Securing Named Data Networking routing using
Decentralized Identifiers

Nikos Fotiou, Yannis Thomas, Vasilios A. Siris, George Xylomenos, George C. Polyzos
Mobile Multimedia Laboratory
Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece
{fotiou,thomasi,vsiris,xgeorge,polyzos } @aueb.gr

Abstract—Named Data Networking (NDN) is a realization
of the Information-Centric Networking (ICN) paradigm, where
routing is based on content identifiers rather than on network
location identifiers. The routing state in NDN can grow exponen-
tially, not only due to the huge number of content identifiers (as
opposed to network addresses) but also because it is difficult to
detect “fake” routing advertisements. For example, in contrast
to IP-based routing, a potentially valid routing entry in NDN
can be advertised from multiple network locations, making NDN
susceptible to Denial-of-Service attacks at the routing layer. In
this paper, we leverage Decentralized Identifiers (DIDs) to build
self-verifiable ‘“‘content advertisements.” With our solution, any
router can verify that a content advertisement originates from an
“authorized” entity, without requiring any trusted third party.
We implement our solution and we evaluate it in a scenario
where filtering is implemented by the edge routers. We show that
our solution reduces fake routing advertisements with minimal
computational overhead.

Index Terms—Self-sovereignty, DID, fake advertisements, self-
verifiable content advertisements, edge networking.

I. INTRODUCTION

Information-Centric Networking (ICN) has been in the
spotlight of many recent research efforts around the world [1],
since it promises improved security, efficient information
mediation, and improved governance [2]. In this paper, we
focus on the predominant realization of the ICN paradigm,
Named Data Networking (NDN) [3]. We consider the case
of a content owner wishing to share a piece of content
(see Fig. 1). The owner does not interact with the NDN
network directly, instead it uses a “hosting service” referred
to as the publisher. A publisher can be a Web server, an
online storage system, or even a Content Distribution Network
(CDN). Publishers are responsible for announcing content
items they host to the NDN network, thus allowing content
consumers to retrieve them. A publisher may want to make the
same content available from many different locations where it
has points of presence; this is, indeed, the standard operation
of CDNs. Content advertisements are initially received by an
edge router, which is responsible for disseminating them to the
rest of the network. We are considering a single network and
we are assuming an intra-domain routing protocol. Our goal
is to enable edge routers to detect malicious publishers who
try to pollute the routing state of the network by advertising
content items that they are not authorized to host.

978-1-6654-4005-9/21/$31.00 (©2021 IEEE

A. Routing in NDN

The NDN architecture includes mechanisms that enable
content discovery and delivery based solely on content names,
instead of location identifiers. Each content item is identified
by a unique name. In NDN, a consumer expresses her interest
for a content item by sending an Interest packet. Interests are
routed by content routers (CRs) towards content publishers
based on a lookup table, which maps content names to output
interface(s), the Forwarding Information Base (FIB).

The FIB entries of CRs are populated using a link state
routing protocol, known as ‘“Named-data Link State Routing
protocol (NLSR)” [4]. Content name prefixes are advertised
to edge CRs, which in turn propagate these advertisements
using NLSR. NDN (and ICN in general) supports replicating
content items in multiple network locations, thus facilitating
multihoming and multisourcing, and also supports publisher
mobility. Therefore, a CR may receive multiple valid content
advertisements from multiple locations, and it should update
its FIB to include all of them. As a result, it is harder to
filter out fake advertisements compared to, for example, a
routing protocol which is used to propagate location-dependent
identifiers (e.g., network addresses in IP).

NDN tries to solve this problem using digital signatures,
by allowing content advertisements to be signed. This enables
edge CRs to verify these signatures based on pre-configured
rules [5]. In a typical deployment, edge CRs would use these
rules to verify a chain of signatures rooted in a pre-installed
trust anchor. In the example of Fig. 1, the role of the trust
anchor is held by a Trusted Third Party (TTP), the certificate
of which is installed in all edge routers. The TTP has issued a
certificate for the content owner, and the owner has issued
a certificate for the publisher. The publisher signs content
advertisements and includes in the advertisement messages
“pointers” to its certificate, as well as to the owner’s certificate.
Therefore, an edge router validates signed advertisements in
two steps: first, it retrieves the certificates of the owner and
the publisher and, second, it verifies that the certificate of the
publisher has been issued by the owner, and that the certificate
of the owner has been issued by the TTP.

B. Solution overview and contributions

In this paper, we design a solution that removes the need for
TTPs. In particular, we propose that each content owner issues

a—) Sign Certificate E
g — =)

=
L®] Store Item ==y
Owner Publisher
%Certlflcate né_
® n o)
2 S EpE
® o DA
3 o
[0
TTP 2
o o
oI
o= e

==

Edge Router A/E'dge Router

Fig. 1. Trust relationships in legacy NDN routing. Edge routers are configured
with the certificate of the TTP. The TTP issues a certificate to the owner and
the owner issues a certificate to the publisher. The publisher includes both
certificates in the advertisement.

Decentralized Identifiers (DIDs), which are used as content
name prefixes. A DID, which is a new identification paradigm
that is getting increased attention from academia and industry,
can be regarded as an opaque URI, which is associated with
public keys and other auxiliary information.

A content owner can prove ownership of a DID and it can
also authorize a publisher to advertise a content name prefix
that includes the DID, on the owner’s behalf. With our solution
we make the following contributions:

o We allow publishers to prove that they have been autho-
rized to advertise a particular content name prefix to a
specific edge router.

o« We enable edge routers to verify these proofs without
relying on third parties or requiring edge routers to be
pre-configured with information specific to our solution.

o We facilitate the detection of attackers using keys that
have been revoked. Furthermore, we limit the impact of
publisher key breaches, even when they are not detected.

o We improve content owners’ privacy and simplify names-
pace management.

The remainder of this paper is organized as follows. In
Section II we introduce Decentralized Identifiers and we
present the design of our system. In Section III we present the
implementation of our system, we discuss its performance, it
security properties, and we compare it against a TTP-based
alternative. Finally, we present our conclusions and discuss
future work in Section IV.

II. SYSTEM DESIGN
A. Decentralized Identifiers and the did:self method

Decentralized Identifiers (DIDs), defined by W3C, are a
new type of identifier that is globally unique, resolvable with
high availability, and cryptographically verifiable [6]. A DID,
which is a simple URI, is associated with a DID document
that includes public keys, authentication protocols, and service
endpoints necessary to bootstrap cryptographically-verifiable

interactions with the identified entity [6]. Usually, a DID doc-
ument is maintained by a DID registry which is responsible for
implementing proper security and access control mechanisms.
Registries allow third parties to lookup DID documents and
provide proofs of correctness (for example, a proof can be a
digital signature generated by the registry).

DID specifications do not dictate the actual contents of a
DID document, neither do they define how a registry operates.
Instead, these are left as design choices to individual DID
instantiations, also referred to as DID methods. Our system
uses a DID method we devised, did:self [7]. A key property
of did:self is that it does not require any trusted registry; DID
documents can be directly transmitted to interested parties or
stored in publicly accessible locations. The did:self method
assures that a DID document can be verified as “correct” even
if it is retrieved over an unsecured channel.

A did:self-based DID is a base64url encoded Ed22519
public key [8], [9] prefixed with the string ‘did:self:’. A DID
document in did:self is a JSON-encoded document that may
include any of the DID “properties” defined by the DID
specifications. Our solution uses the following properties:

e id: The DID which the document concerns.

e assertion: An Ed22519 public key expressed using

the “JsonWebKey2020” notation [10].

The assertion key is used in our system for signing content
advertisements. An example of a DID document is included in
the following listing, where line 2 includes the DID, and lines
3-10 define the assertion (key), which is in essence the JSSON
Web Key (JWK) representation [11] of an Ed22519 public key
(lines 7-9). Observe that the assertion property includes an
“id”, the key identifier, which is used to build a compromised
key detection mechanism in the following section.

1

2 “id”: “did:self:6varDOR}j...”,

3 “assertion”: {

4 “id”: “publisherA.com#key1”,
5 “type”: “JsonWebKey2020”,
6 “publicKeyJwk”: {

7 “crv”: “Ed25519”,

8 “x7: “TwlkufDec...”,

9 “kty”: “OKP”

10 }

11 }

12 }

Listing 1. An example of a DID document used in our solution.

Additionally, each DID document is associated with a proof
which is a “compact serialization” of a JSON Web Signature
(JWS) (section 3.1 of [12]). The payload of a proof is a JSON
document that includes the following properties:

e id: The DID.

e created: The date and time when the proof was gen-

erated.

e expires: An optional expiration time.

e sha-256: The base64url encoded hash of the DID

document, calculated using SHA-256.

e caveats: A list of application layer “restrictions” on
the scope of the DID document. In our system, this
property is used to control the prefixes that a publisher
can advertise and limit the advertisements to one or more
content routers.

The signature of the proof is generated using Edwards-
curve Digital Signature Algorithm (EADSA) and the private
key that corresponds to the DID. The proof is used to validate
the binding between a DID document and a did:self DID. In
particular, given a DID, a DID document, and the document
proof, any entity can trivially verify whether the DID docu-
ment corresponds to the DID by executing the following steps:

1) Verify that the DID is included in the id field of the

proof.

2) Verify that the digest of the DID document is the same

as the sha—-256 field of the proof.

3) Verify that the proof has not expired, if the expires

field is set.

4) Verity the signature of the proof using the did:self DID

(recall that a did:self DID is a public key.)

With our solution, DID documents and their proofs are

integrated into the content item advertisements.

B. System entities

Our system considers content owners, publishers, and edge
routers (see also Fig. 2). Content owners generate content
items and pass them to a publisher, while publishers are
responsible for advertising the content items they host to
the edge routers to which they are attached. Edge routers
communicate with the rest of the NDN network using standard,
unmodified NDN protocols.

Each content owner can generate an arbitrary number
of did:self DIDs, which are used as content name pre-
fixes. In particular, each content item is uniquely iden-
tified by a hierarchical name rooted at a did:self DID,
e.g., “did:self:abc.../holidays/videol/chunk1”. We refer to the
did:self DID used as the root of a content name as DI D, o:
many content items, that belong to the same owner, may share
the same DID,,,:. Moreover, publishers own public-private
key-pairs, that are uniquely identified by a key;q. Finally, each
edge router is identified by a unique router;q. The format of
a router;q is deployment specific; our solution only requires
that publishers know the identifiers of the edge router(s) to
which they are attached (which is the case in typical NDN
deployments).

C. Publisher authorization

A content owner can authorize a publisher to advertise
a content name prefix rooted at a DID,,,, to a specific
router identified by router;;. Content advertisements will be
secured using the publisher’s key-pair key;4. This is achieved
as follows. The content owner generates a DID document
for DID,,,: that includes an assertion with “id” equal to
key;q and a “publicKeyJwk” equal to the JWK representation
of the public key that corresponds to key;q. Essentially, this
“delegates” publishing rights to the publisher that holds that

DID Document

-
| ® | —
Store Item - %
Owner Publisher
Q
Q.
3w
= 0o E
? @ %)
2
(0]
=1
o]
Edge Routerv\. Edge Router

Fig. 2. System entities and interactions. The content owner generates a DID
document which is stored in the Publisher. The publisher includes this DID
document in its advertisements.

key;q. Moreover, the proof of this document, which is signed
using the private key that corresponds to DID,.,., includes in
its caveats field the content name prefix which the publisher
is authorized to advertise, and the router;y. Finally, the owner
sends the DID document and its proof to the publisher.

An example of a DID document and its proof is included
in the first two columns of the table in Fig. 3. In this
example, a publisher is authorized to advertise the prefix
“DID,,ot/videos” to router “router;q”.

D. Content name advertisement

Publishers advertise content name prefixes to edge routers.
In our system, advertisements are expanded with a header that
includes the DID document and the proof received from the
content owner, using the procedure described in the previous
section, as well as an assertion, a compact serialization of a
JWS. The payload of an assertion is a JSON document that
includes the following properties:

e prefix: The advertised prefix.

e router: The router;q of the edge router.

e created: The date and time when the assertion was
generated.

e sha-256: The base64url encoded hash of the advertise-
ment payload.

The signature of the assertion is generated by the publisher
using EdDSA and the private key that corresponds to key;q.
An example of an assertion is included in the last column of
the table in Fig. 3

An edge router can verify the validity of an advertisement
by taking advantage of the added header as follows:

1) It extracts the DID document and its proof, and it verifies

that this is a valid DID document for DID,.,.;.

2) It extracts the assertion key from the DID document and

it uses it to verify the signature of the assertion.

verifies

DID Document

N pocument proof

\‘

Assertion

oy gn, u ” oy g, u ”
id”: “<DID,,.>", id”: “<DID,,>",

“assertion”: { “created”: “...”,
“id”: “<key,>”, “expires”: “...”,

“type”: “JsonWebKey2020”,
“publicKeyJwk”: {

”Sha-256”: ll.“"’
“caveats”: {

{

“ VL : ”n
prefix”: “<DID,,>/videos”,

“router”: “<router;;>”,
“created”: “...”,

”Sha'256”: ll.“”,

“prefix”: “<DID,,.,>/videos”,
} “router”: “<router;;>”
} }
verifies

Fig. 3. A content name prefix advertisement. The signature of the document proof is verified using DI D0t and the signature of the assertion is verified

using key;q. For clarity, signatures are omitted from the figure.

3) It calculates the sha-256 hash of the advertisement
payload and it verifies that it matches the value included
in the sha-256 field of the assertion.

4) It verifies that the prefix property of the assertion
is the advertised prefix and that it is included in the
caveats property of the document proof.

5) It verifies that the router property of the assertion in-
cludes the correct router;4 and that router;, is included
in the caveats property of the document proof.

6) It verifies that the assertion is “adequately fresh” using
the created property.

Steps 1 and 2 are used to verify the integrity of the assertion.
With step 3, the edge router verifies the integrity of the
advertisement. Step 4 is used to verify that the publisher
is authorized to advertise this specific prefix. In step 5, the
edge router verifies that it is the intended recipient and that
the publisher is authorized to advertise the prefix to that
specific edge router. Finally, the router detects a “replayed”
advertisement in step 6.

E. Publisher key rotation

In case a key used by a publisher to sign assertions is
breached, it must be replaced with a new one, and the publisher
must receive new DID documents from the content owner(s).
In our system we follow the convention that the new key will
have the same key;q as the replaced one.

An attacker that found out the breached key can use
it to sign assertions but cannot modify the corresponding,
old, DID document. Therefore, an edge router receiving two
valid advertisements, which include DID documents that use
the same “id” for the assertion property but have different
“publicKeyJwk” values, will understand that one of these is not
valid. In that case, the edge router will mark the key included

in the oldest DID document as “forbidden” and it will store
it in an internal “key rejection list”.

All DID documents that include the same publisher public
key should use the same key;q, even if they were generated
by different content owners. This is easy to achieve, since the
publisher passes this information, along with the key, to each
owner. As a result, a structure that maps key;4s to public keys
stored in an edge router will have size proportional to the
number of publishers’ public keys, regardless of the number
of content owners and the number of prefixes.

III. IMPLEMENTATION AND EVALUATION
A. Performance evaluation

For the evaluation, we have used the Python3 implementa-
tion of did:self.' TWS generation, verification, and serializa-
tion are implemented using the JWCrypto library.> SHA-256
hashes are calculated using Python’s hashlib library.

In our system the following cryptographic operations have
to be performed. For the creation of the DID, a content owner
has to generate an Ed22519 key pair, a DID document, and the
corresponding proof. A publisher has to sign the “assertion”
field of the advertisement. Finally, for the advertisement veri-
fication, an edge router has to verify the DID document using
the provided proof, as well as the signature of the assertion.

Table 1 shows the time required (in ms) to perform the
cryptographic operations of our system, as measured in a
desktop PC running Ubutnu 18.04, on an Intel i5 CPU, 3.1Ghz
with 2GB of RAM. It can be seen that most operations are
executed in less than 3 ms.

When it comes to storage overhead, Table 2 shows the
size of the various components of the advertisement header

Thttps://github.com/mmlab-aueb/did-self-py
Zhttps://jwerypto.readthedocs.io/en/latest/

TABLE I
CRYPTOGRAPHIC OPERATIONS REQUIRED BY OUR SYSTEM AND THEIR
OVERHEAD.
Operation Time (ms)
Key pair generation 46
DID document and proof generation 2.7
JSON web signature calculation and serialization 0.7
DID document verification 1.5
JSON web signature verification 0.2
TABLE II

SIZE IN BYTES OF THE COMPONENTS OF AN ADVERTISEMENT.

Component Size (bytes)
DID document 427
Proof 512
Assertion 304

(in bytes). For this measurement we set the size of the
variable length fields to the following values: key;q = 20 bytes,
router;q = 20 bytes, prefix = 80 bytes and caveats =
100 bytes.

B. Security evaluation

1) Security properties: Our solution has intriguing security
properties, even against active attackers.

The signed assertion included in the advertisement header
protects the integrity of the advertisements. Furthermore, by
including router;q in the assertion, attackers are prevented
from injecting a valid advertisement captured from another
link. Similarly, by including a timestamp in an assertion indi-
cating when it was created, prevents attackers from “replaying”
“old” advertisements. Of course this requires the clocks of the
publishers and the edge routers to be loosely synchronized.
Although this is not hard to achieve, since usually publishers
and edge routers are one network hop way and they belong to
the same network, an alternative approach is each publisher
to use an incremental serial number: then, edge routers can
store the last value of the serial number of each publisher and
reject advertisements that include older serial numbers.

Even if an attacker can access the assertion key of a
publisher, he cannot modify the DID documents that the
publisher has received: this limits the damage an attacker can
make. In particular, for the lifetime of a DID document and
providing that the key breach has not been detected, an attacker
can send advertisements for a specific prefix to a specific
router. This has an impact on the routing state only if the
publisher does not host anymore the advertised prefix.

2) Comparison to a TTP-based solution: Our solution
removes the need for a TTP. Using a TTP has the following
disadvantages:

All entities must agree on the set of TTPs. When a TTP-
based solution is used, a TTP must be trusted by all content
owners, as well as by the network provider. This can become
really challenging, e.g., in cases of content owners that roam
from network to network.

A TTP is a significant security threat. In the general case,
a TTP can generate certificates for any name prefix, hence a

malicious TTP, or an attacker that has access to the private key
of a TTP, can generate an arbitrary number of valid certificates.

Security management is harder. In case a TTP has to
revoke its signing key then, all generated certificates must
be re-issued, and—more importantly—all edge routers must be
configured with the new TTP key. Moreover, in case a content
owner needs to update her certificate she must be able to
prove to the TTP that she is the legitimate owner of the prefix
included in the certificate, otherwise an attacker could receive
a certificate for a prefix he does not own, hence he will be
able to impersonate a valid owner.

On the other hand a TTP can limit the number of prefixes
a content owner can use, whereas in our system content
owners can generate (by themselves) an arbitrary number of
prefixes, thus increasing routing state. In any case, limiting
the number of prefixes an owner can use comes with some
costs. Firstly, it creates a privacy risk since it becomes easier
to track the content items of a specific owner, as well as
to filter/censor a specific owner. Secondly, in case there are
multiple TTPs they have to be synchronized so that each TTP
knows which prefixes are available and which are already
assigned to owners. In our system, a content owner not only is
allowed to generate as many prefixes she wants (even a prefix
per content-item) but it is statistically guaranteed that these
prefixes are unique, hence a third party keeping track of the
available prefixes is not required.

Another important property of TTP-based systems is that
content owners do not necessarily lose control of the prefixes
they own if their keys are breached or lost. This is not the
case in our system: the security of did:self DIDs relies on the
ability of content owners to protect the corresponding private
keys; if an owner’s private key is lost, the attacker has equal
rights to the DID (and its namespace) as the owner.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a solution for protecting rout-
ing state in Named Data Networking (NDN). Our solution
leverages Decentralized Identifiers (DIDs), it enables content
owners to authorize publishers to advertise content prefixes
they own, and it allows edge routers to verify the validity
of content advertisements. Our solution removes the need
for a Trusted Third Party (TTP), while being lightweight,
secure, and supporting seamless integration with the NDN
edge routers. Furthermore, our solution does not require any
configuration state to the edge routers, such as installing keys.
The proposed scheme allows content owners to generate by
themselves as many statistically unique prefixes they want,
simplifying namespace management, while protecting content
owners from tracking and censorship. Finally, our solution
does not affect routing in the core network, neither does it
require modifications to the application layer protocols.

Currently, we have developed an “emulated” edge router
that implements our solution, in the context of the
project “Self-Certifying Names for Named Data Networking
(SCN4NDN)” [13]. We are actively working on integrating
the proposed solution in the core NDN libraries.

Although our solution was designed for NDN, we believe
that it has applications to other systems that involve similar
routing protocols. We have already investigated the use of our
solution for protecting mutable content in the Inter-Planetary
Files System [14]. Future work in this direction involves the
application of our solution in service-oriented architectures, as
well as the integration of our constructions to protocols such
as the “Cryptographically Generated Addresses” [15].

The presented solution does not exploit all features offered
by the did:self DID method. did:self supports methods to
make key rotation easier and add protection “layers” to the
private key that corresponds to a DID. Nevertheless, recovering
from a key breach without losing control of the corresponding
DID still remains an open, unsolved issue.

A did:self DID is not human memorable. Although relying
on human memorable identifiers to provide security is a bad
practice (since users can easily fall victims of “phishing” or
“impersonation” attacks) they are valuable from a usability
standpoint. Bridging human memorable names with did:self
DIDs is another open issue under investigation.

ACKNOWLEDGMENT

This work was supported by a contract with the Waterford
Institute of Technology under Article 15 of Grant Agreement
number 871582 for financial support to third parties of EU
H2020 project NGlatlantic.eu, a Research & Innovation Action
in the field of Next Generation Internet.

REFERENCES

[1] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-

los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey

[12] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS),”

Internet Requests for Comments, IETF, RFC 7515, May 2015. [Online].
Available: https://tools.ietf.org/html/rfc7515

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[13]

[14]

[15]

of Information-Centric Networking research,” IEEE Communications
Surveys Tutorials, vol. 16, no. 2, pp. 1024-1049, 2014.

D. Trossen, M. Sarela, and K. Sollins, “Arguments for an Information-
Centric Internetworking architecture,” SIGCOMM Computer Communi-
cations Review, vol. 40, no. 2, pp. 26-33, Apr. 2010.

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Computer Communications Review, vol. 44, no. 3, pp. 66—
73, Jul. 2014.

V. Lehman, A. M. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang,
“A secure link state routing protocol for NDN,” Tech. Rep. NDN-0037,
2016.

Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in named data networking,” in Proceedings of the
2nd ACM Conference on Information-Centric Networking. New York,
NY, USA: Association for Computing Machinery, 2015, p. 177-186.
W3C Credentials Community Group. (2020) A Primer for Decentralized
Identifiers. [Online]. Available: https://w3c-ccg.github.io/did-primer/
N. Fotiou. (2021) did:self method specification. [Online]. Available:
https://github.com/mmlab-aueb/did-self

S. Josefsson, “The Basel6, Base32, and Base64 Data Encodings,”
Internet Requests for Comments, IETF, RFC 4648, October 2006.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4648.txt

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77-89, 2012.

W3C Credentials Community Group. (2019) Did method registry.
[Online]. Available: https://w3c-ccg.github.io/did-method-registry/

M. Jones, “JSON Web Key (IWK),” Internet Requests for
Comments, IETF, RFC 7517, May 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7517

Mobile Multimedia Laboratory. (2021) Self-Certifying Names for
Named Data Networking (SCN4NDN) project home page. [Online].
Available: https://mm.aueb.gr/scn4ndn/

N. Fotiou, V. Siris, and G. Polyzos, “Enabling self-verifiable mutable
content items in IPFS using Decentralized Identifiers,” in DI2F: Decen-
tralising the Internet with IPFS and Filecoin, IFIP Networking 2021
workshop, 2021.

T. Aura, “Cryptographically Generated Addresses (CGA),” Internet
Request for Comments, IETF, RFC 3972, March 2005. [Online].
Available: https://rfc-editor.org/rfc/rfc3972.txt

