
Capability-based access control for multi-tenant
systems using OAuth 2.0 and Verifiable Credentials

Nikos Fotiou, Vasilios A. Siris, George C. Polyzos
Mobile Multimedia Laboratory

Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece

{fotiou,vsiris,polyzos}@aueb.gr

Abstract—We propose a capability-based access control tech-
nique for sharing Web resources, based on Verifiable Credentials
(VCs) and OAuth 2.0. VCs are a secure means for expressing
claims about a subject. Although VCs are ideal for encoding
capabilities, the lack of standards for exchanging and using
VCs impedes their adoption and limits their interoperability. We
mitigate this problem by integrating VCs into the OAuth 2.0
authorization flow. To this end, we propose a new form of
OAuth 2.0 access token based on VCs. Our approach leverages
JSON Web Tokens (JWT) to encode VCs and takes advantage of
JWT-based mechanisms for proving VC possession. Our solution
not only requires minimum changes to existing OAuth 2.0 code
bases, but it also removes some of the complexity of verifying
VC claims by relying on JSON Web Signatures: a simple,
standardized, and well supported signature format. Additionally,
we fill the gap of VC generation processes by defining a new
protocol that leverages the OAuth 2.0 “client credentials” grant.

Index Terms—Decentralized Identifiers, Delegation, JSON Web
Tokens, JSON Web Signature

I. INTRODUCTION

With the advent of Cloud-based services, controlled sharing
of resources over the Web has become fundamental. Never-
theless, existing sharing techniques are based on rudimentary
mechanisms, such as mere bearer tokens, or hard to guess
URLs; consequently, there is a need for more flexible and
decentralized solutions [1]. In this paper, we focus on re-
sources hosted in multi-tenant Web servers (e.g., a Cloud-
based storage) and we examine the case where each tenant is
an organization that wishes to control the access rights of its
members in an efficient and self-sovereign manner. In order to
achieve our goal, we build a capabilities-based access control
solution that leverages OAuth 2.0 and Verifiable Credentials.

OAuth 2.0 [2] is a popular protocol used for authorizing
3rd party clients to access resources stored in a resource
server. In OAuth 2.0 the authorization decisions are made
by a trusted entity referred to as the authorization server.
In many deployments an authorization server and a resource
server belong to the same administrative entity, hence it is
sufficient to encode authorization decisions in opaque bearer
tokens and enforce them using simple Access Control Lists
(ACL). For example, an authorization server can be a social
network and a resource can be the profile of a specific user.
Using OAuth 2.0 a Web application may receive a token that
includes a random string: this string is stored in an ACL of

the social network and is associated with an ‘access’ right to a
specific profile. Nevertheless, in scenarios where the resource
server is independent of the authorization server, using an ACL
is cumbersome or even impossible to use (e.g., if a resource
is not connected to the Internet). A solution for this case is
to encode access control decisions in capability tokens, i.e.,
tokens that describe the access rights of their holders. In this
paper we use Verifiable Credential to build such capability
tokens.

A Verifiable Credential (VC) provides a cryptographically
secure, privacy preserving, and machine-verifiable means for
expressing real-world credentials in the cyber world. In con-
trast to standard public-key based certificates that provide a bi-
nary identification, i.e., either the whole identity of the subject
is disclosed, or nothing, VCs can be used for verifying certain
attributes of a subject [3]. From a high-level perspective, a VC
allows an issuer to attest some claims about a subject, then,
the subject can prove ownership of these claims to a verifier.
However, the procedures for requesting and using VCs are not
yet standardized. In this paper, we fill this gap by leveraging
the authorization flows of OAuth 2.0.

Our solution allows a resource owner to use an OAuth 2.0
authorization server for specifying the capabilities that 3rd

party clients have over the owner’s resources. Then, these
clients can request from the authorization server an “access
token,” which is granted in the form of a VC that includes
the client’s capabilities. Eventually, this VC can be used for
gaining access to a protected resource. Using a VC as an
access token has several advantages: a VC has usually longer
lifetime since it can be used only by its holder (as opposed to
a mere bearer token) and soon it will be possible to store
them in secure “wallets,” VCs can be combined, the VC
data model supports more efficient and privacy preserving
revocation mechanisms, and finally it is possible to agree on
different “types” of VCs each of which can use pre-defined
claims with well-known semantics. With this paper we make
the following contributions:
• We define an OAuth 2.0-based protocol for issuing VCs.
• We integrate VCs into JSON Web Tokens, which enables

us to use well-defined standards for expressing user
identities and digital signatures.

• We build on ongoing standardization efforts for demon-
strating secret key proof-of-possession, which are de-



signed for OAuth 2.0 workflows and achieve their goal
with a single message exchanged between the key holder
and the verifier.

• We design a Cloud storage system and we show that our
solution is lightweight and can be easily integrated in
existing systems.

The remainder of this paper is organized as follows. In
Section 2 we introduce the technologies that are used as
building blocks in our solution. In Section 3 we detail our
design. We present the implementation and evaluation of our
solution in Section 4. We discuss related work in Section 5,
and we conclude our paper in Section 6.

II. BACKGROUND

A. JSON Web Keys, JSON Web Tokens, JSON Web Signatures

A JSON Web Key (JWK) [4] is JSON data structure that
represents a cryptographic key. The following listing is the
JWK-based representation of an Ed22519 public key [5].

1 {
2 “crv”: “Ed25519”,
3 “kty”: “OKP”,
4 “x”: “2Qt...zYAN0hxXfI0YbBtSG4eYY”
5 }

Listing 1. An example of JWK

A JSON Web Token (JWT) [6] is a compact, URL-safe
means of representing “claims” as a JSON object. IANA’s
“JSON Web Token Claims” registry includes a list of “regis-
tered” claim names. Some of the standard claims we are using
in our examples are:
• jti: a token identifier.
• iss: a token issuer identifier.
• iat: a timestamp indicating when the token was issued.
• exp: a timestamp indicating the token’s expiration time.
A JWT can be encoded in a JSON Web Signature (JWS) [7].

JWS represents content secured with digital signatures (or
Message Authentication Codes) using JSON-based data struc-
tures. A JWS object consists of a header (also known as the
JOSE header), the payload, and the signature. The JWS header
includes information about the type of the payload and the sig-
nature algorithm. The following listing is an example of a JWS
containing a JWT in its payload (the signature part is omitted).

1 {
2 “typ”: “jwt”,
3 “alg”: “EdDSA”
4 }.
5 {
6 “iat”: 1617577068,
7 “iss”: “https://mm.aueb.gr”,
8 “jti”: ”0xf94f7328e2bb70f575”
9 }
Listing 2. An example of a JWT encoded in a JWS (signature omitted)

Lines 1-4 are the JWS header, which indicates that the
payload is a JWT and the signing algorithm is EdDSA. Lines
5-9 are the JWT payload.

Authorization server

Client

Resource server

Client credentials

Access token

Access token

Resource

Resource owner

Client authentication

Fig. 1. OAuth 2.0 interactions using a client credentials claim.

B. OAuth 2.0 and the client credentials grant

An OAuth 2.0 architecture is composed of the following en-
tities. A resource server that hosts a protected resource owned
by a resource owner, a client wishing to access that resource,
and an authorization server responsible for generating access
tokens. Access tokens are granted to clients authorized by
the resource owner: client authorization is proven using an
authorization grant. In our system we are using the ‘client
credentials’ grant. As it can be seen from Fig. 1, when this type
of grant is used, a resource owner configures the authentication
server with the credentials of the authorized clients; a client
authenticates to the authorization server and receives an access
token, then it uses the access token to access the protected
resource.

OAuth 2.0 deployments are free to choose their own types
of access tokens. The solution presented in this paper uses
as access tokens JWT-encoded VCs integrated in a JWS. The
used tokens are enhanced with Proof-of-Possession (PoP) key
semantics [8]. In particular, they include a claim, named “cnf”,
whose value is a JWK representing the public key of the
client who owns the access token. Clients in our system must
prove ownership of the corresponding private key, otherwise
the token is not accepted by the resource server.

C. Verifiable Credentials

A Verifiable Credential (VC) architecture is usually com-
posed (see also Fig. 2) of an issuer, a holder, a verifier, and a
verifiable data registry. These entities interact with each other
as follows. The issuer generates and signs a VC that attests
some claims about a subject, then the VC is transmitted to a
holder. Usually a holder and a subject are the same entity;1 this
applies to our system and in the following we will use these
terms interchangeably. Holders can prove to a verifier that

1In general, the holder could hold VCs for many subjects, e.g., a parent
for underage children, or a person for her IoT devices.



they possess VCs with certain characteristics by generating
a Verifiable Presentation (VP). In its simplest form, a VP can
be a VC signed by the subject, but in the general case a VP
may include many VCs. All these operations are supported
by a verifiable data registry. This registry is used for tracking
the status of a VC and it can be implemented as a centralized
service or in a distributed system, such as a blockchain. In our
system the functionality of the registry is centrally provided
by the issuer.

The W3C VC data model [9] specification defines a standard
way to express VCs using JSON-LD [10]. The following
listing includes a VC expressed in W3C’s VC data model.

1 {
2 “@context”: “https://www.w3.org/.../v1”,
3 “id”: “http://example.edu/credentials/3732”,
4 “type”: [“VerifiableCredential”, “UserId’’],
5 “issuer”: “https://example.edu/issuers/14”,
6 “issuanceDate”: “2021−01−01T19:23:24Z”,
7 “credentialSubject”: {
8 “id”: “did:example:ebfeb121”,
9 “Name”: “Alice’’

10 }
11 }

Listing 3. A sample VC

Line 2 defines a context for the VC. A context is a pointer
to a VC description file that defines various VC types. Line 4
declares the type of the VC. VC types are a powerful concept
since different communities can come up and agree on certain
VC types that specify claims with well-understood semantics.
For example, currently there are working groups preparing
such VC types that will represent academic records, travel
documents, medical history, and others.

Line 3 defines an identifier for the VC which is used for
tracking its status. Line 5 includes an identifier of the VC
issuer (in this example the identifier is a URL), and line 6
states the VC creation time and date.

Line 8 includes an identifier of the credential subject. This
identifier must be a URI which, if dereferenced, “results in a
document containing machine-readable information about the
id.” This document usually includes a public key which is
then used for verifying a Verifiable Presentation. In this listing
a Decentralized Identifier (DID) [11] is used as subject id,
which is a common practice in most VC implementations.
Nevertheless, the process of retrieving a public key from the
subject id is not defined. Even the DID standard, which has
reached the status of “Release Candidate” only recently, allows
each DID method to define its own way for retrieving the
public key that corresponds to a DID. For this reason, our
solution considers an alternative representation that allows the
declaration of the subject’s public key directly in the VC.

A VC is associated with a cryptographic proof that makes
the credential tamper resistant (usually a digital signature).
W3C’s VC data model defines two proof methods: wrapping
the VC in a JWT and use JWS, or use linked data proofs [12].
Our solution uses the former, which is a standardized, widely

Issuer Holder Verifier

Verifiable data registry

Credentials Presentation

- VC Schema
- Revocation list
- Public keys

- Auxiliary info. 

- Auxiliary info. 

Fig. 2. Verifiable Credential architecture.

used process. Linked data proofs have some advantages, such
as they allow integration of semantics into the proofs, they
support partial proofs and proofs generated by different public
keys, and they can use Zero-Knowledge Proofs. On the other
hand, linked data proofs are still a community draft and
they rely on a complex canonicalization process that may
potentially impede adoption and create security threats.

III. DESIGN

A. Entities and Definitions

We now describe the entities of our system using, when pos-
sible, the terminology of OAuth 2.0. Our system is composed
of clients belonging to different organizations. Each organi-
zation is the owner of a resource, stored in a resource server
(RS) shared among multiple organizations. Furthermore, each
organization maintains an Authorization Server (AS). The goal
of our system is to allow owners to give permission to clients
to access some of the protected resources. Such permissions
are expressed in the form of access tokens. Each AS has a
token generation endpoint, which can be invoked by clients in
order to obtain an access token.

Clients are identified by a public key and in the following
we refer to this key as Pubclient. Similarly, an AS is identified
by a URL, URLAS and owns a public key referred to as
PubAS . In the following we denote the “Capability to perform
an operation to a resource” by Coperation→resource and we
say that a client has the right to perform an operation ox in a
resource ry if it can prove the possession of a VC that includes
Cox→ry .

Each AS maintains an access table per RS that contains
policies of the form Pubclient → [C1, C2, ...Cn], i.e., policies
that map the public key of a client to a list of capabilities.2

2We recognize that keeping a separate access table per RS is unoptimized,
however we adopt this approach for simplicity. The format of the access table
does not affect the overall design of our system.



Similarly, each RS maintains a resource table that maps
a resource identifier to URLAS and to the corresponding
PubAS . Therefore, each entry in the resource table indicates
the AS responsible for managing access to that resource, as
well as its key. Finally, we assume that each RS is supporting
a “well-known” credential definition.

Our design relies on the security of OAuth 2.0 and imposes
the same security requirements [13].

B. Demonstrating proof-of-possession of a key

There are many methods for proving the possession of a
key. Our system uses “OAuth 2.0 Demonstration of Proof-of-
Possession at the Application Layer” (DPoP) [14]. Although
DPoP is still an IETF draft it is receiving increased attention
and it is being actively developed. Nevertheless, other PoP
mechanisms can be considered.

DPoP has been designed for HTTP communication and
achieves PoP in a single message. In particular, with DPoP
key holders can include in their HTTP requests a header
referred to as DPoP proof. A DPoP proof is a JWS signed
using the key of the user. The JWS header includes a type
field, which is always set to “dpop+jwt”, a digital signature
algorithm, and a JWK public key. The latter public key is
used for verifying the signature of a DPoP. The JWS payload
includes at least a unique identifier (which can be a sufficiently
large random number), the HTTP method of the request, the
HTTP URI of the request, and the time when the request was
created. Listing 3 is an example of a DPoP proof used in our
system. Lines 1-9 are the JWS header and lines 10-15 are the
JWS payload. Lines 4-7 include the key that can be used for
verifying the digital signature of the DPoP proof (not shown
in the listing). Finally, this DPoP proof is used for a HTTP
POST request to “https://mm.aueb.gr/token”.

1 {
2 “typ”: “dpop+jwt”,
3 “alg”: “EdDSA”,
4 “jwk”: {
5 “crv”: “Ed25519”,
6 “kty”: “OKP”,
7 “x”: “2Qt...zYAN0hxXfI0YbBtSG4eYY”
8 }
9 }.

10 {
11 “htm”: “POST”,
12 “htu”: “https://mm.aueb.gr/token”,
13 “iat”: 1617548847,
14 “jti”: “0xd21a57f53c8...dae132f2”
15 }

Listing 4. Example of a DPoP proof–the digital signature is not shown.

C. Access token request

With the access token request protocol, a client requests an
access token from an AS. The request includes a DPoP proof
with a signature that can be verified using Pubclient. The AS
verifies the DPoP proof as follows:

1) It extracts Pubclient from the JWS header of the DPoP
proof.

2) It verifies the signature of the proof using Pubclient.
3) It verifies that the proof payload includes the same

HTTP method and URI as the client request.
4) It verifies that the random number included in the proof

payload has not been reused.
5) It verifies that the proof is “sufficiently fresh” based on

the creation time included in the proof payload.

If the proof is valid, the AS locates Pubclient in its access
table and it constructs a VC (based on the RS credential defi-
nition) that includes all capabilities associated with Pubclient.
Then it integrates the VC in a JSON Web Token (JWT) (as
described in section 6.3.1 of [9]). The produced JWT includes
(among others) the iss claim (which stands for issuer) set to
URLAS , and the cnf claim [8] set to the JWT-encoding of
the Pubclient. Finally, the AS encodes the generated JWT in
a JWS signed using the private key of the AS. An example
of a generated JWS is included in Appendix A. The JWS
serialization using base64url is the access token and it is sent
back to the client.

D. Resource request

In the simplest case, a client requests to perform an opera-
tion on a resource by providing a DPoP proof and the obtained
access token. We discuss requests that combine multiple VCs
in section III-F. Upon receiving a request the RS executes the
following verification process:

1) It extracts from the resource table the URLAS and the
PubAS that correspond to the requested resource.

2) It deserializes the access token, it verifies that the iss
claim is set to URLAS and it verifies its signature using
PubAS .

3) From the deserialized access token, it extracts the cnf
claim and it verifies that it includes the same JWK as
the DPoP proof.

4) It verifies the signatures of the DPoP proof, as well as
that it contains a valid HTTP URL and method, a unique
identifier, and a recent creation time.

The 3rd step of this process verifies the binding between
the VC and the client that sent the request. If all verification
steps are successful, the RS extracts the capabilities of the
client from the VC and verifies that they are sufficient for
performing the requested operation. The implementation of
the latter verification is application and policy specific and we
do not discuss it in this paper.

E. Token revocation

With our approach, the access token status can be deter-
mined using two methods: either by requesting the status of the
JWT from the AS using OAuth 2.0 token introspection [15],
or by checking in a revocation list the status of the included
VC using the method in [16].



1) OAuth 2.0 token introspection: OAuth 2.0 token intro-
spection allows a RS to query a token introspection endpoint,
implemented by the AS, in order to determine the state of
an access token, as well as “meta-information” about this
token. However, the means by which the RS discovers that
endpoint are not defined. Using this mechanism the RS sends
to the token introspection endpoint the access token, and the
token introspection endpoint responds with a JSON object that
contains, among others, a field named active and it indicates
the status of the token.

Even though this is a standardized mechanism, it has several
disadvantages. Firstly, it creates communication overhead,
since the RS must query for the status of each token in-
dividually. Secondly, it impairs client privacy since the AS
can infer when each client uses its access token. Finally, as
already noted, it is not obvious how an RS can learn the token
introspection endpoint.

2) VC revocation status: An alternative solution for veri-
fying the status of the access token is to extract the included
VC and use the revocation scheme described in [16]. This
scheme is privacy-preserving and efficient, and although it is
still a draft, it is based on well understood mechanisms that
are used by other similar systems (e.g. such a recent system
is described in [17].)

Based on this revocation scheme, the AS maintains a
revocation list that concerns all VCs it has issued. This list
is a simple bitstring and each credential is associated with
a position in the list. Revoking a VC means setting the bit
corresponding to the VC to 1. Furthermore, each generated VC
includes a field named ‘revocationListIndex’ that specifies the
position of the credential in the revocation list. Upon receiving
an access token that includes one or more VCs that support this
revocation mechanism, the RS must download the revocation
list from the AS and examine the status of the VC(s). It should
be noted that the AS does not learn any information about the
VC(s) the status of which the RS wants to learn. Furthermore,
since the revocation list includes information about multiple
VCs, an RS can download it once and use it for multiple
VCs used “soon enough” after the list has been downloaded.
Finally, a VC may include a URL that the RS can use in
order to access the revocation list, therefore, a revocation list
can even be stored in a location different from URLAS . This
is another advantage of this method, compared to OAuth 2.0
token introspection.

F. Combining multiple VCs

An important property of VCs is that a VC holder can
combine multiple VCs in a single Verifiable Presentation (VP).
Therefore, in our system, a client may receive multiple access
tokens, that may have been obtained by different ASes, and
combine them in a single access token. The caveat of this
procedure is that each individual access token must contain the
same Pubclient in the corresponding cnf field. The process
for creating such a VP is the following. Initially, the client
creates a new JWT object. The issuer field of this JWT is set
to the sha-256 hash of Pubclient. Furthermore, the generated

“id”:“did:example:abcd”

User Cloud Storage DID Registry

Read “id”:“did:example:abcd”

PubPC

PubPC

Write “id”:“did:example:abcd”, PubMobile

“id”:“did:example:abcd”

PubMobile Read “id”:“did:example:abcd”

PubMobile

Fig. 3. Key rotation using DIDs.

JWT includes a field named vp that contains an array of
all individual access tokens. Finally, the generated JWT is
encoded in a JWS signed by the client; the serialized JWS
is the new access token.

The process of verifying an access token is modified for the
RS as follows: it deserializes the access token and it examines
if it contains a vp field; if it contains one, it extracts all
individual access tokens and verifies them using the process
described in section III-D, then it verifies the signature of the
received access token using Pubclient. If all verifications are
successful, the RS extracts all capabilities from all VCs and
uses them to verify if they are sufficient for authorizing the
requested operation.

G. Using DIDs as VC subject

As discussed in section II-C, most VC implementations
use a Decentralized Identifier (DID) to identify the credential
subject, as opposed to our system that uses public keys. A DID
has an important property that our system does not support:
the public key associated with a DID can be rotated. In order
for an entity to learn the public key associated with a DID, it
usually has to query a DID registry.

Figure 3 illustrates an example where key rotation is used.
In this example a user uses as client her home PC. The PC has
received an access token that includes a DID. This token can
be used with the process described so far, with the exception
that in order for the RS to validate it, it has to lookup in
the registry the public key that corresponds to the DID (this
public key is used as the Pubclient). At some point the user
decides to use her “travel phone” for accessing the RS. She
communicates with the registry and she updates her DID to
map to a public key stored in her phone. Now, when she
repeats the resource access request, using the same access
token, the RS will learn a different Pubclient.



TABLE I
CRYPTOGRAPHIC OPERATIONS REQUIRED PER SYSTEM OPERATION.

Functionality JWS operations
Access token generation 1 ver. + 1 sig.

Resource request 1 sig.
Access token verification 2 ver.

IV. IMPLEMENTATION AND EVALUATION

We have implemented a proof-of-concept prototype of our
solution using Python3. JWS functionality is provided by the
JWCrypto library.3 We are using Ed22519 public keys and the
EdDSA digital signature [5].

A. Cost of Authorization Primitives

Our system entities are required to generate and validate
JSON Web signatures. In a desktop PC running Ubuntu 18.04,
on an Intel i5 CPU, 3.1Ghz with 2GB of RAM, JWS gener-
ation required 0.7ms and JWS verification requires 0.2ms.4

Table I shows the number of signatures and verifications
required per core functionality of our system.

B. End-to-end system evaluation

We now discuss a proof-of-concept implementation of our
Cloud storage system described in Section 1. Our system
(illustrated in Figure 4) includes a Cloud storage system where
multiple organizations store their files. Each organization im-
plements an Authorization Server (AS), which is responsible
for assigning file access rights to the organization members.

As discussed in Section III-A, the Cloud storage maintains
a resource table. In our system the table contains entries that
map a location in the file system to the public keys of the AS
that is responsible for managing access to that location. For
example, in the instance of the system illustrated in Figure 4,
the AS that uses the public key Puborg1 is responsible for
managing access to the /home/org1 directory.

Additionally, the Cloud storage has created a VC type
definition that describes the format that the VC claims should
have in order to be accepted. In this example a VC should
include claims of the following form:

1 {
2 “capabilities”: [
3 {<path> : [<access rights (r,w,d)>]}
4 ]
5 }

Therefore, a VC should include a key with name “capabili-
ties” and its value will be a list of paths and the corresponding
read, write, delete access rights the subject has on this path.

Each AS maintains an access table with entries that map
the public key of a client to the corresponding access rights.
In the example of Figure 4 the AS of org1 has an access
table that includes the public keys of two clients; the first
client has read and write access to folder 1, and read access

3https://jwcrypto.readthedocs.io/en/latest/
4Time intervals are measured using Python3’s time module.

{
cnf:{jwk:…}
vc:{
credentialSubject:{

capabilities:[
{folder1:[r,w]},
{folder2:[r]}

]
}

Cloud storage

Directory PubAS URLAS

/home/org1 Puborg1 https://org1.net

/home/org2 Puborg2 https://org2.net

Client Capabilities

Pubc1
folder1:[r,w],
folder2:[r]

Pubc2
folder3:[r,w],
folder4:[r,w]

Org1 AS

Client 
Auth.

GET /home/org1/folder1/file.txt

C1

Puborg1

Fig. 4. Our end-to-end system implementation.

to folder 2. Similarly, the second client has read and write
access to folders 3 and 4.

Supposedly, client C1 wishes to interact with the Cloud
storage. He executes the access token request protocol and
receives an access token. Then, he performs a resource access
request. The access token request is an HTTPS POST request
to the AS token generation endpoint and it includes in its body,
in addition to the fields required by OAuth 2.0, a DPoP proof
encoded using base64url. The size of a base64url encoded
DPoP proof generated using EdDSA is ∼ 430 bytes (the size
depends on the length of the AS URL, which must be included
in the DPoP proof payload). The AS responds with the signed
access token also encoded in base64url. The size of the access
token depends on the number of the included claims. E.g., the
size of the access token that corresponds to the JWS included
in Appendix A is 719 bytes. The resource access request is
an HTTPS GET request that includes the Authorization HTTP
header, containing the access token, and an additional HTTP
header named DPoP, containing the base64url encoded DPoP
proof.

The Cloud storage performs the following validation oper-
ations.

• It retrieves the public key of the AS responsible for the
path /home/org1.

• It verifies the validity of the VC and the DPoP using the
protocol of Section III-D.

• It examines if the capabilities included in the VC give to
the client read access to the requested file.

C. Solution properties and overall evaluation

Our system has the following properties:



It provides higher availability of the access control
functionality. Once the client receives the access token with
the appropriate VC it can interact with the Cloud storage even
if the AS is not available. Moreover, and since a VC has
longer lifetime compare to simple bearer tokens, our system is
more resilient to AS failures. Similarly, the Cloud storage can
evaluate the validity of the access token without interacting
with the AS with the caveat that if the revocation service is
implemented by the AS, and the AS cannot be accessed, the
Cloud storage will not be able to determine the status of the
access token.

It improves client privacy. Since a VC has a long lifetime,
a client does not need to interact with the AS whenever she
wishes to access some files in the Cloud storage. Therefore,
once the client obtains the access token she can interact with
the Cloud storage without notifying the AS. This privacy
feature is affected however by the used revocation protocol.
In particular, with “OAuth 2.0 token introspection” the Cloud
storage sends to the AS the access token it received from
the client, therefore, the AS learns some information about
the RSs with which a client interacts; the granularity of this
information depends on how often a RS needs to verify the
status of an access token.

It facilitates data availability. An organization can store
its data in multiple Cloud providers, thus increasing data
availability, while using the same VC for allowing access
to the same data from any of the Cloud providers. Thus,
an organization can uniformly control user access to its data
independently of the Cloud provider where the data is stored.

It facilitates data portability. In the scenario we described,
the Cloud provider created its own VC definition. But a
powerful property of VCs is that various communities can
agree on common VC definitions. Therefore, in case there is
a VC used for “accessing Cloud storage” an organization can
migrate its data from one Cloud provider to another without
needing to re-issue VCs to the users. This is particularly
relevant for Edge computing and networking, where Edge
services may be provided my many different ISPs or network
providers.

It facilitates multi-tenancy. The Cloud storage provider
can accommodate multiple organizations and perform fine-
grained access control decisions without having access to the
user management systems of the organizations, and without
needing to understand the various “roles,” or “structures,” or
“policies” each organization uses.

It achieves self-sovereign access management. Each orga-
nization can independently and without having to interact with
the Cloud storage provider manage which users can access
each file.

V. RELATED WORK

The lack of protocols for issuing and using VCs is a known
problem and there are efforts that try to mitigate it.

Self-Issued OpenID Connect Provider DID Profile (SIOP
DID) [18] is an ongoing effort of the Decentralized Identity

Foundation5 that builds on OpenID connect [19]. In particular,
it leverages a feature of OpenID Connect that allows users to
act as OpenID providers and “self-issue” ID tokens (these are
JWTs that include attributes about a user). Therefore, with
SIOP DID a user can issue a DID (or VC) by herself. In our
solution issuers are decoupled from users. Furthermore, SIOP
DID is only focusing on the “last-mile,” i.e., how a holder
sends a VC to a verifier. Our solution instead considers how
a holder will receive a VC, as well as how she will prove
legitimate possession.

Chadwick et al. [20] propose a solution for the lifecycle
management of DIDs and VCs using the FIDO Universal
Authentication Framework (UAF). In particular they extend
the user registration process of UAF allowing an “identity
provider” (IdP) to install a VC to a user device; this VC will
be bound to the user identity. Furthermore, they extend FIDO’s
authentication protocol to support user authorization as well.
This is achieved using a handshake protocol with which the
“service provider” sends to the user its authorization policy,
and the FIDO device constructs and signs the appropriate
verifiable presentation, which is then transmitted to the service
provider. The solution of [20] has similar properties to our
system and achieves similar goals. Nevertheless, our approach
considers an additional entity, the resource owner, who as-
signs capabilities to each client. Furthermore, the main focus
of FIDO UAF is user authentication, which would require
significant changes to be achieved.

Lagutin et al. [21] also integrate VCs and DIDs in
OAuth 2.0. However their solution is focused on IoT devices
and they consider ACE-OAuth [22], i.e., a lightweight version
of OAuth 2.0 that can be used in constrained devices over the
CoAP protocol. Furthermore, the solution proposed in [21]
uses VCs and DIDs as authentication grants that are used by
the clients to obtain an access token from the AS. Our solution
uses the reverse approach: clients exchange an authentication
grant to receive a VC as an access token.

Apart from the efforts for integrating VCs (and DIDs) in
existing protocols, there are “clean slate” approaches. For
example DIDComm [23] aims at building a secure commu-
nication protocol based on DIDs. Presentation Exchange [24]
builds a protocol for allowing VC verifiers to request VPs
from a holder. Similarly, Hyperledger Aries [25] develops a
set of protocols, which can be used with Hyperledger’s VC
system. The credential handler API [26] defines an API that
can be used by a website to request a user’s credentials and to
help browsers correctly store user credentials for future use.
All these solutions however, not only require re-implementing
stakeholder software and lack interoperability with existing
authorization standards, but they are also focusing on a specific
part of a VC lifecycle, e.g., Holder-Verifier communication, or
Holder-Issuer communications.

In addition to a focus on the Web, there are efforts that try
to integrate DIDs and VCs in official identification systems.

5https://identity.foundation/



For example, Munoz [27] discusses how DIDs and VCs can
be integrated into eIDAS.

Our system leverages VCs for expressing capabilities be-
cause VCs are a standardized and well understood technique.
Nevertheless, capabilities-based systems consider two con-
cepts that cannot be implemented using VCs in a straight-
forward manner: delegation and attenuation. With delegation,
a capability holder can transfer his capability to another
entity, whereas with attenuation he can confine a capability
before delegating it. Consider for example our Cloud storage
scenario; supposedly a client owns an access token that gives
her access to a set of files: using delegation and attenuation
she could delegate her tokens to another client limiting at the
same time access only to a subset of the files allowed by the
original token. Two related approaches that can be used instead
of VCs in a system similar to ours are Macaroons [1] and
Authorization Capabilities for Linked Data (ZCAP-LD) [28].

VI. CONCLUSIONS

In this paper we proposed a capability-based access con-
trol solution for securing resources in multi-tenant resource
servers. In order to represent user capabilities we used the
emerging standard of Verifiable Credentials (VC). Further-
more, we leveraged OAuth 2.0 flows for requesting and using
VCs. Our solution used JSON Web Tokens (JWT) and JSON
Web Signatures (JWS) to encode VCs. JWT and JWS are
well supported protocols and there already exists a very large
code base. For this reason we believe that our solution can be
integrated in many existing systems.

One of the design choices we made was to not use De-
centralized Identifiers (DIDs) for identifying credentials of
“subjects,” instead we used public keys. Although we are
missing some of the advantages of DIDs, such as key rotation,
our solution is easier to implement, and it is faster (since it
does not require an additional resolution step for mapping a
DID to a public key). Nevertheless, all of our constructions
can be easily adapted to use DIDs instead of public keys.

OAuth 2.0 is the de-facto authorization protocol and it is
used by many systems. However, the vast majority of these
systems assume short-lived bearer tokens. As a result there
are no browser-based “token storage systems,” the notion of
transferring one token from one device to another does not
exist, and there are not efficient token revocation mechanisms.
On the other hand, VCs are supposed to have long lifetime,
and efficient mechanisms for storing and transferring them are
being designed. For this reason we believe that using VCs
as access tokens, in the long run will also result in better
OAuth 2.0 related protocols.

REFERENCES

[1] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable,
and M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” in Network and Distributed
System Security Symposium, 2014.

[2] D. Hardt (ed.), “The OAuth 2.0 authorization framework,” IETF, RFC
6749, 2012.

[3] D. Bauer, D. M. Blough, and D. Cash, “Minimal information disclosure
with efficiently verifiable credentials,” in Proceedings of the 4th ACM
Workshop on Digital Identity Management, ser. DIM ’08. New York,
NY, USA: ACM, 2008, pp. 15–24.

[4] M. Jones, “JSON Web Key (JWK),” Internet Requests for
Comments, IETF, RFC 7517, May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7517

[5] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[6] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
IETF, RFC 7519, 2015.

[7] ——, “JSON Web Signature (JWS),” Internet Requests for
Comments, IETF, RFC 7515, May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7515

[8] M. Jones, J. Bradley, and H. Tschofenig, “Proof-of-Possession Key
Semantics for JSON Web Tokens (JWTs),” IETF, RFC 7800, 2016.

[9] Manu Sporny et al. (2019) Verifiable credentials data model
1.0. [Online]. Available: https://www.w3.org/TR/verifiable-claims-data-
model/

[10] ——. (2014) Json-ld 1.0. [Online]. Available:
https://www.w3.org/TR/json-ld/

[11] W3C Credentials Community Group. (2021) Decentralized identifiers
(dids) v1.0. [Online]. Available: https://www.w3.org/TR/did-core/

[12] D. Longley, M. Sporny Eds. . (2020) Linked data proofs 1.0. [Online].
Available: https://w3c-ccg.github.io/ld-proofs/

[13] T. Loddersted, J. Bradley, A. Labunets, and D. Fett, “OAuth 2.0
Security Best Current Practice,” RFC draft, 2020. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16

[14] D. Fett et al., “OAuth 2.0 Demonstration of Proof-of-Possession at
the Application Layer (DPoP),” RFC draft, 2020. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-oauth-dpop/

[15] J. Richer, Ed., “OAuth 2.0 Token Introspection,” Internet Requests
for Comments, IETF, RFC 7662, 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7662

[16] M. Sporny, D. Longley Eds. (2020) Revocation list 2020. [Online].
Available: https://w3c-ccg.github.io/vc-status-rl-2020/

[17] T. Smith, L. Dickinson, and K. Seamons, “Let’s revoke: Scalable global
certificate revocation,” in Network and Distributed System Security
Symposium, 2020.

[18] O. Terbu ed. (2021) Self-Issued OpenID Connect Provider DID Profile
v0.1. [Online]. Available: https://identity.foundation/did-siop/

[19] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and
C. Mortimore. (2014) OpenID Connect Core 1.0 . [Online].
Available: https://openid.net/specs/openid-connect-core-1 0.html

[20] D. W. Chadwick, R. Laborde, A. Oglaza, R. Venant, S. Wazan, and
M. Nijjar, “Improved identity management with verifiable credentials
and fido,” IEEE Communications Standards Magazine, vol. 3, no. 4, pp.
14–20, 2019.

[21] D. Lagutin, Y. Kortesniemi, N. Fotiou, and V. A. Siris, “Enabling
decentralised identifiers and verifiable credentials for constrained IoT
devices using OAuth-based delegation,” in Workshop on Decentralized
IoT Systems and Security (DISS 2019), in conjunction with the NDSS
Symposium 2019, San Diego, CA, USA, 2019.

[22] L. Seitz et al., “Authentication and Authorization for Constrained
Environments (ACE) using the OAuth 2.0 Framework (ACE-OAuth),”
RFC draft, 2021. [Online]. Available: https://tools.ietf.org/html/draft-
ietf-ace-oauth-authz-38

[23] D. Hardman. (2021) Didcomm messaging. [Online]. Available:
https://identity.foundation/didcomm-messaging/spec/

[24] D. Buchder, B. Zundel, and M. Reidel. (2021) Presentation exchange
v1.0.0. [Online]. Available: https://identity.foundation/presentation-
exchange/

[25] The Linux Foundation. (2021) Hyperledger aries. [Online]. Available:
https://www.hyperledger.org/use/aries

[26] D. Longley and M. sporny. (2021) Credential handler api 1.0. [Online].
Available: https://w3c-ccg.github.io/credential-handler-api/

[27] C. Munoz. (2019) SSI and eIDAS: a vision on how they are connected.
[28] C. L. Webber, M. Sporny Eds. (2020) Authorization capabilities for

linked data. [Online]. Available: https://w3c-ccg.github.io/zcap-ld/



APPENDIX

A. Example of a JWS generated by an AS

The following listing is an example of a JWS the serializa-
tion of which is used in our system as an access token. Lines
1-4 are the JWS header, which declare that the JWS payload
is a JWT and the JWS is signed using EdDSA. Line 6 is the
token identifier, line 7 the issuer, and lines 8-9 the creation and
expiration time. Lines 10-16 are the client public key, encoded
using JWK, and lines 17-34 are the actual VC. Lines 23-27
provide information for tracking the revocation status of the
VC.

1 {
2 “typ”: “jwt”,
3 “alg”: “EdDSA”
4 }.
5 {
6 “jti”: “https://mm.aueb.gr/credentials/1”,
7 “iss”: “https://mm.aueb.gr/as”,
8 “iat”: 1617559370,
9 “exp”: 1618423370,

10 “cnf”: {
11 “jwk”: {
12 “kty”: “OKP”,
13 “crv”: “Ed25519”,
14 “x”: “THpyF5W128...h5D4nb50qUU”
15 }
16 },
17 “vc”: {
18 “@context”: [
19 “https://www.w3.org/2018/credentials/v1”,
20 “https://mm.aueb.gr/contexts/capabilities/v1”
21 ],
22 “type”: [“VerifiableCredential”,“capabilities”],
23 “credentialStatus”: {
24 “type”: “RevocationList2020Status”,
25 “revocationListIndex”: ”94567”,
26 “revocationListCredential”: ”https://aueb.gr/rl”
27 },
28 “credentialSubject”: {
29 “capabilities”: [
30 { “folder1”: [“r”,“w”,“d” ] },
31 { “folder2”: [“r”]}
32 ]
33 }
34 }
35 }

Listing 5. Example of a JWS generated by an AS


