PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

A Selective Forwarding Unit Implementation in P4

Pavlos Tsikrikas and George Xylomenos
Mobile Multimedia Laboratory
Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece
E-mail: tsikrikaspavlos @ gmail.com, xgeorge @aueb.gr

Abstract—Multi-party conferencing systems rely on a Selective
Forwarding Unit (SFU) to replicate and forward media packets
between participants, so as to reduce end-to-end delay and
improve interactivity. While an SFU does not process these media
packets, it still needs to move packets from kernel to user space,
replicate them, and push the replicas to the kernel, at the cost
of multiple system calls and context switches. To avoid these
costs, and even the need for an SFU server, we designed and
implemented an SFU based on P4, an open source programming
language for network devices. This allows a P4-capable network
switch, which is optimized for packet processing, to act as an SFU.
We present a simple P4-based SFU implementation and compare
its performance against an equally simple, server-based SFU.
Even with a virtual (software) switch, the P4-based approach
shows dramatic gains in latency and throughout.

Index Terms—P4, Selective Forwarding Unit, Ultra Low La-
tency.

I. INTRODUCTION

Latency is a crucial issue in conferencing and telepres-
ence applications, as human participants cannot tolerate more
than 100-150 ms of end-to-end delay in interpersonal com-
munications. Applications such as Network Music Perfor-
mance (NMP) have even more stringent latency requirements,
tolerating mouth-to-ear delays of no more than 30-40 ms [1],
making them Ultra Low Latency (ULL) applications.

In multiparty conferencing, to avoid having each participant
separately exchange media streams with all others, which
is clearly not scalable, a server is commonly employed to
mediate between participants. In the past, this server was a
Multipoint Conferencing Unit (MCU), and its task was to
receive media from all senders, decode them, mix them into a
single media stream, re-encode that stream and duplicate it for
each receiver. The decoding, mixing and re-encoding process,
however, introduced significant latency.

For this reason, modern conferencing systems rely instead
on a Selective Forwarding Unit (SFU) [2], which duplicates
and forwards only the appropriate media streams to each par-
ticipant, without any media processing. This is often combined
with layered coding, where media (for example, video) are first
encoded as a low resolution/quality base layer, with successive
enhancement layers offering higher resolution/quality. With
layered coding, each participant can generate a set of media
layer streams and send them to the SFU; then, each recipient
can independently choose which of these streams to receive.
For example, one recipient may choose to receive all the video
layers from the current speaker and present them in a large

window, while another may choose to receive only the base
video layers from all participants and compose them into a
gallery. Participants only need to inform the SFU of their
choices, and the SFU will duplicate and forward only the
appropriate packets towards them.

Even though an SFU only looks at packet headers in order to
decide how to treat them, without ever touching their content,
the SFU process at the server must receive all media packets
from the kernel and either drop or duplicate and forward them
by sending them back to the kernel, according to what the
various recipients have chosen. This means that the latency of
an SFU mainly depends on the mechanism that moves packets
to/from the network hardware and user space.

In this paper, we present the design and implementation of
an SFU using a network switch programmed in P4!. P4, short
for Programming Protocol-independent Packet Processors [3]
is an open source programming language for network devices.
Using a network switch instead of a server as an SFU has
many advantages, including lower capital and operating costs.
More importantly though, the switch is optimized for high-
speed packet processing: it can exploit hardware capabilities
for packet duplication, including multicast, without the costs
of system calls and kernel-user space crossings of a server.

While P4 can target diverse network devices and exploit
their various hardware capabilities, our prototype implemen-
tation uses the Behavioral Model version 2 (BMv2) reference
software switch?, which runs as a regular process in a server.
Despite that, our experimental results indicate that the use
of P4 can greatly reduce the processing cost that takes place
inside a SFU and, thus, dramatically reduce its latency.

The outline of the remainder of this paper is as follows. In
Section II we discuss related work. In Section III, we describe
the design of our P4-based SFU, as well as a server-based
SFU that we built for comparison purposes. In Section IV we
describe our experimental setup, while in Section V we present
the results of our experiments. We present our conclusions and
discuss future work in Section VI.

II. RELATED WORK

While most commercial conferencing systems use an SFU
for multiparty conferencing, their SFU implementations are
proprietary. There are however some open-source SFU im-
plementations available. The Ion SFU? is a minimal SFU

Uhttps://p4.org/
Zhttps://github.com/p4lang/behavioral-model
3https://github.com/ionorg/ion-sfu

implemented in Go using WebRTC for signaling; it is part of
the open-source Ion real time communication platform. The
WebRTCSFU* is part of a multi-party communication system
that also allows the exchange of volumetric video. It is also
written in Go and uses WebRTC for signaling. None of these
SFUs however attempt to minimize SFU latency, as they are
straightforward server-based implementations.

The only work on optimizing SFU latency that we are aware
of is our previous SFU prototype that exploits netmap [4], a
framework for fast packet I/O, which allows packets to be
processed by user-based code without leaving kernel mem-
ory [5], [6], so as to reduce the system calls needed to send
packet duplicates. While this SFU had a lower latency than a
traditional server-based SFU (by 89%) and a lower processing
overhead (by 76%), it is still a server-based solution, that
requires a dedicated machine to serve as the SFU. An FPGA-
based approach has been proposed to reduce the delay at the
endpoints, rather than at the SFU [7]. In this work, a dedicated
audio processor was created, running on an FPGA chip, whose
architecture and instruction set were specifically designed to
minimize the latency due to audio sampling.

Another issue with SFUs is their placement in the network:
ideally, the SFU should be at the topological center of the
participants, to reduce delay. As this is hard to do with
many participants spread around the world, an alternative is
to use a specially created multicast tree that connects multiple
SFUs [8], approximating a single optimally placed SFU.

Since latency depends on both the processing elements
(endpoints and SFU) and the networking elements, one way
to improve performance is to jointly design the two [9]. In
this work, a Software Defined Network (SDN) works jointly
with the endpoints, first trying to reduce latency by adapting
the routes taken, and then reducing the bitrates produced by
adapting the coding at the endpoints.

Finally, Bit Index Explicit Replication (BIER) is a scheme
to implement multicasting inside a network of BIER-aware
routers. The BIER concept relies on each packet carrying
a bitmap in its header that indicates all the BIER-aware
endpoints that the packet should reach. Using unicast routing
tables, each router may decide to copy the packet to multiple
interfaces, with each packet retaining in its header only the bits
for the routers reachable via the corresponding interface. BIER
can be simply implemented in P4 by recirculating a packet
after making each copy; if the packet needs to be forwarded
out of n ports, it is recirculated n — 1 times. A faster approach
is to use the multicast groups in P4-based switches, as shown
in [10] for the BMv2. We follow a similar approach for our
P4-based SFU, using multicast to avoid packet recirculation,
but unlike BIER, our SFU does not need to support arbitrary
multicast groups, only the ones configured for a conference.

III. DESIGN & IMPLEMENTATION
A. Design assumptions

To assess the benefits of P4, we decided to design and
implement in parallel two very simple SFUs, offering the

“https://github.com/jvdrhoof/WebRTCSFU

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

Lookup table
Socket Socket
Linux
NIC NIC

Fig. 1: Outline of our server-based SFU.

same feature set: one is a standard, user-space, SFU written
in Python and running on a Linux server, while the other is
written in P4 and runs on any P4-capable switch; we tested
it with the reference software P4 switch, BMv2. The user-
space SFU relies on standard socket calls to receive and send
packets, with user-level copying of packets when duplication
is needed. The P4-based SFU exploits the features provided
by P4 to examine, drop, duplicate and forward packets inside
a P4-capable network switch; although we tested it with a
software switch, the same program can exploit any hardware
optimizations present in a real switch.

To simulate an actual multi-party conferencing application,
we created a simple client, written in Python, which transmits
and receives one or more streams of UDP packets with dummy
content. To simulate the various media streams transmitted by
real conferencing clients (audio, base video layer, enhance-
ment video layer, etc.), we used a different UDP destination
port for each stream, with a pre-arranged mapping of streams
to ports. We also assumed a pre-arranged configuration of
hosts, that is, the SFU knew in advance all the participant
hosts and had a table showing which recipient host required
which stream; a real SFU would employ a signaling protocol
to dynamicaly inform the SFU of client preferences.

With these assumptions, the SFU could decide how to treat
each incoming packet based only on its IP source address (the
sending host) and its destination port (the media stream). For
example, recipients that only desired low quality video from
everyone, would get all packets sent to the port for the base
video layer, while recipients that desired high quality video
from a specific user, would get packets sent to the ports for
both the base and enhancement layers from that source.

B. Server-based SFU

The server-based SFU simply receives packets from the
network, looks at their headers, replicates them for each
recipient, and sends the copies back to the network, as shown
in Figure 1. Since packet handling is needed, we used Python’s
scapy library. To avoid creating a bottleneck at the network
interface that sends and receives packets, we assumed that
our server had multiple network interfaces, with a different
participant connected to each interface.

The Python program constantly sniffs all available network
interfaces. When a packet is caught, a function that handles
its processing is called asynchronously. The function examines
the packet and checks where is it headed. If it is headed for

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

(@)

£ 2

= £

7 ol |3

5] (o)))

ANEERNEE
» *E*E*E*B*

()] (73]
sl|allellal |z
n o =] S
< o | © S| |©
al||E||F] |0l A

Fig. 2: Outline of a P4-based switch.

the SFU, it means the packet has just arrived and needs to be
duplicated and forwarded accordingly. In this case, the UDP
destination port is checked, in order to decide on the correct
group of recipients. Subsequently, the packet is duplicated as
needed and forwarded to the appropriate receivers.

C. P4-based SFU

The P4-based SFU uses the BMv2 framework for the
simple_switch_grpc target implementation. An outline
of a BMv2 switch is shown in Figure 2; note that processing
rules can be used at both the ingress and egress processing
stages. The P4 variant used is P4;¢4, using the core.p4 and
vimodel modules. The SFU expects media packets to be
encapsulated in UDP, therefore the headers of the P4 file
include three structures, an ethernet, an ipv4 and a udp
structure. The SFU parser identifies and extracts these three
headers and passes the packet to ingress processing.

To exploit the hardware multicast capabilities of P4-capable
switches, we assumed that each participant was connected to
a different switch port. We created a multicast group for each
media stream, containing the switch ports leading to all the
recipients that needed to receive that stream, and let the switch
handle multicast processing. To simplify the implementation,
we only used two multicast groups, one for the recipients that
only needed the base video layer, and another for the recipients
that also needed the enhancement video layer; note that the
latter were part of both groups.

Inside the ingress processing block, four actions are speci-
fied. Action drop marks a packet for dropping, if there are no
recipients for it, while action ipv4_forward forwards the
packet according to the control plane rules. Finally, actions
multicastLQ and multicastHQ are used to mark a
packet according to the group it needs to be multicasted
towards. This is achieved by setting the appropriate value
in the standard_metadata.mcast_grp field provided
by vimodel. The multicast group entries (the ports for the
appropriate recipients), are provided in the s1-runtime file.
The action taken relies on the packet’s UDP destination port.

After the ingress processing block, naturally, comes the
egress processing block. There, the packets’ egress switch port
is compared with the ingress switch port to avoid sending the
packet back to the sender; this allows using the same multicast
group, regardless of the sender. Following the vlmodel

Host 6

Host 5

Fig. 3: The topology used in the P4-based SFU experiments.

architecture, the packet has its headers reassembled and gets
serialized in order to be sent towards the appropriate recipients.

IV. EXPERIMENTAL SETUP
A. Environment configuration

For the implementation of the P4-based SFU, a virtual
machine was used with a freshly installed copy of Ubuntu
20.04.6 LTS. In order to install all the required P4 development
tools, we executed the install-p4dev-v5. sh script. The
experiments were ran on the folders of the P4 tutorial ex-
ercises, so the main Makefile could be used to automate
the network generation process. The project folders include a
secondary Makefile that configures the architecture of the
P4-based switch and the topology.

We used Mininet [11] to create and emulate a virtual
network for the experiments with both SFUs. The traffic
consists of streams of dummy UDP packets created through
Python’s scapy library. Mininet’s xterm function was used
to run these Python scripts on the client nodes. We also ran
Wireshark on the SFU-hosting switch or server, to monitor
and later analyze the traffic. The code for our experiments,
including the client, the two SFU implementations and the
analysis scripts, is available in github’.

B. Network and application settings

The experiments were structured to mimic a conferencing
application. Firstly, a network topology was established. Fig-
ure 3 shows N participating hosts communicating with each
other through an SFU, in a star configuration with the P4-
based switch as the hub and each host connected to a different
switch port. For the server-based SFU, the SFU was a server,
connected to each client host on a separate network interface,
again forming a star topology, as shown in Figure 4; as we
explain in Section V, the server-based SFU could only handle
a small number of clients.

Shttps://github.com/Praiven/P4-SFU

Fig. 4: The topology used in the server-based SFU experi-
ments.

With the intention of more closely approximating a con-
ferencing application environment, we ran two sets of exper-
iments. In the first set, each host sent a single media stream,
and all other hosts received it. This single stream configuration
allows a straightforward interpretation of the results, showing
clearly the delay between the sender and the recipients of each
packet. To examine SFU performance with different loads, we
started with only two hosts, and added hosts one by one.

In the second set of experiments, each host generated two
video streams, a base layer and an enhancement layer, with
all hosts receiving the base layer, but only half of them also
receiving the enhancement layer. In this case, we also started
with two hosts, but then added two hosts at a time, to ensure
that half would receive only the base layer and the other half
would receive both the base and the enhancement layer.

We initially set each host to send one packet every 36-
41 ms; due to the use of Python-based clients, the intervals
were not exact, but on average, each host sent roughly 1500
packets in a span of 60 seconds. In the two stream experiments,
the same stream of packets was sent, but the odd-numbered
ones were for the base layer and the even-numbered ones for
the enhancement layer. The packet size was between 352 and
376 bits apiece (44 to 47 bytes); the only payload that the
packets had, was a participant number and a sequence number,
to simplify analysis (see below).

However, after looking closely at the results, we found that
the server-based SFU lost a non-negligible number of packets,
even with the minimum number of two hosts. To provide a fair
comparison between the two SFUs, we experimented with the
packet sending interval, finding that with a 60-62 ms interval,
the server-based SFU did not face any loss with two hosts
and one packet stream; this translated to a total of around
1000 packets in a span of 60 seconds.

It should be noted that a real conferencing application
would produce significantly larger packets, especially for
video; audio packets are usually small, to limit packetization
delays, but video packets can reach the maximum size that
Ethernet allows. By using very small packets, the dominant
cost is cloning/copying packet headers; with larger packets,
cloning/copying the packet payloads would dominate. How-
ever, due to the use of emulated software devices for the server
and P4 switch, which do not have the processing power and
memory bandwidth of real machines, we tried to reduce the
load placed on the SFUs by only using nominal payloads.

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

C. Measurement method

The main goal of our experiments was to compare the
packet processing latency between the two SFUs. To determine
this latency, we measured the difference between the time the
packet entered the SFU and the time the packet left the SFU.
The time difference was extracted with the help of Wireshark:
every packet that traveled through the virtual network was
captured by Wireshark, along with its timestamp.

To correlate incoming with outgoing packets in the face
of multicast/duplication, we needed to mark each packet
generated by the clients, to allow us to keep track of its copies.
To achieve this, each host marked its outgoing packets with a
source identifier and a sequence number. Specifically, packets
from host 1 would have the letter “a” in their payload, packets
from host 2 would have the letter “b”, and so on, followed
by an increasing sequence number; this is why the packet
payload ranges from 44 to 47 bytes: packet numbers were
1 to 4 characters. The payload was kept the same when the
packet was multicasted or duplicated, allowing the copies to
be mapped to the original packet.

For the P4-based switch, we had two separate Wireshark
captures for each switch port, one for the incoming packets
towards it and the other for the outgoing packets. A Python
script first read every “in” capture from Wireshark, creating
a dictionary of key-value pairs. The packets’ payload (e.g.,
“al”) served as the key of the pair, whilst the arrival time
of the packet made up the value. Then, the “out” captures of
Wireshark were read by the script. By comparing the key of
every entry, we could append every instance of an outgoing
packet after the instance of the original packet. Since the
“in” captures were read first, lists of key-value pairs were
formed with the following form: the first element of the list
was the original packet which traveled from the sender to the
switch, in order to be duplicated and forwarded. The following
elements of the list were the duplicates of the original packet
that were created from the switch’s P4 program, and sent to
the recipients. We determined the processing time needed for
packet duplication at the P4-based switch, by subtracting the
arrival time of each packet from the arrival times of its copies.

For the server-based SFU we started a single Wireshark
capture process that continuously listened on every network
interface of the SFU (server). As with the first scenario, we
wanted to create similar key-value pairs with the aim of
extracting the latency of the SFU needed when replicating
packets. This was accomplished by first iterating through the
packets that had the IP address of the SFU host as their
destination. These packets were sent towards the server with
the purpose of being replicated and forwarded towards the
proper recipients. Following the steps above, we read the
remaining packets, appended them to the appropriate key-value
pair, and then calculated the latency for each packet copy.

V. EVALUATION RESULTS

In this section, we present and discuss the results from
our experiments with the P4-based and server-based SFUs
running in Mininet. Table I shows the minimum, maximum
and average packet delay of the P4-based SFU with one media

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

TABLE I: P4-based SFU statistics with one stream.

Hosts Min Max Avg Increase | Packets | Traffic volume
2 0.000505 | 0.002907 | 0.000778 0 1456 1071 Kbits
3 0.000471 | 0.004113 | 0.000937 20% 1484 3276 Kbits
4 0.000467 | 0.007507 | 0.001134 21% 1525 6734 Kbits
5 0.000458 | 0.017137 | 0.001675 48% 1558 11466 Kbits
6 0.000453 | 0.015145 | 0.001978 18% 1590 17553 Kbits
7 0.000456 | 0.030355 | 0.003095 56% 1610 24884 Kbits
8 0.000462 | 0.052992 | 0.004736 53% 1608 33137 Kbits
9 0.000460 | 0.106720 | 0.009122 93% 1601 42420 Kbits
10 0.000484 | 0.328883 | 0.031889 250% 1591 52693 Kbits
11 0.000514 | 0.989098 | 0.267746 740% 1585 64160 Kbits
12 0.000523 | 5.958905 | 3.986195 1389% 1569 68594 Kbits

TABLE II: P4-based SFU statistics with two streams.

Hosts Min Max Avg Increase | Packets | Traffic volume
2 0.000515 | 0.002859 | 0.000834 0 1457 804 Kbits
4 0.000484 | 0.014854 | 0.001210 45% 1548 5126 Kbits
6 0.000476 | 0.018257 | 0.001987 64% 1613 13358 Kbits
8 0.000457 | 0.051833 | 0.003915 97% 1633 25244 Kbits
10 0.000486 | 0.141570 | 0.015084 285% 1647 40919 Kbits

stream, as the number of hosts grows from 2 to 12. The table
also shows the increase in average latency every time we add
a host, the average number of packets sent by each host, and
the total traffic volume generated by the SFU.

We can calculate the expected traffic volume generated by
the SFU as n x (n — 1) % p * [, where n is the number of
hosts, p is the number of packets sent by the host and [is the
packet size: px! is thus the size of each host’s stream, n is the
number of such streams and n — 1 is the number of duplicates
generated by the SFU for each stream. From the table, we can
see that the traffic volume grows as expected with up to 11
hosts; with 12 hosts, there is only a small growth of traffic,
indicating significant packet loss. But even with 11 hosts, we
can see a significant growth in average latency, indicating that
the P4-based SFU is reaching its capacity.

It is interesting to note that the minimum delays do not
really depend on the number of recipients, since they reflect
the first duplicate of a packet leaving the SFU. As such,
they provide an idea of the minimum latency we can expect
from the P4-based SFU, which is around 0.5 ms for our
experimental setup. The average and maximum latency on the
other hand grow with load. With 10 hosts the average latency
is less than 32 ms, and the maximum less than 330 ms, or one
third of a second, which are impressively low for a software
switch running inside Mininet.

Table II shows the results from the experiments with two
media streams; here, we add two hosts in each step, one receiv-
ing both streams and one receiving only a single stream, with
each stream consisting of half of the generated packets. In this
case, we can calculate the expected traffic volume generated
by the SFU as follows. First, for the base layer that everyone
receives, the traffic volume is n(n—1)*(p*l/2); the reasoning
is the same as above, with the difference that only half of the
packets belong to the base layer. Second, for the enhancement
layer the traffic volume is n * ((n — 1)/2) * (p * 1/2), since
these packets are only sent to half of the possible receivers,
or (n —1)/2. The table indicates that there is no significant
loss with 10 hosts, but at this point the average and maximum
latency have grown far more than in the previous step. With 8

TABLE III: Server-based SFU statistics with one stream.

Hosts Min Max Avg Increase | Packets
2 0.010961 | 10913122 | 7.860589 0 1557
3 0.015288 | 32.523685 | 23.351614 197% 1564
TABLE IV: Server-based SFU statistics with two streams.
Hosts Min Max Avg Increase | Packets
2 0.013842 | 6.811303 4.585829 0 1566
4 0.019133 | 53.473191 | 34.797006 659% 1614

hosts the average latency is less than 4 ms, while the maximum
latency is around 50 ms, again, impressive for a software
switch; the minimum latency is again less than 0.5 ms.

As mentioned previously, the server-based SFU is not
capable of handling these loads, so we only show results with
2 or 3 hosts in one stream mode in Table III and with 2 or 4
hosts in two stream mode in Table III; even at these levels of
traffic, there is significant loss when we try to send the same
packet streams as with the P4-based SFU experiments. We can
see that the minimum delay through the server-based SFU is
10-20 ms, and that the average delays are on the order of
seconds, as opposed to milliseconds with the P4-based SFU.

By increasing the packet interval to 60-62 ms, meaning that
we only generate around 1000 packets in 60 seconds, we can
run the one stream experiment on both the P4-based and the
server-based SFU, without significant loss, albeit with only
two hosts. Table V shows the corresponding results, which
are directly comparable. The P4-based SFU has three orders
of magnitude advantage over the server-based SFU in average
and maximum latency, and nearly two orders of magnitude in
minimum latency. Recall that these results are with minimal
packets, which minimize payload copying; with large packets,

TABLE V: Statistics comparison with one stream and longer
intervals.

SFU | Min | Max | Avg | Packets
P4-based 0.000576 | 0.002957 | 0.000859 993
Server-based | 0.014827 | 5.081318 | 2.573470 965

the gaps would probably be far higher.

To interpret these results however, we must bear in mind
several factors. First, the server-based implementation is a
simple program written in Python; a real SFU would be
carefully coded in C or C++ for performance. Second, we
are using Mininet, which is an emulated environment, where
everything (hosts, switch and servers) runs in the same com-
puting environment; of course, this is true for both the P4-
based and the server-based SFU. Third, the P4-based switch is
a reference software implementation, not real hardware, which
cannot exploit (for example) hardware multicast. Fourth, the
network topology favors the P4-based switch, since, even
though it is a software switch, it is aware that multicast is
taking place and can perform some optimizations; the server-
based SFU on the other hand must copy the IP packets for
each network interface. Finally, the groups are statically pre-
configured; dynamic host groups may be trickier to implement
in P4 than in the server-based SFU.

VI. CONCLUSION

We have presented the design and implementation of a P4-
based SFU that exploits the multicasting features of switches
to reduce copying overhead and, in general, the ability of P4 to
process packets closer to the hardware. Even with a software
switch that cannot take advantage of such optimizations, the
comparison with a similar, albeit simple, Python-based server,
shows huge speedups, indicating the very large potential gains
of a P4-based implementation running on real hardware.

While our approach so far relies on manual group setup,
it is trivial to extend it with a signaling protocol to setup the
streams desired by each sender. This would require replacing
the preconfigured tables for packet replication currently used,
with a controller that would receive these signaling messages
and use the P4Runtime API® to modify the multicast groups
of the P4-based switch in real time.

A natural next step for experimentation is to replace multi-
cast via multiple ports (or NICs) with a single SFU port (or
NIC) via which all clients are reached, as is common in current
SFU servers; this would eliminate the advantages of multicast
from the P4-based SFU. Although this would require packet
recirculation inside the P4-based switch for each packet copy,
in a real hardware switch it would still prevent the crossings
between kernel and user space of a server-based SFU.

For experimentation, the next step is to use separate ma-
chines for the SFU and the clients, as opposed to emulating
them via Mininet and, of course, using a hardware P4-capable
switch, to explore the real-world performance of our approach.
Especially for NMP with its ULL requirements, it would be
interesting to test our P4-based SFU against a server-based
SFU running at a mobile edge server, in conjunction with 5G
connections that can achieve ULL-level delays.

ACKNOWLEDGMENT

The work reported in this paper has been partly funded
by the EU’s Horizon 2020 Programme through the subgrant

Shttps://p4.org/p4-spec/pdruntime/main/P4Runtime-Spec.html

PUBLISHED IN: PROCEEDINGS OF THE IEEE CSCN 2024

Telepresence-Enhanced Network Music Performance (TEN-
eMP, SPIRIT-OC1) of project SPIRIT (grant agreement No
101070672).

REFERENCES

[1] K. Tsioutas, G. Xylomenos, and I. Doumanis, “An empirical evaluation
of QoME for NMP,” in Proceedings of the IFIP International Confer-
ence on New Technologies, Mobility and Security (NTMS), 2021, pp.
1-5.

[2] A. Eleftheriadis, R. M. Civanlar, and O. Shapiro, “Multipoint videocon-
ferencing with scalable video coding,” Journal of Shejiang University
SCIENCE A, vol. 7, pp. 696-705, 2006.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” SIGCOMM
Computer Communication Review, vol. 44, no. 3, p. 87-95, jul 2014.

[4] L. Rizzo, “Netmap: a novel framework for fast packet 1/0,” in Proceed-
ings of the USENIX Annual Technical Conference (ATC), 2012.

[5] G. Baltas and G. Xylomenos, “Ultra low delay switching for networked
music performance,” in Proceedings of the International Conference on
Information, Intelligence, Systems and Applications (IISA), 2014.

, “Evaluating the impact of network I/O on ultra-low delay packet
switching,” in Proceedings of the IEEE International Symposium on
Computers and Communications (ISCC), 2015.

[7] D. Bert, N. Domini, R. Peloso, L. Severi, M. Sacchetto, A. Bianco, and
C. Rottondi, “FPGA-based low-latency audio coprocessor for networked
music performance,” in Proceedings of the International Symposium on
the Internet of Sounds, 2023, pp. 1-8.

[8] J. Wei and S. Bojja Venkatakrishnan, “Decvi: adaptive video conferenc-
ing on open peer-to-peer networks,” in Proceedings of the International
Conference on Distributed Computing and Networking (ICDCS), 2023,
pp. 336-341.

[9] E. Lakiotakis, C. Liaskos, and X. Dimitropoulos, “Improving networked
music performance systems using application-network collaboration,”
Concurrency and Computation: Practice and Experience, vol. 31, no. 24,
p. €4730, 2019, 4730 cpe.4730.

[10] D. Merling, S. Lindner, and M. Menth, “P4-based implementation of bier
and bier-frr for scalable and resilient multicast,” Journal of Network and
Computer Applications, vol. 169, p. 102764, 2020.

[11] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2010, pp.
1-6.

[6]

