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Abstract:

We design, implement, and evaluate a solution for achieving continuous authorization of HTTP
requests exploiting Verifiable Credentials (VCs) and OAuth 2.0. Specifically, we develop a VC issuer
that acts as an OAuth 2.0 authorization server, a VC verifier that transparently protects HTTP-based
resources, and a VC wallet implemented as a browser extension capable of injecting the necessary
authentication data in HTTP requests without needing user intervention. Our approach is motivated
by recent security paradigms, such as the Zero Trust architecture, that require authentication and
authorization of every request and it is tailored for HTTP-based services, accessed using a web browser.
Our solution leverages JSON Web Tokens and JSON Web Signatures for encoding VCs and protecting
their integrity, achieving this way interoperability and security. VCs in our system are bound to a
user-controlled public key or a Decentralized Identifier, and mechanisms for proving possession are
provided. Finally, VCs can be easily revoked.
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1 Introduction

In the recent years, the global pandemic made remote working a necessity rather than an
option. Nevertheless, this came at a cost: according to a recent research 74% of organizations
attribute business-impacting cyber attacks to vulnerabilities in technology put in place during
the pandemic.2 For this reason, more and more enterprises embrace security approaches
such as the Zero Trust paradigm. The main concept of Zero Trust is “never trust, always
verify”, which means, among other things, that every request should be authenticated and
authorized. This architecture begs for new, secure, lightweight access control solutions,
with increased interoperability and without adding privacy threats. In this paper, we propose
a security solution that can be used for providing authorization for every HTTP request.
Our solution leverages Verifiable Credentials (VC) [Ma19] and provides efficient VC
management, improves interoperability, and enhances user security and privacy.
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Our solution considers users of an enterprise wishing to access an HTTP-based protected
resource using a web browser. Both users and the protected resource may be located in
networks outside the administrative realm of the enterprise. From a high-level perspective
our solution operates as follows: Users interact with an authorization server, owned or
controlled by the enterprise, using a wallet, implemented as a browser extension. The
authorization server responds with a Verifiable Credential (VC) that contains the capabilities
of the user, which is stored in the user’s wallet. Then, the user interacts with a protected
resource (through the web browser) and includes in the corresponding requests: (i) the
received VC and (ii) a Proof of VC Possession. A VC verifier, acting as a transparent HTTP
proxy, intercepts the communication between the web browser and the protected resource,
validates the VC based on pre-configured rules and confirms the Proof of Possession. If all
checks succeed the verifier forwards the HTTP request to the resource.

Our solution also enables authorization servers to provide an efficient revocation mechanism.
This revocation mechanism includes a compact list of revoked VCs encoded in a self-
verifiable data structure. The revocation list can be received directly from the issuer, or it
can be provided indirectly; it can be even included in a resource access request.

Compared to legacy OAuth 2.0 solutions, our system provides the following advantages:

• The generated VCs are bound to a user-controlled identity, therefore they can be
stored for a longer interval and they cannot be used by entities that have intercepted
them (unlike, for example, mere “bearer tokens”). Hence, client applications do not
have to interact often with an authorization server.

• Our system uses VCs as “access tokens”. VCs support richer semantics, can be used
for evaluating complex access control policies, and facilitate interoperability.

• Our system provides an efficient mechanism for checking the revocation status of an
access token/VC.

Compared to related VC-based solutions, our design provides the following advantages:

• Our system builds on the widely used and well supported OAuth 2.0 flows for managing
the lifecycle of a VC. These flows are implemented in a browser based wallet achieving
continuous and secure authorization over HTTP without user intervention.

• Our system leverages JSON Web Tokens (JWT) [JBS15b] and JSON Web Signatures
(JWS) [JBS15a] for representing and protecting VCs. These are widely used and
standardized solutions (as opposed to, for example, linked-data proofs).

• Our system supports user authentication using both public public keys, as well as
“Decentralized Identifiers” (DIDs) [W321]. DIDs allow users to rotate their secret
keys without having to receive a new VC.
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The remainder of this paper is organized as follows. In Section 2 we detail the design of our
solution. In Section 3 we present the implementation and evaluation of our solution. We
discuss related work in Section 4 and we conclude our paper in Section 5.

2 Design

In this section we detail the components of our system and their interactions (also illustrated
in Fig. 1).
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Fig. 1: An instance of our system

2.1 Components

Our system is composed of a VC issuer, a VC verifier, and a wallet. The goal of our system is
to allow authorized users to invoke operations on resources stored in an particular endpoint,
for example, perform a “list” operation, on a “folder”, stored in a Cloud storage system.
An endpoint is identified by a URL, denoted by URLEndpoint , and it can be oblivious to
our system. Our system supports the use of Decentralized Identifiers (DID) as a mean for
identifying various entities. DIDs are URIs which resolve to a DID document that contains
information related to the DID, such as ways to cryptographically authenticate the DID
owner. The structure of a DID document and the DID resolution mechanism are specific to
each DID method. We provide more details about how DIDs are implemented in our system
n section 3.1

The VC issuer is an OAuth 2.0 authorization server extended with VC issuing capabilities.
Each VC issuer is identified by an IDissuer , which can be a URL or a DID. Furthermore,
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each issuer owns a public-private key pair and we assume a secure method for resolving
an IDissuer to the corresponding public key (e.g., through static configuration, using the
web PKI, or by performing a DID resolution). Issued VCs are encoded as JWTs, and signed
using a JSON Web Signature (JWS) and the private key of the issuer. VCs in our system
“describe” the capabilities of a VC subject over a protected endpoint. Additionally, a VC
issuer maintains a VC revocation list.

The VC verifier is an HTTP proxy that intercepts HTTP requests towards a protected
endpoint. The VC verifier is able to verify the validity, the status, and the ownership of
VCs included in the intercepted requests. Additionally, the VC verifier acts as a policy
enforcement point by validating whether or not a VC can be used for executing the requested
operation over a resource.

The wallet is a web browser extension that interacts with the VC issuer and verifier using
standard OAuth 2.0 flows. The wallet is responsible for storing the received VCs, and for
including them in the corresponding HTTP requests. Additionally, the wallet generates and
manages user owned identifiers, which can be public keys or DIDs. Such an identifier is
included in a VC and the associated secret key is used by the wallet for generating a VC
proof of possession. Users may have multiple identifiers, as well as multiple wallets.

2.2 Interactions

Our system involves a configuration step, after which the system components can interact
with each other using OAuth 2.0 flows.

2.2.1 System configuration

This is a step usually executed during a set-up phase. With this step an issuer is configured
with policies that specify the capabilities that correspond to a user. Additionally, users
register with the issuer (at least) a wallet. With this registration process, users create a
username and password for their wallet and assigns to it a subset of their capabilities. The
generated username and password will be later used by the wallet in order to retrieve VCs
from the issuer. Finally, verifiers are configured with a list of trusted IDissuer identifiers
and (if required) with their corresponding public keys.

2.2.2 VC request and issuance

With this step, a user’s wallet requests from the issuer a VC that can be used for accessing a
particular endpoint. A VC request is in essence an OAuth 2.0 access token request using the
client credentials grant (section 4.4 of [He12]); in our system the corresponding “client
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credentials grant” is the wallet’s username and the password registered to the issuer during
the configuration phase. The wallet includes in this request an identifier (which can be either
a public key, or a DID). The wallet may re-use an existing identifier or it may generate a
new one, specific to that particular VC request. The issuer verifies the provided username
and password, and retrieves the capabilities associated with them. Then it creates a VC that
includes these capabilities and the provided identifier, encodes it as a JWT, and signs it.
An example of a VC as used in our system follows. As it can be seen, the standard iss and
aud JWT claims are used for denoting the issuer and the target endpoint of the VC. If the
provided identifier is a DID it is included in a sub claim; if it is a public key the cnf claim
as defined in RFC7800 is used. The VC may include additional JWT claims that control its
validity period. Finally, the vc claim includes information that can be used for determine the
VC’s revocation status, as well as a list of “resources” and allowed “operations”.

1 {

2 “iss": IDissuer,

3 “aud": URLEndpoint,

4 “sub": User owned DID,

5 “vc":{

6 “@context": [...],

7 “id": “credential 1",

8 “credentialStatus": {...},

9 “credentialSubject": {

10 “type": [“CapabilitiesCredential"],

11 “Resource1": [ “Operation 1", “Operation 2" ]

12 }

13 }

14 }

2.2.3 VC revocation

Our revocation mechanism is based on the system described in [SDS20]; a similar approach
for VC revocation is followed by a recent W3C draft [Gr20]. In order to support revocation,
an issuer maintains a revocation list that covers all not expired VCs it has issued. This list is
a simple bitstring and each VC is associated with a position in the list. In particular, each
revocable VC includes a property named revocationListIndex that specifies the position of
the VC in the revocation list. Revoking a VC means setting the bit corresponding to the VC
to 1. Since the list includes only non-expired VCs, its size is tolerable for most use cases.
For example, an issuer that issues on average 100 VCs per day with lifetime equal to one
month, would only need 30 × 100 bits to store its revocation list. Any entity can verify the
status of a non-expired VC that supports this revocation mechanism, by examining the value
of the bit of the corresponding revocation list.
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A revocation list is included in a JWT, signed and timestamped by the issuer. This JWT
can be retrieved directly by the issuer, or indirectly, e.g., the issuer can store it in an
online location, or even in a blockchain. Each revocable VC includes a property named
statusListCredential which is a “pointer” (e.g., a URL) to the revocation list location. A
verifier can retrieve the revocation list by itself, or require from users to include it in their
requests. In all cases, the verifier has to validate the signature of the JWT and determine its
“freshness”.

2.2.4 Endpoint access

A user can request from an endpoint to perform an operation over a resource. This request
is transmitted over HTTP using the user’s web browser. If the URLEndpoint is included
in the aud claim of a stored VC, the wallet retrieves this VC from its local storage and
prepares a proof of possession. This proof is generated according to “Demonstration of
Proof-of-Possession at the Application Layer” (DPoP) [D.20] OAuth 2.0 extension. DPoP
has been designed for HTTP communication and achieves PoP in a single message. In
particular, with DPoP the wallet creates JWS signed using the key the corresponds to the
user identifier included in the VC. The DPoP payload includes at least a unique, sufficiently
large random number, the HTTP method of the request, the HTTP URI of the request, and
the time when the proof was created. Then, the wallet includes the VC in the Authorization
HTTP header of the request and the generated proof in a DPoP HTTP header. The request
is received by the verifier that acts as an HTTP proxy. The verifier initially validates the
included VC. In particular, it examines if the VC is signed by a trusted issuer and if the
value of aud claim equals to the the URLEndpoint . Additionally, if the VC includes claims
that control its validity period, it examines if the VC is valid. Then, it extracts the user
identifier included in the VC. If that identifier is a DID, the verifier performs a DID document
resolution and retrieves the corresponding public key. Then, it verifies the signature of the
provided DPoP using the public key associated with the user identifier, and it examines if
the DPoP is “sufficiently fresh”, if it includes the correct HTTP method and URI, as well
as if the included random number has not been “recently” used. If the VC is revocable, it
examines the status of the VC by retrieving the revocation list from the VC issuer. Finally, it
verifies if provided VC includes the capabilities that are necessary for invoking the requested
operation. If all checks succeed, the verifier forwards the request to the endpoint.

3 Implementation and evaluation

We have implemented3 our issuer as a .net core web application, and our verifier using
Python3 and the jwcrypto library4. Moreover, we integrated DIDs in our system using DIF’s

3 Pointers to GitHub repositories of our implementations can be found in https://mm.aueb.gr/projects/
zerotrustvc

4 https://jwcrypto.readthedocs.io

https://mm.aueb.gr/projects/zerotrustvc
https://mm.aueb.gr/projects/zerotrustvc
https://jwcrypto.readthedocs.io
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Universal Resolver [DI21], and we have implemented our wallet as a Firefox extension. We
provide more details about the use of the Universal Resolver and about our browser-based
wallet in the following subsections. Then we present our evaluation scenario and we discuss
the performance and the security properties of our solution.

3.1 Support for DIDs

Our system supports DIDs, which is common practice in most VC systems. The DID standard
allows each DID method to define its own way for resolving a DID to the corresponding
document. To avoid any further complexity and to contribute to the interoperability of our
project, we rely on DIF’s Universal Resolver for DID document resolution. The Universal
Resolver performs DID resolution across many different DID methods by providing a
universal API. Internally, this is accomplished through an architecture consisting of drivers
for each supported method.

Our current implementation supports the did:web method [Mi21]. This is a DID method
that bootstraps trust by leveraging an existing web domain’s reputation. A did:web DID
is constructed based on a URL which when resolved results in the corresponding DID
document. Our verifier implementation uses a local instance of the Universal Resolver to
resolve did:web DIDs. It interacts with it through an API that receives as input a did:web
DID and responds with the corresponding public key.

3.2 Browser-based wallet

User’s wallet is implemented as a browser extension. The extension is tasked with requesting
the credentials from the issuer and presenting them to the verifier. Internally, each credential
is stored to the browser’s supplied storage and is indexed based on the URL included in
the aud claim. This not only allows for fast lookups, but also for syncing those credentials
between browsers in different devices. Furthermore, users will also have the ability to back
up their credentials to some other source (i.e., the cloud, the file system etc.).

Users provide to the extension an IDissuer and the appropriate username and password.
Then, the extension either creates a new cryptographic key pair, or re-uses an existing
did:web DID and communicates with the issuer. If successful, the extension will read the
credential from the issuer’s response, parse it and update its internal state. This is the
only process that involves user intervention. To present a credential, the extension in the
background listens for any HTTP request made to a URL for which there is a saved credential
that includes that URL in the aud claim. When such a request is made, the extension will
retrieve that credential and create a fresh DPoP value using the appropriate cryptographic
key material. Then, the extension injects the DPoP and the VC as new HTTP headers, in the
original HTTP request.
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The extension is implemented for the Firefox browser. To manage the user’s cryptographic
key material we have adopted 2 different strategies; in-browser key management and using
external key management systems (KMS). In the former case, the extension saves private
keys encrypted in the browser’s storage, while public keys are saved in clear. To encrypt a
private key we use AES with a key derived from a user supplied password using PBKDF2.
In the latter case, we rely on a Cloud-based KMS (but any external KMS can be trivially
supported). In that case, private keys are stored in the Cloud and when the wallet needs to
sign something (i.e., to create a DPoP), the cryptographic hash of the raw data is sent to the
KMS. This method, although it adds an additional round trip, it alleviates the need for the
extension to manage private keys itself.

3.3 Cloud Storage scenario

A Cloud Storage access scenario is implemented in order to evaluate the proposed architecture.
In this use case, the protected resource is a Google Cloud Storage Bucket. Buckets are the
basic containers in Google Cloud Storage and are used in order to organize data and control
access to them.

According to our use case an employee of the enterprise wishes to access some data from a
bucket via a web interface. The user must first request a VC through the browser extension
acting as her VC wallet. The issued VC specifies certain capabilities such as read, write,
upload, or list. The web interface is provided by a Python3 script, which implements the
Google Storage API: this script is the protected endpoint. This script interacts with the
Cloud storage using a “service” account, hence both the script, as well as the Cloud storage
provider are oblivious to the used VCs, as well as to the user management system and the
access control policies of the enterprise.

3.4 Overhead

We have measured the VC issuing processes, DPoP generation, and access request verification
in a desktop PC equipped with an Intel i5 5540 CPU and 8GB RAM, running Windows 10
using EdDSA and ES256 signature algorithms for JWS. All operations require less than
0.1ms.

Since VCs and DPoPs are transmitted in HTTP headers they are encoded using base64.
The base64 encoding of a VC that includes two resources and two operations is 656 bytes.
Similarly, the base64 encoding of a DPoP is 440 bytes.

A revocation list is stored in a signed JWT. This JWT also includes the iss claim, which
defines the issuer, and the iat claim, which defines the date and time at which the token
was issued. Such a signed token, which is encoded using base64 encoding, generated using
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ES256 JWS algorithm, including the verification key in the JWS header and a revocation
list with 4000 entries, is 1431 bytes long.

3.5 Security properties

Our solution leverages OAuth 2.0, whose security properties have been formally veri-
fied [FKS16], for managing the lifecycle of VCs and it provides proof of possession,
preventing this way many security attacks. Additionally, our system achieves the following
security properties:

Increased availability. Non-revocable VCs can be verified without needing the issuer to
be online. When it comes to revocable VCs various optimizations can be considered for
decreasing the dependence on the availability of the issuer, e.g., cache revocation lists for
some time, store revocation lists in alternative locations. Similarly, verifiers do not have to
maintain any user specific state since all the information required to make an access control
decision is included in each request; verifiers are only required to maintain for a limited
time the nonce included in a DPoP in order to prevent replay attacks.

Efficient access control management. User and access control policy management is
implemented independently of the protected endpoint, since granting or revoking an access
right does not involve any communication with the endpoint (or the verifier). Furthermore,
by implementing the VC verifier as an HTTP proxy, we allow transparent protection of any
HTTP-based resource.

Attack surface reduction. In our solution the amount of verifications a verifier needs to
perform is less compared to a system that relies on Access Control Lists (ACLs), which are
inflexible, do not scale well, and are difficult to use and upgrade [Ka06]. In our system, a
verifier has only to verify the validity and the possession of the VC included in an access
request. Furthermore, verifiers are not required to store any additional secret information
to implement our protocols, neither do they have to maintain user accounts. Moreover, a
user is allowed to use multiple wallets and assign to each wallet different capabilities. For
example, a wallet used in a “travel laptop” may have less capabilities compare to a wallet
used in a secured, well-administrated PC. Finally, our wallet selects the appropriate VC
by itself, by matching the requested URL with the URL included in the “aud” claim of
each VC: this approach is less prone to security attacks compared to most of the existing
approaches that require user intervention, e.g., they require from users to scan a QRcode.

Resilience to attacks. Our system is resilient to many types of attacks. Since the VCs are
bound to a user owned identifier, our system is not affected by attackers-in-the-middle that
intercept the communication towards a protected endpoint. These attackers, can neither
modify the transmitted VCs without being detected, nor re-use the captured VCs to their
own purposes. Similarly, our system allows different user identifiers per VC, hence, even
if the private key that corresponds to an identifier is breached, the captured VCs can only
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be used for accessing a specific endpoint. Moreover, by including a DID such as did:web
as a user identifier in a VC, a user can rotate the private key that corresponds to that DID
without having to receive a new VC. Therefore, users can even proactively rotate their keys.

4 Related work

The problem of designing efficient authorization and access control solutions for Zero
Trust Architectures (ZTA) is well known and there are many efforts that try to address
it [Ya20, LHK20]. Lukaseder et al. [LHK20] discuss how the Zero Trust Model can
be applied to open networks, such as in a network of a university. Furthermore, they
implement and present a Zero Trust network framework, called Alekto that authenticates
and authorizes users in order to take access control decisions and compute trust scores for
an eLearning system. Yao et al. [Ya20] propose a dynamic and fine-grained access control
and authorization solution for ZTA, which is composed of an access control agent, a user
identity authentication module, an access control engine, and a trust evaluation engine. The
main differences between our work and these works are that our solution uses VCs as access
tokens, which include the client capabilities. The VCs can have longer lifetimes and they
can be stored in secure wallets as opposed to mere bearer tokens.

Similarly to this work, Lagutin et al. [La19] try to integrate VCs and DIDs into the OAuth 2.0
protocol. In their solution, which is designed for constrained devices, they use VCs and
DIDs as authentication grants. Clients use these grants to obtain access tokens from the
authorization server. Our solution follows a reverse approach: clients use a username and
password as a grant to obtain VCs. This has the advantage that authorization is enforced
when requesting access to a resource. The solution in [FSP21] also combines VCs with
OAuth 2.0 in order to provide capabilities-based access control. Our approach, improves
the solution presented in [FSP21] by allowing users to use multiple identifiers and even
use different identifier per VC, by adding support for Decentralized Identifiers, and by
considering a wallet. In our system users can have multiple wallets and each wallet can be
assigned different access rights: this property has many security advantages.

Our system leverages VCs for expressing capabilities because VCs are well understood
techniques being standardized. Additionally, supporting a specific VC type is straightforward,
hence interoperability can be supported with low effort. Related approaches that can be
used instead of VCs in a system similar to ours are Macaroons [Bi14], and Authorization
Capabilities for Linked Data (ZCAP-LD) [C.20]. Similarly, our system builds on OAuth 2.0,
which is a widely used standard, hence our solution can be easily integrated in existing
systems. Additionally, OAuth 2.0 has been designed specifically for HTTP services. Other
related works propose new protocols such as the Credential Handler API [Ls21], and the
Presentation Exchange protocol [BZR22].
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5 Conclusion

In this paper we proposed a security solution that allows continuous authorization over
HTTP. Our solution uses Verifiable Credentials (VCs) to store user capabilities. Additionally,
it leverages OAuth 2.0 and a browser-based wallet to provide fast VC lifecycle management,
without requiring any user intervention. Our solution implements proofs of possession
preventing this way VC sharing. Additionally, our solution supports Decentralized Identifiers,
allowing users to rotate their private keys without having to receive a new VC.

Our solution provides additional advantages, which are not highlighted by the use case
considered in our paper. For example, our solution allows multiple issuers, it supports
re-using the same VC for accessing different endpoints of the same type, and the considered
revocation mechanism does not reveal to an issuer information about the user that tries to
access an endpoint. Similarly, our solution allows wallets to include in user request a “fresh”
copy of the revocation list, enabling this way offline verifiers, which can be of particular
importance in cases such as IoT systems. Future work in this area involves the replacement
of DPoP with Webauthn assertions, the application of our solution in the IoT by adding
support for more efficient VC encodings (e.g., using CBOR), as well as for IoT specific
protocols (e.g., CoAP), and the integration of VC verifier into the endpoints themselves.
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