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Abstract--In this paper, we introduce a new scheduling policy 
which provides guaranteed service for a session based on a flexible 
service specification called the Service Curve. This policy, referred 
to as the Service Curve based Earliest Deadline first policy 
(SCED), is a generalized policy to which well-known policies 
such as VirtualClock and the Earliest Deadline First (EDF) can 
be mapped as special cases, by appropriate specification of the 
service curves. Rather than characterizing service by a single 
number, such as minimum bandwidth or maximum delay, service 
curves provide a wide spectrum of service characterization by 
specifying the service using a function. The flexibility in service 
specification allows a user, or the network, to specify a service 
that best matches the quality-of-service required by the user, 
preventing an over-allocation of network resources to the user. 
For a single server, we show that the SCED policy is optima1 in 
the sense of supporting the largest possible schedulability region, 
given a set of delay-bound requirements and traffic burstiness 
specifications. For the case of a network of servers, we show that 
the SCED policy has a greater capability to support end-to-end 
delay-bound requirements than other known scheduling policies. 
The key to this capability is the ability of SCED to allocate and 
guarantee service curves with arbitrary shapes. 

Zndex Terms--Integrated services networks, multiplexing, net- 
work calculus, quality-of-service guarantees, scheduling, service 
curves, traffic envelopes. 

I. INTRODUCTION 

B ROADBAND packet-switched networks are expected to 
support a large number of concurrent sessions which may 

have significantly different traffic characteristics and quality- 
of-service (QoS) requirements. It is desired that such networks 
be able to deliver a diverse set of QoS guarantees while 
achieving high bandwidth utilization. In order to meet such 
objectives, the networks have to implement a scheduling 
policy, determining which packets to serve at any given time 
from the various sessions the network serves, as well as 
an admission control policy, determining and enforcing the 
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maximum set of simultaneous sessions that the network can 
support. 

In this paper, we propose a new scheduling policy which 
provides guaranteed service for a session based on a flexible 
service specification called the Service Curve 161, [7]. This 
policy, referred to as the Service Curve based Earliest Deadline 
first policy (SCED), is a generalized policy to which well- 
known policies such as VirtualClock and the Earliest Deadline 
First (EDF) can be mapped as special cases. SCED provides 
the network with a flexible means for allocating network 
resources to various sessions in order to meet their diverse 
QoS requirements while maximizing network utilization. 

Most real-time traffic users require the network to pro- 
vide guarantees on the maximum delay that the traffic will 
experience as it travels across the network. However, many 
resource-allocation policies proposed for real-time traffic are 
based on guaranteeing bandwidth to a specific user. Examples 
of such policies are VirtualClock [27], Stop-and-Go Queueing 
1151, Packetized Generalized Processor Sharing (PGPS-RPPS) 
[20], and Weighted Fair Queueing (WFQ) [9]. These policies 
guarantee that, within some predefined time intervals, the 
amount of a user’s traffic which is transported by the network 
is no less than a specified lower bound, which is equal to 
the guaranteed bandwidth for the user times the length of the 
interval. While guarantees on bandwidth imply guarantees on 
delay for the user, provided that the user limits the traffic 
it sends to the network, this approach can result in over- 
allocation of network resources, especially if the traffic is very 
bursty. Scheduling policies such as Rate Controlled Scheduling 
(RCS) and EDF [26], [ 131, [ 143, [19] can overcome these 
problems in the case of scheduling for a single server. As 
we shall see, the SCED policy is a generalization of all of 
these policies, and can in fact schedule sessions even more 
efficiently in the case of a network of servers. 

The SCED policy is based on Service Curves, which serve 
as a general measure for characterizing service provided to a 
user. Rather than characterizing service by a single number, 
such as minimum bandwidth or maximum delay, service 
curves provide a wide spectrum of service characterization 
by specifying the service using a function. The flexibility in 
service specification allows a user, or the network, to specify 
a service that best matches the QoS required by the user, 
preventing an over-allocation of network resources to the user. 
For a single server, we show that the SCED policy is optimal 
in the sense of supporting the largest possible schedulability 
region, given a set of delay-bound requirements and traffic- 
burstiness specifications. For the case of a network of servers, 
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policy, determining which packets to serve at any given time 
from the various sessions the network serves, as well as 
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m&urn set of simultaneous sessions that the network can 
support. 

In this paper, we propose a new scheduling policy which 
provides guaranteed service for a session based on a flexible 
service specification called the Service Curve [6], [7]. This 
policy, referred to as the Service Curve based Earliest Deadline 
first policy (SCED), is a generalized policy to which well- 
known policies such as VirtualClock and the Earliest Deadline 
First (EDF) can be mapped as special cases. SCED provides 
the network with a flexible means for allocating network 
resources to various sessions in order to meet their diverse 
QoS requirements while maximizing network utilization. 

Most real-time traffic users require the network to pro- 
vide guarantees on the maximum delay that the traffic will 
experience as it travels across the network. However, many 
resource-allocation policies proposed for real-time traffic are 
based on guaranteeing bandwidth to a specific user. Examples 
of such policies are VirtualClock [27], Stop-and-Go Queueing 
[ 151, Packetized Generalized Processor Sharing (PGPS-RPPS) 
[20], and Weighted Fair Queueing (WFQ) 191. These policies 
guarantee that, within some predefined time intervals, the 
amount of a user’s traffic which is transported by the network 
is no less than a specified lower bound, which is equal to 
the guaranteed bandwidth for the user times the length of the 
interval. While guarantees on bandwidth imply guarantees on 
delay for the user, provided that the user limits the traffic 
it sends to the network, this approach can result in over- 
allocation of network resources, especially if the traffic is very 
bursty. Scheduling policies such as Rate Controlled Scheduling 
(RCS) and EDF [26], [13], [14], [19] can overcome these 
problems in the case of scheduling for a single server. As 
we shall see, the SCED policy is a generalization of all of 
these policies, and can in fact schedule sessions even more 
efficiently in the case of a network of servers. 

The SCED policy is based on Service Curves, which serve 
as a general measure for characterizing service provided to a 
user. Rather than characterizing service by a single number, 
such as minimum bandwidth or maximum delay, service 
curves provide a wide spectrum of service characterization 
by specifying the service using a function. The flexibility in 
service specification allows a user, or the network, to specify 
a service that best matches the QoS required by the user, 
preventing ti over-allocation of network resources to the user. 
For a single server, we show that the SCED policy is optimal 
in the sense of supporting the largest possible schedulability 
region, given a set of delay-bound requirements and traffic- 
burstiness specifications. For the case of a network of servers, 

1063-6692/99$10.00 0 1999 IEEE 



670 IEEEIACMTRANSACTIONS ON NETWORKING,VOL.I,NO. ~,OCTOBER 1999 

we show that the SCED policy has a greater capability 
to support end-to-end delay-bound requirements than other 
known scheduling policies. The key to this capability is the 
ability of SCED to allocate and guarantee service curves with 
arbitrary shapes. 

The remainder of the paper is organized as follows. In 
Section II, we describe the concept of service curves and 
present results which are needed for the following sections. 
The SCED policy is defined and analyzed in Section III. In 
Section IV, we compare the SCED policy to other scheduling 
algorithms, and demonstrate the unique capabilities of SCED 
through an example. Finally, in Section V we conclude with 
a brief discussion. 

II. SERVICE CURVES: A REVIEW 

We would like to succinctly characterize the service the 
session receives from the network element, so that bounds on 
the backlog and delay can be obtained. We shall characterize 
this service in terms of a service curve, defined in the next 
sub-section. 

A. Service Curves, Delay, and Buffering Requirements 

Consider a network element which receives, possibly 
buffers, and eventually serves (sends) packets from a session.’ 
Note that a network element can be a single server (switch), 
or even a full subnet. We adopt a discrete time model in this 
paper. We assume that time is divided into fixed intervals 
called slots, numbered 0, 1, 2, . . . , and that packets have 
fixed size. We shall assume that the transmission time of any 
packet is exactly one slot, i.e. it takes exactly one slot for 
a packet to enter or exit a network element. Without loss 
of generality, we assume a “cut-through” model, whereby a 
packet arriving to a network element during a slot may depart 
the network element during the same slot. Let R’” [t], where t 
is a nonnegative integer, denote the number of packets from 
the session which arrive at the network element during slot 
t. Similarly, Rout[t] denotes the number of packets from the 
session which depart from the network element during slot t. 
There may be several sessions which pass through a network 
element, but in this section, we focus on a single session. 
Also, in this paper we assume that only an integral number 
of packets can arrive or depart from a network element in 
any slot. Thus, R’“[t] and Rout [t] take on only nonnegative 
integer values. For s 5 t, the “interval” [s, t] is defined 
to be the set of slots s, s + 1, ... , t. Define R’“[s,t] to 
be the number of packets from the session arriving at the 
network element during the interval [s, t], i.e., Ri”[s, t] = 
CL=, R’“[m]. If s > t, define R’“[s,t] = 0. Let r’“(t) = 
R’“[l,t] = CA=, R’“[m]. Similarly, define RoUt[s,t] to be 
the number of packets from the session leaving the network 
element during the interval [s, t] , and rout(t) = Rout [l, t] . 

Assuming that there is no packet stored in the network 
element at the end of slot zero, the number of packets from 
the session which are stored in the network element at the end 
of slot t, called the backlog B[t] of the session at the end of 

‘We shall use the terms “session,” “stream,” and “packet stream” inter- 
changeably. 

slot t, is given by 

B[t] = r’“(t) - rout(t) 2 0. (1) 

The virtual delay d[t] suffered by the session through the 
network element, relative to time t, is defined to be 

d[t] = min{A: A 2 0 and I’” 5 rout@ + A)}. (2) 

If packets from the session depart the server in the same order 
in which they arrive (first-in first-out), then the virtual delay 
d[t] is an upper bound of the delay suffered by any packet 
from the session that arrives in slot t. 

We are now ready to define a service-curve guarantee. 
Definition II.l- (Service Curve): Given a nonnegative 

nondecreasing function S( +) , where S(0) = 0, we say that 
the network element guarantees service curve S(.) for the 
session if for any t, there exists s < t such that rout(t) - 
e(s) 2 S(t - s). 

We note that a service curve S only needs to be defined on 
the nonnegative integers, even though we shall often define a 
service curve S on the set of all real numbers. Furthermore, 
in general, we shall allow a service curve to be real-valued. 

The notion of a service curve has its roots in the work of 
Parekh and Gallager [20], who introduced the concept of a 
universal service curve in the context of a specific scheduling 
algorithm. The service-curve definition above is slightly less 
restrictive than the one proposed in [6], [7], which required 
that the backlog of the session be equal to zero at the end 
of slot s. Both the definition in this paper and in [6], [7] 
are considerably less restrictive service definitions than that 
of the universal service curve in 1201, and apply generally to 
scheduling algorithms other than that considered in [20]. Less 
general or more restrictive service definitions have also been 
reported in [5], [16], [17], [23]. The service-curve definition in 
this paper was reported earlier in [22], and also independently 
proposed in [1] and [18]. 

Given two functions f and g defined on the nonnegative 
integers, define the convolution of f and g, f t g, to be the 
function defined on the nonnegative integers such that 

(f * g)(t) = oy!~$u(s) + g(t - s)). 

It is easy to verify that the convolution operator is commutative 
and associative, i.e., f *g = g * f, and (f *g) * h = f * (g * h). 

With this definition, it is clear that a network element 
guarantees service curve S to a session if and only if2 rout 
2 ?-in * s. 

As an example, suppose a network element guarantees the 
service curve 5’ = Sd, where 

b(x) = 
0, ifx<d 

00, if x > d. 

In this case, it foIlows that for all t we have ,Out(t) 2 
(?-in * Sd)(t) = r’“(t - d), and hence the delay is bounded 
above by d. 

2Throughout this paper, all inequalities and equalities involving functions 
are defined in a pointwise sense, e.g., j 5 CJ means that f(t) 5 g(t) for all 
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More generally, if a network element guarantees a session 
a service curve, we may bound the delay and backlog if the 
arrival stream of the session is “burstiness constrained” [4]. 
The burstiness constraint is succinctly summarized in terms of 
a “traffic envelope,” which is defined next. A traffic envelope 
is also sometimes called an “arrival curve.” 

Dejinition II.2- (TrafJic Envelope): Given a nondecreasing 
nonnegative function b(e), called a traffic envelope, we say that 
the stream R’” is b-smooth, or conforms to the envelope b, if 

R’“[s + 1:t] < b(t - s) (4) 

for all s and t satisfying s < t. For convenience, unless stated 
otherwise we define b(u) = 0 for all u 5 0. In the special 
case where b is affine, i.e., b(t) = 0 + pt: t = 1, 2, . . . and 
b(O) = 0, we say that R’” is (g,p)-smooth. 

In terms of convolution, note that the stream R’” is b-smooth 
if and only if @ 5 ?” *b. In fact, since we assume b(0) = 0, 
we have rin * b 2 rin and so Rin is b-smooth if and only if 
f in _ - $” * b. 

Given two functions f and y defined on the nonnegative in- 
tegers, we define the “maximum horizontal distance” between 
f and g to be D(fi[g), where 

D(fllg) = s%$Tminja: a > 0 and f(s) I g(s + a)}. (5) 
- 

General results for delay bounds, buffer. requirements, and 
servide-curve composition were reported for the earlier 
service-curve definition in [7]. It turns out that even with 
the less restrictive service-curve definition considered in this 
paper, the same results hold. These results are summarized 
next. Proofs are omitted here, since it is easy to modify the 
proofs presented in [7] to obtain the corresponding results 
(see also [S] for short proofs). 

Theorem II.]- (Upper Bound on Delay): Suppose a ses- 
sion is guaranteed service curve S(e) by a network element and 
the input traffic of the session is b-smooth. For every t, the vir- 
tual delay d[t] suffered by the traffic of the session through the 
network element is upper-bounded by the maximum horizontal 
distance between b and S, D(bl IS). 

Theorem II.2- (Upper Bound on Backlog): Suppose a ses- 
sion is guaranteed service curve S(.) by a network element 
and the input traffic of the session is b-smooth. For every t, 

the backlog of the session in the network elemen B[t] is upper 
bounded by the maximum vertical distance between 5’ and b, 
i.e., 

(6) 

Consider a session passing through a server that requires 
an upper bound on delay of d’“““, whose input traffic is b- 
smooth. It is clear that if the server guarantees the session 
the service curve S(Z) = b(.x - dmax), then the maximum 
delay requirement will be met. If the session requires both an 
upper bound on delay of d”‘“” and that the backlog be bounded 
by B’“““, then both requirements will be met if the session 
is guaranteed the service curve .!?(x) = rnax{ b(z - dmax): 
[b(x) - Bmax]f}, where we define :c+ = max{z,O}. The 
SCED scheduling policy defined in this paper yields a means 
for a server to allocate service curves to sessions so that their 

requirements are met. For a session that traverses a network 
through a path of servers, a service curve for the session 
can be allocated at each server along the path, in order to 
obtain an “end-to-end service-curve guarantee” through the 
entire network. The end-to-end service curve is obtained by 
tinvolving the service curves that are guaranteed at each 
server along the path, as s&ted in the next theorem. 

Theorem 1I.3- (End-to-End Service): Consider a session 
sequentially traversing H network elements in tandem. Sup- 
pose the session is guaranteed service curve Sh(.) by network 
element h for h = 1, . . . , H. Then the entire tandem network 
guarantees the session the service curve Snet where Snet = 
sl*s**.*.*sH. 

B. Regulators 

Before proceeding to the definition and analysis of the 
SCED policy in the Section III, in this sub-section, we review 
network elements called “regulators,” also known as “traffic 
shapers.” Regulators buffer arriving traffic as necessary so 
that the output traffic stream is conformant to a traffic en- 
velope. Without loss of generality, we may assume that traffic 
envelopes are sub-additive functions: 

Dejinition 11.3- (Sub-additive Function): A nondecreasing 
function f(.) defined on the nonnegative integers is said to be 
sub-additive if 

f(x) + f(Y) L f(x + Y) (7) 

for any nonnegative integers 2, y 2 0. 
Note that f is a sub-additive function if and only if f * f > 

f. In fact, we have f * g 5 f for any two functions f and g, 
if g(0) = 0. Thus if f is a function such that f(0) = 0, then 
f is sub-additive if and only if f * f = f. 

The following definition and results for a regulator were 
obtained independently and simultaneously by Agrawal and 
Rajan [l], Chang [3], Le Boudec [18], and Sariowan [22], 
with slightly different models. Here we restate the results from 
[22]. We use the notation 1~1 to denote the greatest integer 
less than or equal to Z. 

Definition ZI.4- (Regulator): Suppose bR(.) is a function 
such that LbR(.)] . 1s a sub-additive function. A bR-regulator is 
defined to be a network element whose arrival and departure 
processes rin and rout are related by the equation 

r”““(t) = (?’ * LbR])(t) for all t 2 1. (8) 

Theorem ZZ.4: (Regulator’s Output and Service) The output 
of a bR-regulator is bR-smooth. Furthermore, the bR-regulator 
guarantees the service curve [bR(.)] to the traffic stream that 
passes through it.. 

As we shall see, the regulator is closely related to the SCED 
scheduling algorithm, which is discussed in the next section. 
We shall revisit the regulator later in the paper and discuss 
this further. 

III. SCHEDULING POLICY AND SCHEDULABILITY CONDITION 

Consider a set of sessions which share a server, where 
each session has a pre-specified service curve that needs to 
be guaranteed by the server. In this section, we introduce a 
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general scheduling algorithm called SCED which the server 
can use so that each session is guaranteed its required ser- 
vice curve. In the next sub-section, the SCED algorithm is 
defined. In Section Ill-B, we present our key result, which 
succinctly specifies a condition under which the required 
service curves can be simultaneously guaranteed by the server. 
Next, in Section III-C we explore possible algorithms for 
computing the deadlines associated with the SCED algorithm. 
In Section III-D we discuss the relationship between the SCED 
deadline calculations and a possible implementation of the 
traffic regulators discussed in Section II-B. 

A. The SCED Algorithm 

Consider n/r sessions sharing a server. Suppose session i, 
i = 1, .‘.) M, requires service-curve guarantee [SZ (.) j . The 
number of arrivals from session 1: during slot t, number of 
departures from session i during slot t, and backlog for session 
i at the end of slot t are denoted by RF [t], RfU” [t], and B; [t] , 
respectively. 

We say that the server is empty at the end of slot t if all 
sessions have zero backlog at the end of slot t, i.e., B;[t] = 0 
for 1. = 1, . , M. If the server is empty at the end of slot t, the 
server may elect to reset at that time. Basically, the purpose of 
resetting the server is to provide a mechanism for the server 
to “forget” any “extra” service a session might have received 
prior to resetting, thereby avoiding the so-called “punishment 
effect” discussed in [20]. The choice of whether or not to 
reset the server when it is empty is a philosophical design 
issue on which we do not take a position in this paper. If 
the server wishes to “punish” users for using “extra” service, 
it may choose to never reset when it is empty. On the other 
hand, if the server wishes to encourage users to utilize “extra” 
service, it may choose to always reset when it is empty. Our 
model in fact allows the server to selectively reset or not reset 
when the server is empty on a case-by-case basis, although 
it is not clear that there is any advantage to such selective 
resetting. For each slot t, define 7(t) to be the index of the 
latest slot, no larger than t, at the end of which the server 
resets. By convention the server resets at the end of slot 0, 
and if -r(t) = 0 for all t 2 0, we say the server never resets. 

Define Z,(t) as 

Z,(t) = ~~~m<~{R:“[l: s] + S,(t - s)}. (9) 
- 

We say that L,&(t)] is the target process for stream i, since 
if the departure process for the ith stream is above lZi(t)j , 
i.e., we have Rput[l, t] 2 lZi(t)j for all t, then stream i is 
guaranteed the service curve LSi(.)] as desired. To see this, 
note that if RPUt[l, t] > lZ;(t)j for all t, we then have 

= Ri”[l, s*] + [$(t - s*)] 

and thus, for any t, there exists s* 5 t such that RPUt[l, t] 2 
RF [l, s*] + [Si(t - s*)j . In fact this may be slightly stronger 
than the desired service-curve guarantee, since s* satisfies 7-(t) 
5 s* 5 t. 

Fix a session i. Each packet from session i is conceptually 
assigned a unique cumulative arrival index, where the first 
packet to arrive has index 1 and the indices are assigned in 
order of packet arrivals. Note that we allow the possibility 
of greater than one packet arrival from stream i in a single 
slot. Suppose there is exactly one packet that arrives from 
session i in slot u. In this case, the packet’s index ni is 
given by n; = RF[l, u]. Note that if this packet is not served 
by slot t and i&(t) > n,, then Rp”“[l,t] < ni < Z,(t), so 
that the departure process would fall below the target process 
for stream i. Therefore, we would like to assign packet ni 
a deadline d where d is the first slot, such that &(d) 2 n;. 

However, from (9), it is evident that in order to determine 
Zi(d), we must, in general, have knowledge of the arrival 
process for stream i up to slot d, which may not be known 
at time U. Fortunately, RF[l, s] is greater than or equal to 
7~i for s 2 u and Si(.) is nonnegative, and hence the terms 
in the minimum in (9) corresponding to s > u do not affect 
when Z,(.) first crosses above 1zi. In addition, for purposes 
of estimating Z;(t) for t 2 ‘u we may make the assumption 
that r(t) = ~(u - l), i.e. the server does not reset after time 
IL - 1. Therefore, in order to calculate an appropriate deadline 
for packet pi we will use Z;(t; ‘u - 1) as an estimate of Zi(t), 
where 

Zi(t;u - 1) = ~~,-:;‘l’,‘~u-llR:“P> 4 + Si(t - 311. (10) 

This motivates the deadline assignments in the SCED pol- 
icy, defined below. 

Definition III.]- (SCED Policy): Given a set of M ses- 
sions, where session i, i, = 1, . a . , M, requires service-curve 
guarantee LS;(-)], the SCED policy schedules the departure of 
packets by assigning a deadline to each incoming packet. In 
each slot, service priority is given to packets with the earliest 
deadline in the system. The deadlines are assigned as follows: 
given a packet from session i which arrives in slot u and has 
a cumulative arrival index ni, the deadline Di(n;) assigned 
to the packet is given by 

oi(ni) = min{t: t 2 ‘(I and Zi(t;u - 1) 2 n,}. (11) 

Since a service curve is a nondecreasing function, it can be 
seen that the sequence of deadlines assigned to packets from 
a given session is nondecreasing, between consecutive reset 
points of the server. In other words, suppose that two packets 
from session 1; with indices nt and n; arrive during slots UI 
and ~2, respectively. If r$ 2 nf then Di(nt) 5 Di(nf), 
assuming that I = A. 

The next theorem shows that if packets from a given session 
are assigned deadlines according to the SCED policy and each 
packet departs no later than its &signed deadline, then the 
session is guaranteed its service curve. Then we derive a 
schedulability condition which ensures that a packet always 
meets its deadline. 

Theorem III.]- (Service-Curve Guarantees of SCED): 
Suppose session i is scheduled under the SCED policy 
defined above. If each packet departs no later than its assigned 
deadline, then the session is guaranteed service curve lS;(.)J 
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Lemma 1ZZ.Z: For any slot t, let N;(t) be the total number 
of packets from stream i that arrive after slot I, and that 
also have deadlines less than or equal to t. Then Ni(t) = 
12; (t)] , where 

.&i(t) = rkl&Ry[T(t) + 1, s] + S;(t - s)). “(12) 
- 

Proof: First we show that Ni(t) 5 L&(t)]. If iVi(t) = 0, 
this is trivial. If Ni(t) > 0, then consider the last packet that 
arrives after slot r(t), and that also has deadlines less than 
or equal to t. This packet has cumulative arrival index nr = 
R”[l,T(t)] + lx(t), and suppose it has deadline t*, t* 5 t, 
and arrives during slot u*, I + 1 5 u* 5 t*. From (ll), 
we have 

Zi(t*;u* - 1) 2 nr. u3j 

Since r(t) f 1 5 u* 5 t* 5 t, it follows that r(2~* - 1) 
= r(t*) = I. Also, by the definition of cumulative arrival 
indexnf,Ri”[l,s]~n~forzl* <s<t*.From(9)and(13),it 
therefore follows that &(t*) = Z;(t*; t*) 2 nt. Using t* 5 t 
and I = 7(t), it can be seen that Zi(t) 2 &(t*). Thus, 
Z;(t) 2 n,T: Subtracting RF [l, r(t)] from both sides of this, 
we obtain Z,(t) 2 Ni(t). S ince Ni(t) is integer valued, we 
thus have [Z(t)] 2 Ti(t). 

Next we show that Z,(t) < Ni(t) + 1, which implies the 
reverse inequality, namely L&(t)] 5 Ni (t). First, consider the 
case where Ri”[~(t) + 1, t] < N;(t) + 1. Since S;(O) = 0, we 
have &((t) 5 Rf’[~(t) + 1, t] < Ni(t) + 1. Second, consider 
the other case where Rf’[~(t) + I, t] 2 Ni (t) + 1, In this 
case, the packet with index nT* = Ry[l,r(t)] + Ni(t) + 1 
arrives at some time u** that satisfies I + 1 5 u** 5 t and 
must have a deadline greater than t. We therefore must have 
&(t;1~** - 1) < nt”. Since r(u** - 1) = r(t), we therefore 
have Z,(t) 5 Zi(t;u** - 1). Thus Z,(t) < nT*. Subtracting 
Rp[l,~(t)] from both sides of this, we obtain Z’;(t) < N;(t) 
+ 1. n 

Proof of Theorem III. I: By Lemma III, 1 and the assump- 
tion that each packet departs no later than its deadline, we 
have for any t 

R;Ut[l;t] = R;“t[l,r(t)] + R;“+(t) + l,t] 

= Ri”[l, 7(t)] + R;“+(t) + 1, t] 

2 Ri”[l, 7(t)] + N,(t) 

= Rf’[l, I] + l&(t)] 

= lzi(t)] 

which implies that the session is guaranteed service curve 

lsi(‘)l. 0 

8. Feasible Service-Curve Allocations 

In the next theorem, we provide conditions which guaran- 
tee that all packets from a set of sessions scheduled using 
SCED never miss their deadlines, and thus, by Theorem 111.1, 
guarantee the desired service curve for each session. 

For generality, we shall assume that the server has a variable 
capacity, meaning that the maximum number of packets that 
can be served during a slot varies with time. We say that the 

server is continuously backlogged in the interval [s + 1, t] if 
CE, &[m] > 0 for all m satisfying s + 1 < m 5 t. We say 
that a server has a capacity curve C(.) if within any interval 
[s + 1, t] in which the server is continuously backlogged, the 
amount of output traffic of the server is at least C(t - s). A 
fixed-rate server, i.e., a server with a fixed capacity to serve c 
packets in every slot (where c is a constant), is just a special 
case of a server with a capacity curve C(z) = cx. Note that the 
constraint associated with a capacity curve is a much stricter 
service characterization than a service curve, and this stricter 
characterization is consistent with ,me universal service-curve 
definition of [20]. By considering a general variable capacity 
server instead of a fixed-rate server, this extends the scope of 
our analysis to include hierarchical scheduling architectures 
[12], [Z]. For example, a fixed-rate server could allocate 
capacity curves to classes of sessions. Each class corresponds 
to a group of sessions, which are conceptually served by an 
associated variable rate server with its associated capacity 
curve C(.). The sessions belonging to a given class could 
then be scheduled using the SCED policy. 

Theorem IZl.2- (Feasible Allocation for the SCED Policy): 
Consider a variable capacity server with capacity curve C(.) 
that serves M sessions. The traffic arriving from session i is 
assumed to be bi-smooth. Then the SCED policy guarantees 
service curve [Si( .)] to session i for i = 1, . . . , 111 if the 
following condition is satisfied: 

M 

C( bi * si>(t) 5 C(t) 
i=l 

(14) 

for all positive integers t. With no assumptions on the arriving 
traffic from each session, a simpler sufficient condition is 

(15) 

for all positive integers t. 
The admission control policy says that a set of sessions 

can be simultaneously served by a server with capacity curve 
C(.) if the sum of their service curves, i.e., Ci S,(t), is below 
the curve C(t). This condition has a very interesting analogy 
to circuit-switching. Specifically, a set of circuits, each with 
bandwidth c; : can be simultaneously served if the sum of their 
bandwidth, i.e., & ci, is smaller than the total bandwidth c of 
the link. Hence, the service curve Si(.) can be thought of as 
a generalization of the fixed bandwidth ci. Rather than being 
represented by a single number ci, the generalized bandwidth 
is represented by a function S;(a). 

Proof of Theorem 111.2: It suffices to show that if condi- 
tion (14) is satisfied, then all packets depart no later than their 
assigned deadlines, and hence by Theorem 111.1, each session 
is guaranteed its service curve. To show this, we will show 
that if a packet misses its deadline, then (14) does not hold. 

Let p be the first packet that misses its deadline, and let t, 
be the deadline of this packet. Thus, the packet is not served 
in the interval [l, tm]. Let r* 2 I be the last slot no later 
than t, that the total backlog in the server was zero, i.e., T* 
= max{s: s 5 t, and Cg, Bi[s] = 0). Let t, be the last slot 
in [r* + 1, tm] in which a packet with a deadline greater than 
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t, is served. If there is no such slot, define t, = T*. Thus, 
all packets served in the interval [ts + 1, tm] have deadlines 
no greater than t,. Furthermore, since the total backlog in 
the system was positive during this interval, it follows that the 
total number of packets served by the server in this interval 
is at least C(t, - ts). Note that since a deadline is missed in 
slot t,, and priority is given to packets with earlier deadlines, 
it follows that t, < t,. 

Define T[t,+l, tm] to be the number of packets which arrive 
and are assigned deadlines in the interval [7-(tm) + 1, &I, but 
do not depart in [7(tm) + 1, ts]. Each such packet “has to” 
depart in the interval [ts + 1, tm]. We will first show that 
T[t, + 1, tm] is strictly greater than C(t, - ts). 

Since p is counted in T[t, + 1, t,], as well as each packet 
served in the interval [ts + 1, &I, we have 

M 

qt, + 1) tm] 2 1 + c RFUt [& + 1, &I 
z=l 

L 1 + q&L - ts) 

> C(t, - ts). (16) 

We now proceed to upper bound T[t, -I- 1, &I. Define A to 
be the set of all sessions which have zero backlog at the end 
of slot t, and have no packets with deadlines greater than t, 
departing in [7(t,) + 1, is]. Define B to be the complement 
of A. 

Claim: Only packets from sessions in A, and none in t3, 
are counted in T[t, + 1, tm]. 

Proof of Claim: The claim is equivalent to saying that 
none of the packets from sessions in D are counted in 
T[t, + 1, tm]. Suppose a session j belongs to B. Either some 
packet from session j with deadline greater than t, is served in 
the interval [I + 1, t,], or Bj[t,] > 0. Suppose the former 
case is true. Note that packets from a given session are served 
in order of their deadlines. Thus, all packets from session 
j which arrived and are assigned deadlines in the interval 
[I + 1, tm] must be served in the interval [7(t,) + 1, t3]. 
Thus, no packets from session j are counted in T[t, + 1, tm]. 
If the latter case is true, then by definition of t, some packet, 

say P*, with a deadline greater than t, is served in slot t,. 
Note that session j has at least one packet queued in the server 
during slot t,. All packets from session j that are queued in 
the server during slot t, must have a deadline greater than 
t TTL> for otherwise packet p* would not have been served, 
since the server gives priority to packets with earlier deadlines. 
Again, since packets from a given session are served in order 
of their deadlines, it follows that all packets from session 
j which arrived and are assigned deadlines in the interval 
[T(tm) + 1, tm] must be served in the interval [T(&) + 1, ts]. 
Thus, in the latter case, no packet from session j is counted 
in T[t, + l&l. 0 

By definition of A, any packet from a session in A that 

It follows that 

Combining inequalities (16) and (18), we obtain 

which implies that (14) does not hold. Condition (15) easily 
follows from (14) by substituting b; = 60. 0 

C. Algorithms for Calculating Deadlines 

In this sub-section we shall use (11) to develop the algo- 
rithms depicted in Figs. 1 and 2 for calculating deadlines under 
the SCED policy. 

The deadline of a packet ni = RF [l, u - 11 + I from stream 
i which arrives during slot IL is given by 

departs during the interval [T( tm) + 1, ts] must have a deadline 
that is no greater than t,,,. Thus, the number of packets from 
a session i belonging to A that are counted in T[t, + 1, tm] is 
equal to the total number of packets from session i that arrive 
and are assigned deadlines in the interval [I + l,tm], 
namely A$(&), minus the total number of packets from 

D;(n;) = min{t: t 2 u and Z;(t; u - 1) 2 n;} 

= max{u, Y,(~;u)}, (19) 

where Yi(l;u) = min{t: Zi(t;u. - 1) 2 Ry[l,u - l] + I}. 
Define 
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session i that are served in the interval [T( tm) + 1, tS] . Thus, by 
the claim and the last statement, T[t, + 1, L,] is upper-bounded 

by 

qt, + 1, tm] I C{iv,(L, - R;‘y+J + 1, ts]}. (17) 
1’EA 

From Lemma 111.1, we have 

N(L) = l~‘i(tm)J 
= min 

T(L)~SlL 
{RF[7(t,) + 1, s] + LSi(t, - s)]} 

and hence, we have for i E A 

N,(L) - Ry[-r(t,) + 1, t3] 

I min 
T(L)<SlL 

{R:[T(&) + 1, s] + S;(t, - s)} 

- lqut[7(tm) + 1,ts] 

= ruin 
SISAL 

{f@[7(tm) + 1, s] + &(t, - s)} 

- RjyT(tm) + 1, ts] 

I t <msi<nt {Ry[t, + 1, s] + S;(t, - s)} 

5 ?‘$jtm{Oi(s - ts) + S;(t, - s)} 
s- - nt 

= (bi * S;)(t, - ts>. 

qs + 1, tm] 5 C(h” * Si)(LL - t,) 
iEA 

(18) 
i=l 

F(bi * S;)(t,, - ts> > qt, - ts) 
i=l 

S-‘(nj = minim: m > 1 and S;(m) ) n). (20) 
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If the server is empty at the end of current slot 
and the server resets then 

RESETXLAG( e 1 
end if 

In each slot u where packets arrive from stream i: 
If RESETJLAGi = 1 then 

RESET-FLAGi e 0 
A+u-GAY 
For 1= 1 to Mj 

Table&) t u - 1 + ,.$7’(I) 
end for 

else 
Ai t max{Ai, u- 1 + A?} 
For 1= 1 to Mi 
e,‘dh’;;(Z) t max{TabZei(1), u - 1+ SZ:‘(l)} 

end if 
For each of the Rfn[u] packets that have arrived, 
assign the deadlines as follows: 

For 1 = 1 to RF[u] 
If I < Mi then 

Aszgn the deadline max(u, Tablei( 
to packet T:” (u - 1) + 1. 

else 
Assign the deadline ma.x{u, [Ai + q&j} 
to packet T:~(u - 1) + 1. 

end if 
end for 

Update Tablei and Ai as follows: 
For 1= 1 to Mi 

If 1+ Ry[u] 5 Mi then 
e12$Zei(Z) t Table& + Rf”[u]) 

eT;;F(l) + [Ai + rli(l + Ri"[u]>l 
end for 

Fig. 1. Algorithm for computing the deadlines assigned to packets from 
session i, in the case where the inverse of the service curve, S,’ (.), is 
parameterized by S;‘(1) = [At) +q;ll for 1 > M;. In this algorithm, at 
the end of a slot u where packets from stream i arrive, TubEe,(l) holds the 
value of I:( 1 + RF [IL]; u) for 1 = 1, 2, . , 174~. and a; holds the value 
of n;(u) + 7; R:” [u], relative to the definitions in the text, implementing 
(23) and (25). 

We now show that Yi(Z; U) can be computed recursively. For 
1 2 1, we have 

Yi(l; U) = min{t: Z;(t; u - 1) 2 Rp[l, u - l] + 1) 
= min{t: ,(,~~p<,,-lw?[li 4 + Si(i - 311 - 

(21) 

Suppose that the server resets at the end of slot 70, i.e. T(Q) = 
ro. Furthermore, suppose that after slot TO there are no arrivals 

If the server is empty at the end of current, slot 
and the server resets then 

RESET-FLAG$ t 1 
end if 

In each slot zd where packets arrive from stream i: 
If RESETJ’LAGi = 1 then 

RESET-FLAG; t 0 
6j,k t U - 1 + 6th for k = l,, . . Kj 

else 
6j,k t ITl&X{bj,k,U - 1 + 6i,k} for k = 1,. . . Ki 

end if 
For each of the Rfn[u] packets that have arrived, 
assign the deadlines as follows: 

For 1 = 1 to Rf”[u] 
6j,k t d&k i- 7)i,k for k = 1,. . . Ki 
Assign the geadline max{u, rnaxf& rfij,k]} 

to packet T:“(u - 1) + 2. 
end for 

Fig. 2. Algorithm for computing the deadlines assigned to packets from 
session i, in ,tie case where the service curve is a CPL curve S;(s) = 
max{O, rninLAI {a;,,, + pi,hz}}. As in the text, bp,k = -CYi,k/Pi,k and 
q;,k = l/fli,k. In this algorithm, at the end of a stot U, where packets from 

. stream 1 arrtve, 6Z,k holds the value of 6i,k(u) + v;,k@[v], implementing 
(27). 

from stream i until slot ul, i.e., Rf”[To + 1,Ul - 11 = 0 < 
Ri”[ul]. Then, it follows from (21) that 

Y;z(l;u1) = Ul - 1 + sz:l(z). (22) 

Proceeding iteratively, suppose there are no arrivals from 
stream i after slot u, until slot ~,+l, i.e., Ry [urn + 1, u,+~ - 
I] = 0 < Rj”[u,], and the server does not reset in the interval 
hl, urn+1 - 11, i.e., ~(74, - 1) = ~(u,+I - 1). In this case, 
using (21), we have 

Y;(k %+1) 
= max{Yi(Z + R~[u,,u,+I - 11; urn), 

,,,~s~~x+,~l{s + q-v + Ri”b + l,%LSl - 11)) -m 
= max{Yi(l + R”[u,]; urn), %x+1 - 1 + sp(l)}. 

(23) 

Therefore, in order to implement the calculation of deadlines 
for stream i, we may recursively calculate Yi(.; u), using (22) 
and (23), in every slot u where packets from stream i arrive, 
and then use (19). In general, this may be a difficult task 
unless Yi( .; U) can be parameterized. 

One case where this is possible is the case where S,:‘(l) 
= [A; + qZ1 f or all I> Mi, for some integer Mi and 
constants A! and Q. In this case we claim that Y;(1; u,+~) 
= [&(um+l) + qill for I > Mi, where &(u,,+l) can be 
recursively computed in terms of &(um) for m 2 1. To see 
this, proceed by induction. For m = 1 and 1> Mi we have 
from (22) that 

Y,(Z; Ul) =u1 - 1 + S,-1(E) = Ul - 1 + pq + QZl 

= [(Ul - 1 + A:) + qiz1 = yni(u,) + Tjiq 
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where 

A,(ul) = u1 - 1 + A;. (24) 

Assume inductively that Yi (I; urn) = [Ai (urn) + qill for 
some m 2 1 and I> Mi. From (23) we then obtain for 1 > Mi 
that 

Y,(k %%+1) 

= max{Yi(Z + RF[u,]; %), wn+1 - 1+ s,+(l)) 

= max{ [Ai + q;(Z + Ry[w,])l, 

urn+1 - 1 + I&’ + 71dl) 

= [max{&(u,) + q(Z + Rp[u,]), 

urn+1 - 1 + A; + qiZ}l 

= bi(wn+~) + d 

where 

Suppose that S;(.) = Sp’(.) where P; = {(a+, &)}f& 
is the parameter vector. We shall find that in this case, we can 
obtain a simpler algorithm for computing deadlines, which 
requires only O(Ki) storage space for state variables, and re- 
quires only O(Ki) comparison and memory access operations. 
Note that in this case, we have Spi (t) = minkzl,...,~~ Si,k(t), 
where Si,k(t) = max{O, Qi,k + /3i,kt}. Upon examination of 
(21), it is evident that if we separately calculate the deadlines 
assuming that Si(.) = Si,k(.) for each k, then the deadlines 
assuming that Si(.) = Spi (.) can be obtained by taking the 
maximum of the deadlines calculated separately for each k. 
Thus, let us temporarily assume that Si(.) = Si,h(‘). In this 
case, note that S$(Z) = [SF,, + qi,kZ] for 1 2 1, where 
6%, = -Clli,k//?i,k and qi,k = l/p;&. Repeating the same 
a&uments as in (24) and (23, it follows that Yi(Z; u,) = 
[ai,k(U,) + qi,kZl for all I> 0, where 

&(u,+l) = max{Ai(u,) + @?[u,], urn+1 - 1 + A!}. 

(25) and 

The values of Yi(l;u) for 1 = 1, 2, ... Mi can be stored 
in a table with Mi elements and recursively updated. This 
leads to the algorithm for calculating deadlines illustrated 
in Fig. 1. This algorithm requires O(Mi) storage space for 
“state” variables associated with session i, and requires 0( Mi) 
comparison and memory access operations in each slot where 
packets from session i arrive. With appropriate hardware 
support, the comparison and memory operations could be 
executed in parallel in 0( 1) time. Finally, we note that this 
algorithm is closely related to the “hybrid” FIR/IIR regulator 
introduced by Chang [3]. 

b,k(um+l) = max{&,k(h) + rli,k~in[%~l,~~+~ - 1 + SF,k), 
(27) 

Using (19) and then combining all the calculations for lc = 1, 

Bear in mind that the service curve S,(X) may take on 
an arbitrary (nondecreasing) shape for x = 1, 2, . . . , Mi. 
Thus, the size of Mi is dependent on the duration of time 
for which we want the service curve to take on an arbitrary 
shape, roughly speaking. As we shall see later, the capability 
of supporting service curves with an arbitrary shape may be 
important in a network of servers. 

. . . Ki, we obtain the algorithm in Fig. 2. 
\;J, note that the algorithm in Fig. 2 was independently 

proposed in [21], where it was called “multirate scheduling.” 
Finally, we note that the two proposed algorithms are used 
only for computing the deadline assignment for each packet. 
Another algorithm is needed to sort the deadlines of queued 
packets in order to determine the order of departure of these 
packets. Typically, such sorting algorithms require O(log M) 
operations in each slot, where M is the number of sessions 
sharing the server. 

D. Implementing Regulators with Deadlines 

Nevertheless, an important special case is where a service 
curve is “concave piecewise linear,” defined below. In this 
case, the deadline calculations can be simplified considerably, 
as we discuss next. 

Dejinition 111.2: (CPL Curves) Define P to be the vector 
{(ah, ,&)}fE1. Without any loss of generality, we assume 
PI >/32> ..* > ,0~ > 0. Furthermore, we assume that the 
following inequality is satisfied: 

We now discuss a close relationship between the deadline 
calculations for the SCED algorithm and a possible implemen- 
tation of regulators. From (12), assuming that the server does 
not reset, i.e., 7(t) = 0 for all t, we have that the number 
of packets that are assigned deadlines in the interval [l, t] is 
given by 

aK - QK-1 

PK--1 -OK 
(26) 

A Concave Piecewise Linear (CPL) curve with parameter P, 
denoted by Sp( .), is defined to be 

Note that SP(t) is defined not only for integers, but for all 
real t. We note that numbers CX;+~ - a;/Pi - /3i+1 are the 
values of t where the slope of Sp(t) changes. Without loss of 
generality, we can assume that SP(a2 - (Ye/& - ,&I) > 0. 

S;,&) = u1 - 1 + a;“& 

N;(t) = O~l~,{Ri”[l, S] + LSi(t - S)]}. (28) 

Comparing this with (8), and identifying departure times with 
deadlines, it is immediately evident that a @-regulator can 
be implemented by calculating deadlines as in the SCED 
algorithm for a stream with service curve Si(.) = @(.), 
and then using these deadlines as the departure times for the 
regulator. In other words, if a packet is assigned the “deadline” 
d, then it departs the regulator during slot d. 

A special case of particular interest is the case where bR(.) 
is a CPL curve. The next lemma shows that, in fact, [@(.)j 
is sub-additive in this case, as long as bR(0) 2 1. The reader 
is referred to [22] for a formal proof. 
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Lemma 111.2: (Sub-additive CPL Curves) Let Sp(.) be 
a CPL curve, defined on the nonnegative real line, with 
parameter vector P = {(ok,/?k)}f=,. If Sp(0) 2, 1, then 
LS’(.)] is sub-additive. 

Combining these observations, it follows that the algorithm 
of Fig. 2 can be used to implement a regulator with bR(z) = 
mink=l,...,K{a; + ,&x}, as long as QI; 2 1 for each i. We note 
that this is equivalent to K “leaky bucket” regulators in series, 
as discussed in [7]. We also note that this differs slightly from 
the regulators defined in [3], since there the output streams 
of regulators are allowed to contain fractional packets in each 
slot, whereas here we constrain an output stream so that the 
number of packets in each slot is an integer. Note also that 
the service curve [bR(.)j f o a regulator here is integer valued, 
whereas the service curves of regulators in [3] may take on 
real values. 

IV. COMPARISON WITH OTHER SCHEDULING ALGORITHMS 

In this section, we demonstrate that in certain cases, the 
SCED policy reduces to or is closely related to other well- 
known policies. We also demonstrate that the flexibility of 
SCED to allocate and guarantee arbitrarily specified service 
curves endows it with a greater capability to support end-to- 
end delay guarantees than other algorithms. 

A. Reduction to VirtualClock 

Consider the SCED algorithm whereby each service curve 
5’; is a “straight line,” i.e., S;(s) = p;z for all z > 0 and 
all i. Thus, the service curves are all of the CPL type and we 
may use Fig. 2 to calculate deadlines, where we set Ki = 1, 
S;,J = 0, and vi,1 = l/pi. If we assume that the server never 
resets, it is seen that in this case the SCED algorithm reduces to 
the discrete time equivalent of the “VirtualClock” scheduling 
discipline [27] (see also [lo], [24]). If the server resets at 
the end of each server busy period, we obtain a variation of 
VirtualClock whereby the “punishment” effect described in 
1201 is reduced, since the server effectively “forgets” about 
extra service a session may have received when a server busy 
period ends. 

We note that the service curves guaranteed by a general 
class of schedulers called the “Latency-Rate Servers” [23], 
which is a generalization of VirtualClock, PGPS, Weighted 
Round Robin, Deficit Round Robin, and other schedulers, are 
a special case of the service curves guaranteed by SCED in 
which the curves are affine. 

B. Reduction to EDF 

Next consider the case where3 Si = Sd; for all i, where di is 
a nonnegative integer constant for all i. In this case, SZyl (1) = 
d; + 1 for all 1> 0, and hence Fig. 1 can be used to calculate 
deadlines, with Mi = 0, A! = d; + 1, and ~i = 0, which 
yields the following reduction: A packet from stream i that 
arrives during slot u is assigned the deadline u + d;. Thus, in 
this case, the SCED algorithm reduces to the EDF algorithm. 

3 Recall the definition in (3). 

Assume that each session i is bi-smooth and that the 
server capacity function is C(X) = LC. In this case, we have 
(b; * Si)(zT) = bi(X - di) f or all LC, and hqce Theorem III.2 
implies that all deadlines will be met if Y’ :. 

.,“. 

5 bi(t - di) 5 t (29) 
> ’ i=l 

for t = 1, 2, . . Note that this is a discrete time equivalent of 
the admission control condition for the EDF algorithm found 
in [13], [19], 1251. 

Note also that (29) is a necessary condition to guarantee 
that no deadlines will be missed under the assumed traffic 
mode@ To see this, suppose that RF[l, t] = b;(t) for all 
t > 1. In this case, the total number of packets that must 
be served by time t is given by the left hand side of (29), so 
if this quantity is greater than t it is clear that a deadline will 
be missed. Thus, the EDF and SCED policies are “optimal” 
scheduling policies in the sense of having the largest possible 
schedulability region, defined by (29), in the case of a single 
server. 

Finally, we note that if no deadlines are missed for session 
i under the EDF policy’ then we have r:““(t) 2 ri”(t - di) 
= ($’ * Sd,)(t) and h ence session i is guaranteed the service 
curve si = S&. 

C. Relationship to RCS-EDF 

Another class of scheduling policies, called RCS [26], is 
obtained by passing packets from each session through a reg- 
ulator before allowing entry into the scheduler. If the scheduler 
implements the EDF policy, then we use the acronym RCS- 
EDF to denote the overall scheduling policy. In an RCS-EDF 
policy, each session is passed through a bi-regulator5 before 
entering the EDF scheduler, and the deadlines for the ith 
session are equal to the arrival times at the scheduler plus 
a constant d;. The service curve guaranteed to each session 
with this policy is obtained by convolving the service curve 
of the associated regulator with the service curve guaranteed 
by the EDF scheduler. Thus, under this policy, session i 
receives service curve &i(x) = (bi * S,,)(X) = bi(z - di), 
where we assume that bi is integer valued. Since bi is a 
sub-additive function, we say the service curve ,!?i(~) = 
bi(z - di) guaranteed by an RCS-EDF policy is a “shifted 
sub-additive” function. Note that an RCS-EDF policy is not 
work-conserving, in the sense that packets may be buffered in 
the system, in particular packets may be buffered in a regulator, 
while the server transmits fewer packets than it is capable of. 

It is interesting to compare this to the SCED policy whereby 
we set S,(X) = bi(z - di) for each i, and whereby the server 
never resets. Both policies guarantee the same service curve 
to each session. The difference is that the SCED policy is 
work conserving, in the sense that the server serves as many 
packets as possible in each slot. For example, in the RCS- 
EDF policy, consider a packet from session i that arrives at 
the regulator in slot u and departs the regulator in slot s. This 

4Here we also assume that the traffic envelopes h; are integer valued. 
51n this context, the arriving traffic for session i is not necessarily b;- 

smooth. 
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packet is assigned the deadline s + di in the EDF scheduler. In 
the SCED scheduler, the same packet would also be assigned 
the deadline s + di when it arrives at the scheduler in slot 
U. Thus, this packet is assigned the same deadline in both 
systems. The difference is that this packet will never leave the 
RCS-EDF system before slot s (because it does not enter the 
EDF scheduler until slot ,s), whereas in the SCED system it is 
possible that the packet may depart at any slot after slot U, in 
particular it may depart the SCED scheduler before slot s. 

A work-conserving version of the RCS-EDF policy was 
discussed in [14], wherein packets are allowed to leave a 
regulator if the server would otherwise serve fewer packets 
than its capacity. The SCED policy is similar to this policy, 
but different in the following sense. The work conserving 
RCS-EDF policy in [14] does not specify the exact order in 
which packets may leave the regulator when there is excess 

capacity, whereas in the SCED policy this “excess” bandwidth 
is distributed according to deadlines, and hence according to 
the allocated service curves. In this sense, a SCED policy 
which guarantees “shifted sub-additive” service curves can be 
considered as a special case of the work conserving RCS-EDF 
policy. 

Since the service curve guaranteed by an RCS-EDF policy 
is a shifted sub-additive function and the same service curve 
can also be guaranteed by the SCED policy, the SCED policy 
can guarantee the same delay bounds as that of the RCS-EDF 
policy. The main advantage of the SCED policy compared to 
the RCS-EDF policy is that the SCED policy can allocate more 
general service curves than the shifted sub-additive curves 
guaranteed by the RCS-EDF policy. In the next sub-section, 
we explore the benefits of SCED’s flexibility for allocating 
general service curves, which ultimately results in a SCED’s 
larger schedulability region than that of RCS-EDF in the 
network case. 

D. End-to-End Scheduling 

Next, we consider a more general problem, where a set of 
sessions shares a network of servers. Each session traverses a 
fixed path through a subset of servers in the network. Each 
session generates traffic that conforms to a known envelope. 
We are interested in the set of end-to-end delay bounds that 
can be obtained for each of the sessions, for various scheduling 
policies used at each of the servers. We formally define a 
schedulability region R, for a given scheduling policy r as 
the set of end-to-end delay bounds that can be obtained for 
each of the sessions. 

In particular, we formally define the schedulability region 
corresponding to the SCED policy, %&ED, as follows. Sup- 
pose there are n sessions, and they are indexed by the integers 
1, 2, “‘( n. It is given that the traffic offered to the network 
by session i conforms to the envelope b; . Suppose that session 
i travels through a total of Hi servers in the network, and that 
it is allocated the service curve SZ@ at the server at hop h 
along the path of servers it traverses, h = 1,2, . , Hi. The 
end-to-end service curve allocated to the session is thus SZp”” 
zz s; * q * . . * $5,) and the end-to-end delay bound 
for session i is ;I)(bil)S;et). Suppose there are a total of Q 

servers in the network, indexed by the integers 1, 2 . . . Q. 
Let p(i, h) be the index of the server traversed by session i 
at hop h. In accordance with Theorem 111.2, we require that 
the service curves 15’2) allocated at each server satisfy the 
feasibility condition 

c $(4 I cq2, for allx,q = 1,2,...,& 
(i,h):p(i,h)=q 

(30) 

where cq is the number of packets that server q can serve 
in each slot. The schedulability region %&ED is the set 
of delay bounds that can be realized by some allocation of 
service curves (S,b} at each server that satisfies the feasibility 
condition (30), i.e., 

RSCED ={(dl,"', d,): there exists {Sf} 

satisfying (30) and di 2 D(billSf”t)}. (31) 

Next, we consider the schedulability region corresponding 
to the RCS-EDF policy, Rn~s. Suppose that session i passes 
through a b:-regulator before entering the EDF scheduler at 
hop h, where the deadlines of packets are equal to their 
arrival times at scheduler plus the constant dl. Recall from 
our discusion of the RCS-EDF policy earlier that session i is 
guaranteed the shifted sub-additive service curve 3: = b: * Sd+ 

at server p(i, h), as long as no deadlines are missed. In turn, 
no deadlines are missed as long as the feasibility condition 

c bf(x - dt) 5 cqx, for all 2 (32) 
(i,h):p(i,h)=q 

is satisfied at each server q. The end-to-end service curve 
guaranteed to session i is glet = ,!?j- * $ * . * >%?%I and 
the end-to-end delay bound is ‘D( bi 11 Sqe”). The schedulability 
region for the RCS-EDF policy is therefore 

RRCS ={(dl,-.- , d,) : there exists {b” , dl } 

satisfying (32) and di 2 D(bi 1 Isret)}. (33) 

It is clear that since the SCED policy can allocate the same 
service curve gh = bh * S dh at server p(i, h) that the RCS- 
EDF policy can guaraniee at the same server, the schedulability 
region for SCED is at least as large as that for RCS-EDF, i.e., 

RRCS c RSCED- (34) 

In fact, we shall see that the scedulability region for SCED can 
be strictly larger than that for RCS-EDF. The reason for this is 
that the service curves 3: guaranteed at each hop by the RCS- 
EDF policy are shifted sub-additive, whereas the generality of 
the SCED policy allows allocation of service curves that are 
not necessarily shifted sub-additive. 

Next, we consider the use of the SCED policy at each 
server, but where the allocated service curves {St+} at each 
hop are constrained to be shifted sub-additive. We shall call 
this the SCED-S policy. From the discussion in the previous 
paragraph, it follows that the corresponding schedulability 
region for SCED-S is the same as that for RCS-EDF, i.e., 

RRCS = RSCED-S. (35) 



SARIOWAN et al.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEEING QoS 619 

Y 
l 

Fig. 3. Network configuration used to demonstrate that the SCED policy has 
a larger schedulability region than other policies. 

We remark that in a continuous time context, it is shown in 
[14] that the class of RCS-EDF policies outperforms policies 
based on Generalized Processor Sharing (GPS) [20], such as 
WFQ (91 and Packetized-GPS [20], with respect to the schedu- 
lability region. In the following example we will show that 
RSCED is strictly larger than Rn~s. It is not known, however, 
whether or not RSCED is the largest possible schedulability 
region. 

I) Flexibility of SCED: An Example: Consider a network 
of two servers, labeled 1 and 2, each with a constant trans- 
mission capacity of one packet per slot, i.e., each server has 
a capacity function C(X) = IF for all Z. The network is 
illustrated in Fig. 3. There are four “local” sessions arriving to 
the network. These sessions are labeled ai and pi, 1 5 i 5 2. 
Traffic from sessions ai and /Xi arrives to the network at server 
i, and departs from the network after departing server i. There 
is one “global” session, y, which arrives to the network at 
server 1. After the global session departs from server 1, it is 
fed to server 2 with zero propagation delay. After the global 
session departs from server 2, it leaves the network. Thus, 
each server supports two local sessions as well as the global 
session y. For this network, we shall show that K&ED is 
strictly larger than Rncs. 

In order to simplify the discussion, we shall consider the 
SCED-S policy instead of the RCS-EDF policy and show that 
K&ED is strictly larger than ~&ED-S. In view of (35), this 
shows that Y&ED is strictly larger than Rn~s. Also, in order 
to simplify the exposition of this example, throughout this sub- 
section we ignore the integer constraints from all variables and 
equations. A more detailed analysis of the example, taking into 
account the integer constraints, is outlined in the Appendix. 

Suppose the traffic arriving to the network from session 
cyi is &-smooth, where b,% is sub-additive. Each session o; 
requires a delay bound of daZ slots. Similarly, suppose the 
traffic arriving to the network from session p; is bp,-smooth, 
and requires a delay bound of dp- . 

Assuming that the SCED policy is used at the servers, the 
local sessions Q; and ,& can be allocated the shifted sub- 
additive service curves S,,(X) = &(z - dai) and Sp%(z) 
= bp,(z - dp;) at server i, respectively, for i = 1, 2. The 
‘&excess capacity curve” at each server i -is defined to be 

Ei(x) = x - b,* (x - daz) - bp,(z - dpi) (36) 

which will be nonnegative for all LG in our example. In 
accordance with Theorem 111.2, we shall allocate the global 
session y a service curve S; at server i, where S;(Z) < 
&F;(Z) for all IC. Defining S, = S; * SG, the delay bound 

for the global session under the SCED policy with general 
service curves is given by dy” = D(b, 1 IS,). Thus, under the 
SCED policy, by Theorem III.2, the local sessions a; and ,6; 
have delay upper bounded by dai and dp, , i = 1, 2, and the 
global session has an end-to-end delay upper bounded by d:. 
In other,words, we have (dCY1, d,, , dp,, dp,, dy) E RScED. 

We shall discuss a particular case where the delay bounds 
obtained above for all sessions under SCED with general 
service curves can not be achieved by any SCED-S policy. 
More specifically, consider any SCED-S policy that is able to 
guarantee the local sessions the same upper bounds on delay 
that the SCED policy is able to guarantee, namely d,? and 
dp,, i = 1, 2. Let dt be the end-to-end delay bound for the 
global session y under the SCED-S policy. We shall give 
an example where d: must be at least approximately 2dy. 
Thus, under any SCED-S (and hence any RCS-EDF) policy, 
the end-to-end delay for the global session is at least roughly 
twice what is achievable under the SCED policy, assuming 
that the delay requirements for the local sessions are met. This 
shows that (d,, , d,, , dp,, dp, , d:) $! RnCs if dy” is less than 
approximately 2dv, and in particular that 77,s~~~ is strictly 
larger than RnCs. 

We first compute d, , G the upper bound for the maximum 
end-to-end delay for the global session y. Let PH and ILL 
be positive constants satisfying VH > ,UL and PH + PL = 1. 
Suppose that 6,; is the sub-additive function 

h;(x) = lo@+ + (CLL - PH)(X - TX,)+ 

and r,% is a nonnegative constant, sometimes called the 
maximum burst length. 

If we set the delay bound for session a, to zero, we may 
assign session a; the service curve to S,-(X) = b,&(z). 
Furthermore, set 7u1 = 0 and ra2 = r, > 0. In this case 
we have 

’ $2, (x) = pJLX 
+ 

s!,(x) = Piwf + (PL - PH)(X - 4+. 

Similarly, suppose that 
+ 

b&(X) = (PH - II.L)X . 

The delay bound for session pi is dp, = rp, dp, = T, + rp, 
and rp is a positive constant. Thus we may assign to session 
,D; the service curve Spi (x) = bpi (Z - do,), i.e., 

SP, (xl = (PH - PL)b - v>+ 

sp, (x) = (pi7 - CL& - 701 - q?>+. - 

With these definitions, we have for i = 1, 2 

SA (x> = x - bzri (x) - b, (x - 4, > 

= Ei(x) 

where 

El(x) = pHx+ + (PL - pH)(x - T/3)+ 

E2(5) = ax+ f (PH - PL)(n: - cd+ + (JLL - CLH) 

(x - r, - rp)f 

as illustrated in Figs. 4 and 5. 
Note that El(z) has slope ,UH for 0 < x < rp and slope PL 

for z > rp. Also, Ed has slope PL for 0 < z < T,, slope 
fiH for r, < 5 < rol + ‘i-p, and again slope PL for zc > ‘ra + 
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Fig. 4. Illustration of the calculation of the excess capacity curve El at 
server 1. 

3 =a =CX.+=p 

Fig. 5. Illustration of the calculation of the excess capacity curve Ez at 
server 2. 

up. For a general SCED policy at each server, according to 
Theorem 111.2, each session will receive their corresponding 
service curves as long as S,,(x) + Sp, (x) + s;(x) 5 x for 
all IC. In view of (36), this will be satisfied if S;(z) 5 &(z). 
We will therefore set S%(z) = &(x). 

The end-to-end service curve for the global session y, say 
S,, is6 

S,(x) = (S{ * s;)(x) = (El * Ep)(x) = E2(x) 

= lw+ + (Ml - PL)(X - c-J+ + (I-LL - pn> 

. (x - rcu - rp)f* 

Next, we assume the arrival curve b, of the global session is 
given by 

b-,(x) = PHX+ + (PL - I-LH)(X - r-J+. gi(z - 4) 5 Ed, for all II: 2 1. 

y/ E2(x)=E1 *Ed 

Fig. 6. Illustration of delay calculations for global session y in network 
of Fig. 3. Under the SCED policy, the global session y is assigned the 
service curve El and Ez at servers 1 and 2, ignoring integer constraints. The 
end-to-end service curve for session 7~ under SCED is therefore approximately 
El * E2 = Ez, which leads to an end-to-end delay bound of approximately 
d,. Under any SCED-S policy, the delay at server 1 is at least D(b, 1 IE1) = 
d, . as is evident in the illustration. The dashed line with slope ph extending 
the curve EZ helps to illustrate why in the best case, the delay bound in the 
SCED-S scheduler at server 2 must be at least d, Hence, under any SCED-S 
policy, the delay of the global session is at least 2d,. 

cxi and ,/3i the delay bounds of d,; and dpi, respectively, and 
guarantee the global session y an upper bound on end-to-end 
delay of dv. We remark that the deadline calculations for the 
global session can be done using the algorithm in Fig. 1, but 
not using the algorithm in Fig. 2 since the service curve for 
the global session at server 2 is not a CPL curve. 

Next, we examine the delay bounds achievable by any 
SCED-S policy. We assume that at each server i, the global 
session y is guaranteed shifted sub-additive service curve 
gi + 6di, where gi is some sub-additive function and d; is some 
nonnegative integer. Under the SCED-S policy, the global 
session y receives the end-to-end service curve S,“(x) = 

(a*&,) * (a*b)(x) =g(z-dl-d2),whereg=gl*g2. 
The end-to-end delay bound for the global session y under the 
SCED-S policy is dz = D(b.,l IS:). 

In order for sessions CY; and /3; to be guaranteed the delay 
bounds of d,, and do,, it is necessary that they be allocated 
service curves no smaller than b,% (x - dmi ) and ba, (x - dot ) , 
respectively, for i = 1, 2. Thus, in order to satisfy the 
feasibility condition, the allocated service curves for the global 
session y at server i must satisfy 

(39) 

We set the burst length T? so that b, (x,) = S, (r, + ~0)) or 
equivalently 

Given any q such that 0 < 7 < 1 we shall show that if ~~ 
and rp are sufficiently large, then d; > (1 + q)dv. Thus, in 

“,=rp+r&. (37) 
this case, the smallest end-to-end delay for the global session y 

PH that is possible to achieve under any SCED-S (and hence any 

Referring to Fig. 6, this implies that the maximum end-to-end 
delay for the global session y is upper bounded by D(b,j IS,) 
= d$, where 

= r, (38) 

Thus, we have shown that by using the general SCED policy 
at each server, it is possible to guarantee the local sessions 

6Recall that here, we are ignoring integer constraints, so that the convolu- 
tions below are performed over the set of real numbers. 

RCS-EDF) policy must be roughly twice the end-to-end delay 
bound that could be guaranteed with a general SCED policy. 

The main idea is as follows. First, we may assume without 
loss of generality that gi = g, since we may replace each 
g; with the smaller envelope g = g1 * g2 and the end- 
to-end service curve 5’: remains the same. Assuming that 
g1 = g2 = g, then constraint (39) is given by g(z - di) 2 
E;(x). From Fig. 6, since the slope of the dashed line segment 
is PH, it is evident that if dz is set significantly smaller than 
d,, then the constraint g(x - d2) 5 Ed at n: = 7a implies 
that the slope of g must be strictly less than fi,Kj because of the 
sub-additivity of g, In turn, this would imply that D(b,llg) is 
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large, and hence the maximum delay for the global session at 
server 1 is large, since the initial slope of b, is equal to PH and 
we choose r, and 70 to be large. Thus if the maximum end- 
to-end delay is minimized, the maximum delay at the second 
server is at least on the order of d,. On the other hand, the 
maximum delay for the global session at server 1 is at leq d, 
= D(b,llE& Th us, the total end-to-end delay for the glblial 
session y under any SCED-S policy is at least on the order. 
of Zd,. 

We now argue this more carefully. We have 

dy” = Wb,I IS”) 

= W,l Id. - dl - dd) 

= zrxyl min{d: d 2 0 and b.,(x) 5 g(x - dl - dZ + d)} 

2 zrzi~ min{d: by(x) < g(z - dl - d2 + d)} 

= d2 i ,r~z min{d: by(x) 5 g(x - dl + d)} 
- 

= df + d2 (40) 

where we define 

ds = ,???I min{d: by(z) 5 g(x - dl + d)}. (41) 
- 

Fix any 17 such that 0 < q < 1. We now distinguish two 
cases. In the first case, suppose that dz > vd$. Note that 
since (39) holds we have 

df = mz~~min{d: by(x) 5 g(x - dl + d)} 

2 Mie min{d: by(x) 2 gl(x - dl + d)} 
- 

2 mz~xlmin{d: by(z) 5 El(z + d)} 

2 mii{d: AIL 5 EI(T~ + d)} 

= min d: pHTp+rap~ I pHTfi+pLTaE+pLd 
{ 1 

=4 > 

1-E 

PH 

=d$ 

Using (40), it therefore follows that in this case we have dy” 

2 df + d2 2 (1 + rl)d,G. 
Next we consider the other case, where dz < vd$. In this 

case, we will show that ds is large, in particular larger than 
(1 f q)dq. First, note that since g is a sub-additive function, 
then for ani n > 0 we have 

g(x) 5 &(4 + g(x - l;]A) 

< da> 
- a” + g(A). 

From (39), we have 

Ll(Ta - &I 5 n(Ta - dd I E2(7a). 

Setting A = rol - d2 in the above upper bound for g yields 

We thus have 

ds = Fzylmin{d: by(x) 5 g(z - dl + d)] 

2 zr~~ min{d: b-,(z) 5 g(z + k).] 
- ;ri;’ 

(42) 

Define 6 = 0.5((pH/pL) - l)(l - v), and note that 6 > 0. 
Defining Ic = (1 + 20/l + 19)) note that Ic > 1 and 

(43) 

Using ALTO 5 ~LICT~ in (42), and then substituting (43) we 

(44) 

Now fixing r,, we may make the right hand side of (44) 
arbitrarily large by making ~0 sufficiently large. In particular, 
by choosing 70 sufficiently large, we have d: 2 ds 2 

(1 + 0;. 
It follows that 7a and 7-p can be chosen such that dy” > 

(1 +v)dT in any case. Thus, choosing q near unity, any SCED- 
S policy yields a maximum delay for the global session which 
must be approximately twice that achievable using the SCED 
policy. In particular, this proves that the schedulability region 
in the network with a general SCED policy at each server is 
strictly greater than the schedulability region with a RCS-EDF 
policy at each server. 
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2) Comparison of Schedulability Regions: It is not known 
in general how much smaller the achievable end-to-end delays 
are for the SCED policy, as compared to the RCS-EDF policy. 
However, we now present a simple analysis that may provide 
an answer to this question. In particular, we show that if 

(dl,d2,... ,d,) E RSCED then (Hldl, H2d2, .“, H,d,) E 
RRCs, where we use the notation defined at the beginning of 
Section IV-D. For simplicity, assume that each server has a 
capacity function of C(X) = 2. Suppose we use the SCED 
policy to allocate the service curve 5’: to session i at the hth> 
server along its route through the network. The end-to-end 
service curve for session i under the SCED policy is then 
S,?--t = s,! * s,z * . . . * si H1. Thus, we have (dl, d2, ’ . ’ d,) 
E RSCED, where di = YD(~;IIS,~“~). 

In order to guarantee the allocated service curves at each 
server, we are assuming that we have 

c S?(x) 5 x (45) 
(i,h):p(i,h)=q 

for each server Q. Note that for all i and h we have 

S,“(x) 2 bi(X - di) (46) 

for otherwise we would have ,Syt (x) < S:(z) < bi (X - di) 
for some i, which would contradict the definition of d;. 

We now show the existence of a RCS-EDF policy which is 
able to guarantee session i the end-to-end delay bound Hidi. 
Specifically, the traffic from session 1: is passed through a g”- 
regulator before entering the EDF scheduler at the hth server 
along its path, where g:(x) = bi (x), and it is assigned the 
delay bound d: at this EDF scheduler, where dh = d;. For all 
servers q, we then have 

c g;(x - dz”) = c bi(x-4) 
(i,h):p(i,h)=q (i,h):p(i,h)=q 

(i,h):p(i,h)=q 

Lx 

where the inequalities follow from (45) and (46). Since this is 
the sufficient condition for schedulability of the delay vector 
{d{} under the RCS-EDF policy at each server, it follows that 
no deadlines will be missed at any EDF scheduler. The end- 
to-end service curve for session i under the RCS-EDF policy 
is scet(,) = bi(z - Hidi), and thus the RCS-EDF policy is 
capable of guaranteeing the delay bound Hidi for session i. 
In other words, we have (Hldl, Hzdz, . , H,d,) E RRCS. 

It may appear that this argument significantly underesti- 
mates the schedulability region of the RCS-EDF policies with 
respect to that of the SCED policies. On the other hand, 
the example of Section IV-D.1 shows that for a session that 
traverses two hops, the best end-to-end delay for RCS-EDF 
may be a factor of two larger than that achievable under the 
SCED policy. It is an open question whether or not there exists 
an example whereby a session that traverses H hops has a 
best-case end-to-end delay under the RCS-EDF policy that 

is H times larger than what is achievable under the SCED 
policy, for H > 2. 

V. DISCUSSION AND CONCLUSION 

We have presented SCED, a versatile scheduling policy 
which is a generalization of both the VirtualClock and the EDF 
algorithms. Like the EDF algorithm, the SCED policy has the 
optimal schedulability region for the case of a single server. 
The deadline assignments in SCED are more flexible than 
in EDF, which may be of some value for other performance 
measures besides maximum delay, such as average delay. We 
have seen that if the allocated service curves are parameterized 
by concave piece-wise linear functions, the SCED deadline 
assignment algorithm reduces to a simple generalization of 
the VirtualClock policy. 

As with the EDF policy,. it is necessary to check several 
inequalities in order to determine whether or not it is feasible 
for a single server to support a given set of sessions with 
pre-specified performance requirements. This is more complex 
than what is necessary for scheduling algorithms which are 
based on bandwidth-allocations. It may be possible to use 
techniques as introduced in [l l] to reduce the computational 
complexity of admission control. 

In the case of a network of servers, we have shown by 
example that the SCED policy has a greater capability than 
other known policies to support end-to-end delay bounds. The 
key to this capability is the ability of SCED to efficiently 
support service curves with arbitrary shapes. However, by 
allocating service curves with a general shape, the deadline 
assignments under SCED are more complex. It is not known 
whether or not using the SCED policy at each server yields 
an optimal schedulability region for a network of servers. 

It is worth noting that since we have defined schedulability 
regions in terms of easily obtained delay bounds, we have 
not shown that the actual worst-case end-to-end delay for 
the SCED policy can be strictly less than for other policies. 
We conjecture, however, that this is indeed the case. Such a 
“sample path” result is beyond the scope of this paper. 

The problem of synthesizing a rational approach to the 
allocation of service curves in the context of a network of 
servers is a wide open problem. The problem appears difficult, 
because there are many degrees of freedom in choosing a 
service curve, since it is a function. In particular there are 
many possible service curves that could be allocated for a 
session at each hop, that result in the same end-to-end service 
curve. It is not clear how the service curves should be allocated 
at each hop in order to maximize the number of sessions that 
can be supported by the network. 

These issues need to be investigated further, before the prac- 
tical utility of the SCED policy can be accurately evaluated. 
At the least, the framework of allocating service curves offers 
new insight to the synthesis of network scheduling algorithms. 

APPENDIX 

In this section, we outline how the argument in Section IV- 
D.l can be modified to take into account the integer con- 
straints. 
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First, we perform the substitution to the following quantities 
defined in Section IV-D. 1: 

d 
2 

0, +- 
PL 

Essentially the same arguments can be made, taking into 
account the modifications above and by setting r, and 70 
sufficiently large. The key idea is to use the inequality 11 + 
~1 2 z which holds for any real x, and to lower bound 
convolutions over integer sets by convolutions over sets of 
real numbers. In particular, the delay bound for the global 
session under the SCED policy becomes 

dy” = r, 

and we can show that if r, and rp are sufficiently large, 
then the maximum end-to-end delay d; for the global session 
under any SCED-S (and hence any RCS-EDF) policy is lower 
bounded as follows: 

where ECI = 2 + z(pH/p~). The terms ~/PA and EO/~L 
become negligible if we choose ra and TV to be sufficiently 
large, so that d; is at least approximately (1 + v)d$. 
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