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Abstract—In this paper, we implement and deploy the most
widely used algorithm in Federated Learning (FL), i.e. Federated
Averaging (FedAvg), on an experimental testbed. The testbed
consists of Raspberry Pi devices (RPis) connected to a wireless
network. We perform extensive evaluations in various real-world
scenarios and provide insightful results and lessons learned.
Specifically, we evaluate FedAvg on our testbed to investigate
the effect of the following parameters on training: (i) number of
users selected at each round, (ii) number of local gradient steps
before communicating with the server, (iii) clients disconnecting
from the server, (iv) data distribution heterogeneity across clients,
and (v) mobility of users. Finally, we examine the impact of the
wireless environment on the learning performance under varying
network parameters.

Index Terms—Federated Learning, Implementation, Rasp-
berry Pi devices.

I. INTRODUCTION

Due to the huge increase in the use of edge devices,
like sensors and wearables, data are mostly produced in
resource-constrained devices, with limited computational and
connectivity capabilities [1]. FL is introduced as a distributed
Machine Learning (ML) paradigm to take advantage of such
data produced at the network edge. In FL, many clients
(e.g., mobile devices) collaboratively train a ML model, under
the orchestration of a central server without exposing any
information about their training data [2]. When developing
and experimenting with FL algorithms, most current research
efforts, especially in the ML scientific community, are focused
on simulation environments located on a single machine. Since
all training parameters are transmitted over wireless links
though, these setups do not reflect real-world FL systems.

In an IoT setting, clients might only be temporarily con-
nected with the server, for a few communication rounds,
or they might vary their distance from the wireless access
point (AP) due to mobility. Such clients’ behaviors can be
validly simulated, in order to expound their effect on the
learning performance, and this is one of the main aspira-
tions of this work. Furthermore, the computational power
(e.g., CPU, RAM etc.) and communication capacity (e.g.,
bandwidth) of resource-constrained edge devices, can exhibit
extreme heterogeneity, and their effect in training needs to
be examined. Consequently, the deployment of FL on actual
hardware remains an under-explored area, as the main focus is

centered around theoretical results driven by data experiments,
where the data is conceptually but not physically distributed.

In this work, we cater to fill this gap by thoroughly
evaluating FedAvg [2], the most widely used FL algorithm for
benchmarking, and by examining all of its parameters, as well
as repercussions that arise in the wireless setting, with the
purpose of effectively studying their impact on the learning
performance of FL. The main contributions of this work can
be summarised as follows:

• We implement the FedAvg algorithm and demonstrate
key software and hardware issues that arise from the
deployment on RPis.

• We perform real experiments with RPis and investigate
the impact of various FL algorithmic parameters on the
learning performance.

• We explore and expound the effects of the volatility of
the wireless environment on the FL procedure.

The paper is organized as follows: In section II, we outline
an overview of the related work. In section III we demonstrate
our implementation, cite the hardware and software issues we
addressed and describe the experimental setup. In section IV
we showcase and discuss results from our experiments. We
conclude and suggest some extensions in Section V.

II. RELATED WORK

FL Algorithms: FedAvg [2] was the first successful algo-
rithm in the FL setting. It works by simply aggregating the
model weights sent from the clients and producing a global
model by averaging them. In [3], the authors prove that FedAvg
suffers from the phenomenon of “client-drift” (i.e. each client
“pulls” the global model towards their local model), when the
data are non-identically and independently distributed (non-
i.i.d), resulting in unstable and slow convergence. To alleviate
the issue of heterogeneous local updates due to non-i.i.d
local datasets, the authors in [4] propose adding a proximal
term µ

2 ∥w − wg∥2 to each local objective, where µ is a
tunable parameter and wg are the global weights sent at that
communication round to the client. These approaches improve
performance over FedAvg, but statistical heterogeneity caused
by non-i.i.d data is still a core challenge of FL [5].
Implementation of FL on edge devices: In order to effec-
tively deploy FL over real-world IoT networks, it is necessary
to investigate how the volatility of the wireless environment
affects the performance of FL algorithms. In [6], the authorsISBN 978-3-903176-48-5© 2022 IFIP



introduce an adaptive client selection scheme that takes into
consideration the clients’ resources, however they perform
simulation of the wireless environment to test its learning
performance and training time. A similar work in terms of
implementing and evaluating FL is [7], where the authors
evaluate FL at an actual IoT testbed of RPis. However, they
examine the learning performance of FL only in simulations.
An adaptive FL algorithm that determines the best tradeoff
between local computation and global communication rounds
is proposed in [8], but the authors omit the effects of wireless
network volatility. From the networking standpoint, the authors
in [9] propose a communication scheme with adaptive resource
optimization for FL at the edge and evaluate QoS metrics such
as delay and packet loss in a simulation environment. Finally,
a tutorial of implementation of FL on RPis is presented in [10],
but no evaluations are provided, while a third-party library is
used to accommodate the communication between the server
and the clients.

III. RASPBERRY PIS’ EXPERIMENTAL SETUP

For our implementation we used 5 Raspberry Pi devices
(version 4, with Quad core CPU and 4 GB RAM) as clients
and a desktop computer as the server. One of our main
aspirations was to build and use a setup that allows for an easy-
to-follow-and-reproduce procedure and can be implemented
across many types of resource-constrained edge devices. This
allows us to focus only on the complexity of the deep learning
models when considering computation time of such devices.
The setup of our hardware testbed is shown in Figure 1.

Fig. 1: The arrangement of our hardware setup. We use a
desktop computer connected with Ethernet to the internet, and
5 RPis connected to the same network over Wi-Fi, with a
distance of 1 meter from the AP.

A. Software settings
We follow the conventional FL procedure described in [2].

Edge devices train their local models using their own locally
available data and then transmit the trained local models to
the server. The server in turn generates a global FL model by
aggregating the received local models and sends it back to the
clients. The procedure repeats until a halting criterion is met.

For the implementation, the ML library PyTorch1 was
preferred. PyTorch does not have an official package in Python

1https://pytorch.org/

Package Index (official third-party repository of software) for
ARM compatible devices, for versions 1.0 and above. To cater
for this issue, a pre-compiled wheel (i.e. the standard built-
package format used for Python distributions package) was
used to install PyTorch on the RPis.

Remark: When dealing with memory-intensive tasks, the
RPi system ran into “out of memory” errors or had to shut
down other packages. To address this, the swap file is used as
the virtual memory extension, in order to increase the system’s
total accessible memory beyond its hardware capabilities.

Finally, the inherent need of FL for concurrent management
of multiple clients inevitably leads to the use of threads
in Python. The computation phase is synchronous such that
all clients have to finish solving their local problems before
entering the communication phase to transmit their updates to
the server. A natural difficulty arising in the context of a multi-
threading environment, is race conditions, i.e. multiple clients
accessing and updating the same parameters. Since in our case
there are some global variables that are accessed concurrently
by all clients, the use of locking mechanisms when updating
them was necessary so as to guard against simultaneous access.

B. Communication setup

In a communication round of FedAvg, the server and the
clients send and receive updated model parameters. We de-
veloped a TCP-based socket interface for the client-server
connection. TCP was preferred to UDP because of guaran-
teed data delivery and packet retransmission. To establish a
connection, a desktop computer equipped with one Python
program (we refer to it as server.py) takes the role of the server,
knowing in advance the number of clients that are going to be
connected. Five RPis participate in the procedure as clients,
with a client.py Python program respectively. The clients need
to know in advance the IP address and the port of the server
they are going to connect to.

Remark: The recv() function of Python requires that we
specify in advance the number of bytes we are going to
receive. Since we are exchanging multiple files of various
sizes, it would be a waste of bandwidth to naively provision
and set a very large constant number of bytes for the whole FL
process. Instead, we prefix the data we are going to send with
a “header” of 4 bytes, which contains the size of the actual
message. Then, the programs on the clients and the server first
read the ‘header’ indicating the number of bytes to expect and
then appropriately set the argument of recv() to that number.

C. Testbed Deployment and Execution

Once the respective programs on both sides are initialized,
the following steps take place:

1) Connection establishment: The server starts listening
for a prespecified number of connections. Clients in turn,
load their local datasets and connect to the server, using
its IP address and the Port number, which are known to
them in advance.

2) Training instructions broadcast: For every connected
client, the server receives the size of its local dataset and



sends back all the hyperparameters required for training,
e.g., the number of global rounds and the number of
local epochs.

3) Clients computation: At each communication round, a
fraction C of clients are selected for participation. Each
selected client locally computes an update to the model
by executing the training instructions, following for
example the update rule of Stochastic Gradient Descent.

4) Clients broadcast: Clients send their updated local
models to the server.

5) Server aggregation: Once all the clients in the current
round have sent their local model updates, the server
updates the shared model based on the aggregated update
computed with the FedAvg algorithm.

6) Server broadcast: The server sends the updated central
model to all the participating clients.

Steps 3 through 6 are repeated until a halting criterion is met,
for example until central model convergence or the maximum
number of communication rounds is reached.

D. Implementation details

Dataset split and distribution: In this work we evaluate our
implementations on the CIFAR-10 dataset [12]. To study the
FL optimization, we also need to specify how the data are
distributed over the clients. We study two ways of partitioning
the dataset in terms of the classes (labels): (i) i.i.d, where all
the training data are simply shuffled and partitioned into 5
parts and are then distributed to the clients; (ii) non-i.i.d, where
we first sort the data by class and assign training data from
c = 2 or c = 8 classes to each client. For instance, when c = 2
each client will only have training examples of two classes out
of the ten available. Thus, this lets us explore the efficiency of
our methods on highly non-i.i.d data. Both of these partitions
are balanced in terms of size, however. In all cases, there is
no overlap in the training data between clients, and both the
server and clients have the same test dataset to evaluate on,
which is the default test partition the dataset comes with.

ML model: For our experiments we used a simple Con-
volutional Neural Network (CNN) model which consists of
one 5x5 convolution layer with 6 channels, followed by
batch normalization and a 4x4 max-pooling, and then 3 fully
connected layers with 216, 120 and 64 units respectively, with
Leaky ReLu activation function and Dropout. The final layer
of the network is a softmax layer that outputs a probability
distribution over the 10 classes of the dataset. We use as
local solver for all clients, the Stochastic Gradient Descent
(SGD) optimizer, with a learning rate 0.001 and momentum
0.9, which we keep fixed throughout all our experiments. As
a loss function, we use cross-entropy loss.

IV. RESULTS

In this section, we evaluate the impact of the following
parameters on the performance of our implementation of the
FedAvg algorithm: (i) Communication and computation time at
the clients; (ii) Data distribution heterogeneity across clients;

TABLE I: Network statistics that affect the communication
time at each global round of the FL training procedure.

Distance from AP Bandwidth Signal strength Link speed
1 m 36,3 Mbits/sec -45 dBm 130 Mbits/sec
12 m 30,9 Mbits/sec -51 dBm 110 Mbits/sec
30 m 18,7 Mbits/sec -70 dBm 52 Mbits/sec

Fig. 2: Communication time of the 5 RPis vs. distance, for
distances of 1 m, 12 m and 30 m from the AP.

(iii) The fraction, C of clients selected for training at each
communication round; (iv) Mobility of clients.

A. Effect of Communication and Computation time

Similar to other ML schemes, one of the most critical
performance metrics of FL is the time required to converge
to a predefined accuracy level. However, different from con-
ventional ML approaches, the time required for a round of
FL training includes not only the computation time, but also
the communication time of all participating devices. Here, we
define as communication time, the time required for a RPi to
send the local model to the server. Since all training parameters
are transmitted over wireless links, the quality of training will
be affected by factors such as bandwidth and latency. To
capture the effects induced by communication, we first placed
5 RPis in three different distances from an AP and measured
the network statistics that affect the FL procedure. Specifically,
we used the Wi-Fi analyzer1 application to measure the signal
strength and link speed of the Wi-Fi connection. For the TCP
throughput, we used the iperf32 program with the RPis as
clients and the desktop PC as the server. In all cases, we took
the average over 5 measurements from all RPis. The results
of the measurements at the different client-server distances
of 1m, 12m and 30m can be seen in Table I. As the distance
from the AP increases, there is a noticeable decrease in all the
networks measurements resulting in a considerable increase in
the communication time as well. Specifically, on average, we
observe a 60% increase in communication time going from
close to the AP to 12 m distance, and a 120% increase at 30 m
distance from the AP (Fig. 2). Such observations are important
in larger-scale FL systems where the different client-server
distance plays a role in performance. Another important
factor to consider is the mobility of the clients. Any IoT

1https://play.google.com/store/apps/details?id=abdelrahman.
wifianalyzerpro&hl=en&gl=US

2https://iperf.fr/



Fig. 3: The performance of the global model in terms of (top
graph) test accuracy and (bottom graph) loss, when clients par-
ticipate with a probability of p = 25%, 50%, 75% and 100%
at each communication round.

participant may disconnect from the network in the middle
of the training phase or during the interaction with the server
e.g., due to wireless channel quality fluctuation, hindering as
a result the global model’s learning performance. Besides,
maintaining a constant connection with the server might be
expensive or even infeasible. Such situations that consider
both client mobility and bandwidth issues have not yet been
explored [13].

To emulate these conditions, we implemented the standard
FedAvg algorithm on our testbed and allowed each client
to participate in a communication round by following a
Bernoulli probability distribution with four different values
of p, p = 25%, 50%, 75%100%; with p = 100% being the
baseline case of all clients participating at every round (Fig.
3). When a client participates in a communication round, it is
able to send its local model update to the server and receive the
resulted global model, while on the contrary if a client does
not participate in a communication round, it can only train
on its local data based on a stale global model. We observe
that even with a participation rate of p = 75% per client, the
global model is able to converge without any hampering in
learning performance. On the other hand, when p = 50% or
25%, there is a significant drop in learning performance, as
well as many oscillations (especially in the latter case) in the
plot, showcasing a difficulty in convergence.

Finally, one of the key questions regarding the deployment
of FL is whether we should spend more time on computation
and less on communication updates to achieve high learning
accuracy, or vice versa. This is an important issue, given
that different devices have different computation capacity and

Fig. 4: The effect of number of local training epochs E of the
clients (top graph) on the test accuracy and (bottom graph)
loss of the global model at each communication round.

communication bandwidth. We study three scenarios where
the clients train for E = 1, 3 or 6 local epochs before sending
the results to the server for aggregation and we present the
results in Figure 4.

This scenario explores the tradeoff between computational
and communication cost. Each local update consumes com-
putational resources of the edge device, while each com-
munication round consumes communication resources of the
network. For a fair comparison of the 3 cases, we reduced the
communication rounds as we increased the local epochs, to
ensure that each client will perform 300 steps of SGD on its
local training data in total. The results showcase that training
for more epochs locally, increases the learning performance
early on, with noticeably less communication overhead.

Specifically, at global communication round 30, the test
accuracy for E = 1, 3 and 6 epochs is 70.49%, 73.72% and
73.77% respectively. This inevitably comes with a computa-
tional cost, as each training round in our testbed required on
average 215 seconds to complete. Thus, if we set the training
time T = (number of communication rounds) × (number of
local rounds)×215sec, then in order to reach the 30th com-
munication round, it would require 107, 322 and 645 minutes
for the cases E = 1, 3 and 6 respectively.

B. Effect of data distribution heterogeneity

In the FL setting, not all clients might have a representative
sample from the overall distribution of data, i.e., they might
not have data from all classes. We created a scenario for a
non-i.i.d data distribution in the case of missing labels, by
distributing c = 2, 8 or 10 classes (labels) to each client,
in equal volumes, and we compared the performance of the
global model in these 3 cases (Fig. 5). In the cases c = 8 and



Fig. 5: The performance of the global model in terms of test
accuracy (top graph) and loss (bottom graph) for different
distribution of classes in each client’s training dataset.

10, the global model manages to generalize, and it achieves
an accuracy of 72.29% and 74.73% respectively. The extreme
case of non-i.i.d distribution of data, where each client has
only 2 out of the 10 classes available for training, does not
allow the global model to generalize to unseen data, and it
reaches a maximum test accuracy of only 37.39%. The same
observations hold for the test loss.

C. Effect of number of users selected in each training round

In real-world scenarios, it is unrealistic to expect that all
clients participate in the FL procedure, since some may not
be always active. For this reason, we randomly select a fraction
C = 1/5, 2/5, 3/5 and 5/5 of clients (i.e., 1, 2, 3, or 5 RPis)
to participate at each communication round, and perform FL
training for two different cases of data distributions, namely
i.i.d i.e., c = 10 (Fig. 6) and non-i.i.d i.e., c = 2 (Fig. 7).
Clients selected at each round exchange model updates with
the server, while the rest remain idle or turned off.

For the i.i.d case, the fractions C = 1/5, 2/5, 3/5 and 5/5
achieve test accuracy of 72.22%, 74.51%, 74.94% and 74.73%
and test loss of 0.825, 0.816, 0.801 and 0.807 respectively.
The results showcase a relatively similar performance in test
accuracy and loss for C = 2/5, 3/5 and 5/5. Thus, the case of
C = 3/5 is the optimal one, since it achieves the best accuracy
and loss with less communication overhead compared to the
other cases. On the contrary, for C = 1/5, the performance is
much worse. When examining the non-i.i.d case with fractions
of C = 1/5, 3/5 and 5/5, we observe a significant drop in
learning performance when client participation is low, i.e.
when only one RPi participates at each round, which inevitably
mandates high participation. For the non-i.i.d case, we observe
the expected fluctuations in accuracy and loss as well.

Fig. 6: The effect of the fraction of clients participating in each
communication round for the i.i.d case.

Fig. 7: The effect of the fraction of clients participating in each
communication round for the non-i.i.d case.

D. Impact of departing clients

A critical aspect of FL training we should also pay attention
to, especially in an IoT environment, is when clients that
initially participate in the training process, disconnect from
the server permanently e.g., because they leave the area
where the server resides. Most recent works consider that
all FL participants maintain a continuous connection with
the server, which is an unrealistic scenario in the real-world
IoT environment [13]. In our experiments, we disconnect at
communication round 59 (i.e. halfway through training) 1, 2 or
3 RPis, and we show the effects on the test loss and accuracy



Fig. 8: The performance of the global model in terms of test
accuracy (top graph) and loss (bottom graph), when 1,2 or 3
clients disconnect at training round 59.

of the global model in Figure 8.
The results indicate a noticeable drop in performance, which

is proportional to the number of devices that disconnect.
Specifically, when we disconnect 1, 2, or 3 devices, the test
accuracy of the global model drops by about 5%, 6% and 7%
respectively, indicating a linear dependence of the reduction in
terms of number of disconnected devices (about 1% for each
additional device disconnected). The test loss in accordance,
increases by 0.12, 0.19 and 0.27 respectively. Finally, while
in the first two cases the learning performance of the global
model shows an incline to stabilize, in the latter case, where
more than half the clients disconnect from the server, it does
not and keeps deteriorating.

E. Lessons learned from our experiments
The main takeaways from our experiments are as follows:
• In order to save communication costs, training with only

a random subset of e.g. 3 out of 5 clients at each round
seems to offer the best results in terms of both accuracy
and loss, while reducing the communication overhead by
about 40% compared to full client participation.

• When IoT devices fail to establish a connection with the
server for at least 75% of the total communication rounds
and train based on a stale global model, they significantly
hinder its ability to converge.

• When more than half of the clients permanently discon-
nect during training, not only does the learning perfor-
mance never recover, but it also continues to drop.

• When increasing the distance from the AP, the com-
munication time (i.e. the time required for a client to
exchange model updates with the server) is increased
as well. However, the computational delay on resource-
constrained IoT devices, that heavily affects the total

time required for the FL procedure, since it is orders of
magnitude greater than communication time.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we effectively evaluated our implementation of
the FedAvg algorithm in various real-world scenarios and cap-
tured the negative effects induced by communication, which
are ignored in simulation studies. Regarding the extensions
of this work, we can explore the applicability of other FL
solutions (e.g., compression techniques, model pruning etc.),
as well as consider more resource-constrained devices, build-
ing on recent advances on TinyML paradigm [11] Energy
consumption optimization is another under-explored aspect
that can be considered. Finally, a large-scale deployment with
more RPis, some of which could be mobile would help expose
new challenges for a practical FL framework.
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