Fighting Spam in Publish/Subscribe Networks Using Information Ranking

Nikos Fotiou, Giannis F. Marias and George C. Polyzos
Athens University of Economics and Business
Mobile Multimedia Laboratory
{fotiou,marias,polyzos}@aueb.gr

6th Euro-NF Conference on Next Generation Internet
Paris, France, June 2-4, 2010
Outline

- Publish/Subscribe Architectures
- Problem Area
- Inforanking
- Approach
- Evaluation
- Conclusions, Future Work
Publish/Subscribe Architectures

- **3 Basic Components**
 - Publishers: Information providers that advertise information using “publications”
 - Subscribers: Information consumers that express their interest in particular pieces of information using “subscriptions”
 - A network of brokers

- Publication/Subscription matching takes place in the Rendezvous Point

- Information oriented, publisher/subscriber decouple
 - Mobility, multicast, multihoming can be easily achieved
Problem Area

• A publish/subscribe architecture in which
 • Subscribers, subscribe using keywords
 • Publishers may provide misleading publications’ description and therefore lure RP ➔ Spam

• Solutions for this problem
 • Block misbehaving publishers
 • Already Done (Tarkoma S.: Preventing Spam in Publish/Subscribe)
 • Block spam publications ➔ Inforanking
Inforanking (1/2)

- A mechanism that ranks information items within a certain context

- Why do we need an information ranking mechanism?
 - Users change behavior, information no!
 - Information identification is easier
 - Hash Function VS Chain of Certificates
 - Its an information –oriented world after all!

- Ranks is based on users’ votes
 - Users may vote only positively
 - Easier to be implemented
 - The weight of a user’s vote is inversely proportional the number of user’s vote
Inforanking (2/2)

- Inforanking example where vote weight:
 \[\frac{1}{\text{sum(votes of user in this set)}} \]

<table>
<thead>
<tr>
<th>Information Set 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information ID</td>
</tr>
<tr>
<td>INFO1</td>
</tr>
<tr>
<td>INFO2</td>
</tr>
<tr>
<td>INFO3</td>
</tr>
<tr>
<td>INFO4</td>
</tr>
</tbody>
</table>
Approach (1/2)

- Create a spam rank, the bigger the rank of an information item is the less likely is a RP to select it.
- Allow subscribers to vote for publications that they consider spam by applying Inforanking → SuR.
 - Malicious publishers will start publish even more spam publications therefore …
- Apply Inforanking in publications, considering as a vote the fact that a publisher publishes a piece of information → PuR.
 - PuR does not add any overhead to the architecture.
 - The bigger the PuR is the better a publication is.
- Spam rank = 1 – Normalized(PuR) + Normalized(SuR)
Approach (2/2)

Usage example

<table>
<thead>
<tr>
<th>Inf. Ident.</th>
<th>Sub. Votes</th>
<th>SuR (NSuR)</th>
<th>Publishers</th>
<th>PuR (NPuR)</th>
<th>Spam Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF1</td>
<td>S2, S5</td>
<td>1.5 (0.30)</td>
<td>P1, P2</td>
<td>1 (0.25)</td>
<td>1 - 0.25 + 0.3 = 1.05</td>
</tr>
<tr>
<td>INF2</td>
<td>S2, S4</td>
<td>1.5 (0.30)</td>
<td>P1, P2</td>
<td>1 (0.25)</td>
<td>1 - 0.25 + 0.3 = 1.05</td>
</tr>
<tr>
<td>INF3</td>
<td>S1, S3</td>
<td>1 (0.20)</td>
<td>P3</td>
<td>1 (0.25)</td>
<td>1 - 0.25 + 0.2 = 0.95</td>
</tr>
<tr>
<td>INF4</td>
<td>S1, S3</td>
<td>1 (0.20)</td>
<td>P4</td>
<td>1 (0.25)</td>
<td>1 - 0.25 + 0.2 = 0.95</td>
</tr>
</tbody>
</table>

6th NGI Conference,
Fighting Spam in Publish/Subscribe Networks Using Information Ranking
Results (1/4)

- 100 publishers, 50% malicious, 100 subscribers
- Each malicious publisher selects a number of publications from a pool of a variable size of publications (x-axis)
- Each good publisher publishes in avg. 5 items out of a pool of 80
Results (2/4)

- 100 publishers, 80% malicious
- Each publisher selects a number of publications from a pool of a variable size of publications (x-axis)
Results (3/4)

- Variable size of publishers, 50% malicious, 100 subscribers
- Each publisher selects a number of publications from a pool of 30 publications
Results (4/4)

- 100 publishers, 100 subscribers, 50% of publishers and subscribers are malicious
- Each publisher selects a number of publications from a pool of 10 or 30 publications
Conclusions and Future Work

- Inforanking is a lightweight solution that can be effectively used for fighting spam in a publish/subscribe architecture.

- Future works include:
 - Applying inforanking in currently existing applications, such as file sharing applications, bittorrent, voting applications.
 - Create a rendezvous system that integrates inforanking for future publish/subscribe architectures.
 - Pre-trusted voters.
Thank you