote peers. The xth KBucket

of a node contains peers whose IDs share a common prefix of length x−1 with the

node’s own ID. When given a target ID, IPFS uses Kademlia’s XOR-based dis-

tance metric to locate the closest peers in a logarithmic number of steps, enabling

fast and decentralized peer discovery.

Once a new node connects to the IPFS network, it is designated as a DHT

Server if it has a public IP address. Otherwise, e.g., if it is behind a NAT—it

operates as a DHT Client. This distinction is managed by a mechanism called

Autonat, which determines a node’s reachability. DHT Servers are responsible for

storing and serving content, while DHT Clients only issue queries, a separation

that enhances the network’s overall efficiency. When a user publishes a file to

IPFS, the file is first split into chunks, typically 256 KB each. Each chunk receives

a unique CID and is organized into a Merkle Directed Acyclic Graph (DAG) before

being added to the network where the root CID represents the entire file. This

cryptographic linking ensures that content is tamper-proof and verifiable, since

even the slightest modification will result in a completely different CID. As part of

this process, two types of records are stored in the DHT, each distributed across 20

different nodes. The first, known as the Provider Record, identifies which node is

hosting the content. It includes two important parameters: a republish interval (12

hours by default), which reallocates the record if original nodes become unavailable;

and an expiration interval (24 hours by default), which verifies that the content

provider is still online. The second, the Peer Record, maps the peer’s ID to its
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physical network address. Notably, when content is added to IPFS, the file itself

is not replicated across the network. Instead, only routing records pointing to the

uploader are distributed. The uploader’s node automatically pins the file locally,

ensuring its availability only while the uploader remains online. Replication occurs

opportunistically, i.e., if another user retrieves the file, it is cached locally. If the

original uploader disconnects, the file’s continued availability depends entirely on

whether other peers have cached it. Figure 2.4 illustrates the aforementioned

process.

In IPFS, each node maintains a set of active peer connections called the

swarm, typically consisting of 600 to 900 peers, with the lower and upper bounds

known as the low and high water marks, respectively. When a user requests a

file, the Bitswap protocol is triggered. It broadcasts a “want-have <root CID>”

message to peers within the swarm. Each peer checks locally whether it holds the

corresponding CID, and if so, responds with a “have” message. Upon receiving

a “have” message, IPFS initiates a dedicated session for that CID, including all

peers that indicated content availability. From that point forward, only these peers

participate in the data exchange session [31]. If no peer responds within one sec-

ond, the query is escalated to the DHT. The DHT operates in two phases: first,

it searches for the Provider Record. Upon retrieving it, it fetches the correspond-

ing Peer Record. Once the lookup is complete, Bitswap resumes, establishing a

direct exchange with the peer that holds the desired data [4]. A notable recent

Figure 2.4: The File Lifecycle In IPFS
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development in the IPFS ecosystem is the introduction of InterPlanetary Network

Indexers (IPNI), a more centralized alternative to the DHT, specifically designed

for efficient indexing of provider records. Targeted primarily at large-scale content

providers, IPNI complements the DHT by offloading the responsibility of provider

discovery, while trying to maintain the decentralized structure of the broader net-

work [32].

InterPlanetary Name System (IPNS)

IPNS13 is the component of IPFS responsible for creating persistent ad-

dresses that can point to mutable data. Each IPNS address is essentially the

hash of a public key, and to use it, the user must first generate a corresponding

asymmetric key pair. Updates to the underlying content can be made by sim-

ply publishing new data using the same key, thus maintaining the same address

while modifying the linked content. IPNS records are both stored in the DHT

and propagated through it, enabling decentralized name resolution. These records

are versioned, so when a node queries the DHT for a particular IPNS address,

it receives the most recent version of the associated data. It is also important

to note that IPNS records have a default lifetime of 24 hours, requiring periodic

republishing to ensure that the address remains resolvable and up to date.

13https://docs.ipfs.tech/concepts/ipns/



Chapter 3

Security Threats and Malicious

Use Cases in the Blockchain

Ecosystem

Blockchain technology has rapidly evolved from a novel mechanism un-

derpinning cryptocurrencies into a foundational layer for decentralized systems

and digital trust. However, as adoption has accelerated, so too has the discovery

of security weaknesses, both inherent in the underlying protocols and emergent

through complex applications such as smart contracts. This chapter aims to ex-

plore the security landscape of blockchain ecosystems by presenting a two-fold ex-

amination. First, it provides a comprehensive overview of vulnerabilities that have

been identified across various layers of blockchain architecture, including consensus

mechanisms, networking protocols, and application-level components. This part

highlights the technical and operational challenges faced by both public blockchain

deployments. Second, the chapter focuses on a concrete and evolving threat sce-

nario: the abuse of blockchain and decentralized storage platforms such as the

InterPlanetary File System (IPFS) to support Ransomware-as-a-Service (RaaS)

operations.

25
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3.1 Blockchain Vulnerabilities

Blockchain systems are inherently multi-layered, and each layer introduces

specific security challenges [33]. These layers can broadly be categorized as follows:

• Protocol Layer: Includes cryptographic primitives, and block validation logic.

• Peer-to-Peer (P2P) Network Layer: Governs node connectivity and message

propagation.

• Consensus Layer: Defines how agreement is reached across distributed nodes

(e.g., PoW, PoS).

• Application Layer: Encompasses smart contracts, wallets, and decentralized

applications.

While each of these layers exposes unique attack surfaces, this work focuses pri-

marily on vulnerabilities in the P2P Network Layer and the Application Layer, as

these are commonly exploited in real-world blockchain abuse scenarios.

3.1.1 P2P System Attacks

Majority Attack

Majority Attack, also known as 51% attack, is mostly a threat for PoW-

based systems. For this attack to be achieved, the attacker has to come with hash

rate greater than the network’s majority. This gives the attacker the ability to

cancel transactions, double spend or even fork the main blockchain. There is also

a special version of this attack, known as rental attack, during which the attacker

rents computing resources in order to achieve the 51% of consensus.

Network Attacks

Network-layer attacks target the P2P communication protocols of blockchain

systems, aiming to disrupt node connectivity, isolate participants, or manipulate

the propagation of information across the network [33].
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Name Symbol Hash Rate Attack cost per Hour

Bitcoin BTC 915,565 PH/s $1,527,672

Bitcoin Cash BCH 2,831 PH/s $4,724

EthereumClassic ETC 284 TH/s $7,159

LiteCoin LTC 2 PH/s $89,757

Table 3.1: https://www.crypto51.app/

1. DNS Attacks

When a node connects to the network for the first time, it doesn’t have any

knowledge of the active peers’ IPs. To discover and communicate with at

least one of them, DNS seeds are used, or an active IP has to be entered

manually. For a successful attack, the attacker should tamper the seeds and

inject an invalid list in the open source Blockchain software or poison the

DNS cache.

2. BGP Hijacks and Spatial Partitioning

Most Blockchain applications have two types of nodes, full nodes which keep

an updated and complete version of the blockchain and lightweight nodes

which contact full nodes to acquire a snapshot of the Blockchain. When

a full node is compromised then its related lightweight nodes will also be.

The centralization of Bitcoin nodes, as highlighted by Apostolaki et al. [34],

increases the network’s vulnerability to BGP routing attacks, which can have

severe implications for both network reliability and security. Mining pools use

stratum protocol for bitcoin mining. Stratum servers, which collect mining

outcome, have a public IP. As a result, they are also vulnerable to routing

attacks, which would delay the block propagation up to 20 minutes. This

scenario raises the risk of doublespending or intentional forks.

3. Eclipse Attacks

The P2P Protocol used by blockchain is vulnerable to the so-called Eclipse

Attacks. In this attack, a group of malicious nodes isolates a neighbor node

in order to tamper its incoming and outgoing traffic and change their view
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of blockchain. While the victim is connected with at least one honest node,

it keeps the normal version of blockchain. When the connection is lost, mali-

cious nodes have the opportunity to surround it. In Bitcoin every node has 8

active connections, in contrast to Ethereum, where it would have 13. Because

of this, Ethereum is seemingly more secure. Unlike Bitcoin, Ethereum em-

ploys a Kademlia-based peer discovery protocol, which is ID-oriented rather

than IP-oriented. This design introduces certain vulnerabilities, as shown

by Marcus et al. [35], who successfully executed an Eclipse attack on the

Ethereum network using only a single machine and multiple virtual node

identities, effectively exploiting the protocol’s reliance on node IDs.

DoS Attacks

Denial-of-Service (DoS) attacks in blockchain networks aim to overwhelm

nodes or the entire network with excessive data or computation requests, poten-

tially degrading performance, delaying consensus, or causing temporary unavail-

ability of services.

1. Stress Testing

A version of DoS attack is Stress testing, which is caused by the limited

capacity of transactions per block at a given time. For example, Bitcoin can

process up to 7 transactions per second, which is very low compared to VISA

Credit which can process up to 2000 transactions per second. An attacker

may exploit this shortcoming using Sybil identities or multiple wallets to flood

the network with dust transactions (≈ 0.001 BTC/tx) so that the legitimate

users will not be served.

2. Mempool Flooding

Another version of DoS attack is caused by mempool resulting in augmenta-

tion of the mining fee. Mempools, or transaction pools, are cache memories

of unconfirmed transactions and their size is watched by the miners. When

there are many unconfirmed transactions, the competition for mining raises

and thus users pay greater mining fee. Saad et al. [36] introduced an attack
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in which sybil nodes flood the mempool with unconfirmed transactions. Such

an attack causes panic to the users who have to pay higher mining fee whilst

the attacker’s transactions are not mined.

Time Related Attacks

1. Consensus Delay

In this attack the attacker injects faulty blocks to delay the peers from reach-

ing consensus. This can be achieved with stale blocks or double spend trans-

actions. The nodes which are unaware of the faulty blocks will spend some

time for verification.

2. Timejacking Attack

In blockchain applications, full nodes keep an internal counter which denotes

the network time. Network time is given to a node during the bootstrapping

procedure. If the median of the network time is given and overcomes 70

minutes, then the network time is set to the system time. This situation

creates an attack opportunity: as long as the attacker sends to the victim

different timestamps from sybil nodes, the median of which overcomes 70

minutes, and siphons the network blocks with time difference 50 minutes.

Hence, the blocks arriving at the victim have a time difference of 120 minutes

to the victim’s clock and get automatically rejected. As a result, the victim

becomes isolated from the network.

3.1.2 Application Oriented Attacks

The application layer encompasses the components that interact directly

with end users, such as wallets, smart contracts, and DApps. While enabling key

blockchain functionalities, this layer also exposes a broad attack surface, making

it a common target for threats like cryptojacking, private key theft, and contract-

level exploits [33].
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Cryptojacking

Cryptojacking is a kind of attack in which the attacker performs PoW for

blockchain-based cryptocurrencies without consent, while the victim is unaware of

this action.

1. Cloud-based Cryptojacking

Malicious miners have found a way to expand their hash power by hijacking

processors of remote devices for mining. It involves hijacking a target device

to perform PoW calculations for the attacker. Initially, these attacks were

launched against cloud service providers, where malicious users performed

covert mining operations on virtual machines and exhausted cloud resources.

2. Web-based Cryptojacking

Web-based cryptojacking is used by attackers who inject malicious JavaScript

code into websites that secretly mine tokens without the consent of their

visitors. In browser-based cryptojacking, the web browser on the client device

executes JavaScript code that establishes a WebSocket connection with a

remote server. The server collects the computed PoW hashes on behalf of

the attacker. Throughout this process, the device owner remains unaware of

this background activity and seamlessly continues to browse the website.

3. Malware Cryptojacking

Malware cryptojacking1 is another way that cryptojackers have found to en-

slave users’ processors. It spreads like a classic malware through corrupted

software either on a computer platform or a mobile platform. When the

victim executes the infected application, a miner is loaded onto the memory

and it starts mining while staying hidden in the victim’s device. Two-dozen

Android applications whose code turns user’s phones into cryptocurrency

mining workers recently appeared in Google Play. Some of those have tar-

geted users in the US by using the guise of educational tools. Combined,

they have been downloaded more than 120,000 times.2

1https://www.malwarebytes.com/cryptojacking/
2https://nakedsecurity.sophos.com/2018/02/01/cryptomining-is-it-the-new-

ransomware-report/
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Wallet Theft

A wallet is a software program that stores private and public keys and

interacts with blockchain platforms to enable users to send and receive digital

currency and monitor their balances. However, wallet theft remains a chronic

threat: in February 2025, approximately $1.5 billion in Ether were stolen from

a Bybit exchange wallet during a routine cold-to-warm transfer,3 in an attack

attributed to the Lazarus-linked TraderTraitor group. More broadly, over $1.8

billion in cryptocurrency losses have been reported in the first half of 2025 alone,

due to private key compromise.4

1. Key Exposure and Theft

Having possession of the private key and keeping it secret is critical because

in most cryptocurrencies using private key, someone can sign transactions,

spend money or tokens and deploy smart contracts on the blockchain. If

attackers acquire the private key belonging to a user, then they can spend

all of the user’s balance.

2. Software Client Vulnerabilities

Public blockchains like Bitcoin and Ethereum have open source software,

which users use to connect to the network. This software is vulnerable to

many attacks and, although new software versions are being released, many

users do not update to the newer versions. This situation gives the attacker

the opportunity to take control of the wallet software and the victim’s bal-

ance.

3. Weak Private Keys

In Ethereum the procedure for generating credentials is as follows:

(a) The Private Key is generated from a random number between 1 and

2256 using the OS random number generator.

3https://www.reuters.com/technology/cybersecurity/cryptos-biggest-hacks-heists-after-15-
billion-theft-bybit-2025-02-24/

4https://cointelegraph.com/news/otal-hacks-down-q2-after-record-losses-2025-h1
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(b) The public key is calculated from the private key using elliptic curve

multiplication.

(c) Address is derived from the Keccak-256 hash of the public key keeping

the last 20 bytes.

ISE,5 a security research group, made an experiment in which they scanned the

Ethereum Blockchain to find keys that are weak or lack randomness due to key

truncation [37]. Key truncation is the process according to which a random 256-

bit key is generated but only a subset is used due to coding, compiler or framework

errors. Since scanning all the potential addresses is impossible, ISE split the 256-

bit space in 8 intervals and performed a brute force scan for each one of them

setting the other intervals to zero.

H G F E D C B A

256 224 192 160 128 96 64 32 0

Table 3.2: The intervals of a 256-bit key

• Group A: 000. . . 00000001 to 000. . . 0FFFFFFFF

• Group B: 000. . . 100000000 to 000. . . FFFFFFFF00000000

• ...

• Group H: 00000001. . . 0000 to FFFFFFFF00. . . 00000

The group found more than 750 weak keys, 450 of which are in group A, responsible

for 49060 transactions. They also noted that there is a specific address, to which

they gave the alias blockchain bandit, which interacts with many of the weak ad-

dresses. ISE sent an amount $1 worth of Ethereum to one of those weak addresses

and it was instantly transferred to the blockchain bandit. This address has once

held almost $54 million worth of ether and currently owns $6 million due to market

correction. Finally, ISE found a shortcoming in the Parity Wallet which generates

5https://www.securityevaluators.com/
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the public key using a user’s passphrase as randomness. They found out that

Parity accepts an empty passphrase as a valid passphrase and generates a specific

address. There have been 8772 transaction on this address, and every incoming

transaction is transferred to one of many keyholders monitoring this address.

Smart Contract Attacks

Smart contracts, while offering programmable logic and automation within

blockchain environments, have introduced a new class of security vulnerabilities.

Due to their immutable and public nature, any flaw in their design or implementa-

tion can be permanently exploitable, often leading to significant financial losses and

systemic risks. Some of the most well-known smart contract vulnerabilities, which

have been repeatedly documented and exploited in real-world attacks, include the

following [38]:

1. Reentrancy

Fallback function is the only unnamed, no argument function a contract can

have. It is executed on a call to the contract if none of the other functions

match the given function identifier or when the contract receives plain ether.

In a reentrancy attack, the attacker calls recursively the fallback function

before its termination, so that the balance is not updated before sending

ether. This act usually leads to loss of ether.

2. Stack Size Limit

Every time a contract invokes another contract, the call stack associated

with the transaction grows by one frame. The call stack cannot grow larger

than 1024 frames and, when the limit is reached, possible further invocation

throws an exception. Until October 18th 2016, it was possible to exploit this

vulnerability. Since then this flaw has been resolved by a hard fork. The

best known attack exploiting Stack Size Limit is the Governmental Ponzi

Scheme.

3. Keeping Secrets

Fields in contracts can be public, i.e. can be read by everyone, or private,
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i.e. other users or smart contracts cannot access them. However, declaring a

field as private does not guarantee it’s secrecy. The main reason for that is

Blockchain’s transparency, as a result of which, the state of a smart contract

is visible to anyone using a Blockchain explorer.

4. Immutable Bugs

Once a contract is deployed on the Blockchain, it cannot be edited. If a

contract contains a bug there is no way to fix it. Programmers, during

the coding phase, have to foresee and provide the user with the option to

terminate a vulnerable smart contract.

5. Generating Randomness

The execution of EVM bytecode is deterministic, which means that every

transaction mined by every miner should have the same result in the state

of a contract. In order to generate randomness, programmers usually take

advantage of the hash or the timestamp of a block, either the present block

or a future one. A malicious miner could craft his/her block to predetermine

the result of random generator.

6. Time Constraints

Programmers in many cases use time constraints to decide whether some ac-

tions are permitted or not. To achieve these constraints they take advantage

of block timestamps. Since the miner who crafts the block is responsible for

choosing its timestamp within a degree of arbitrariness, the contract may be

exposed to attacks.

7. Integer Overflow/Underflow

When an unsigned integer reaches its byte size, the next element added will

return the first variable element. Programmers using high level languages

are not familiar with this situation which may expose the smart contract to

attacks.

The most known Smart Contract attack is the D.A.O. attack performed on

June 18th 2016. The attacker exploited a combination of vulnerabilities to take
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under his possession $60 million. This attack was the reason Ethereum had a hard

fork and its price was reduced from $20 to $13.

3.2 Malicious Use Of Blockchains

While blockchain technologies are primarily designed to enhance trans-

parency, integrity, and decentralization, their architectural features can also be

exploited for malicious purposes. The immutability, censorship resistance, and

pseudonymity they offer have attracted not only developers and innovators, but

also cybercriminals. This section explores the malicious applications of blockchain

systems, from malware distribution and botnet coordination to criminal smart

contracts and financial fraud.

3.2.1 Blockchain and Malware

In 2015, Harsh Patel6 wrote about a new kind of malware which utilizes

blockchain, the Blockchainware. In his article he mentioned that there are two

different ways in which malware and blockchain can cooperate:

• Blockchain as a storage for malware components.

• Blockchain as a command and control center.

Proof of Existence for malware components.

Moubarak et al. [39] studied the blockchain potential in a K-ary malware.

A K-ary malware instead of holding the virus instructions in a single file, consists

of k parts which union results to the malware. Each one of these parts is executable

and seems to be an innocent file. There are two main categories of k-ary malware:

• First category: The k parts are working sequentially.

• Second category: The k parts are working in parallel.

6https://www.linkedin.com/pulse/blockchain-ware-next-stage-malware-evolution-harsh-
patel/
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In their paper they leveraged blockchain to create a 4-ary malware of the first

category, they used blockchain technology with Proof Of Existence. They split

the viral payload into 4 chunks and they deployed each one of them on to the

Blockchain. The blockchain, keeps a record of each file that anyone can verify

simply by using a blockchain explorer. The OP RETURN opcode [3] is a script

opcode which can be found in a transaction. It allows a user to add 80 bytes of

arbitrary data into the blockchain. Another important aspect of OP RETURN

is that the transaction’s output is unspendable so it does not belong to UTXO

and thus is not transferred to a node’s cache. The latter makes the OP RETURN

transactions less expensive for the network and a way to burn BTCs. Proof of

Existence is a way for someone to prove that a file existed at a specific time.

Someone can exploit the OP RETURN opcode and insert into the blockchain the

file’s hash value [40].

Malware coordination using Blockchain

Some malware, such as ransomware, must keep in touch with their owner,

either to receive orders from him or to be able to send him some loot from the

victim. Initially, the owner’s IP was hardcoded to malware, so it was easy to make

communication perceived and blocked by the host. Then, the malware writers hid

the communication via the IRC protocol, but with the passage of time it became

obsolete, so it was again easy to make the communication perceived by the host.

Recently, malware writers hide communication under the HTTP protocol, mixing

it with the rest of the host’s communication with the web. To avoid blocking the

IP by the host, they apply a technique called domain fluxing. They use a Do-

main Generation Algorithm (DGA), which for a specific time interval, produces a

long list of potential domains and one of them leads to the Command & Control

server (C2). The problem in this case is the many look -ups that lead to NXDo-

main, a pattern in network traffic that an anti-virus can easily discover. Pletinckx

et al. [41] report a completely new group of DGA that locate the C2 server in-

formation in the bitcoin blockchain without generating any NXDomain responses.
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This technique is actively used by Cerber ransomware,7 as follows:

1. The first time the host runs the malware, it connects to a block explorer and

asks for the transactions of a wallet, the wallet address is hardcoded to the

malware.

2. This wallet, let it be W, appears to trade with some other wallets, let them

be Wi. In these transactions W sends some money to Wi which is instantly

returned to W. However, Wi are temporary because the first six characters of

their address followed by .top TLD is the address to connect with C2 server.

3. The latter address does not host the C2 server but is a gateway for the Tor

network.

Finally, the authors report that this malware could be a typical example

of a ransomware -as -a-service model. In a system in which affiliates propagate

malware to potential victims, which are led to a malware writer’s microsite. Upon

the victim’s payment, the writer gives the percentage that corresponds to the

affiliate.

Managing Botnets using Bitcoin

Botnet is a network of computers infected with malicious software and con-

trolled as a group, without the owner’s knowledge, by an entity known as the

botmaster. Every bot needs to communicate with the botmaster or the C2 center

to receive commands. This communication channel can make the botnet perceived

by the host. Like ransomware, botnets have followed various C2 techniques such

as IRC chatrooms, HTTP rendezvous points or P2P networks. Ali et al. [42] claim

that bitcoin is an ideal means of spreading commands for a botnet. The advan-

tages of bitcoin include the small cost of maintaining the C2 infrastructure, relative

anonymity, and more importantly, that no entity can shut down the bitcoin net-

work or address. The authors leveraged bitcoin to implement their own botnet

named ZombieCoin. ZombieCoin’s main points of operation are:

7https://www.avast.com/c-cerber
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1. The botmaster creates a Bitcoin key pair (pk, sk) and then hardcodes the

pk in the bot file. The bots are also equipped with a set of commands to

translate and execute the commands sent by the C2 center.

2. The botmaster using classic infection techniques or a zero-day exploit spreads

the botnet. When a host becomes infected the bot generates a unique bot

identifier.

3. Bots then connect to the bitcoin network as Simplified Payment Verifica-

tion (SPV) nodes, receive and propagate incoming transactions.

4. The botmaster periodically sends commands embedded in transactions. The

bots to discover commands scan the ScriptSig field of transactions with the

pk input of the master. Commands are part of the 80 bytes available for

OP RETURN opcode. Finally, bots decode and execute commands.

To validate ZombieCoin, the authors built a 14-node botnet using BitcoinJ. Their

application is 7 MB in size and stored locally about 626 KB of blockchain data.

They issued over 250 instructions with an average response time of ≈ 6 seconds

and total cost of $ 7.50. The latter is a trivial cost compared to the profits he may

have renting the botnet. The price for 50,000 bots, which will constantly attack

a target for a duration of 3,600 seconds with a 5-10 minute cool down timer set

for 2 weeks, is between $3000 - $4000.8 Finally, for upstream communication they

used the rendezvous points technique, in which the botmaster sends an IP address

available for a short time so that bots upload data through this address.

3.2.2 Criminal Smart Contracts

Juels et al. [43] conducted a study on criminal smart contracts. They con-

tend that Bitcoin may be a criminal playground for two main reasons. Because

of its anonymity and because it does not need a trusted 3rd party. Thus, no en-

tity can interfere and interrupt a transaction, as for example, a bank could do.

However, apart from simple transactions, it’s scripting language does not allow

8https://anonhq.com/mirai-ddos-botnet-is-back-for-renting/



39

more complex activities. The authors argue that by using Non-Interactive Zero-

Knowledge (NIZK) proofs and smart contracts over Ethereum, more sophisticated

transactions can be made with even stronger anonymity.

Darkleaks

Darkleaks is a decentralized black market where one can sell or buy in-

formation. There is no identity, no central operator, and no interaction between

leaker and buyers. Hollywood movies, government secrets and zero-day exploits

are some of the goods to be sold on Darkleaks. How Darkleaks works:

1. The Contractor C prepares the offering:

(a) Partitions the secret M into n segments M = m1||m2 . . . ||mn

(b) Encrypts each mi under a symmetric key κi

(c) Publishes ciphertexts C = c1||c2 . . . ||cn

(d) Reveals keys for random subset Ω = {κi}, i ∈ N∗

2. Potential purchasers P decrypt the sample.

3. If purchasers like the sample, they give offer.

4. On accepting offer, C reveals a full set of keys K = {κi}, i ∈ N and thus M.

Darkleaks approach for fair exchange:

1. Contractor creates a Bitcoin private key ski = SHA256(mi)

2. Public key PKi and address Addri are generated.

3. C derives a symmetric key κi = SHA256(SHA256(PKi))

4. P deposits offer for mi to Addri

5. To spend offer from Addri, C must reveal PKi,thus κi, making decryption

of mi available.
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The authors contend that Darkleaks suffer from some shortcomings. For example,

C can refrain from spending payments until M loses its value, or C can choose

to avoid disclosing some of M’s segments. To overcome these shortcomings, the

authors propose a smart contract on top of Ethereum written in Serpent. Their

implementation integrates a withdraw function in case C aborts, a function to

return the donations unless all the secret keys are simultaneously revealed. Finally,

they leverage the NIZK proofs technology to verify that κi can decrypt ci. Smart

contract plays the role of the verifier.

Calling Card Crimes

Calling card is a signature token or a characteristic of a crime used by a

serial criminal. The authors have presented an authenticated data feed system

called Town Crier (TC), to act as bridge between smart contracts and existing

websites. They argue that calling cards, alongside authenticated data feeds, can

support a general framework for a wide variety of Criminal Smart Contracts. They

propose a protocol for construction of a criminal smart contract based on a calling

card.

1. Perpetrator (P) provides a commitment to a calling card to a smart contract.

2. After the commission of the crime, P proves that calling card corresponds to

his initial commitment.

3. Smart contract refers to some trustworthy and authenticated data feed to

verify that the crime was committed, and the calling card matches the crime.

4. If both conditions are met, the smart contract pays a reward to P.

Exploiting this protocol, many calling-card crimes become available, like website

defacement, DoS attack, assassination, kidnapping and terrorist attacks. Again,

using smart contracts there is no need for direct communication between the per-

petrator and the criminal.
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3.2.3 Financial Frauds

With the interest of the public towards electronic currencies increasing,

many skilled frauds have found the opportunity to deceive users in order to steal

their money. In this section, we will make a summary about the distinct cases of

financial frauds.

Fraudulent ICOs

ICO stands for Initial Coin Offering, it is a procedure by which an entity,

usually a person or a company, sells tokens for an amount of cryptocurrency. One

could buy such a token, hoping that it will get used a lot and its high circulation

will raise its value. In the short history of cryptocurrencies, many fraudulent ICOs

have happened. Investors bought tokens in order to increase their profits, but they

ended up owning worthless tokens. Fraudulent ICOs have costed over $35 million

to cryptocurrency users.9

Fake Wallets

Fake wallets, usually met as Android apps, steal user’s private key or seed

and consequently transfer his/her funds. In many cases they have been found in

Play Store as clones of known wallets.

Ponzi Schemes

Ponzi scheme is a fraudulent investment operation where the operator gen-

erates returns for older investors through revenue paid by new investors, rather

than from legitimate business activities or profits of financial trading. Chen et

al. [44] propose an approach to detect Ponzi schemes on blockchain by using data

mining and machine learning methods. Using combined account data and smart

contract’s bytecode the authors built a classification model in order to distinguish

Ponzi schemes from other smart contracts.

9https://www.businessinsider.in/The-SEC-is-charging-two-cash-and-car-loving-crypto-
founders-with-fraud-after-their-32-million-initial-coin-offering/articleshow/63588096.cms
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3.3 Ransomware-as-a-Service Usings Smart Con-

tracts and IPFS

The emergence of Ransomware-as-a-Service (RaaS) represents a significant

development within the broader evolution of Malware-as-a-Service (MaaS) [45]. As

part of this commodified cybercrime ecosystem, RaaS exemplifies the shift from

bespoke malware campaigns to modular, subscription-based offerings. This trans-

formation reflects wider trends in the digital economy, where complex tools and

attack infrastructures are repackaged as services accessible to a broader range of

actors, including those with minimal technical skills. RaaS is, in essence, a “ran-

somware affiliation program”: affiliates spread ransomware to potential victims

who, upon infection, pay an amount to the ransomware author in exchange for a

(file) decryption key; the affiliate who performed the infection receives a percent-

age of the ransom. RaaS platforms typically offer not only ransomware payloads,

but also backend infrastructure, payment handling, user documentation, and even

technical support. We argue that while the model works, we expect it to shift to

more enterprise status. The shift is expected since it is known that Law Enforce-

ment Agencies (LEAs) and other organizations try to monitor or even backdoor

forums and, as a result, reveal the identity of malware authors. We believe that

the key future venue would be further exploitation of decentralized models. Hence,

a model where the various func- tionalities are split, operate individually, and are

orchestrated through a blockchain is a viable alternative that we will face more

in the near future. The research question is therefore to predict this trend and

identify weaknesses and gaps to be used to counter such threats. In this work [46],

we demonstrate a RaaS attack vector that leverages blockchain and decentralized

storage technologies to enhance operational resilience and anonymity. By utilizing

Ethereum smart contracts for ransom payments and IPFS to host malicious in-

frastructure components, we illustrate how the decentralized architecture of such

systems significantly complicates mitigation and takedown efforts. In the consid-

ered system, we fully utilize blockchain and IPFS technologies. We take advantage

of the Ethereum blockchain by using smart contracts as a registration and ran-
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som payment service for robust, low cost, fair and anonymous transactions. We

also leverage IPFS to reliably host Web pages used for interacting with Ethereum

smart contracts, as well as the malicious executable files. This system achieves

the following: (1) The amount of time a ransomware author needs to be online

is minimal. (2) The ransomware author does not have to have a stable network

address. (3) The identities of the ransomware authors and the affiliates are hidden.

(4) Affiliates do not have to pay money upfront; instead, malware authors receive

a commission from the ransom. (5) Once up and running, it is too hard to take

offline the RaaS system, as well as the registration and payment systems.

3.3.1 Related Work

The works discussed in Section 3.2 demonstrate that blockchains and de-

centralized infrastructures can be misused as persistence, coordination, or commu-

nication channels for malware. However, these efforts remain limited compared to

a complete Ransomware-as-a-Service (RaaS) ecosystem.

Early work by Moubarak et al. [39] focused on integrity validation by storing

only hashes of malware components on the Bitcoin blockchain, without providing

distribution or monetization. Subsequent studies such as ZombieCoin [42] and Cer-

ber [41] leveraged Bitcoin for botnet C2 and ransomware coordination, respectively,

showing resilience against takedowns but limiting decentralization to communica-

tion; Cerber further introduced an affiliate model, though revenue sharing was

managed centrally. Zhong et al. [47] extended this line with duplex and stealthy

communication across the Bitcoin main and test networks. In parallel, Patsakis

and Casino [48] explored IPFS for malware coordination, showing how its content

addressing and replication properties could be abused to host and disseminate

malicious content.

Table 3.3 summarizes these approaches across key dimensions, including

the underlying platform, utilization of infrastructure, support for decentralized

storage and file distribution, monetization, and their potential to enable MaaS. As

illustrated, prior works either lacked decentralized storage, relied on centralized

rendezvous points, or did not integrate payment mechanisms. Among them, Cerber
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Figure 3.1: An overview of the considered blockchain-based architecture.

stands out as the only concrete RaaS, yet revenue sharing with affiliates remained

manual and centralized. By contrast, our work is the first to combine decentralized

storage and distribution via IPFS with automated monetization through Ethereum

smart contracts, supporting asynchronous communication and trustless revenue

sharing, thereby delivering the first fully decentralized RaaS ecosystem. Crucially,

the use of smart contracts eliminates the need for backend servers, making the

operator location-agnostic and further strengthening resilience against takedowns.

3.3.2 System Design

We now present the design of the considered architecture (illustrated in Fig-

ure 3.1). The system is composed of the following entities: the ransomware author

who creates the original ransomware, some affiliates who buy the ransomware from

an author and try to infect victims. From a high-level perspective, these entities

interact with each other as follows. Authors store their ransomware in IPFS and

make it available using an Ethereum smart contract. Affiliates obtain it and try

to infect other users. Infected users (i.e., the victims) use another Ethereum smart

contact to pay the ransom and receive the decryption key. The author and the

corresponding affiliate share the ransom. This functionality is implemented using

the following steps.
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Setup

During the setup phase, the author creates an Ethereum account and stores

it in a wallet. We will refer to the Ethereum address of the author as Aaddress.

Then, she creates a registration Web page, a payment Web page, and a ransomware

builder, and uploads them on IPFS. Moreover, she has to create the corresponding

smart contracts and deploy them on the Ethereum blockchain. In order for the

author to upload the created files in IPFS, she needs an IPFS node running on a

computer under her control, but after the files are received by other IPFS nodes,

her local node is no longer required. The registration Web page is used by affiliates

to join the affiliates program, whereas the payment page is used by victims to pay

the ransom. Both pages interact with the corresponding smart contracts and are

realized on IPFS for robustness. Finally, the author sets up a C2 application which

interacts with all other components only through the Ethereum smart contracts.

The C2 application is connected to the Ethereum network and it is configured to

“listen” for specific events.

Affiliate registration

An affiliate joins the affiliation program through the registration page. Dur-

ing this process, the affiliate registers his Ethereum address, which is stored in the

corresponding smart contract, and downloads the builder. For each user he wishes

to infect, the affiliate uses the builder to create a ransomware sample. Whenever

a new sample is created, it uses the registration smart contract to request a public

key PKsample. This request creates an event which is broadcasted in the Ethereum

network; hence it is received by the C2 application; the C2 application generates a

public-private key pair using as seed the transaction hash, and returns the public

key to the smart contract. The smart contract verifies that PKsample was sent

by Aaddress. The smart contract stores all PKsample associated with an affiliate

address in a data structure.
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Victim infection

An affiliate may distribute the ransomware using various mechanisms, e.g.

exploiting a system vulnerability, spear phishing, etc.; however, the means to do it

are beyond the scope of this work. When the ransomware is executed by a victim, it

creates a symmetric encryption key Keytemp, which is used to encrypt some critical

for the victim files. Then, the ransomware encrypts Keytemp using PKsample and

stores the ciphertext locally. Finally, the ransomware notice is presented to the

user containing the PKsample, the URL of the payment page, and the amount of

money, in ether, that the victim must pay to get his files decrypted.

Ransom payment

In order for the victim to get his files decrypted, he has to visit the payment

page and enter PKsample, as well as to deposit the predetermined amount. This

amount is transferred from his Ethereum wallet to the smart contract’s balance,

which in return transfers a proportion of the ransom to the affiliate and the rest to

the ransomware author. This action emits an event, which is received by the C2

application. The application retrieves the corresponding secret key SKsample and

sends it to the smart contract. The smart contract verifies that SKsample was sent

by Aaddress. The ransomware uses SKsample to decrypt Keytemp, and then it uses

Keytemp to decrypt the files of the victim.

3.3.3 Implementation

We developed a proof of concept implementation of the blockchain-based

architecture and we deployed it on the Rinkeby test network. Ethers in the Rinkeby

network do not have any real value. Furthermore, the deployed system does not

contain a true infection mechanism and is thus not directly usable, i.e., harmless.

The smart contracts of the system were developed using Solidity. These

contracts implement seven functions, corresponding to the actions of the system.

The first function is used for the affiliate registration; it stores the necessary in-

formation in the blockchain, and it emits an event when the process is completed.
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Two other functions are used for setting and getting a PKsample. A fourth function

implements ransom payment, and it is responsible for triggering the corresponding

event. A fifth function is responsible for splitting the ransom between the affiliate

and the author. Finally, there are two functions for setting and getting SKsample.

As we have already mentioned, the ransomware author is expected to cre-

ate the two sites and upload them to IPFS. The sites are implemented as React

applications with a simple user interface. The sites are interacting with the smart

contracts, using the web3 JavaScript library.

Finally, the implementation of this system includes the C2 application that

is executed on behalf of the ransomware author. This is a script developed in

Node.js.

3.3.4 Evaluation

Performance and Cost Evaluation

All actions performed in the system involve the invocation of the smart

contract functions discussed in the previous section. Two of them only read the

state of the blockchain; thus, they have no cost, no significant delay, or serious

overhead. The deployment of the smart contract in the blockchain network (in our

experiments was the Rinkeby test network), as well as the cost (measured in gas)

for invoking the contract’s functions, are shown in Table 3.4.

Actor Operation Cost measured in gas

Ransomware Author

Deployment 505822

PKsample Upload 29881

SKsample Upload 22144

Ransom Split 37515

Affiliate Affiliate Registration 22796

Victim Ransom Payment 28326

Table 3.4: Cost of the construction building blocks

Three of those five operations are initiated by the ransomware author, one
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by the affiliate, and one by the victim. Therefore the malware author is billed with

a total cost of TC = 505822 + 29881 · ρ + 22144 · δ + 37515 · µ gas units, where

ρ is the number of registrations, δ is the number of SKsample keys generates, and

µ is the number of payments received. At the time of writing, the equivalent of 1

Ether in fiat currency is $175,5910 and the gas price is set to 1Gwei. Assuming that

ρ = δ = µ = 100, the total cost for the ransomware author for 100 registrations

and payments will be ≈ $1, 67 which is minimal by any standard.

In addition to the gas cost, Ethereum also adds an execution time overhead

related to the time a transaction needs to be mined. This time depends on the gas

price, which is the amount of Ether that a user pays per unit of gas. The higher

the gas price, the faster the transaction will be mined. On average, an operation

in Ethereum is executed in ≈ 13 seconds.

Security and Privacy Properties

The system has some intriguing security and privacy properties. The Ethereum

blockchain offers a high degree of anonymity, as it is hard to track an Ethereum

address back to its real-world owner. Therefore, authors and affiliates cannot be

easily detected. Similarly, once the ransomware and the Web pages are stored in

IPFS, the author does not have to participate in the IPFS P2P network.

An author does not have to be constantly online; neither has he to use

the same device or network location. An author’s C2 application is triggered by

Ethereum events; however, these events are broadcast on the whole Ethereum

network. The smart contract controls who can write PK/SKsample. This access

control is implemented by examining the Ethereum address of the entity that made

the corresponding transaction; hence it does not reveal any real-world information.

3.3.5 Discussion

Two key properties of our system are that a) it can easily bootstrap, and

b) it is hard to take it offline.

10https://coinmarketcap.com/currencies/ethereum/
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The system can be easily adopted, since it does not require any upfront

payment by the affiliate, apart from the cost for interacting with the blockchain.

Instead, affiliates share the ransom with the ransomware author. Ransom sharing

is done automatically by a smart contract.

IPFS and Ethereum are two robust systems where information is perma-

nently stored. Therefore, once the ransomware and the Web pages are in the IPFS,

and the smart contracts are deployed in Ethereum, they cannot be removed. IPFS

provides a “blacklisting” functionality, which is optional. Similarly, smart con-

tracts can only be removed using chain “forking”, which is an extremely unlikely

process. On the other hand, smart contracts cannot be modified; hence they must

be carefully designed so as to be bug-free. The major drawback, for criminals,

of the proposed scheme is the fact that all the transactions are visible from any

participating node of the blockchain. Therefore, a LEA can identify, for instance,

when a new affiliate has been recruited, a payment has been made, etc. Never-

theless, the same applies to many wallets which have already been identified with

criminal activity. This is the reason for the rise of crypto laundry services, which

can efficiently anonymize such revenues [49].

It is important to mention that field values in smart contracts, even though

they are not declared as public, are still accessible. A smart contract’s state is

visible to anyone using a blockchain explorer [38]. It is also important to note

that even if the smart contract stores only information about the last registration,

someone can find information about the previous registrations on the blockchain.

But note that every piece of information sent through the smart contract can be

encrypted with the recipient’s public key so that only he can decrypt it using his

private key, locally.



Chapter 4

Security Threats in IPFS

The InterPlanetary File System (IPFS) has emerged as a key building

block for the Web3, offering content-addressable, peer-to-peer file storage and re-

trieval. Designed to overcome the limitations of traditional client-server architec-

tures—such as centralized control, single points of failure, and high infrastructure

costs, IPFS aims to provide increased availability, censorship resistance, and re-

silience. However, these benefits come with a host of new security and privacy

challenges that remain insufficiently addressed.

This chapter aims to explore these multifaceted threats by (i) analyzing the

architecture and design choices that expose IPFS to abuse, (ii) presenting real–

world examples of malicious activity and privacy leakage, (iii) discussing current

and proposed countermeasures for securing the IPFS ecosystem.

4.1 Malicious IPFS nodes under the magnifying

glass

As IPFS becomes increasingly integrated into Web3 infrastructures, its

open-access and decentralized architecture is being leveraged not only by legiti-

mate users but also by malicious actors. Unlike traditional web infrastructures,

IPFS lacks centralized oversight, allowing any node to participate freely in content

storage and distribution. This raises pressing questions regarding the integrity and

51
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trustworthiness of the nodes that constitute the network. To this end, we aim to

unravel the structural elements of the IPFS net- work, and the nodes, focusing

on suspicious activity. Initially, we crawl the IPFS network to enumerate it and

make the first contact with the nodes. Following that, we collect intelligence from

different sources regarding the aforementioned nodes. Moreover, we collect the

exchanged data by nodes and analyse them to have a deeper understanding of the

consistency of the network. Finally, we try to determine the extent of possible

abuse of IPFS for copyright infringement [50].

4.1.1 Background

JARM [51] is an open-source, active fingerprinting tool by salesforce. JARM

uses TLS to identify a target host and extract information from it. Specifically,

JARM crafts ten different Client Hello packets of the TLS handshake process

and collects all data from the process, e.g. cipher negotiation and supported ci-

pher suites. The corresponding responses received from the host vary depending

on the underlying operating system, software, libraries, version, order of calling

the libraries etc. Consequently, JARM aggregates the responses and produces a

hybrid fuzzy hash which are 62 characters long. This hash can be broken down

into two parts. The first 30 bytes try to describe how the server reacted to each

of the ten client hello messages. The rest 32 characters are a SHA256 hash which

summarises the extensions sent by the server without the certificate data. JARM

is used by the community as a software-wise host clustering tool, therefore it is also

eligible to detect malware Command & Control (C2) servers as their fingerprints

are often very unique and therefore distinguishable.

4.1.2 Related Work

P2P networks have been of interest to the scientific community for many

years, and while their popularity fluctuates, they have never been outdone. In

recent years, the advent of cryptocurrencies and blockchain technology has brought

them back into the limelight. Thus, while P2P node profiling has been extensively
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studied in the past, research in the context of Web3 is minimal. Web3 is in a very

early phase and its decentralised components are still under heavy development.

Hence, the current research regarding its nodes is still in its infancy. Henningsen

et al. in [52] make one of the first attempts to explore the IPFS network. Adopting

a hybrid design, passively and actively, they aim to enumerate the IPFS network

and profile its nodes. The authors note that the overlay network outperforms

the overlay induced by buckets. Furthermore, they observe that an overwhelming

percentage of nodes, i.e. 94%, did not react to the authors’ attempt to connect

to them. The reason this happens is twofold. The first is because many nodes

are behind NAT and thus advertise their local IP address. The second is that a

large portion of users uses IPFS in an opportunistic way, therefore their footprint

remains in buckets for longer than they remain online and connected.

Recently, researchers discovered a botnet hiding in the IPFS ecosystem [6].

The latter, named InterPlanetary Strom (IPStorm) and estimated size of 9000

devices, utilises IPFS at multiple levels. Initially, the researchers found that it

uses the libp2p DHT to discover nodes. Bots identify each other with the attribute

Agent Version: “storm”. In addition, the botnet utilises the Pub/Sub protocol

as a communication channel over specific topics. Finally, the botnet uses IPFS to

share files so that it can be updated to a newer version.

Trautwein et al. [4] further to providing a basic guide of IPFS’ design, they

collected data from three different sources to shed light on various metrics related to

IPFS performance. Initially, they crawled the IPFS network to gather information

about peers. Among the conclusions drawn is that IPFS nodes are geographically

distributed in 152 countries, yet more than 50% are located in just two countries,

US and China. Furthermore, more than 50% of the IPs are covered by five auto-

mated systems, yet only 2.3% of the nodes are in some cloud infrastructure. The

last insight extracted from this dataset is that the IPFS network suffers from high

rates of churn, with 87.6% of peers having an uptime of less than 8 hours. Finally,

the authors wanted to study the time performance in downloading data. To this

end, they experimented with different AWS regions and recorded the download

duration from the data they produce each time. In 50% of the cases, the download
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took less than 3s, and in 90% of the cases, less than 4.5s.

4.1.3 Profiling IPFS nodes

Data collection methodology

To enumerate the IPFS network we used the IPFS Crawler [52]. The IPFS

crawler is a tool written in Go and is based on libp2p (v0.11.0).

Acting as a Kademlia node the crawler uses precomputed keys to extract

all the entries from most buckets for every node it encounters. In essence, it

invokes FindNode actions repeatedly using the appropriate precomputed keys.

Finally, the crawler produces two files: (i) a JSON file storing the tuple <PeerID,

multiaddress, agent, reachability> for every distinct node met, and (ii) a

CSV file containing all the pairs of connected nodes.

We conducted a series of consecutive crawls. Initially, the crawls were

performed iteratively, every ten days during the period from March to April 2022.

Each crawl series spanned over a day (24h) totalling about 360 crawls in a row

per day. From the data in the JSON file, for each PeerID we extracted the IP

addresses. Each IPFS node maintains an address book retaining information for

the nodes it encounters. If any of the encountered nodes advertises a new address,

then it is appended in the address book for reachability purposes. As a result,

a single PeerID may correspond to more than one IP address. We studied each

different address considering it as a unique node. Moreover, nodes behind a firewall

or NAT use p2p-circuit, a libp2p relay transport protocol, to avoid connectivity

barriers. In essence, these nodes advertise addresses through relay nodes. As a

consequence, they do not reveal their real IP address but the IP address of the relay.

The aforementioned peers as well as those which advertise only local IP addresses

are excluded from our analysis. Clearly, the absence of such IP addresses prevents

us from studying or fingerprinting the corresponding hosts.
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Node Profiling

In this section, we present general information regarding the IPFS network

and its nodes. We should mention that in the following findings, every different IP

address is considered a different node. Although, we found that unique Peer IDs

advertise multiple IP addresses since our study focuses on the “fabric” of the IPFS

network. Thus, we want to enumerate and analyse every different IP address.

Crawl1 Crawl2 Crawl3
0

50 000

100 000 Malicious Benign/Unknown

Figure 4.1: Malicious nodes per crawl.

Figure 4.1 illustrates the nodes per crawl and the count of malicious nodes

for which we collected intelligence. In Figure 4.2a, the exact results of IP addresses

per crawl can be found. Moreover, from the same figure, we can observe that 16783

were found online in all three crawls. We can assume that the aforementioned nodes

were found online at least once a day in the span of the whole month. Given the

periodic changes of IPs, we can assume that most of these IPs belong to some

infrastructure that has been devoted to constantly working with IPFS.

A node’s agent version can be an indication of malicious activity. Nodes’

agent version is public and advertised, thus, it can act as an identifier for malicious

nodes to discover and track each other. The latter is a technique already imple-

mented by “storm” agents. Figure 4.3 illustrates the ten most used agent versions

we found in each crawl. We should highlight that the counts depicted correspond to

the agents from the nodes we managed to connect to. In each crawl we found 50%,

61%, 49% respectively, unreachable peers, i.e., we found their address stored in the

DHT but they were offline. Moreover, IPFS is open-source software; therefore, it

is at the user’s discretion whether to display the agent version. The latter results
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Figure 4.2: Crawl statistics.

are aligned with the ones in [4]. In the third crawl we observe that there is an

increase in nodes using the agent called Hydra Booster.1 Hydra Booster is a node

having many different Peer IDs over a common routing table. It is designed to ac-

celerate IPFS’ processes carried out through DHT-like content resolution, routing

and discoverability. The existence, as well as the operation of these nodes, brought

about an increase in the number of nodes of the third crawl. One of the features of

open software, which has been hotly debated lately, is that upgrading to a newer

version is at the user’s discretion. Observing the crawling results of Figure 4.3, one

can observe that there are many different software versions running and commu-

nicating simultaneously. For example, go-ipfs 7.0 was released in July of 2020

while go-ipfs 11.0 in August of 2021. Moreover, although the measurements

were made in mid-2022, and version go-ipfs 12.0 had already been released, we

can conclude from the bar charts that the versions which are more widely used

are the older ones. In addition, we must mention that agent storm, which has

been found in all three crawls with a non-negligible number, is characteristic of

the nodes belonging to the IPStorm botnet we have already mentioned.

In what follows, we study the maliciousness of nodes, so we used Virus Total

1https://github.com/libp2p/hydra-booster/
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Figure 4.3: The ten most commonly used agent versions in each crawl. The *.*

denotes varying subversions combined.

to assess the corresponding IPs. Nevertheless, Virus Total also provides valuable

insights regarding the geographic distribution of the various nodes, regardless of

whether they are malicious or not. The vast majority of the nodes are located in

two countries, namely the United States and China. We notice that our results

are aligned with [4].

To conduct a more in-depth analysis, we passed the crawling results to

intelligence services. Namely, we used Shodan,2 a network monitoring tool, to fin-

gerprint each node. Shodan returned intelligence for approximately 40960 unique

nodes. Figure 4.4 illustrates the ten most commonly used ports by the total of

nodes we examined. Port 22, the most widely used port by IPs related to IPFS,

is typically used for Secure Shell (SSH) connections, which allow users to log in

to a host and execute commands remotely. Port 80 is used as the default port for

HTTP (Hypertext Transfer Protocol) traffic, port 8080 is an alternative to port

80 and moreover the default port of the IPFS gateway, and port 443 for HTTPS.

Port 3389 is typically used by hosts running Microsoft Remote Desktop Protocol

(RDP) to allow remote access to the host’s desktop. Finally, port 4001 is used

by default for IPFS traffic, but users can also set up a custom port. Regarding

2https://www.shodan.io/
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the operating system running on IPFS nodes, Shodan’s results, depicted in Fig-

ure 4.2c, indicate that the lion’s share uses Ubuntu Linux. The next runner-up is

Microsoft Windows 10, followed by Debian Linux. The latter is also exhibited by

the most used services, Figure 4.5, where most hosts appear to be using SSH as

opposed to RDP. Moreover, most of them seem to have a web server (nginx and

then Apache).
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Figure 4.4: The ten most common ports.
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Figure 4.5: The ten most commonly used services.

JARM [51] is an open-source fingerprinting tool that generates a string

based on the response of the host to ten TLS packets. JARM is used by the

community as a software-wise host clustering tool, therefore it is also eligible to

detect malware Command & Control (C2). We use JARM strings, extracted from

Shodan and Virus Total, to detect any similarities among the different nodes.

Finally, we combined them since for the same IP different services can provide

varying information. For 1002 IP addresses, we found information in both services,

so we considered both records. The JARMs indicate that there are several clusters
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of IPs in which servers have the same TLS configuration, which implies that the

same entity is behind them. The most common ones are illustrated in Table 4.1.

JARM # IPs

2ad2ad0002ad2ad00042d42d0000008aec5bb03750a1d7eddfa29fb2d1deea 2070

2ad2ad16d2ad2ad22c2ad2ad2ad2adfd9c9d14e4f4f67f94f0359f8b28f532 1378

15d3fd16d29d29d00042d43d000000fe02290512647416dcf0a400ccbc0b6b 577

15d3fd16d29d29d00042d43d0000009ec686233a4398bea334ba5e62e34a01 562

15d3fd16d21d21d00042d43d000000fe02290512647416dcf0a400ccbc0b6b 489

Table 4.1: Most common JARMs.

Malicious Activity

In this section, we investigate the moral character of IPFS nodes, i.e., we

examine whether and to what extent there are malicious nodes. To this end,

we collect and leverage existing intelligence to create and present their profile.

Our goal is to assess the network structure, keeping IPFS users and the related

community alert to the existence of malicious activity in the IPFS network. Due

to the current IPFS rules, every node maintains several active connections varying

from 600 to 900 peers. Thus, we argue that it is very important for each node to

know what kind of alignment, i.e. neutral or malicious, the node it interacts with

has.

Initially, we leveraged the intelligence provided by two popular services,

namely Virus Total (https://virustotal.com/) and SpamHaus (https://www.

spamhaus.org/), to get a baseline for the reputation and past activity of nodes.

SpamHaus uses several methods to find information about an Internet resource.

It uses sensors in large networks, i.e. a data-sharing community, from which it

collects data about network traffic. In addition, SpamHaus deploys honeypots to

attract malicious users. Along the same lines as SpamHaus and VT, in addition to

monitoring more than 70 anti-malware and IP blocking services, it relies on data

generated and shared by an already large community. Both the aforementioned
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services provide APIs to interact with their knowledge base and generate a JSON

formatted output for each request. We combine the extracted output information

with the SpamHaus output and we consider malicious those nodes with at least

one record in one of the aforementioned services.

Moreover, in Figure 4.2b, we notice that from the 27861 different IP ad-

dresses we encountered during the first crawl, 5126 of them, ≈ 18% remained online

throughout the whole month. The latter indicates that there is a number of nodes

that constantly utilise the IPFS network for malicious purposes. Compared to the

16783 found online in all three crawls, as depicted in Figure 4.2a, a significant

part of them, i.e., 30.5%, are known to be malicious. Based on SpamHaus’ results,

we conclude that the majority of malicious nodes were discovered using the DNS

Sinkhole technique. According to this technique, security researchers create, at

various levels, a DNS record of a known malicious URL pointing to an address they

own, usually a sinkhole server. The gain from applying this technique is twofold:

On the one hand, they prevent communication between bot and C2, and on the

other hand, researchers can find which computers are infected, i.e. ask to connect

to known malicious URLs.

In Table 4.2a, the five most commonly requested and sinkholed URLs in

the number of unique IP addresses are illustrated. Note that several URLs such

as differentia.ru, atomictrivia.ru, amnsreiuojy.ru and restlesz.su are

known to be leveraged as C2 by malware. disorderstatus.ru is a relatively

newly created domain reported to be mostly used for spamming. To draw deeper

conclusions about the URLs, we isolated the Top Level Domain (TLD) of the

different requested URLs. To our surprise, while most requested URLs have a “.ru”

TLD, this is not reflected among the unique TLDs. On the contrary, we notice

that the most commonly encountered is “.xyz”, a relatively new TLD offering many

domains that would traditionally be registered by legitimate users. The fact that

they are new and cheap and that traditional domain names are available has led

xyz domains to be widely exploited3. Given that 11227 xyz domains are hosted

3https://www.spamhaus.com/resource-center/getting-the-low-down-from-xyz-

registry-on-combating-domain-abuse/https://www.bleepingcomputer.com/news/

security/these-are-the-top-level-domains-threat-actors-like-the-most/
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by these addresses makes us conclude that some adversaries use nodes of IPFS for

hosting malicious domains in addition to C2 infrastructure.Tinba a portmanteau

of the words Tiny Banker, is a trojan that leverages packet sniffing to determine

whether the user visits a bank’s webpage. In that case, the trojan tries to steal

the keystrokes and sends them to a C2. Nymaim and Ranbyus are well-known

trojans, which steal information from the user and consequently send them to a

C2. Some of their variants have been found to use domain fluxing to communicate

with their orchestrator, and some have been found in DoS attacks. Mirai is used to

infect Internet of Things (IoT) devices and turn them into bots that can be used

to launch large-scale network attacks. The Mirai botnet was initially discovered

in 2016 and was part of various high-profile cyberattacks, including distributed

denial-of-service (DDoS) attacks that brought down popular websites and online

services. The most frequently displayed campaigns are gathered in Table 4.2b.

URL Count

differentia.ru 38681

disorderstatus.ru 15504

atomictrivia.ru 7049

amnsreiuojy.ru 5662

restlesz.su 2180

(a) The five most sinkholed URLs

and the number of unique requests.

Campaigns Count

tinba 30019

conflicker 22650

nymaim 22228

andromeda 6403

ranbyus 4845

mirai 3750

(b) Malware campaigns with the

largest participation from the en-

countered nodes.

Table 4.2: Extroversion of malicious nodes: Which groups do they belong to and

what webpages they seek to visit.

Finally, we studied the JARMs of malicious nodes to better frame our re-

search. As we have already mentioned, we combined knowledge from all intelligence

services to produce the results. Notably, among them, we found a cluster of 68

nodes corresponding to the JARM fingerprint 15d3fd16d29d29d00042d43d00
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00009ec686233a4398bea334ba5e62e34a01 which is attributed to the notorious

emotet botnet.

As already mentioned, the crawler we used, in addition to information about

the nodes encountered, produces an edge list with each pair of connected nodes.

Based on this, we constructed a mapping from one PeerID to the several PeerIDs

we found connected during the second day. In essence, we built for each peer its

buckets expanded to the span of a day. Consequently, we converted the aforemen-

tioned mapping to the corresponding IP addresses. This way, we can investigate

whether there is a clique between the malicious nodes. The findings indicate that

there is no such clique, as the median percentage of malicious nodes in the buckets

of a malicious node is 7%, and the average is 9.5%. Along the same lines, the

median percentage of nodes in the buckets of a benign node is also 7%, with the

average being 9.2%.

4.1.4 File Investigation

Despite the processes and functionality IPFS offers through libp2p and its

other components, its main purpose is undeniably storage-related. The largest

NFT marketplaces use IPFS for the data storage and integrity it provides, while

its widespread utilisation has already brought about the need for cooperation with

other Web3 layers, such as ENS, which natively offers names corresponding to

CIDs. No wonder the increasing popularity has also caught the eye of cyber crim-

inals. A recent research4 highlights that the volume of malware samples hosted in

IPFS has increased during 2022. Moreover, researchers report the Agent Tesla

malware, which using phishing techniques, leads to an IPFS public gateway, dis-

guising the download of malicious content. To better frame our research into the

storage of the IPFS ecosystem, we also researched the file side. Our research is

twofold, in the first case, we eavesdropped on the files requested by IPFS users,

while in the second, more actively, we searched for files we randomly downloaded

from well-known torrent sites.

4https://blog.talosintelligence.com/ipfs-abuse/
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Bitswap Eavesdropping

According to the operating rules of IPFS, when a user searches for a file, a

one-hop inquiry is first performed through Bitswarm, requesting it from nodes with

an active connection to the initiator. If none of them responds, the query is then

served by the DHT. To collect data, we tweaked our node so that it maintains ac-

tive connections with around 4000 nodes; that is, according to our measurements,

approximately 20% of the network’s active nodes at that time. So when one of

those nodes was looking for a file, thanks to Bitswap’s functionality, that infor-

mation would also go through us. This way, we could eavesdrop on about 20% of

the network’s requests and, in turn, request back to retrieve them. In total, we

monitored the requests for 24 hours while we set each request to last no more than

15 seconds. This way, we avoided downloading very large files while, on the other

hand, we cancelled the search in case it was routed through the DHT. In total, we

collected 49155 files with a size of about 13.7 GB. To have a more complete picture

of the type of files requested, we used the Python mimetypes module5 to find the

MIME type of each file. We shall mention that it managed to classify 13691 of the

files. The latter can be attributed to Bitswap’s design. When a user requests a file

from Bitswap, the search is performed by the root CID of the file. The aforemen-

tioned file contains links to the chunks of which it is composed. Thus, when the

requester receives the root CID and learns the CIDs of the chunks that make up the

file, it requests through Bitswap consecutively all the chunks, which are essentially

blocks of data. The file results illustrate that 3716 are image files with MIME

types “image/png”, “image/gif”, “image/jpeg”, and 9148 are JSON files, which

is the most common format for NFT metadata. The latter clearly demonstrates

and confirms our initial statement that IPFS is a cornerstone of NFT data storage

and Web3 in general. Among others, we fetched 177 Javascript files and 27 videos

of type “video/mp4”. We then fed the image files to the Python Not Suitable

For Work (NSFW) Detector module to determine whether IPFS is being used for

inappropriate content. From the 1636 image files it examined successfully, it found

5https://docs.python.org/3/library/mimetypes.html
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33 unsuitable.6 The above indicates that some users leverage IPFS’ anonymity to

host inappropriate content that is difficult for LEAs to track and take down.

Torrent Files

Very often, inappropriate files are found in the form of torrent files dis-

seminated through torrent search engines. We downloaded a sample from various

widespread torrent sites, ten popular torrents in total. We computed their CIDs

locally to determine whether they are shared on the IPFS. This way, not only did

we not add any illegal files to the IPFS network, but we also limited the possibility

of tampering with the results of our upcoming searches. The ten different torrent

files yielded 72 different root CIDs. Each torrent file can contain a video file, a

cover image for the video file, a text file with information about the file, etc. In

turn, we made 72 requests to the DHT for providers of these CIDs. We found

providers for seven of them, and in fact, for most of them, more than one. The

latter implies that IPFS users may also share the same content in torrents and

that intellectual infringement content is also distributed through IPFS.

4.1.5 Countermeasures

The amount of malicious nodes connected to IPFS is alarmingly high. Given

the P2P nature of IPFS and its continuous exploitation, we believe that pruning

nodes from the network might provide an initial measure of sanitising the network;

otherwise, the benign peers facilitate the malicious ones. To this end, we opt for a

periodical blacklist approach that is resolved through InterPlanetary Name System

(IPNS). In essence, we propose using the proposed data crawling methodology to

monitor the nodes on a daily basis, the IPs are collected and using intelligence

services, we determine whether the IP should be blocked or not. Each IP is four

bytes long, so the expected size is rather small and easy to manage. For instance,

using our experiments as a baseline, using the worst estimate of 32000 malicious

nodes, the blocklist would be around 125KB if the IPs were directly stored (4

bytes per IP). Given its size and possible optimisations (e.g. use binary search

6https://pypi.org/project/nsfw-detector/
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over the sorted list), searching whether the connected peers are malicious can be

very efficient. Moreover, since the amount of nodes is tolerable, the collection of

data from intelligence services can be rather fast. Of course, one could hide the

IPs using approaches based on Bloom filters [53]. In this case, one would need less

than half of this storage (almost 56KB) to store these IPs with 0.01% possible false

positive. However, the issue is that this error would be persistent, meaning that

the nodes that would be false positives would be considered malicious by everyone

without being able to rectify this error. Nevertheless, with the growth of IPFS

and the increase of malicious nodes, probabilistic structures such as Bloom filters

might be more optimal.

IPFS is becoming institutional, after all, many organisations are participat-

ing in it and supporting it. Recent research efforts indicate that it could frame the

existing banking system [54], while at the same time, it constitutes a cornerstone

of Decentralised Finance (DeFi). Our research does not intend to act as a brake

on its use; on the contrary, it intends to inform, alert and promote its secure use.

For instance, the network administrator of an organisation participating in the

IPFS network can block the traffic towards and from a suspicious IP address by

adding a rule to the firewall. Note that it can also remove alert fatigue from SOCs

who might observe malicious IPs connected to the monitored infrastructure due to

IPFS traffic. Finally, while IPFS provides the ability to disconnect from a node,

it does not provide natively the option for the user to maintain a blacklist.

4.1.6 Conclusions

Open and decentralised systems are, by their very nature, prone to sev-

eral attacks. However, given the crucial role of IPFS for Web3, it is essential to

protect the ecosystem. Our measurements indicate that an alarming number of

IPs reported as malicious through intelligence services are using IPFS. Rather than

making it centralised, we opt for soft measures that allow nodes to isolate malicious

ones selectively. We argue that this isolation can significantly benefit the network

as the content of most of these nodes may be malicious, leading legitimate ones

to facilitate nefarious acts and malicious campaigns. Therefore, their isolation, in
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the long run, may increase the robustness of the network and trust in it.

IPFS seems to have sacrificed part of the privacy to succeed in terms of

performance, speed, and robustness [7]. This shortcoming can be exploited for

malicious purposes, but it can also be leveraged by security analysts to monitor

malicious nodes. Thus, apart from the fact that we can obtain critical information

regarding a malicious node, such as its IP address, we can also monitor it from a

content point of view, i.e., its requests as well as what it provides. Therefore, a

future direction of this work is an extension of the implementation of the proposed

filter so that it associates malicious nodes with the corresponding content.

4.2 Investigating Anonymity Abuse in IPFS

As IPFS continues to grow in popularity, a variety of supporting services—such

as pinning services and public gateways—have emerged to enhance its functionality

and accessibility. Pinning services play a crucial role in maintaining file availability

across the network. These services allow users to ensure that specific files remain

accessible by hosting them on dedicated nodes, even if the original uploader goes

offline. In parallel, public gateways act as bridges between the IPFS network

and the traditional Web, enabling users to retrieve IPFS-hosted content through

standard HTTP protocols without running a local node.

Recent works have shown that malware increasingly leverages benign In-

ternet services to distribute payloads and evade detection. This includes both

centralized platforms such as GitHub and Dropbox [55], and large-scale abuse of

cloud services like Discord, Mediafire, and Google Drive [56]. Our work extends

this threat model to decentralized infrastructures like IPFS, where anonymity,

content immutability, and the absence of centralized moderation create an even

more permissive environment for abuse. In the following analysis we investigate

how malicious actors can exploit existing technologies within the IPFS ecosystem

to anonymously upload and distribute content. We begin by mapping the current

landscape of tools and protocols used to add and access content on IPFS, including

pinning services and public gateways. We then design and evaluate practical at-
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tacks that leverage these mechanisms to achieve anonymity and persistence within

the network. Finally, we explore potential countermeasures to mitigate such ex-

ploits.

4.2.1 Adding a File to IPFS

There are several ways to add a file to IPFS. In this section, we explore

different methods and their respective modi operandi. Additionally, we examine

the information about the original uploader that can be retrieved for each method

and the duration that the files remain online.

IPFS Node For the average user, the primary option for connecting to the

IPFS network is the IPFS Desktop application, which supports the most operating

systems and includes the functionality of an IPFS node within a user-friendly

graphical interface. There is also a command-line version available called Kubo.

A detailed description of this process can be found in Section 2.2.1. It is also

worth mentioning that the Brave Browser natively supports the use of IPFS in

conjunction with a local node [57], yet earlier versions provided the ability to add

files via Public Gateways.

Pinning Services IPFS, according to its design principles, does not provide a

mechanism to ensure that files added to the network remain online if the original

uploader deletes them or disconnects from the network. Files are primarily cached

by requesters to ensure their availability to other nodes. The more popular a file

is, the higher its chances of staying online for an extended period. Additionally,

every IPFS node runs a garbage collector to free up storage space. As a result,

cached files are periodically removed, leading some files to disappear from the

network over time [28]. To prevent the garbage collector from removing a file, the

user must pin it. Pinning can be categorized into two types: local pinning, where

the user configures their node to retain the file, though it will fade once the node

disconnects from the network; and remote pinning, where an external provider

takes the responsibility to ensure that the file remains pinned [58].
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A plethora of pinning services is available, with Pinata, Filebase, Fleek, and

4EVERLAND being among the most popular. These platforms offer user-friendly

graphical interfaces for adding files to the IPFS network, simplifying the process

for the average user. Moreover, they provide free storage space for uploading and

pinning files, making them accessible to a wide range of users. Once added, the

files can be retrieved through public gateways, which act as HTTP access points

to the IPFS network.

Although Web3.Storage and NFT.Storage7 are not strictly classified as pin-

ning services, their functionality closely resembles traditional pinning solutions, so

we include them in this section for completeness. These open-source services, de-

veloped by Protocol Labs, are designed to store general and NFT-related data,

respectively, in the Web3 era. Both services operate decentralized, leveraging

IPFS for content addressing and Filecoin for long-term data preservation rather

than offering a pinning service. Web3.Storage is notably free for the community,

while NFT.Storage operates under a paid model. NFT.Storage was excluded from

further experiments, as it specializes exclusively in NFT metadata storage, which

falls outside the scope of our analysis focusing on general-purpose file uploads.

Public Gateways Public gateways act as HTTP entry points to the IPFS net-

work, bridging the Web2 and Web3 ecosystems. They process HTTP requests

containing CIDs and relay them to an IPFS node, enabling broader access to the

network through conventional Web protocols. Although users cannot directly up-

load files through a gateway, indirect methods enable this functionality, justifying

their classification in this section. Furthermore, the HTTP servers underpinning

these gateways leverage caching mechanisms, most commonly the Least Recently

Used (LRU) strategy which optimizes performance and user experience by evicting

the least recently accessed content when the cache reaches its capacity [4]. Based

on the above, it is evident that even if the original uploader disconnects from

the IPFS network, the file may remain accessible, cached by gateways, with its

persistence primarily influenced by its popularity. During the preparation of this

7https://nft.storage/
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study, we identified 10 online gateways.8 Using the fingerprinting tool WhatWeb,9

we found that nine gateways utilize either Nginx software or Cloudflare proxies,

which employ the LRU caching strategy to manage content efficiently.

The fact that public gateways serve as a bridge between the traditional

Web and the P2P ecosystem of IPFS makes them very crucial for launching and

countering several attacks. For instance, an adversary may host a phishing page

on IPFS; however, the content must be rendered from the victim’s browser. Thus,

the bridge fetches the content from IPFS and brings it to the Web. It must be

noted that while there is no official deletion mechanism for IPFS [59], some public

gateways follow blocking mechanisms to prevent specific content from reaching the

Web [60]. Nevertheless, not all gateways follow the same blocking mechanism and,

of course, this does not remove the content from IPFS.

4.2.2 Exploiting IPFS for Anonymity: Attack Scenarios

The anonymity offered by IPFS can be exploited by malicious actors. In

this section, we analyze how attackers leverage methods discussed in Section 4.2.1

to achieve anonymity, presenting and evaluating two distinct attack scenarios.

The Pinning Service Attack

Pinning services ensure that a file remains online. Therefore, it is logical to

consider that an attacker could exploit these services to upload a file and guarantee

its availability. However, since our focus is on evaluating the level of anonymity,

we first examine the information each pinning service requires from users to allow

file uploads, i.e., the Know Your Customer (KYC) procedure. We selected Pinata,

Filebase, Fleek, Web3.Storage, and 4EVERLAND based on a systematic Internet

search. Specifically, we performed Google queries such as “top IPFS pinning ser-

vices” and “most popular IPFS pinning services,” identifying the services most

frequently mentioned in developer documentation, technical articles, and commu-

nity discussions. Academic literature specifically evaluating IPFS pinning services

8https://ipfs.github.io/public-gateway-checker/
9https://github.com/urbanadventurer/whatweb
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remains limited, further justifying the need to consult current developer ecosys-

tems and real-world service availability. Besides the selected providers, our search

also highlighted Infura and Temporal. However, Infura currently restricts access to

pre-qualified customers,10 and Temporal appears to have discontinued operations.

Thus, our study focuses exclusively on active and publicly available services, realis-

tically representing the infrastructure accessible to potential anonymous attackers.

The Pinata, Fleek, and Filebase services require an email address for user

registration. To achieve higher levels of anonymity, we attempted to use a tempo-

rary email service. A temporary email is a disposable email address that allows

users to receive emails for a short period, often used to maintain anonymity or

avoid spam during registration processes. During December 2024 and January

2025, we tested the registration process on Pinata, Fleek, and Filebase using email

addresses generated by the service TempMail (https://temp-mail.org). Both

Pinata and Fleek accepted the first temporary email we generated, allowing us to

create accounts successfully. After four attempts with different temporary email

addresses, Filebase accepted the registration, suggesting that its filtering against

disposable emails may be incomplete.

In all three cases, the platforms required us to verify the email address

using a one-time password (OTP). 4EVERLAND, on the other hand, does not

use email-based registration but instead requires a cryptocurrency wallet. Using

Metamask, we successfully created an account on the platform, noting that even for

creating the Metamask wallet, no email was needed. Finally, while Web3.storage

accepted the temporary registration email, uploading files required linking a pay-

ment account, even though the platform also offers a free plan. This suggests that,

although temporary emails are allowed, the payment account requirement serves as

an additional verification step for users, limiting its suitability for fully anonymous

abuse scenarios. Table 4.3 presents a summary of these findings.

To simulate malicious behavior, we developed a Python script compiled

into a Windows executable (≈ 7 MB) using PyInstaller.11 It mimicked keylogging,

dummy process injection, basic file manipulation, and failed network connections.

10https://docs.metamask.io/services/reference/ipfs/
11https://pyinstaller.org/
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Table 4.3: Registration requirements & free storage for pinning services.

Pinning URL KYC Temp Mail Free Registered DMCA

Service Accepted Storage Country Compliant

Pinata https://pinata.cloud E-mail ✓ 1 GB USA ✓

Filebase https://filebase.com E-mail ✓ 5 GB USA ✓

Fleek https://fleek.co E-mail ✓ 5 GB USA ✓

Web3.Storage https://web3.storage Credit Card ✓ 5 GB USA -

4EVERLAND https://4everland.org Crypto Wallet N/A 5 GB AUS ✓

The file was safe by design, yet flagged by multiple antivirus engines on VirusTo-

tal12 due to behavioral heuristics. No harmful payload or external communication

was included. To ensure unique Content Identifiers (CIDs), we created a dis-

tinct version of each script for each pinning service under evaluation. One of the

key questions explored in this section is how pinning services handle files clearly

marked as malicious, aiming to better replicate the perspective and actions of a

potential attacker. In addition to the simulated malware, we also tested uploading

known deprecated malware, specifically the WannaCry ransomware, to the pin-

ning services. The result was identical: the file was successfully uploaded, and its

CID was generated. Furthermore, we confirmed its accessibility through the pub-

lic gateways. Notably, all files, including WannaCry, were immediately accessible,

highlighting the absence of mechanisms in public gateways to evaluate the mali-

ciousness of uploaded content. This raises significant concerns about the potential

misuse of the IPFS network.

As previously discussed, in IPFS, the physical address of the node host-

ing a file can be identified. However, when files are hosted by pinning services,

attackers are not concerned about their own address being exposed. The only po-

tential exposure point is during the interaction with the pinning service’s website

for registration and file upload. To mitigate this risk, an attacker could use a

public network or leverage the Tor [61] network to enhance their anonymity prior

to registering and uploading files to the pinning services. Since many services im-

plement protections that restrict access via Tor, we conducted a series of tests to

verify the feasibility of using Tor to access these services. Our tests confirmed that

12https://www.virustotal.com/
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files could be successfully uploaded, and the recorded IP address differed from our

actual address, ensuring the attacker’s anonymity.

It is important to note that visitors to these files, once uploaded by the

attacker, may include either unsuspecting users who were targeted by phishing [60]

or malware campaigns, or, in CyberCrime-as-a-Service scenarios [46], collaborators

of the attacker, such as affiliates. Even in the latter case, leveraging the Tor

network can effectively mitigate the risk of exposing their identities or the nature

of their activities.

Figure 4.6: Design of the “Pinning Service Attack”.

Figure 4.6 presents the steps that a malicious actor must follow to execute

the “Pinning Service Attack”. It allows the attacker to leverage the Tor network

for anonymity and anonymously upload files to IPFS. By utilizing pinning services,

the attacker ensures that uploaded files remain persistently online.

The Public Gateway Attack

As mentioned, Public Gateways of IPFS do not provide a direct method for

uploading a file to the network. However, their caching might indirectly serve as

a pinning service, providing file availability. In this section, we initially examine

whether and for how long a file remains cached.

To better understand this phenomenon, we conducted a systematic exper-

iment focusing on caching behavior across multiple gateways. The methodology
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we followed is as follows. From the 10 gateways identified in Section 4.2.1, we

selected five based on their strong association with well-known Web companies

(e.g., Pinata, Infura) and official status within the IPFS ecosystem. Specifi-

cally, we chose (a) ipfs.io (the official gateway maintained by Protocol Labs),

(b) gateway.pinata.cloud, (c) infura-ipfs.io, (d) flk-ipfs.xyz and (e) 4everland.io.

For each selected gateway, we created four different files resulting in 20 different

files. First, we wanted each gateway to have different files to avoid cross-caching

scenarios. Second, for each of these, we created four different files corresponding to

the 4 time scenarios we are studying: 1 hour, 6 hours, 12 hours, and 24 hours. We

use these intervals to request the respective files from the gateways to understand

how popular a file needs to be to remain cached.

Subsequently, we used an IPFS node to add the files, ensuring our node

ran as a DHT server. Then, to confirm that all the gateways cached all files, we

sent up to four requests per file to verify their caching status. The four requests

were performed in a negligible amount of time, less than five minutes, and the files

became available. After successfully ensuring that all files were cached across the

gateways, we disconnected the node from the network, leaving the gateways as

the sole source of file hosting. The latter allows us to isolate the role of gateway

caching in maintaining file availability independent of the original node. By doing

so, we could analyze how the caching mechanisms of public gateways sustain file

accessibility over time.

We automated the process of sending requests to the gateways based on

the aforementioned periods and recorded the responses for more than three days.

The results indicate that caching duration varies significantly between gateways,

with some maintaining availability longer than others, which could be attributed to

differences in caching strategies or the relative popularity of each gateway. Figure

4.7 illustrates the ratio ν
5
per hour, where ν represents the number of gateways

caching our files at a given time across the different time scenarios. As depicted,

two out of the five gateways removed our files from their cache shortly after 16

hours, while the remaining three continued to retain them online. For ethical

reasons, we refrain from disclosing which ones retained or removed the files.
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Figure 4.7: Time-Dependent File Availability Analysis.

In conclusion, we have demonstrated that a malicious actor could poten-

tially exploit Public Gateways to maintain files on the IPFS network anonymously.

The process involves first uploading the files to the IPFS network and generating

artificial traffic by repeatedly requesting these files. This ensures that the Public

Gateways cache the files. Once the files are cached, the actor can sustain their

availability by periodically sending requests for the files, preventing them from

being removed from the cache due to inactivity. This approach allows the actor to

leverage the distributed infrastructure of Public Gateways to maintain file avail-

ability while preserving anonymity, eliminating the need for a dedicated pinning

service. At this point, it should be noted that during the attack, the attacker only

risks revealing their physical address while uploading the files via the local node.

As previously mentioned, this process requires minimal time, significantly reducing

the exposure window for the attacker. Additionally, the attacker could perform this

step through a public network to further obscure their physical location. The sub-

sequent periodic requests to the public gateways can also be accomplished through

a public network or Tor. Additionally, the attacker could utilize a botnet under

their control to generate artificial traffic towards the files without revealing their

identity. By distributing requests across multiple geographically dispersed nodes,

the botnet obscures the origin of the traffic, making it significantly harder to trace

back to the attacker. Note that in the past, the IPFS network has been a victim of

such botnet activity [6]. A step-by-step implementation of the attack is illustrated
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Figure 4.8: Design of the “Public Gateway Attack”.

in Figure 4.8.

Double Extortion Attack

Typically, ransomware attacks encrypt the victim’s files and demand a ran-

som to be paid to hand over the decryption key. Nevertheless, modern organi-

zations have invested in backup systems that limit the damages of a potential

ransomware attack, significantly decreasing the amount of ransom they would be

willing to pay. As a countermeasure, ransomware gangs siphon sensitive data to

their premises, threatening their victims by leaking the data and creating what is

often called a “double extortion”.

The siphoning of the data can be performed in multiple ways, however,

methods like DNS tunneling, while effective, can be very slow. Therefore, ran-

somware gangs tend to abuse cloud service providers to upload their “loot”. For

example, the notorious Conti group used RClone to upload data to multiple cloud

storage providers. 13 With IPFS and the poor KYC practices of pinning services,

ransomware gangs can have another more robust option. They may harvest sensi-

tive information from the infected hosts and upload them to IPFS through pinning

13https://news.sophos.com/en-us/2021/02/16/conti-ransomware-attack-day-by-

day/
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services. Beyond exploiting KYC to gain the necessary storage, ransomware gangs

may also exploit whitelisted domains and the lack of content takedown mecha-

nisms. Note that cloud service providers respond to takedown notices, e.g., the

victim notifies the cloud service provider that leaked sensitive data are hosted and

must be taken down. However, pinning services cannot remove content from the

IPFS once it has been uploaded. Although pinning services comply with DMCA

policies and can remove a pinned file from their hosted storage, this does not

translate into the deletion of the file from the IPFS network. The decentralized

nature of IPFS makes this nearly impossible, while the existence of public gate-

ways, many of which do not adhere to the badbits list (as mentioned in 4.2.2),

further complicates takedown efforts. Figure 4.9 illustrates this abuse scenario.

Figure 4.9: Design of the “Double Extortion Attack”.

Real-Life Evidence of Malicious Exploitation

While previous work such as [60] investigated the presence of malicious or

illegal content across the IPFS network, our approach specifically targets pinning
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services, i.e., entities that intentionally maintain long-term availability of hosted

content. By focusing on CIDs advertised by major pinning providers, our analysis

offers a more precise view into deliberate, persistent misuse of the IPFS ecosystem,

and links it directly to infrastructures that facilitate anonymity and permanence.

We utilized ipni-cli14 to monitor CIDs advertised by Pinata, Filebase, and

Fleek pinning services on the cid.contact indexer for 24 hours. For all providers,

we repeatedly executed the following command:

ipni ads get --ai=<provider addr> --head

This command retrieves information about the latest advertisement from the spec-

ified provider, including the number of CIDs it contains. Once we obtained this

information, we proceeded to extract the actual CIDs using:

ipni random <provider addr>

With the parameter n, this command returns m CIDs from a random selection of

the most recent n advertisements. By setting n=1, we ensured that the selection

always targeted the most recent advertisement. Since the previous command had

already provided us with the exact number of CIDs, we could request all of them

at once. This approach enabled us to systematically retrieve all hashes from every

advertisement recorded since the beginning of the experiment. By continuously

executing these queries and storing the results, we effectively built a historical

record of all advertisements and their associated CIDs from each provider. During

the 24-hour interval, we collected (i) 1, 124, 780 CIDs from Pinata, (ii) 718, 578

from Filebase, and (iii) 339, 684 from Fleek. For each of these, we standardized

the format of the CIDs to match the entries in the Bad Bits Denylist,15 en-

suring compatibility for an accurate comparison. The Bad Bits Denylist is a list

maintained by Protocol Labs, updated upon email recommendations to filter unde-

sirable files, such as malware, phishing content, or copyright-infringing materials.

Note that the list is enforced on the public gateways operated by Protocol Labs

but is advisory for all other nodes within the IPFS network. By matching the mon-

itored CIDs against the entries in the denylist, we discovered that within 24 hours,

14https://github.com/ipni/ipni-cli
15https://badbits.dwebops.pub/
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the pinning services advertised five CIDs included in the Bad Bits Denylist. It is

worth mentioning that one of these CIDs was advertised by all three services, while

two were common to two services. We consider the presence of these blocked CIDs

–and even more so their simultaneous advertisement on the same day by multiple

pinning services– a strong indication of malicious actors’ organized exploitation of

the anonymity provided by pinning services. Finally, we managed to retrieve three

of them, discovering that one was a JavaScript file involved in a Bank of Amer-

ica phishing scam, the second was a login phishing webpage targeting a Korean

webmail service, and the third was an image, likely used for malicious purposes.

4.2.3 Related Work

A growing body of research has shown that malware increasingly abuses

centralized Web and cloud platforms for infrastructure, persistence, and evasion.

Yao et al. [55] propose Marsea, a concolic execution engine that detects malware

interaction with benign Web applications such as GitHub and Dropbox, revealing

how these services are repurposed for malicious use. At a broader scale, Allegretta

et al. [56] analyze threat intelligence from 36 vendors and identify over 22,000

abused benign domains, including services like Discord and Google Drive, used to

distribute malware. These works demonstrate that even trusted, centrally man-

aged services are vulnerable to abuse. In this work, we show that decentralized

infrastructures like IPFS introduce new and arguably more permissive abuse sur-

faces, due to their inherent anonymity, lack of content moderation, and resistance

to takedown.

In recent years, Web3 has emerged as a new paradigm for the Internet,

prioritizing user anonymity and privacy. These features are especially significant

as concerns about user privacy and tracking escalate. However, numerous stud-

ies indicate that these features are often compromised. Kshetri [62] highlights

several vulnerabilities within Web3 and the metaverse, particularly the extensive

data collection and exposure of personal and sensitive data due to numerous se-

curity breaches on Web3. Furthermore, the author points out that anonymity

may be compromised through the traceability of blockchain transactions on Web3
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platforms, potentially linking personal identities and actions to public transaction

records.

On the other hand, other studies focus on how anonymity and privacy

are compromised on Web3. Wang et al. [63] explore how Web3 social platforms,

such as friend.tech,16 impact user privacy and anonymity. In particular, they

identified that the integration between Web3 and legacy Web2 platforms could

significantly undermine Web3 anonymity and lead to privacy leakage. This occurs

because user actions on Web2 platforms can be associated with accounts on Web3

platforms since these actions are immutably written on blockchains. Then, the

recorded actions can be linked and traced back to the users. To address these

problems, the authors argue that a balanced approach between transparency and

privacy in Web3 is needed. Additionally, Torres et al. [64] focus on how wallets

and Decentralized Applications (DApps) manage user data. The authors conclude

that current privacy measures are insufficient, highlighting that Web3 applications,

particularly wallets, often expose sensitive user data, such as wallet addresses.

This exposure directly contradicts the foundational privacy promises of Web3 by

compromising user anonymity and privacy.

A central element of Web3 and a core focus of our study are distributed

file systems, with IPFS being the most prominent. Previous research has demon-

strated that IPFS can be exploited by malicious actors across various domains.

For instance, studies have shown its use in Malware as a Service systems [46],

while others have reported the presence of phishing files or copyright violations

within the IPFS network [60]. Moreover, IPFS also has some privacy violations.

In particular, Balduf et al. [7] showcase a privacy attack on the IPFS network by

leveraging the Bitswap protocol and introducing a set of attack vectors. The au-

thors state that every IPFS node is susceptible to each of the introduced attacks,

and moreover, they succeed in exploiting it by deploying a number of nodes with

extended connectivity to passively monitor the Bitswap channel and demonstrate

their attack methodology by discovering the PeerId of the public IPFS HTTP

gateways.

16https://www.friend.tech/
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In addition to attackers, security analysts can leverage Bitswap’s privacy

shortcomings. Son et al. [65] propose IF-DSS, a digital forensics investigation

framework for Decentralized Storage Services (DSSs). They analyze the most

critical DSSs from the point of view of digital forensics and apply the proposed

framework to IPFS. To collect appropriate and sufficient data, they separate them

into those that exist on the local side as well as remotely. Finally, they suggest

tackling the dissemination of illegal material in three steps: (i) Content filtering,

i.e., blacklisting of the inappropriate content, (ii) stop content sharing, i.e., turn

the node from server to client, and finally, (iii) shutting down the node.

On the other hand, some works try to enhance IPFS privacy. Katsantas

et al. [66] focus on hiding the identity of content on IPFS by using only hash

functions. The authors aim to prevent intermediaries from detecting the retrieved

contents without relying on trusted third parties. Furthermore, Daniel et al. [67]

point out that as IPFS follows the ICN paradigm, a client requests content directly

rather than visiting an address. Thus, Bitswap queries all the client’s neighbors for

content, resulting in the client’s interest leaking. Aiming to reduce interest leakage,

the authors propose three privacy-enhanced standards for content discovery. By

using these protocols, on the one hand, the level of privacy of the client is improved,

but that of the provider is reduced. More specifically, they propose Bloom-Swap, a

solution using bloom filters in which the provider sends its inventory to the client,

and he, in turn, checks locally whether the requested content is a Bloom Filter

member to ask the block directly. PSI-Swap, which uses Private Set Intersection

(PSI), reduces and improves privacy levels on the provider’s side as well. Finally,

the BEPSI-Swap, which combines the two previous ones, improves the efficiency of

PSI-Swap, at the cost of making PSI probabilistic. The authors then implement a

proof of concept of the proposed protocols and study them from the security and

efficiency perspectives.

4.2.4 Countermeasures & Conclusions

The decentralized nature of the technologies we study, combined with the

fact that the majority of the software is open-source, makes enforcing rules for
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implementing countermeasures challenging. From the perspective of pinning ser-

vices, KYC practices must become stricter. Measures such as filtering temporary

emails, implementing blockchain-based identity systems, e.g., cryptocurrency wal-

lets with benign transaction history, applying stricter criteria for users operating

through Tor networks, enabling content scanning mechanisms, and adhering to

a centralized deny list like Bad Bits should be enforced. Public gateways act as

bridges for Web2 users to access the Web3 ecosystem. For the average user, requir-

ing a blockchain-based identity would deter them from utilizing these gateways.

However, all gateways could be required to comply with the Bad Bits, a policy

currently enforced only on gateways managed by Protocol Labs. Moreover, even

if a CID is listed on the Bad Bits Denylist, a malicious actor can circumvent it by

simply choosing an alternative chunking size when adding the file to IPFS (RQ5).

This approach generates a different CID that is not associated with the blacklisted

one [60], making content filtering on gateways significantly more challenging.

In this study, we examined the vulnerabilities of IPFS pinning services and

public gateways, highlighting how malicious actors can exploit their anonymity

features or lack of proper KYC policies to share undesirable content. By imple-

menting and testing two distinct attack methodologies, we demonstrated not only

their feasibility (RQ3) but also observed instances of malicious activity occurring

within the IPFS ecosystem (RQ4). Our findings reveal critical issues, including

the lack of robust KYC practices in pinning services (RQ1), insufficient content

filtering mechanisms (RQ2), and the challenges posed by the decentralized and

open-source nature of the IPFS ecosystem. These gaps enable attackers to take

advantage of the anonymity features of the system while avoiding accountability.

Since current KYC practices in pinning services can be easily bypassed, the use

of stricter measures, of even the consideration of blockchain-based identity verifi-

cation methods, such as zero-knowledge proofs (ZKPs), e.g., zkLogin [68], would

allow users to verify their legitimacy without exposing their full identity.

It should be stressed that the decentralized nature of IPFS raises signif-

icant legal and regulatory challenges, particularly in the enforcement of content

moderation and compliance with existing digital laws. While platforms operating
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in centralized environments are bound by regulations such as the Digital Services

Act (DSA),17 decentralized systems like IPFS lack clear accountability structures.

This creates a regulatory gap that malicious actors can exploit to distribute illicit

content while avoiding legal repercussions. One of the main concerns is jurisdic-

tional ambiguity. Since IPFS content is hosted on a distributed network of peers, it

is often unclear which jurisdiction has the authority to enforce takedown requests

or prosecute offenders. This is especially true on platforms like IPFS, where there

is no deletion mechanism and data ownership is not always known. Pinning ser-

vices, many of which operate in different countries with varying legal requirements,

further complicates the enforcement process.

Nevertheless, this sparks the debate surrounding IPFS security and other

such platforms regarding the trade-off between privacy and censorship resistance.

While decentralization offers increased resilience against state-sponsored censor-

ship, it also enables unmoderated content proliferation, including, but not limited

to, extremist propaganda, child sexual abuse material, and malware distribution.

The ability of malicious actors to exploit anonymity for illegal activities creates

a dilemma where content moderation mechanisms must be introduced without

undermining the fundamental principles of decentralized storage.

Strengthening the security of IPFS and the surrounding ecosystem is essen-

tial not only to prevent its misuse but also to promote its adoption as a reliable

and privacy-preserving tool for decentralized file sharing, which is fundamental to

the Web3 paradigm. To this end, future research could focus on the development

of automated tools to detect malicious CIDs in a decentralized and scalable way.

Another approach would be decentralized content moderation, where community-

driven flagging mechanisms allow for voluntary filtering rather than direct deletion.

Likewise, user-driven reputation systems for pinning services and nodes could help

differentiate legitimate operators from malicious ones. By assigning trust scores

to nodes based on their activity and compliance with community standards, users

could make informed choices about which nodes to trust for content retrieval and

caching.

17https://eur-lex.europa.eu/eli/reg/2022/2065/oj/eng



Chapter 5

Security Challenges and Solutions

in the Web3 Application Layer

The Web3 application layer constitutes the uppermost tier of the Web3

stack, enabling user-facing DApps that leverage blockchain technologies, decen-

tralized storage systems, and cryptographic protocols. This layer abstracts the

complexity of the underlying infrastructure, e.g., smart contracts, DLTs, naming

systems, and focuses on delivering secure, user-driven services across domains such

as Decentralized Finance (DeFi), social media, and gaming. The application layer

is responsible for orchestrating secure asset interactions, enforcing ownership logic,

ensuring long-term availability, and preserving digital content through P2P infras-

tructures. In this chapter, we investigate security concerns specific to the Web3

application layer, with a focus on decentralized gaming and peer-to-peer content

retrieval. First, we introduce a fully decentralized NFT-based gaming architecture

that addresses trust, ownership, and sustainability through smart contracts, IPFS,

and name resolution mechanisms. We then turn our attention to the foundational

infrastructure that supports such applications: IPFS and its Bitswap protocol. We

present a protocol enhancement that improves both retrieval latency and content

availability, critical properties for scalable and reliable DApps. Together, these

two contributions demonstrate how application-layer design and P2P storage op-

timization can jointly address core security requirements such as asset integrity,

content availability, and decentralized control.

83
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5.1 The case of Blockchain Gaming

Distributed Ledger Technologies (DLTs) have found application in many

aspects of our lives, as they promise secure, trustworthy, and decentralized trans-

actions with the use of cryptographic techniques. Thanks to their fast growing

popularity, DLTs have lately caught the eyes of game development industry. Of-

fering solid proof of uniqueness and ownership for assets, they are fertile ground

for the development of various types of games.

Gaming models have changed over the years, targeting to keep pace with the

evolution of technology, trying to be attractive to users, and at the same time more

profitable for the gaming industry. The traditional Pay-to-Play model, where users

pay upfront for the game and/or the console, has lately been replaced by the Free-

to-Play model. In the Free-to-Play model, users acquire the game at no cost, but

they are incentivized to spend money for in-game assets. The latter has brought

to the fore the gaming career path and the eSports industry. The advent of DLTs

combined with the trend of gamers to earn an additional income from gaming,

has given birth to the Play-to-Earn (P2E) model. In the P2E gaming model,

not only do users play for free, but they can potentially earn cryptocurrencies.

All in-game merchandise they earn playing rely on Non-Fungible Tokens (NFTs)

owned by them, and not by the company, which can be sold or exchanged for

cryptocurrency. In 2017, blockchain trading games made their appearance using

NFTs and since then, they have been growing in popularity, as well as in market

capitalization. From the pioneering Cryptokitties,1 to Axie Infinity,2 the most

recent pokemon-like game following the P2E model with over $1,100,000,000 total

volume.3 As player communities continue to grow, an increasing number of game

categories are adopting the NFT model, making it clear that NFT-based games

are not a fleeting trend. In the third quarter of 2023, the blockchain gaming

sector experienced 12% growth, with average daily unique active wallets reaching

786,766 [69]. By August 2024, the industry had reached a new record of 4.2

1https://www.cryptokitties.co/
2https://axieinfinity.com/
3https://nomics.com/assets/axs2-axie-infinity/
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million daily unique active wallets.4 This exponential growth underscores the

rising importance and permanence of blockchain gaming within the broader digital

entertainment ecosystem. As these applications scale, the Web3 application layer is

increasingly challenged to deliver robust, secure, and highly available infrastructure

for managing digital assets. Ensuring ownership persistence, content integrity, and

resistance to central points of failure is not only critical for user trust, but also for

the long-term sustainability of decentralized gaming platforms. Therefore, secure

storage, naming, and interaction mechanisms become central design concerns at

the application layer.

Blockchain games are classified as DApps, offering new models for owner-

ship and interaction. Although they utilize blockchain-based asset representation,

the centralization of media files, such as game artwork and metadata, has been a

critical limitation. In most implementations, these assets are hosted on the servers

of the game companies, introducing risks related to long-term availability, content

integrity, and user ownership [70]. To address these issues, a prior system [71]

was proposed, introducing a fully decentralized trading game architecture. The

system leveraged the InterPlanetary File System (IPFS) to ensure that in-game

assets remain available and verifiable, regardless of the status of the game operator.

This initial design sought to answer foundational questions such as: “Who truly

owns the artwork of a game?”, “What happens if the gaming company discontin-

ues the service?”, and “Does the asset retain any value independently?”. Building

on that foundation, the extended work [72] identified key limitations in the use of

IPFS alone, particularly regarding storage incentives and update mechanisms. As

a response, it integrated Filecoin to enhance long-term availability via economic

incentives, and replaced IPNS with the Ethereum Name Service (ENS), offering

improved robustness and user-friendly management of evolving NFT metadata.

In parallel with the rapid expansion of NFT-based gaming and the Play-to-Earn

(P2E) model, the system architecture was enhanced to support decentralized in-

teraction between gaming companies, artists, and players in a tamper-resistant,

auditable, and trustless manner. Core technologies underlying this design include

4https://dappradar.com/blog/blockchain-gaming-reaches-new-record-4-2-million-daily-
active-users



86

smart contracts on Ethereum, IPFS/Filecoin for decentralized storage, and thresh-

old cryptography for secure asset control. To meet the evolving requirements of

decentralized gaming under the expanding P2E paradigm, the proposed system

introduces a fully decentralized and self-sustainable architecture. By orchestrating

heterogeneous Web3 components such as blockchains, decentralized storage (IPFS

and Filecoin), and naming services (ENS), the system addresses limitations re-

lated to asset availability, ownership guarantees, and trustless interaction. No-

tably, it implements a decentralized version of the “mint-in-sealed-box” concept

using threshold cryptography, preserving asset secrecy and uniqueness until explic-

itly revealed. The system also supports evolvable NFTs, allowing in-game assets to

dynamically change over time. This is achieved through the use of mutable name

resolution mechanisms, for which ENS was selected over IPNS due to its enhanced

robustness and performance. Finally, the architecture supports royalty-aware as-

set resale, enabling new business models where artists and other stakeholders can

receive automatic compensation for secondary market activity.

5.1.1 Background

IPFS Ecosystem

Web3.storage and NFT.storage are open-source services created by Protocol

Labs targeting to store general data and NFT related data, respectively, in the

Web3 era. Both work in a decentralized manner, leveraging IPFS and Filecoin

and are framed by Javascript libraries. It is notable to mention that both services

are provided to the community at no cost to the user.

Shamir’s Secret Sharing

Shamir’s Secret Sharing (k,n) [73] is a threshold cryptography scheme, used

to secure a secret. Initially, the secret is divided into n fragments, called shares.

For the secret to be revealed, at least k of the shares are required. Thus, if the n

shares were distributed to n actors, at least k of them must coalite to recover the

secret.
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IPFS

Ethereum blockchain

Client

Game Company

Metadata

Digital art
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ERC721
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image bafyb.../artwork.jpg.enc

cover bafyb.../artwork.jpg

... ...

seal True

Figure 5.1: An overview of the system’s architecture.

5.1.2 System Design

In this section, we present the architecture of our proposed system, which

is illustrated in Figure 5.1. Our architecture is composed of the following entities:

• The Ethereum blockchain, the IPFS, and Filecoin infrastructure

• The required smart contracts, one that creates and manages the NFTs and

the smart contracts that implements the ENS (registry, resolver, and regis-

trars)

• The gaming company (game administrator/creator) that owns the trading

game

• The artists that create the digital arts

• The clients that want to purchase and trade the NFTs and the corresponding

digital arts
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The actors of the system, namely the game administrator, the artists, and

the clients, should own a blockchain wallet in order to be able to interact with the

blockchain network. This wallet is also used as an address on the blockchain net-

work and as a secure storage for the acquired NFTs. Moreover, for the encryption

part of the digital assets, a symmetric key is generated, split, and shared among

the three actors. Finally, the game administrator should own an API key to be able

to upload the metadata file and the corresponding digital art on the Web3.storage

and the NFT.storage respectively. From a high level perspective, the entities of our

system interact with each other as follows. The artist creates the digital art and

sends it to the gaming company. Then, the gaming company creates the NFTs,

initializes the corresponding ENS entries, and uploads the encrypted digital art

and the appropriate metadata file on the IPFS. Finally, clients can acquire NFTs

by paying the defined amount of money (in ethers) on the smart contract. The

flow of the system is described in more detail in the following phases.

Setup

Initially, the gaming company implements the smart contract that creates

and manages the NFTs, based on the ERC-721 token standard, and deploys it on

the Ethereum blockchain. We settled on ERC-721, despite the variety of token

standards, e.g., ERC-1155, due to its popularity among the blockchain games.

Moreover, it is considered as a perfect fit for our system, since we are focusing

purely on NFTs, and not on both fungible and non-fungible tokens. The address

of the smart contract is considered well-known. Then, the gaming company mints

the tokens, receives the media files (e.g., character avatars), which are created by

the artists, and it initializes the corresponding ENS entries.

We now describe the flow that happens for each NFT and the correspond-

ing media file. The gaming company generates a symmetric encryption key to

encrypt the media file and uploads it on the NFT.storage (the gaming company

is considered a trusted entity). Subsequently, the gaming company uploads the

metadata file on the Web3.storage. The metadata file contains information about

the NFT. Namely, it contains the name and the description of the NFT, the CID of
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the encrypted media file that corresponds to this NFT, and the CID of the sample

cover file. The metadata file contains also a map showing the current owner of

the NFT, and a value that shows whether the media file has been downloaded and

decrypted. These information are also stored in the smart contract that handles

the NFTs. Upon uploading the media file on the NFT.storage and the metadata

file on the Web3.storage, the gaming company modifies the ENS entry to point to

the IPFS hash (CID) of the metadata file, in which there is an entry with the hash

of the media files on the NFT.storage on IPFS. Finally, it modifies the token URI

field of the NFT in the blockchain to point to the corresponding ENS entry.

NFT purchase

From this point on, a client can acquire NFTs, either from the gaming com-

pany or from another client. For the first case, the client can read the blockchain,

by invoking the appropriate function of the token smart contract to find out the

available NFTs. Then, if she wants to purchase an NFT, she has to pay the defined

amount of money (in ethers) on the smart contract. Subsequently, the token is

“transferred” to her account (blockchain wallet) and she is able to see the meta-

data file of the token stored on IPFS. When a client acquires an NFT, sold for

the first time, the gaming company, using Shamir’s Secret Sharing (2,3) threshold

scheme, splits the decryption key into three parts, and each role of the system,

artist, gaming company, and client, gets one.

On the other hand, if a client wants to acquire an NFT that is already owned

by another client the following flow occurs. She should come to an agreement with

the client that owns the NFT for its price. If they come to an agreement, then she

has to pay the agreed amount of money, which is transferred to the smart contract’s

address. The NFT is “transferred” on the smart contract’s address too. The client

that sold the NFT, has to send his share of the decryption key to the client that

bought the NFT, through the smart contract. Then, an event is generated that

eventually is “caught” by the gaming company, which verifies that the key is the

actual key and not a fake one. Finally, if everything is as expected, the gaming

company sends a transaction on the blockchain, to “transfer” the money on the
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previous owner’ address and the NFT on the new owner’s address. Otherwise, the

NFT is transferred back to the previous owner and the money is transferred back

to the client wanted to acquire the NFT. Due to our design, there is no need for

generating a new encryption key or for keeping this specific share secret, since it

does not matter if the previous owner of the NFT copies the key or anyone else

read the blockchain and acquire the key, as the media file cannot be decrypted

with only one share of the key.

NFT retaining

In this phase, we assume that a client has already acquired an NFT. If the

client wants to download and decrypt the media file, she has to ask the other two

parts (artist and gaming company) for their decryption keys. Then, the gaming

company checks from the metadata file or the smart contract that the client is

indeed the owner of the NFT that she wants to decrypt, and if that is the case,

the gaming company and/or artist send their part of the key to the client, offline

and off-chain. After that, the list on the metadata file, as well as the appropriate

fields of the smart contract, is updated and shows that the client downloaded and

decrypted the media file. The price of the token is adjusted accordingly, based on

the status of the media file, e.g., if an asset has not been decrypted by any client

yet, its price remains high (“mint in sealed box” feature, see below).

5.1.3 Implementation

To better illustrate the advantages of our system and to fully quantitative

evaluate it, we developed a proof of concept implementation.5 The developed sys-

tem is composed of two main parts; the core service module and the smart contracts

that exist on the blockchain network. The core service module is a piece of soft-

ware developed in Node.js. It implements several functions that enable the gaming

company to interact with the IPFS-related services, such as the NFT.storage and

Web3.storage, as well as with the ENS smart contracts. Moreover, we provide

5https://github.com/mmlab-aueb/Tokenmon



91

XYZ.tokenmon.eth

unique token ID game company domain

QmW5rY6kkqbA7zesLTeDf... QmZ6qW7ttqbA7zesMSkLw...

X

OLD token metadata NEW token metadata

Figure 5.2: Diagram illustrating the use of an ENS address in our system.

an alternative implementation using IPFS’ native name resolution service, IPNS,

instead of ENS.

Core Service Module

As we have already mentioned above, the core service module runs on be-

half of the gaming company and implements functions for managing the IPFS and

ENS related services. The first function, called uploadToken, is used for uploading

a token’s full sized encrypted artwork, a low quality sample cover, and the token’s

attributes on IPFS, and in particular on the NFT.storage. Other auxiliary infor-

mation about the tokens, such as its name, its description, the encrypted artwork

file’s CID on IPFS, the sample cover file’s CID, etc., are included on the metadata

file, which is uploaded on the Web3.storage, using the same function. In order

for the game administrator to use the two services, two different API keys are re-

quired - one for NFT.storage and one for Web3.storage. Each key can be acquired

through the each service’s website by creating an account. The metadata file also

contains information about the owner of the NFT, and whether the digital artwork

has been decrypted. This file is encoded using JSON.

The second function of the core service module is called createToken and

is used to create a unique static ENS address for a token. This function is used

whenever either a completely new NFT is generated or a token’s metadata changes

due to a system feature, i.e., evolution and fusion. The function claims a new sub-
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domain, which is used together with the gaming company’s domain to identify the

NFT. This is illustrated in Figure 5.2. Another basic function of our system is the

updateToken function. This function is used to update the CID of the previously

mentioned static ENS address associated with the NFT. Every time that an NFT’s

metadata is changed, this function is used to update the address to point to the

latest version of the metadata file. Finally, the last function is the decryptToken,

which downloads an NFT’s encrypted artwork from the NFT.storage and decrypts

it, using two of the stakeholder’s shares of the key.

Two other important functions are implemented separately in a crypto-

graphic module; an encrypt and decrypt function. Both of them utilize the

Advanced Encryption Standard (256-bit AES) via Shamir’s threshold secret shar-

ing scheme. The encrypt function is used to encrypt the artist’s artwork before

going public on the IPFS, via the uploadToken function. A random key is gen-

erated and three separate shares are created and distributed to the three entities

participating; the gaming company, the artist, and the owner of the NFT. At its

current state, the information regarding the keys is stored in a database hosted by

the gaming company. Finally, the function results in a fully encrypted file, which

can be uploaded on NFT.storage. On the other hand, the decrypt function is used

to decrypt the token’s artwork using two out of the three secret shares.

1b) Core Service Module using IPNS

As we have already mentioned, every IPNS address is in essence the hash

of the public key of a key pair. Thus, for every NFT, a public-private key pair

must have been generated in advance. The differences between the two implemen-

tations are minimal and are located in the createToken and updateToken func-

tions. createToken generates a new pair of public-private keys that is directly

associated with the token’s ID. After the creation, the IPFS node automatically

saves the pair and an IPNS address is generated via publishing the token’s meta-

data CID by hashing its public key. Finally, a new entry is inserted in the game

company’s local database including the token’s ID, its current metadata CID, and

its static IPNS address.
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On the other hand, considering that a key pair already exists and that

the goal is to update a token, updateToken publishes the new metadata CID via

the already existing token’s public key. At this stage, the static IPNS address

points to the newest version of the token’s metadata. Then, the function proceeds

to update the token’s metadata CID field in the local database. In order for

the implementation to work properly during its early production stages, between

random time intervals, a support function iterates the database and republishes

the CID for every token ID stored in the database. This is done as a precaution

to the IPNS records exceeding their life time.

Blockchain

The other part of our presented system is related to the Ethereum blockchain

and the smart contracts. The core smart contract of our system is the NFT smart

contract, which is developed using the Solidity programming language and it is de-

ployed on the Rinkeby Ethereum test network (ethers in this test network do not

have real value). This smart contract implements the functions that the ERC-721

token standard dictates. In addition to these functions, our smart contract imple-

ments three more functions that correspond to the system’s actions; createToken,

fuseTokens and breakSeal. The createToken function is used to mint an NFT,

given a specific URI that corresponds to the ENS address pointing to the meta-

data file. The fuseTokens function is used to merge two NFTs and mint a new

one (evolvability feature). Lastly, the breakSeal function is used to simulate the

seal of a non-digital collectible being broken, thus supporting the “mint in sealed

box” feature. As we have already mentioned, the owner of an NFT is able to

choose whether she wants to download and decrypt the digital artwork, namely

revealing the NFT’s full scale artwork. If such a decision is made, then the break

seal function is called, and an event is emitted. The event is eventually “caught”

by the core service module software, which updates the metadata file accordingly.

Furthermore, the smart contract implements some (view) functions (introduce zero

cost) in order to allow the actors of the system to read and learn auxiliary informa-

tion about the NFTs. The software that interacts with the blockchain network and
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the smart contract uses the web3.js JavaScript library. The gaming company can

develop its own smart contracts based on the core contract that we implemented,

to support more complex game mechanics.

5.1.4 Evaluation

One of the contributions of our work is that it provides evolvability. We

argue that to achieve this desired feature, a name resolution service is necessary.

In particular, we consider two naming systems; IPNS and ENS. In this section, we

present the findings from the experiments we conducted, of our twofold implemen-

tation, the first using ENS and the second using IPNS.

ENS

The usage of blockchain technology is obvious and has a significant impact

on the time performance and responsiveness of the system. Furthermore, the

invocation of a smart contract function introduces some monetary cost measured

in gas units. Various tests have been conducted on the Ethereum Rinkeby test

network to estimate the average response times and the cost of the fundamental

functions of the core smart contract. The results are are shown in Table 5.1.

Smart Contract Function Average Response (sec) Cost (gas)

createToken 27.27 85532

fuseTokens 22.10 99005

breakSeal 17.29 48394

transferFrom 18.35 61523

Table 5.1: Average response times and costs in the Rinkeby network.

It must be noted that the presented average response times are significantly

exaggerated by sparse long waiting times. By excluding those infrequent spikes,

the pure-average waiting times are near the 15 second mark. Other important

time measurements have been conducted regarding the ENS-based implementation.
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One of the most substantial differences between the ENS-based and IPNS-based

implementation is accessing the blockchain more frequently to claim a subdomain,

update, and retrieve its content hash field. The three functions have also been

tested on the Rinkeby test network. The results for these three functions are

shown in Table 5.2.

ENS Function Average Response (sec)

setSubnodeRecord 27.23

setContenthash 14.67

getContenthash 1.69

Table 5.2: Average rsponse times of ENS functions.

IPNS

To have a clear picture, in order to compare the two different name resolv-

ing systems, we conducted the same measurements in the IPNS network. What

we observe in Table 5.3 is the time duration from the moment NFT’s address is

announced over IPNS up to the moment an average user can visit it, through

a public gateway. As we have already mentioned, IPNS leverages the DHT. So,

the aforementioned times vary, depending on the number of active connections

the announcing node keeps. To have a better understanding of the IPNS’ ro-

bustness and consistency, we conducted the experiments in different versions re-

garding the number of active connections. Moreover, to have unbiased results

every HTTP request is made among a set of different public gateways, and more

specifically: (i) https://gateway.ipfs.io, (ii) https://cloudflare-ipfs.com,

(iii) https://gateway.pinata.cloud, (iv) https://ipfs.io and finally,

(v) https://ipfs.fleek.com.

In Table 5.3, we can see that even using the default settings of IPFS 56% of

the total queries timed out, meaning it took more than 5 or 10 minutes, depending

on the gateway, to respond. Moreover, we observe that even in the extreme case
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of over 3000 active connections, which was about the 20% of nodes found online6,

the 27% of requests were not served. From those served, the average response can

be also found at Table 5.3. Both the percentage of non-served requests, as well as

the average response time cannot be considered negligible and increase the chance

that our system will malfunction. Additionally, we should point out that every

IPNS record has by default a 24h validity, therefore the game company should

reannounce it periodically.

Active Connections Served Timed Out Average Response(sec)

[250 - 600] 28% 72% 23.9

[600 - 900] 44% 56% 20

[3000 - 4000] 73% 27% 15.9

Table 5.3: Response metrics using IPNS.

Finally, it is worth mentioning that measuring the exact waiting times of

the various combinations of the system functions is at some level meaningless and

misleading. For example, the creation, update, and other token mechanisms of-

fered, rely heavily on the user’s connection speed. The average mechanism waiting

time was observed to be around 1 minute with the create mechanism waiting time

being the longest one of them all due to its nature. Measuring such a quantity can

be helpful to determine the user waiting times of the application that is going to be

developed by the gaming company. One can easily observe that blockchain waiting

times are very noticeable and need to be dealt with in a clever way by the decen-

tralized application in order to ensure the user is immersed. The response times

presented in Tables 5.1 and 5.2 are expected to be longer in the Main Network.

5.1.5 Discussion

Properties

Our system has many compelling security properties. Initially, it provides

availability of metadata. Usually, in games as the one presented there, the gam-

6https://trudi.weizenbaum-institut.de/ipfs_crawler.html



97

ing company that produced the game hosts the in-game assets locally, on their

(centralized) servers, in order to make them available to customers. However, if an

outage happens, the servers would become unreachable and the data would become

unavailable, causing the whole system to collapse. This is the case also if a gaming

company uses IPFS. The gaming company has to provide the media files and the

metadata of the in-game assets to the IPFS through their servers. On the other

hand, our presented system achieves increased availability due to Filecoin’s repli-

cation rules, in the sense that data will remain online in any case, even after the

game company loses interest or goes bankrupt. Moreover, the proposed system is

immune to single points of failure and resilient to Denial of Service (DoS) attacks,

as all of its components are decentralized. Furthermore, it is tamper-resistant since

all the data are stored on the blockchain and the metadata on IPFS, which is con-

tent addressable, i.e., for every chunk of data uploaded a unique CID is generated.

Last but not least, thanks to Ethereum’s blockchain, it is highly auditable and

provides a degree of anonymity known in the literature as pseudonymity. Every

NFT includes a metadata field pointing to the related asset, provided by the ERC-

721 standard. For integrity reasons, the aforementioned should not be modified

or else NFT loses a part of its value. Dat et al. [24] state that there is a num-

ber of marketplaces, among the most popular, which allow tampering with NFT’s

metadata. Our system considers evolvable in-game assets paired with the corre-

sponding evolvable metadata. To achieve the aforementioned property, we leverage

a decentralized name resolution service, i.e., ENS. Thus, when the digital art is up-

dated, there is no need for change in the smart contract, keeping the cost from gas

consumption low. The introduction of ENS to the system has offered two crucial

advantages: a significantly more user-friendly appearance to the NFT’s metadata

and lower transaction fees. In order to update NFT’s metadata, its ENS address

content field has to be changed. The transaction fee for this action is on average

56854,25 Gwei ($0.10) and it is lower than directly updating NFT’s URI via the

smart contract, which costs on average 90546,66 Gwei ($0,16).7 While the differ-

ence might seem insignificant, it greatly increases the game company’s long term

7as measured on June 4, 2022.
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revenue, considering the amount of transactions that might occur once the game

grows in popularity. On the other hand, it is evident that ENS increases the com-

plexity of the system. Despite the initial implications, mentioned in section 5.1.5,

the advantages outweigh the disadvantages.

As we have explained in Section 5.1.2, the owner of the NFT is able to choose

whether she wants to reveal the NFT’s full scale artwork. This mechanism enables

variable token prices, according to their seal state (closed or opened) and could

have a significant impact on the revenue generated from the platform both for the

business and the artist. Furthermore, the use of decentralized storage combined

with the (2, 3) threshold cryptosystem guarantees that even if the company stops

supporting the game the owner will be able to fetch and decrypt the artwork.

We have already discussed that the vast majority of blockchain games that

utilize NFTs suffer from many shortcomings concerning the actual ownership of

the metadata files. For example, a CryptoKitties NFT is a digital, collectible

“kitten” built on the Ethereum blockchain. It can be bought and sold using ether

and bred to create new cats with different traits. The concept is very simple,

but as the creators mention in their whitepaper, NFTs fail to succeed due to

“Provider Dependency; The existence of a digital collectible is dependent upon the

existence of the issuing authority. If a digital collectible is created and the creator

ceases to exist, the digital collectibles also cease to exist” [74]. Our solution focuses

heavily on the decentralization and preservation of the NFT metadata, breaking

the dependency of the issuing authority. If the game company that minted the

NFTs ceases to exist, the token continues to live on, as its artwork and metadata

are safely stored on IPFS via the NFT.storage and Web3.storage services. The

rights of ownership are also preserved by the smart contract on the Ethereum

blockchain. Other games, such as Sorare8 and Axie Infinity focus on using their

own instance of the blockchain and do not specify the exact technology used to

store NFT artworks and metadata. More importantly, the creators do not clarify

what would happen in case of a server failure.

Another issue with legacy games is the general lack of NFTs use outside the

8https://sorare.com/



99

game environment, also pointed out in [74], as another reason of failure; “Lack of

Function; Physical collectibles are popular because of their intended purpose. Art

is a great example: people collect it, it can be worth a lot of money, and it serves

a purpose by hanging on the wall as a thing of beauty”. Such a claim can now be

considered outdated, due to the growing adoption of NFTs. The popular social

media platform “Twitter” has initiated its own integration of NFTs, as user profile

pictures in late January 2022.9 This is just one of the many examples concerning

the future usage of NFTs in various other applications outside of their original

uses. However, it is obvious that such a rapid integration by third parties can

compromise the integrity of NFTs. For example, if a user displays their NFT as a

profile picture, the original full-size artwork is available to the public. A malicious

user, e.g., a forger, could steal the original artwork and mint their own token.

Suddenly, two identical looking versions of the NFT exist and the forger could

contest ownership rights. This problem is successfully addressed in our system,

as the full-size original artwork gets uploaded on IPFS encrypted. A smaller, low

quality version of the artwork gets uploaded on IPFS unencrypted, as a sample

of the original. The above description fits the purpose of a profile picture; a low

quality picture being used to represent the account. Of course, forgers could also

download the sample used as a profile picture, but it lacks the quality of the

original. If they decide to mint a copy, the result would be poor and evident of

fraud.

Challenges

All these different Web3 components are still in their infancy. So, it is

unsurprising that their orchestration would lead to various challenges. Initially,

the content hash processing algorithm of ENS automatically converted the CID

v1 provided by NFT.storage to CID v0. The latter turned out to cause an error

because NFT.storage produces an encoded (“dag-cbor”) object, which cannot be

translated to v1. To address this issue, we host the metadata file on Web3.storage

and the artwork on NFT.storage. In the metadata file, there is a field pointing to

9https://twitter.com/twitterblue/status/1484226494708662273?s=21
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the address of the artwork.

We have previously stated that a name resolution service is an essential

component of the proposed system, which provides updatability and evolvability

to in-game assets. Both ENS and IPNS complete our system and the use of

each brings some advantages as well as some disadvantages. So, while in [71], we

proposed the use of IPNS, ENS is proven to be more robust than IPNS, in the

sense that every request to it is served. On the other hand, as we have seen, even

with a large number of active connections, there is a high probability that a request

will not be processed in IPNS, causing inconvenience to the users of the system.

However, IPNS seems to be slightly faster than ENS under some circumstances,

i.e., in case of extremely high number of active connections. Furthermore, it is very

important to mention that the usage of IPNS comes at no monetary cost, unlike

ENS, in which every registration or update action incurs fees. Finally, we observed

that IPNS increases the complexity of using and supporting the system, since, due

to the expiration of IPNS registrations, they should be announced regularly on the

network. We claim that, overall, the use of ENS is a more rational choice than the

choice of IPNS, as there are more points, where it has an advantage, keeping our

system more sustainable.

5.1.6 Related Work

The research regarding blockchain and NFT gaming is still in its infancy.

Pittaras et al. [75] discuss the feasibility of blockchain-based games. They per-

form an extensive evaluation of blockchain gaming to showcase the advantages

and disadvantages. Min et al. [76] also conduct an in-depth review of blockchain

gaming area, categorizing games based on the way they benefit from blockchains;

rule transparency, asset ownership, asset reusability and user-generated content.

Although they have included various NFT games in the category that leverages

blockchains for asset ownership, they do not take into consideration actual owner-

ship of the digital art. Moreover, the reviewed architecture is centralized, storing

game assets on a company’s file server.

Wang et al. [76] present an overview of the NFT domain. They study the
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NFT ecosystem from multiple points of view, they conduct a security evaluation

and demonstrate opportunities and challenges. The authors present two different

protocols for NFT creation. In the first protocol, the artist creates tokens and sells

them directly to potential buyers, while in the second, an NFT template is created

and NFTs are produced utilizing the aforementioned template. Our system can

serve more complex business models, based on decentralization for all interactions.

Finally, the authors conclude that NFTs have a great potential in the gaming

industry.

On the same wavelength, Rehman et al. [77] conduct a very detailed review

of the NFT research area. They propose a categorization of NFTs based on their

applications to digital art, fashion, collectibles, games (boosting game potential),

domain names, virtual worlds and finally sports. Although we believe that the

boundaries of the various categories are ambiguous, our system can be seen as

a member of more than one of these categories, i.e., collectibles, digital art, and

games. Moreover, the authors present multiple challenges NFT technology is called

upon to overcome, e.g., security issues, legal issues, etc.

Fowler et al. [78] study the potential of NFTs for game development. They

perform an in-depth investigation from different perspectives. They state that

using NFTs in gaming can boost players’ motivation through consumer-created

content in addition to professional artists. Both can benefit by the use of NFTs,

due to royalties at every resale in open or in-game markets. Finally, the authors

highlight their severe security concerns. Cases in which the company stops hosting

the file or the artwork is altered after being sold are some of them. Our scheme

overcomes these obstacles, as it considers decentralized storage which is, thanks to

IPFS, tamper-resistant and thanks to Filecoin, robust and permanent.

Finally, Muthe et al. [79] highlight the multiple shortcomings arising from

game centralization. They argue that centralized storage and computation may

lead to privacy leakage and cause high latency. To overcome the aforementioned

barriers, they propose an architecture based on proxies for computing and IPFS

for storing data. The proposed architecture incentivizes proxies with rewards on

Ethereum. Although the design is generic enough, it cannot serve different business
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models, e.g. outsourcing artwork of the game to artists, who are paid royalties.

Moreover, the authors leverage IPFS for data storage without taking into consid-

eration that with the current rules of IPFS, files are hosted (essentially only) by

the original uploader; data get disseminated and cached by other nodes only if

they become popular. Our proposed system instead supports artist royalties and

deals with IPFS limitations utilizing Filecoin and in particular Web3.storage and

NFT.storage.

5.1.7 Conclusions and Future Work

We developed and presented here an architecture that aims to create a fully

decentralized and self-sustainable system using various Web3 components. More

specifically, we leveraged NFTs backed by the Ethereum blockchain in the role of

collectibles, as well as the IPFS ecosystem as decentralized file storage. We com-

pared two different name resolution services, namely ENS and IPNS and selected

ENS because of its robustness, even though it introduces monetary cost. The pro-

posed system manages to overcome past obstacles related to NFT artwork, not

only by giving the NFT owner the full-control of the file, but also the opportunity

to keep its value high by choosing not to “open the box.”

We realized a proof of concept implementation of our solution to evaluate it

under realistic conditions and to compare the two versions of the name resolution

service. Furthermore, an API is provided that enables users to easily set up such

a system. Two radically different architectures are made available in order for

users–typically, gaming companies–to select which one is more appropriate for

their specific needs.

Lately, intense discussion is under way regarding the value of an NFT’s

digital art.10 Although our system supports adding value to the artwork with

the sealed-box emulation, another very interesting direction is the utilization of

steganography. We argue that the use of steganographic techniques will be well

suited to provide solid proof of authenticity of the digital art.11 Thus, it is in our

10https://www.bbc.com/news/technology-59262326
11https://hackernoon.com/hiding-secrets-steganography-in-digital-arts-and-

nfts-531z35f0
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immediate plans to experiment with and support these techniques in our solution.

Finally, an intriguing extension of our architecture would be a decentralized and

company independent way for NFT-related actors (artists, buyers, et al.) to com-

municate with each other, not only for NFT-related topics, but also through a

secure channel to exchange keys.

5.2 Enhancing Availability and Performance in

IPFS Bitswap

The Web3 application layer depends not only on secure and decentralized

infrastructures, but also on systems that can ensure the persistent availability

of data over time while maintain a smooth user experience. IPFS, as the core

storage protocol in this stack, supports content-addressed data retrieval over a

P2P network. However, its performance and availability guarantees degrade in the

presence of low-content popularity, limited replication, or peer churn. Swift service

provision is imperative for IPFS-dependent applications to meet their demands.

To enhance IPFS efficiency we propose a method to refine the Bitswap system [80],

reducing dependence on the DHT, which can be adversely influenced by network

dynamics. To this end, we initially conducted a sequence of experiments intending

to assess the DHT’s response time to a query aiming to locate providers for content

that we had previously added to the network, thus making it unique. Our findings

from 1800 experiments reveal that the median response time is 8 seconds, which

is considered non-negligible. We then introduced our own enhancements to boost

the chances that a content search will employ Bitswap rather than have to resort

to the DHT. This strategy aims to decrease the total response time to ≤ 1 second.

Our findings demonstrate that our method significantly increases the likelihood of

finding content via Bitswap, especially for content that is not widely popular.
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5.2.1 Measuring Times

In our experimental setup, we employed two distinct nodes: a client and

a server. The server, situated on a workstation with a public IP address and not

confined behind a firewall, played a crucial role. This server was responsible for

generating random files, adding them to the IPFS network, and then announcing

the respective root CID on a database (to avoid direct communication between the

nodes).

The client node was utilized to retrieve the CID from the database and

subsequently inquire the IPFS network for the corresponding content through the

DHT. We meticulously measured the time it took for the DHT to respond to each

inquiry. Specifically, the client, after the server added the file to the network, ex-

ecuted the command ipfs dht findprovs <hash> which returns up to 20 Peer

IDs corresponding to providers of the requested file. The aforementioned exper-

iment was systematically repeated for 24 hours, with a total of approximately

1, 800 randomly generated files. By executing this series of experiments, we aimed

to evaluate the efficiency and responsiveness of the IPFS network in handling re-

quests for randomly generated files. The measured response times from the DHT

provide insights into the performance of IPFS in the context of file retrieval for a

substantial dataset.

To enhance the objectivity of our results, we excluded 105 experiments out

of the initial 1,800 that experienced timeouts, i.e., more than 2 minutes. Among

the experiments that were successfully served, the average response time was 12

seconds, with a median of 8.4 seconds. These values, regardless of the specific

metric used, are considered non-negligible. More detailed information regarding

the distribution of response times are depicted in Figure 5.3.

This curation of results, by excluding timed-out experiments, ensures that

the analysis is based on a subset of data where interactions with the IPFS network

were successfully completed. The average and median response times provide

insights into the typical performance observed during the retrieval of files from

the IPFS network in our experimental setup.
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Figure 5.3: Cumulative Distribution Function plot of response times in seconds.

5.2.2 The know message

In Section 5.2.1, we observed that DHT response times in IPFS are not

negligible and can potentially impact the functionality of an IPFS-based service.

To address this issue, we propose an enhancement to Bitswap aimed at reducing

the likelihood of a query going unanswered by Bitswap, which would cause the

requester to resort to the, much slower, DHT. The proposed enhancement involves

introducing a new message type called know to the list of Bitswap messages.

The process unfolds as follows: when a client broadcasts a request for a root

CID, the nodes within the swarm individually check if they locally store the file. If

so, they respond with a have message, as usual. As an additional step, we suggest

that nodes check if they store a Provider Record for this CID, that is, if they know

someone that stores the content (as opposed to having the content themselves). If

a Provider Record is found, the node responds with a message in the format know

PeerID, where PeerID is the identifier of the node that, at some point, advertised

that it provides the file. Subsequently, the client incorporates that Peer ID into

the ongoing session. The aforementioned procedure is depicted in Figure 5.4.
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Figure 5.4: Bird’s-eye view of the proposed method.

Merely possessing the provider’s PeerID is insufficient for establishing con-

tact; what is required is the network address of the peer. To avoid immediately

resorting to peer discovery, such as a DHT walk to locate the Peer Record, we

propose utilizing the nodes’ address books. The process is as follows: When a

node gets a want-have message, it first checks if the file is stored locally and, if so,

replies with a have message. If the file is not found, the node checks for a Provider

Record associated with that Content Identifier (CID) and responds with a know

message. Additionally, the node consults its address book to see if it stores a

Peer Record, which, if found, is sent along with the know message. Consequently,

when the requester receives the know message, they will also be informed of the

Peer ID and, ideally, obtain the Peer Record, enabling them to link the Peer ID to

a physical address. If this information is not available, the process transitions to

the Peer discovery stage, where the requester first checks for a stored peer record

for the specific Peer ID before turning to the DHT for more information. The flow

of the aforementioned procedure is depicted in Figure 5.5.

This proposed modification aims to enhance the efficiency of Bitswap by
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Figure 5.5: The operation flow of the proposed enhanced Bitswap.
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providing the client with information about nodes that have previously advertised

their capability to provide the requested file. By introducing the know message,

the client can potentially reduce its reliance on the DHT and improve the success

rate of queries served by Bitswap, contributing to a more reliable and responsive

IPFS-based service.

5.2.3 Evaluation

To estimate the impact of our proposed scheme, we first need to have an

estimate of the size of the IPFS network. For this reason we used the Nebula

DHT Crawler [81]. The measurements show that during the measurement period

the network size was about ν = 15300 nodes. Let p be the probability that

a node storing the provider record of the original uploader, is also part of the

client’s swarm. We approach the problem as follows. We consider each of the

broadcasted messages as an attempt to select at least one Peer from the 20 that

have the provider record. The probability of finding no one on the first try is 15280
15300

,

the second is 15279
15299

etc. So in general the probability of not selecting even one

is q =
νs∏
i=1

15280− i

15300− i
, where νs = # peers in the swarm. The probability we are

looking for is p = 1− q, which is the probability to find at least one.

We also conducted a series of Monte Carlo experiments to delve into the

performance nuances of two versions of Bitswap, the baseline and the proposed.

The primary objective was to ascertain the probability of a query receiving a

response from Bitswap across these two distinct versions.

Recognizing the multifaceted nature of network dynamics, particularly in

relation to file availability and peer participation, we meticulously designed our

experiments to incorporate varying levels of file popularity. Additionally, we ex-

plored the impact of swarm size, which as we mentioned before ranges from 600

to 900 participants. We categorized swarm sizes into three distinct scenarios: a

conservative setting with νs = 600 peers, representing a constrained network en-

vironment; an intermediate scenario with νs = 750 peers, reflecting an average

network configuration; and an optimistic scenario with νs = 900 peers. Each sce-
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nario underwent rigorous evaluation through 100, 000 iterations, ensuring robust

statistical analysis and reliable conclusions. The results are illustrated in Figure

5.6.

Figure 5.6: The probability of response per popularity of file.

Our analysis reveals a marked improvement in the likelihood of query re-

sponses with the introduction of the proposed solution, particularly evident in

scenarios featuring files with low popularity levels. To illustrate, when examining

files with a popularity rating of 1 and a swarm size of 600, the probability of re-

ceiving a response under the current system stands at a mere 4%. However, with

the implementation of the proposed solution, this probability surges to a notable

55%. Similarly, for files boasting a popularity rating of 10 under the same swarm

size conditions, the probability escalates from 32% with the existing system to an

impressive 99.2% with the proposed upgrade.

It is worth noting that as file popularity increases, the gap in probability
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between the current and proposed solutions gradually narrows. Nevertheless, the

substantial improvement afforded by the proposed version remains evident across

the entire spectrum of file demand. This enhancement signifies a significant ad-

vancement in the IPFS, particularly in its ability to facilitate efficient file exchange,

especially in scenarios characterized by low file traffic.

Another significant limitation confronting Bitswap under its current rules

of operation is scalability. In order to maintain its present level of effectiveness,

the swarm’s size must remain in proportion to the network’s size. For instance,

if we imagine a scenario where the network comprises 15, 000 nodes and each

node’s swarm has 600 active connections, then if the network expands to 60, 000

nodes, each node’s active connections should increase to 2, 400 in order to sus-

tain the same success rate. We conducted a series of experiments which indicate

that leveraging the know message enhances Bitswap’s efficiency without needing

to expand the swarm size. In our experiments, we maintained file popularity at

an average level [82], with 5 replicas, and examined how response probabilities

changed with larger network sizes. These tests were carried out for three differ-

ent swarm sizes, comparing the standard operation to the operation utilizing the

know message, each over 100, 000 iterations. As shown in Figure 5.7, even when

the network size reaches 65, 000 nodes—roughly four times larger than our initial

measurements—the standard method with νs = 600 only achieves a success rate

below 10%, whereas the modified approach achieves a 60% success probability. In

the extreme scenario where the network expands to 100, 000 nodes, the suggested

approach maintains a 45% success rate, significantly outperforming the baseline’s

modest 3% probability, making Bitswap futureproof. The findings of the experi-

ments are elaborately presented in Figure 5.7.

5.2.4 Conclusions and Future Work

Given the crucial importance of IPFS in the Web3 ecosystem, we contend

that operational efficiency is paramount. Despite ongoing upgrades, there remains

room for improvement, particularly concerning response times. In our paper, we

introduce a method aimed at enhancing the performance of Bitswap. Our goal
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Figure 5.7: The probability of response with growing network size.

is to ensure that queries are resolved by Bitswap itself, eliminating the need to

rely on the DHT, which, as observed, can be time-consuming. In the near future,

our objective is to conduct measurements using Testground,12 a simulation tool

tailored for the IPFS network. Through this initiative, we aim to validate the

efficacy of the proposed method and assess benefits that stem by its use.

12https://docs.testground.ai/master/



Chapter 6

Security Advancements in

Decentralized Architectures

Building upon the technical foundations, architectures, and implementa-

tion strategies discussed in the preceding chapters, this chapter provides a the-

matic synthesis and reflective discussion of the dissertation’s core contributions.

It explores how blockchain technologies can serve as enablers of secure and au-

ditable IoT systems, and how privacy-preserving techniques can be integrated into

decentralized storage infrastructures like IPFS. By revisiting select case studies

and complementary research works, the chapter highlights the broader implica-

tions of decentralized architectures for real-world security and privacy challenges.

The two sections that follow analyze, respectively, the role of blockchain-enabled

digital twins in IoT control, and the enhancement of privacy in peer-to-peer stor-

age protocols. Together, they demonstrate how the key research themes of this

thesis, trust decentralization, system interoperability, and privacy awareness, can

be realized in practical, scalable ways.
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6.1 Blockchain-Enabled Security Architectures for

the Internet of Things

The Internet of Things (IoT) is envisioned as a networked environment

where interconnected devices seamlessly integrate the physical and digital domains,

offering a wide spectrum of services aimed at enhancing human life. Nevertheless,

the IoT landscape is marked by several enduring challenges. A fundamental issue

is fragmentation, as the ecosystem comprises a multitude of heterogeneous devices

from different manufacturers, each employing distinct communication protocols

and standards.

To address this, the Web of Things (WoT) initiative,1 developed by the

W3C working group, proposes a standardized, Web-based framework to achieve in-

teroperability across diverse IoT platforms. WoT builds upon widely adopted Web

technologies—such as RESTful APIs and HTTP(s)—facilitating device discovery,

access, and integration within a common application layer. This approach effec-

tively mitigates the fragmentation and interoperability issues that plague many

IoT deployments.

Beyond interoperability, security in IoT systems presents a complex chal-

lenge. Traditional cryptographic mechanisms are often ill-suited for the resource-

constrained nature of IoT devices, many of which lack the computational power

required for executing heavyweight security protocols. Consequently, there is a

pressing need for lightweight and efficient security solutions that align with the

inherent limitations of IoT hardware. Additionally, the direct interaction between

IoT systems and the physical world elevates concerns related to security, safety,

and privacy. Devices are frequently deployed in publicly accessible environments

and are exposed to potential manipulation or misuse. One promising approach to

mitigating these risks is the introduction of digital twins—virtual representations

of physical IoT entities [83]. Although traditionally used for testing, monitoring,

and simulation purposes, digital twins in this context are proposed as intermedi-

ary layers of abstraction and protection. Rather than interacting with the physical

1https://www.w3.org/WoT/
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device itself, users engage solely with its digital twin. Any validated changes to

the digital twin’s state are then securely propagated to the actual device, which

performs the corresponding actions. This design introduces a layer of indirection

that enhances both control and security in IoT deployments.

Building upon this and aiming to overcome the limitations previously dis-

cussed in work [84], we propose a system in which the WoT framework and the

Ethereum blockchain collaborate to implement digital twins for IoT environments.

In this system, consumers do not directly interact with IoT gateways or devices.

Instead, they communicate exclusively with the digital twin of the virtual en-

tity, which is implemented as a smart contract and deployed on the Ethereum

blockchain. When a consumer wishes to trigger an actuation operation, they de-

posit a specific number of tokens into the smart contract, which holds them in

escrow, and submit a transaction containing the desired action and its parameters.

The consumer can query the blockchain freely to discover the available actions and

their expected parameters. The smart contract verifies the validity of the transac-

tion and the sufficiency of the escrow tokens; if both checks pass, it emits an event.

IoT gateways are configured to monitor the blockchain for such events. Once de-

tected, the gateway maps the event to a concrete actuation task and forwards the

appropriate command to the IoT device(s), based on vendor-specific communica-

tion protocols. In the same spirit, the work presented in [85] explores the use of a

permissioned blockchain, namely Hyperledger Fabric, instead of Ethereum. This

design choice is motivated by the need to mitigate performance-related limitations

such as high transaction latency, scalability constraints, and elevated operational

costs. Moreover, permissionless blockchains may be unsuitable for certain use

cases—such as smart home environments—due to their inherently public and trans-

parent nature, which may conflict with privacy or control requirements. Finally,

the work presented in [86] summarizes and extends our previous efforts by imple-

menting the proposed solution on two distinct blockchain platforms: Ethereum and

Hyperledger Fabric, each offering unique advantages tailored to different applica-

tion contexts. Specifically, we design, implement, and evaluate an IoT system that

employs smart contract-based digital twins to enable secure sensing and actuation
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in distributed environments.

6.2 Enhancing IPFS Privacy

IPFS is a P2P system, and as is often the case with such architectures,

privacy is frequently sacrificed in favor of performance. Numerous studies have

shown that IPFS exhibits significant privacy shortcomings, as it tends to expose

user and content-related information openly across the network. Researchers in [7]

demonstrate a privacy attack on the IPFS network by exploiting the Bitswap pro-

tocol. They introduce a set of attack vectors which give the attacker the ability

to track nodes that are requesting a specific content identifier (CID), monitor the

full set of data a particular node is attempting to retrieve, and reveal the historical

content interests of a node. In addition to malicious attackers, security analysts

can also take advantage of the privacy limitations inherent in the Bitswap protocol.

In [65] researchers propose IF-DSS, a digital forensics investigation framework for

Decentralized Storage Services (DSSs). Their work includes a comparative anal-

ysis of major DSS platforms from a digital forensics perspective and applies the

proposed methodology specifically to IPFS, demonstrating how its design choices

expose useful artifacts for forensic investigation. One proposed privacy-enhancing

solution tailored to IPFS involves the use of Bloom filters instead of plain CIDs, in

order to obfuscate request and response messages exchanged via the Bitswap pro-

tocol [67]. This approach aims to conceal the exact data interests of nodes, thereby

mitigating exposure to tracking attacks. In our work [66], we enhance IPFS privacy

by introducing a triple hashing scheme for content storage and lookup operations.

This approach obscures the identity of the content being requested, particularly

from intermediate peers, who are unable to infer what a node is searching for.

During the actual content exchange phase, the mechanism transitions to single or

double hashing, ensuring efficiency without compromising privacy.

To make an object available on IPFS, an uploader begins by generating the

object’s Content Identifier (CID), derived by hashing the content along with some

metadata. Then, using the Kademlia Distributed Hash Table (DHT), it identifies
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the k nodes whose PeerIDs are closest to the CID and stores at each of them a

Provider Record pointing to itself, along with a corresponding Peer Record. In our

approach, uploader additionally computes a triple hash of the object, resulting in

what we denote as CID3. It repeats the DHT insertion process, this time using

CID3 instead of the original CID. For clarity, we refer to the original content hash

as CID1, the double hash as CID2, and the triple hash as CID3. When a client

attempts to retrieve the object, it starts from the known CID1, which may have

been obtained through previous access, a web source, or another reference. The

client computes CID3 and sends a FINDVALUE RPC to the three closest nodes to

CID3 in its routing table. If the first node contacted does not store the content,

it responds with a referral to a closer node. The latter, being among the k closest

to CID3, responds with a Provider Record indicating the node that holds the

requested object. At this stage, the client switches to the Bitswap protocol to

initiate the actual data transfer. It sends a WANT HAVE message to provider node

using CID3. The node replies with a HAVE message, this time including CID2.

The client verifies the validity of this response by computing CID2 from CID1,

confirming that the provider node possesses the correct content. Finally, the client

sends a WANT BLOCK message containing the true CID1. Node verifies that the

client had prior knowledge of the original CID and returns the object in a BLOCK

message.

Our solution supports optional content encryption, which can facilitate

privacy-preserving caching. Moreover, the privacy and security analysis demon-

strates that, beyond improving anonymity, the proposed scheme is effective against

a variety of DDoS attacks targeting IPFS. Importantly, the design introduces no

routing delays, avoids reliance on trusted third parties, and incurs negligible com-

putational overhead, making it practical and scalable.



Chapter 7

Conclusions and Future Work

In this chapter, we provide an overview of the core findings and conclusions

drawn from the studies discussed in the previous chapters. We also suggest possible

paths for future research, building on the theoretical and empirical groundwork laid

by this dissertation.

7.1 Conclusions

Web3 has emerged as the next evolutionary phase of the Internet, empha-

sizing user empowerment across multiple dimensions, including financial ownership

and control over personal data. While the vision of Web3 may appear utopian, in

practice it faces significant challenges. Many of these stem from user behavior in

environments lacking centralized regulatory or governance structures. Moreover,

the Web3 ecosystem remains vulnerable to malicious actors—who are by no means

a new phenomenon—but who now exploit both the technological immaturity of the

infrastructure and the inexperience of its users for their own gain. With these con-

siderations in mind, we investigated potential attack vectors that combine various

components of the Web3 stack, such as DLTs and IPFS. Our study also exam-

ined the ethical alignment of IPFS nodes. Finally, we propose application-layer

solutions, specifically within the domain of blockchain gaming, one of the most

prominent sectors at this layer, to enhance system availability and improve overall

performance.
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Initially, we observed that the Ransomware-as-a-Service model is being re-

alized within the decentralized ecosystem through the use of smart contracts de-

ployed on Ethereum and content hosted on IPFS. We found that malicious actors

benefit significantly from this setup, as it enables them to automate transactions

at minimal cost, maintain a high degree of privacy, and operate in an environ-

ment where takedown by LEAs is considerably more difficult. Beyond this specific

attack vector, we also explored how malicious actors can leverage components of

the IPFS ecosystem, such as public gateways and pinning services, to distribute

and persist malicious content. Through empirical measurements, we found that

due to the inherent characteristics of these entities, it is indeed possible for an

attacker to anonymously share and sustain the availability of malicious files within

the network. In addition, we investigated the presence of malicious activity within

the IPFS ecosystem at the node and file levels, and found clear evidence of ex-

ploitation by malicious actors. A significant portion of nodes were identified as

malicious by reputable threat intelligence services, and many of these nodes re-

mained active for extended periods—often longer than a month—leveraging the

network for their own benefit. Furthermore, we identified malicious usage at the

file level by passively monitoring the content exchanged between nodes as well as

the files uploaded to public pinning services.

Alongside this, we designed and proposed application-layer solutions within

the Web3 ecosystem, specifically focusing on the blockchain gaming domain, with

the objective of ensuring reliable file availability. Our approach addresses previous

challenges related to NFT artwork by giving NFT owners not only full control over

their associated files, but also the ability to maintain or even increase the value of

their digital assets. We also propose a complementary solution targeting the IPFS

layer, which enhances both availability and performance, ultimately leading to a

smoother user experience at the application level.

In summary, this dissertation highlights the dual nature of decentralization

in Web3: while offering enhanced user empowerment and innovation, it simul-

taneously introduces complex security and trust challenges. By identifying and

analyzing emerging attack vectors and misuse within decentralized infrastructures
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like IPFS and Ethereum, we provide a deeper understanding of the current threat

landscape. At the same time, our proposed application-layer solutions demonstrate

that resilience and performance can be achieved without compromising decentral-

ization. Ultimately, this work aspires to contribute both to the critical assessment

and the responsible advancement of Web3 technologies.

7.2 Future Work

While this dissertation provides a foundational analysis of security and

availability challenges in the Web3 ecosystem, several avenues remain open for

further exploration. First, future research could focus on the development of more

robust and decentralized countermeasures against malicious activity in content-

addressed networks such as IPFS. Importantly, these solutions should aim to pre-

serve the peer-to-peer and decentralized nature of such systems, avoiding reliance

on centralized mechanisms like global blacklists, which undermine core Web3 prin-

ciples. Investigating reputation-based or community-driven verification mecha-

nisms could offer effective alternatives. Extending this analysis to other peer-

to-peer storage networks—such as Filecoin and Storj—would provide a broader

understanding of how similar infrastructures handle availability, persistence, and

resistance to malicious actors.

Moreover, the proposed application-layer solutions—particularly in the con-

text of blockchain gaming and NFT file availability—could be further evaluated

under real-world deployment conditions. Emphasis should be placed on assess-

ing their scalability, user experience, and resilience against adversarial behaviors

in live environments. Expanding these mechanisms to additional domains—such

as decentralized social media, distributed scientific data sharing, or decentralized

finance platforms, could further validate their utility and adaptability.

A final promising direction could focus on designing adaptive threat detec-

tion mechanisms that operate effectively in peer-to-peer contexts, without central-

ized control or identity verification. In particular, developing decentralized trust

models, anomaly detection frameworks, and abuse-resistant incentive schemes will
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be essential to safeguarding the long-term viability of Web3 infrastructures.



Appendix A

Acronyms

C2 Command and Control

CIA Confidentiality - Integrity - Availability

CID Content ID

DAG Directed Acyclic Graph

DAO Decentralized Autonomous Organization

DApp Decentralized Application

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DHT Distributed Hash Table

DIDs Decentralized Identifiers

DLTs Distributed Ledger Technologies

DNS Domain Name System

DoS Denial of Service

DSA Digital Services Act

DSS Decentralized Storage Service

DeFi Decentralized Finance

EIPs Ethereum Improvement Proposals

ENS Ethereum Name Service

ERCs Ethereum Request for Comments

ETH Ethereum
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EVM Ethereum Virtual Machine

HTTP Hypertext Transfer Protocol

IPFS InterPlanetary File System

IPNI InterPlanetary Name Index

IPNS InterPlanetary Naming System

IoT Internet of Things

KYC Know Your Customer

LEAs Law Enforcement Agencies

LRU Least Recently Used

MaaS Malware as a Service

NFT Non-Fungible Token

NIZK Non-Interactive Zero-Knowledge

OTP One-Time Password

P2E Play to Earn

P2P Peer to Peer

PBFT Practical Byzantine Fault Tolerance

PoS Proof of Stake

PoW Proof of Work

RDP Remote Desktop Protocol

RaaS Ransomware as a Service

SP Service Provider

SPV Simplified Payment Verification

SSH Secure Shell

TLS Transport Layer Security

WASM WebAssembly

WoT Web of Things
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