
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 5, OCTOBER 1999 669

SCED: A Generalized Scheduling Policy
for Guarantee* Quality-of-Service

Hakjanto Stiowan, Member, IEEE, Rene L. Cmz, d&x- Member, IEEE, and George C. Polyzos, Member, IEEE

Abstract--In this paper, we introduce a new scheduling policy
which provides guaranteed service for a session based on a flexible
service specification called the Service Curve. This policy, referred
to as the Service Curve based Earliest Deadline first policy
(SCED), is a generalized policy to which well-known policies
such as VirtualClock and the Earliest Deadline First (EDF) can
be mapped as special cases, by appropriate specification of the
service curves. Rather than characterizing service by a single
number, such as minimum bandwidth or maximum delay, service
curves provide a wide spectrum of service characterization by
specifying the service using a function. The flexibility in service
specification allows a user, or the network, to specify a service
that best matches the quality-of-service required by the user,
preventing an over-allocation of network resources to the user.
For a single server, we show that the SCED policy is optima1 in
the sense of supporting the largest possible schedulability region,
given a set of delay-bound requirements and traffic burstiness
specifications. For the case of a network of servers, we show that
the SCED policy has a greater capability to support end-to-end
delay-bound requirements than other known scheduling policies.
The key to this capability is the ability of SCED to allocate and
guarantee service curves with arbitrary shapes.

Zndex Terms--Integrated services networks, multiplexing, net-
work calculus, quality-of-service guarantees, scheduling, service
curves, traffic envelopes.

I. INTRODUCTION

B ROADBAND packet-switched networks are expected to
support a large number of concurrent sessions which may

have significantly different traffic characteristics and quality-
of-service (QoS) requirements. It is desired that such networks
be able to deliver a diverse set of QoS guarantees while
achieving high bandwidth utilization. In order to meet such
objectives, the networks have to implement a scheduling
policy, determining which packets to serve at any given time
from the various sessions the network serves, as well as
an admission control policy, determining and enforcing the

Manuscript received July 21, 1997; revised August 12, 1998 and May
18, 1999; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor R.
GuCrin. This work was supported in part by the National Science Foundation
under Grant NCR 91-58618, Grant NCR 91-19473, Grant NCR 94-15684,
and Grant NCR 97-25568, and by the Center for Wireless Communications
at the University of California at San Diego.

H. Sariowan is with Tieman Communications, San Diego, CA 92111 USA
(e-mail: sariowan@ucsd.edu).

R. L. Cruz is with the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA 92093.0407 USA (e-mail:
rcruz@ucsd.edu).

G. C. Polyzos is with the Computer Systems Laboratory, Department of
Computer Science and Engineering, University of California, San Diego, La
Jolla, CA 92093-0114 USA (e-mail: polyzos@cs.ucsd.edu).

Publisher Item Identifier S 1063-6692(99)08526-X.

maximum set of simultaneous sessions that the network can
support.

In this paper, we propose a new scheduling policy which
provides guaranteed service for a session based on a flexible
service specification called the Service Curve 161, [7]. This
policy, referred to as the Service Curve based Earliest Deadline
first policy (SCED), is a generalized policy to which well-
known policies such as VirtualClock and the Earliest Deadline
First (EDF) can be mapped as special cases. SCED provides
the network with a flexible means for allocating network
resources to various sessions in order to meet their diverse
QoS requirements while maximizing network utilization.

Most real-time traffic users require the network to pro-
vide guarantees on the maximum delay that the traffic will
experience as it travels across the network. However, many
resource-allocation policies proposed for real-time traffic are
based on guaranteeing bandwidth to a specific user. Examples
of such policies are VirtualClock [27], Stop-and-Go Queueing
1151, Packetized Generalized Processor Sharing (PGPS-RPPS)
[20], and Weighted Fair Queueing (WFQ) [9]. These policies
guarantee that, within some predefined time intervals, the
amount of a user’s traffic which is transported by the network
is no less than a specified lower bound, which is equal to
the guaranteed bandwidth for the user times the length of the
interval. While guarantees on bandwidth imply guarantees on
delay for the user, provided that the user limits the traffic
it sends to the network, this approach can result in over-
allocation of network resources, especially if the traffic is very
bursty. Scheduling policies such as Rate Controlled Scheduling
(RCS) and EDF [26], [131, [143, [19] can overcome these
problems in the case of scheduling for a single server. As
we shall see, the SCED policy is a generalization of all of
these policies, and can in fact schedule sessions even more
efficiently in the case of a network of servers.

The SCED policy is based on Service Curves, which serve
as a general measure for characterizing service provided to a
user. Rather than characterizing service by a single number,
such as minimum bandwidth or maximum delay, service
curves provide a wide spectrum of service characterization
by specifying the service using a function. The flexibility in
service specification allows a user, or the network, to specify
a service that best matches the QoS required by the user,
preventing an over-allocation of network resources to the user.
For a single server, we show that the SCED policy is optimal
in the sense of supporting the largest possible schedulability
region, given a set of delay-bound requirements and traffic-
burstiness specifications. For the case of a network of servers,

1063-6692/99$10.00 0 1999 IEEE

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 5, OCTOBER 1999 669

SCED: A Generalized Scheduling Policy
for Guaranteeing Quality-of-Service

Hanrijanto Sariowan, Member, IEEE, Rene L. Cruz, Senior Member, IEEE, and George C. Polyzos, Member, IEEE

Abstract--In this paper, we introduce a new scheduling policy
which provides guaranteed service for a session based on a flexible
service specification called the Service Curve. This policy, referred
to as the Service Curve based Earliest Deadline first @icy
(SCED), is a generalized policy to which well-known policies
such as VirtualClock and the Earliest Deadline First (EDF) can
be mapped as special cases, by appropriate specification of the
service curves. Rather than characterizing service by a single
number, such as minimum bandwidth or maximum delay, service
curves provide a wide spectrum of service characterization by
specifying the service using a function. The flexibility in service
specification allows a user, or the network, to specify a service
that best matches the quality-of-service required by the user,
preventing an over-allocation of network resources to the user.
For a single server, we show that the SCED policy is optimal in
the sense of supporting the largest possible schedulability region,
given a set of delay-bound requirements and traffic burstiness
specifications. For the case of a network of servers, we show that
the SCED policy has a greater capability to support end-to-end
delay-bound requirements than other known scheduling policies.
The key to this capability is the ability of SCED to allocate and
guarantee service curves with arbitrary shapes.

Index Terms-Integrated services networks, multiplexing, net-
work calculus, quality-of-service guarantees, scheduling, service
curves, traffic envelopes.

I. INTRODUCTION

B ROADBAND packet-switched networks are expected to
support a large number of concurrent sessions which may

have significantly different traffic characteristics and quality-
of-service (QoS) requirements. It is desired that such networks
be able to deliver a diverse set of QoS guarantees while
achieving high bandwidth utilization. In order to meet such
objectives, the networks have to implement a scheduling
policy, determining which packets to serve at any given time
from the various sessions the network serves, as well as
an admission control policy, determining and enforcing the

Manuscript received July 21, 1997; revised August 12, 1998 and May
18, 1999; approved by KEEEIACM TRANSACTIONS ON NETWORKING Editor R.
Gu&in. This work was supported in part by the National Science Foundation
under Grant NCR 91-58618, Grant NCR 91-19473, Grant NCR 94-15684,
and Grant NCR 97-25568, and by the Center for Wireless Communications
at the University of California at San Diego.

H. Sariowan is with Tieman Communications, San Diego, CA 92111 USA
(e-mail: sariowan@ucsd.edu).

R. L. Cruz is with the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA 92093-0407 USA (e-mail:
rcruz@ucsd.edu).

G. C. Polyzos is with the Computer Systems Laboratory, Department of
Computer Science and Engineering, University of California, San Diego, La
Jolla, CA 92093-0114 USA (e-mail: polyzos@cs.ucsd.edu).

Publisher Item Identifier S 1063-6692(99)08526-X.

m&urn set of simultaneous sessions that the network can
support.

In this paper, we propose a new scheduling policy which
provides guaranteed service for a session based on a flexible
service specification called the Service Curve [6], [7]. This
policy, referred to as the Service Curve based Earliest Deadline
first policy (SCED), is a generalized policy to which well-
known policies such as VirtualClock and the Earliest Deadline
First (EDF) can be mapped as special cases. SCED provides
the network with a flexible means for allocating network
resources to various sessions in order to meet their diverse
QoS requirements while maximizing network utilization.

Most real-time traffic users require the network to pro-
vide guarantees on the maximum delay that the traffic will
experience as it travels across the network. However, many
resource-allocation policies proposed for real-time traffic are
based on guaranteeing bandwidth to a specific user. Examples
of such policies are VirtualClock [27], Stop-and-Go Queueing
[151, Packetized Generalized Processor Sharing (PGPS-RPPS)
[20], and Weighted Fair Queueing (WFQ) 191. These policies
guarantee that, within some predefined time intervals, the
amount of a user’s traffic which is transported by the network
is no less than a specified lower bound, which is equal to
the guaranteed bandwidth for the user times the length of the
interval. While guarantees on bandwidth imply guarantees on
delay for the user, provided that the user limits the traffic
it sends to the network, this approach can result in over-
allocation of network resources, especially if the traffic is very
bursty. Scheduling policies such as Rate Controlled Scheduling
(RCS) and EDF [26], [13], [14], [19] can overcome these
problems in the case of scheduling for a single server. As
we shall see, the SCED policy is a generalization of all of
these policies, and can in fact schedule sessions even more
efficiently in the case of a network of servers.

The SCED policy is based on Service Curves, which serve
as a general measure for characterizing service provided to a
user. Rather than characterizing service by a single number,
such as minimum bandwidth or maximum delay, service
curves provide a wide spectrum of service characterization
by specifying the service using a function. The flexibility in
service specification allows a user, or the network, to specify
a service that best matches the QoS required by the user,
preventing ti over-allocation of network resources to the user.
For a single server, we show that the SCED policy is optimal
in the sense of supporting the largest possible schedulability
region, given a set of delay-bound requirements and traffic-
burstiness specifications. For the case of a network of servers,

1063-6692/99$10.00 0 1999 IEEE

670 IEEEIACMTRANSACTIONS ON NETWORKING,VOL.I,NO. ~,OCTOBER 1999

we show that the SCED policy has a greater capability
to support end-to-end delay-bound requirements than other
known scheduling policies. The key to this capability is the
ability of SCED to allocate and guarantee service curves with
arbitrary shapes.

The remainder of the paper is organized as follows. In
Section II, we describe the concept of service curves and
present results which are needed for the following sections.
The SCED policy is defined and analyzed in Section III. In
Section IV, we compare the SCED policy to other scheduling
algorithms, and demonstrate the unique capabilities of SCED
through an example. Finally, in Section V we conclude with
a brief discussion.

II. SERVICE CURVES: A REVIEW

We would like to succinctly characterize the service the
session receives from the network element, so that bounds on
the backlog and delay can be obtained. We shall characterize
this service in terms of a service curve, defined in the next
sub-section.

A. Service Curves, Delay, and Buffering Requirements

Consider a network element which receives, possibly
buffers, and eventually serves (sends) packets from a session.’
Note that a network element can be a single server (switch),
or even a full subnet. We adopt a discrete time model in this
paper. We assume that time is divided into fixed intervals
called slots, numbered 0, 1, 2, . . . , and that packets have
fixed size. We shall assume that the transmission time of any
packet is exactly one slot, i.e. it takes exactly one slot for
a packet to enter or exit a network element. Without loss
of generality, we assume a “cut-through” model, whereby a
packet arriving to a network element during a slot may depart
the network element during the same slot. Let R’” [t], where t
is a nonnegative integer, denote the number of packets from
the session which arrive at the network element during slot
t. Similarly, Rout[t] denotes the number of packets from the
session which depart from the network element during slot t.
There may be several sessions which pass through a network
element, but in this section, we focus on a single session.
Also, in this paper we assume that only an integral number
of packets can arrive or depart from a network element in
any slot. Thus, R’“[t] and Rout [t] take on only nonnegative
integer values. For s 5 t, the “interval” [s, t] is defined
to be the set of slots s, s + 1, ... , t. Define R’“[s,t] to
be the number of packets from the session arriving at the
network element during the interval [s, t], i.e., Ri”[s, t] =
CL=, R’“[m]. If s > t, define R’“[s,t] = 0. Let r’“(t) =
R’“[l,t] = CA=, R’“[m]. Similarly, define RoUt[s,t] to be
the number of packets from the session leaving the network
element during the interval [s, t] , and rout(t) = Rout [l, t] .

Assuming that there is no packet stored in the network
element at the end of slot zero, the number of packets from
the session which are stored in the network element at the end
of slot t, called the backlog B[t] of the session at the end of

‘We shall use the terms “session,” “stream,” and “packet stream” inter-
changeably.

slot t, is given by

B[t] = r’“(t) - rout(t) 2 0. (1)

The virtual delay d[t] suffered by the session through the
network element, relative to time t, is defined to be

d[t] = min{A: A 2 0 and I’” 5 rout@ + A)}. (2)

If packets from the session depart the server in the same order
in which they arrive (first-in first-out), then the virtual delay
d[t] is an upper bound of the delay suffered by any packet
from the session that arrives in slot t.

We are now ready to define a service-curve guarantee.
Definition II.l- (Service Curve): Given a nonnegative

nondecreasing function S(+) , where S(0) = 0, we say that
the network element guarantees service curve S(.) for the
session if for any t, there exists s < t such that rout(t) -
e(s) 2 S(t - s).

We note that a service curve S only needs to be defined on
the nonnegative integers, even though we shall often define a
service curve S on the set of all real numbers. Furthermore,
in general, we shall allow a service curve to be real-valued.

The notion of a service curve has its roots in the work of
Parekh and Gallager [20], who introduced the concept of a
universal service curve in the context of a specific scheduling
algorithm. The service-curve definition above is slightly less
restrictive than the one proposed in [6], [7], which required
that the backlog of the session be equal to zero at the end
of slot s. Both the definition in this paper and in [6], [7]
are considerably less restrictive service definitions than that
of the universal service curve in 1201, and apply generally to
scheduling algorithms other than that considered in [20]. Less
general or more restrictive service definitions have also been
reported in [5], [16], [17], [23]. The service-curve definition in
this paper was reported earlier in [22], and also independently
proposed in [1] and [18].

Given two functions f and g defined on the nonnegative
integers, define the convolution of f and g, f t g, to be the
function defined on the nonnegative integers such that

(f * g)(t) = oy!~$u(s) + g(t - s)).

It is easy to verify that the convolution operator is commutative
and associative, i.e., f *g = g * f, and (f *g) * h = f * (g * h).

With this definition, it is clear that a network element
guarantees service curve S to a session if and only if2 rout
2 ?-in * s.

As an example, suppose a network element guarantees the
service curve 5’ = Sd, where

b(x) =
0, ifx<d

00, if x > d.

In this case, it foIlows that for all t we have ,Out(t) 2
(?-in * Sd)(t) = r’“(t - d), and hence the delay is bounded
above by d.

2Throughout this paper, all inequalities and equalities involving functions
are defined in a pointwise sense, e.g., j 5 CJ means that f(t) 5 g(t) for all

SARIOWAN et al.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEEING QoS 671

More generally, if a network element guarantees a session
a service curve, we may bound the delay and backlog if the
arrival stream of the session is “burstiness constrained” [4].
The burstiness constraint is succinctly summarized in terms of
a “traffic envelope,” which is defined next. A traffic envelope
is also sometimes called an “arrival curve.”

Dejinition II.2- (TrafJic Envelope): Given a nondecreasing
nonnegative function b(e), called a traffic envelope, we say that
the stream R’” is b-smooth, or conforms to the envelope b, if

R’“[s + 1:t] < b(t - s) (4)

for all s and t satisfying s < t. For convenience, unless stated
otherwise we define b(u) = 0 for all u 5 0. In the special
case where b is affine, i.e., b(t) = 0 + pt: t = 1, 2, . . . and
b(O) = 0, we say that R’” is (g,p)-smooth.

In terms of convolution, note that the stream R’” is b-smooth
if and only if @ 5 ?” *b. In fact, since we assume b(0) = 0,
we have rin * b 2 rin and so Rin is b-smooth if and only if
f in _ - $” * b.

Given two functions f and y defined on the nonnegative in-
tegers, we define the “maximum horizontal distance” between
f and g to be D(fi[g), where

D(fllg) = s%$Tminja: a > 0 and f(s) I g(s + a)}. (5)
-

General results for delay bounds, buffer. requirements, and
servide-curve composition were reported for the earlier
service-curve definition in [7]. It turns out that even with
the less restrictive service-curve definition considered in this
paper, the same results hold. These results are summarized
next. Proofs are omitted here, since it is easy to modify the
proofs presented in [7] to obtain the corresponding results
(see also [S] for short proofs).

Theorem II.]- (Upper Bound on Delay): Suppose a ses-
sion is guaranteed service curve S(e) by a network element and
the input traffic of the session is b-smooth. For every t, the vir-
tual delay d[t] suffered by the traffic of the session through the
network element is upper-bounded by the maximum horizontal
distance between b and S, D(bl IS).

Theorem II.2- (Upper Bound on Backlog): Suppose a ses-
sion is guaranteed service curve S(.) by a network element
and the input traffic of the session is b-smooth. For every t,

the backlog of the session in the network elemen B[t] is upper
bounded by the maximum vertical distance between 5’ and b,
i.e.,

(6)

Consider a session passing through a server that requires
an upper bound on delay of d’“““, whose input traffic is b-
smooth. It is clear that if the server guarantees the session
the service curve S(Z) = b(.x - dmax), then the maximum
delay requirement will be met. If the session requires both an
upper bound on delay of d”‘“” and that the backlog be bounded
by B’“““, then both requirements will be met if the session
is guaranteed the service curve .!?(x) = rnax{ b(z - dmax):
[b(x) - Bmax]f}, where we define :c+ = max{z,O}. The
SCED scheduling policy defined in this paper yields a means
for a server to allocate service curves to sessions so that their

requirements are met. For a session that traverses a network
through a path of servers, a service curve for the session
can be allocated at each server along the path, in order to
obtain an “end-to-end service-curve guarantee” through the
entire network. The end-to-end service curve is obtained by
tinvolving the service curves that are guaranteed at each
server along the path, as s&ted in the next theorem.

Theorem 1I.3- (End-to-End Service): Consider a session
sequentially traversing H network elements in tandem. Sup-
pose the session is guaranteed service curve Sh(.) by network
element h for h = 1, . . . , H. Then the entire tandem network
guarantees the session the service curve Snet where Snet =
sl*s**.*.*sH.

B. Regulators

Before proceeding to the definition and analysis of the
SCED policy in the Section III, in this sub-section, we review
network elements called “regulators,” also known as “traffic
shapers.” Regulators buffer arriving traffic as necessary so
that the output traffic stream is conformant to a traffic en-
velope. Without loss of generality, we may assume that traffic
envelopes are sub-additive functions:

Dejinition 11.3- (Sub-additive Function): A nondecreasing
function f(.) defined on the nonnegative integers is said to be
sub-additive if

f(x) + f(Y) L f(x + Y) (7)

for any nonnegative integers 2, y 2 0.
Note that f is a sub-additive function if and only if f * f >

f. In fact, we have f * g 5 f for any two functions f and g,
if g(0) = 0. Thus if f is a function such that f(0) = 0, then
f is sub-additive if and only if f * f = f.

The following definition and results for a regulator were
obtained independently and simultaneously by Agrawal and
Rajan [l], Chang [3], Le Boudec [18], and Sariowan [22],
with slightly different models. Here we restate the results from
[22]. We use the notation 1~1 to denote the greatest integer
less than or equal to Z.

Definition ZI.4- (Regulator): Suppose bR(.) is a function
such that LbR(.)] . 1s a sub-additive function. A bR-regulator is
defined to be a network element whose arrival and departure
processes rin and rout are related by the equation

r”““(t) = (?’ * LbR])(t) for all t 2 1. (8)

Theorem ZZ.4: (Regulator’s Output and Service) The output
of a bR-regulator is bR-smooth. Furthermore, the bR-regulator
guarantees the service curve [bR(.)] to the traffic stream that
passes through it..

As we shall see, the regulator is closely related to the SCED
scheduling algorithm, which is discussed in the next section.
We shall revisit the regulator later in the paper and discuss
this further.

III. SCHEDULING POLICY AND SCHEDULABILITY CONDITION

Consider a set of sessions which share a server, where
each session has a pre-specified service curve that needs to
be guaranteed by the server. In this section, we introduce a

672 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7. NO. 5, OCTOBER 1999

general scheduling algorithm called SCED which the server
can use so that each session is guaranteed its required ser-
vice curve. In the next sub-section, the SCED algorithm is
defined. In Section Ill-B, we present our key result, which
succinctly specifies a condition under which the required
service curves can be simultaneously guaranteed by the server.
Next, in Section III-C we explore possible algorithms for
computing the deadlines associated with the SCED algorithm.
In Section III-D we discuss the relationship between the SCED
deadline calculations and a possible implementation of the
traffic regulators discussed in Section II-B.

A. The SCED Algorithm

Consider n/r sessions sharing a server. Suppose session i,
i = 1, .‘.) M, requires service-curve guarantee [SZ (.) j . The
number of arrivals from session 1: during slot t, number of
departures from session i during slot t, and backlog for session
i at the end of slot t are denoted by RF [t], RfU” [t], and B; [t] ,
respectively.

We say that the server is empty at the end of slot t if all
sessions have zero backlog at the end of slot t, i.e., B;[t] = 0
for 1. = 1, . , M. If the server is empty at the end of slot t, the
server may elect to reset at that time. Basically, the purpose of
resetting the server is to provide a mechanism for the server
to “forget” any “extra” service a session might have received
prior to resetting, thereby avoiding the so-called “punishment
effect” discussed in [20]. The choice of whether or not to
reset the server when it is empty is a philosophical design
issue on which we do not take a position in this paper. If
the server wishes to “punish” users for using “extra” service,
it may choose to never reset when it is empty. On the other
hand, if the server wishes to encourage users to utilize “extra”
service, it may choose to always reset when it is empty. Our
model in fact allows the server to selectively reset or not reset
when the server is empty on a case-by-case basis, although
it is not clear that there is any advantage to such selective
resetting. For each slot t, define 7(t) to be the index of the
latest slot, no larger than t, at the end of which the server
resets. By convention the server resets at the end of slot 0,
and if -r(t) = 0 for all t 2 0, we say the server never resets.

Define Z,(t) as

Z,(t) = ~~~m<~{R:“[l: s] + S,(t - s)}. (9)
-

We say that L,&(t)] is the target process for stream i, since
if the departure process for the ith stream is above lZi(t)j ,
i.e., we have Rput[l, t] 2 lZi(t)j for all t, then stream i is
guaranteed the service curve LSi(.)] as desired. To see this,
note that if RPUt[l, t] > lZ;(t)j for all t, we then have

= Ri”[l, s*] + [$(t - s*)]

and thus, for any t, there exists s* 5 t such that RPUt[l, t] 2
RF [l, s*] + [Si(t - s*)j . In fact this may be slightly stronger
than the desired service-curve guarantee, since s* satisfies 7-(t)
5 s* 5 t.

Fix a session i. Each packet from session i is conceptually
assigned a unique cumulative arrival index, where the first
packet to arrive has index 1 and the indices are assigned in
order of packet arrivals. Note that we allow the possibility
of greater than one packet arrival from stream i in a single
slot. Suppose there is exactly one packet that arrives from
session i in slot u. In this case, the packet’s index ni is
given by n; = RF[l, u]. Note that if this packet is not served
by slot t and i&(t) > n,, then Rp”“[l,t] < ni < Z,(t), so
that the departure process would fall below the target process
for stream i. Therefore, we would like to assign packet ni
a deadline d where d is the first slot, such that &(d) 2 n;.

However, from (9), it is evident that in order to determine
Zi(d), we must, in general, have knowledge of the arrival
process for stream i up to slot d, which may not be known
at time U. Fortunately, RF[l, s] is greater than or equal to
7~i for s 2 u and Si(.) is nonnegative, and hence the terms
in the minimum in (9) corresponding to s > u do not affect
when Z,(.) first crosses above 1zi. In addition, for purposes
of estimating Z;(t) for t 2 ‘u we may make the assumption
that r(t) = ~(u - l), i.e. the server does not reset after time
IL - 1. Therefore, in order to calculate an appropriate deadline
for packet pi we will use Z;(t; ‘u - 1) as an estimate of Zi(t),
where

Zi(t;u - 1) = ~~,-:;‘l’,‘~u-llR:“P> 4 + Si(t - 311. (10)

This motivates the deadline assignments in the SCED pol-
icy, defined below.

Definition III.]- (SCED Policy): Given a set of M ses-
sions, where session i, i, = 1, . a . , M, requires service-curve
guarantee LS;(-)], the SCED policy schedules the departure of
packets by assigning a deadline to each incoming packet. In
each slot, service priority is given to packets with the earliest
deadline in the system. The deadlines are assigned as follows:
given a packet from session i which arrives in slot u and has
a cumulative arrival index ni, the deadline Di(n;) assigned
to the packet is given by

oi(ni) = min{t: t 2 ‘(I and Zi(t;u - 1) 2 n,}. (11)

Since a service curve is a nondecreasing function, it can be
seen that the sequence of deadlines assigned to packets from
a given session is nondecreasing, between consecutive reset
points of the server. In other words, suppose that two packets
from session 1; with indices nt and n; arrive during slots UI
and ~2, respectively. If r$ 2 nf then Di(nt) 5 Di(nf),
assuming that I = A.

The next theorem shows that if packets from a given session
are assigned deadlines according to the SCED policy and each
packet departs no later than its &signed deadline, then the
session is guaranteed its service curve. Then we derive a
schedulability condition which ensures that a packet always
meets its deadline.

Theorem III.]- (Service-Curve Guarantees of SCED):
Suppose session i is scheduled under the SCED policy
defined above. If each packet departs no later than its assigned
deadline, then the session is guaranteed service curve lS;(.)J

SARIOWAN et al.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEEING QoS 613

Lemma 1ZZ.Z: For any slot t, let N;(t) be the total number
of packets from stream i that arrive after slot I, and that
also have deadlines less than or equal to t. Then Ni(t) =
12; (t)] , where

.&i(t) = rkl&Ry[T(t) + 1, s] + S;(t - s)). “(12)
-

Proof: First we show that Ni(t) 5 L&(t)]. If iVi(t) = 0,
this is trivial. If Ni(t) > 0, then consider the last packet that
arrives after slot r(t), and that also has deadlines less than
or equal to t. This packet has cumulative arrival index nr =
R”[l,T(t)] + lx(t), and suppose it has deadline t*, t* 5 t,
and arrives during slot u*, I + 1 5 u* 5 t*. From (ll),
we have

Zi(t*;u* - 1) 2 nr. u3j

Since r(t) f 1 5 u* 5 t* 5 t, it follows that r(2~* - 1)
= r(t*) = I. Also, by the definition of cumulative arrival
indexnf,Ri”[l,s]~n~forzl* <s<t*.From(9)and(13),it
therefore follows that &(t*) = Z;(t*; t*) 2 nt. Using t* 5 t
and I = 7(t), it can be seen that Zi(t) 2 &(t*). Thus,
Z;(t) 2 n,T: Subtracting RF [l, r(t)] from both sides of this,
we obtain Z,(t) 2 Ni(t). S ince Ni(t) is integer valued, we
thus have [Z(t)] 2 Ti(t).

Next we show that Z,(t) < Ni(t) + 1, which implies the
reverse inequality, namely L&(t)] 5 Ni (t). First, consider the
case where Ri”[~(t) + 1, t] < N;(t) + 1. Since S;(O) = 0, we
have &((t) 5 Rf’[~(t) + 1, t] < Ni(t) + 1. Second, consider
the other case where Rf’[~(t) + I, t] 2 Ni (t) + 1, In this
case, the packet with index nT* = Ry[l,r(t)] + Ni(t) + 1
arrives at some time u** that satisfies I + 1 5 u** 5 t and
must have a deadline greater than t. We therefore must have
&(t;1~** - 1) < nt”. Since r(u** - 1) = r(t), we therefore
have Z,(t) 5 Zi(t;u** - 1). Thus Z,(t) < nT*. Subtracting
Rp[l,~(t)] from both sides of this, we obtain Z’;(t) < N;(t)
+ 1. n

Proof of Theorem III. I: By Lemma III, 1 and the assump-
tion that each packet departs no later than its deadline, we
have for any t

R;Ut[l;t] = R;“t[l,r(t)] + R;“+(t) + l,t]

= Ri”[l, 7(t)] + R;“+(t) + 1, t]

2 Ri”[l, 7(t)] + N,(t)

= Rf’[l, I] + l&(t)]

= lzi(t)]

which implies that the session is guaranteed service curve

lsi(‘)l. 0

8. Feasible Service-Curve Allocations

In the next theorem, we provide conditions which guaran-
tee that all packets from a set of sessions scheduled using
SCED never miss their deadlines, and thus, by Theorem 111.1,
guarantee the desired service curve for each session.

For generality, we shall assume that the server has a variable
capacity, meaning that the maximum number of packets that
can be served during a slot varies with time. We say that the

server is continuously backlogged in the interval [s + 1, t] if
CE, &[m] > 0 for all m satisfying s + 1 < m 5 t. We say
that a server has a capacity curve C(.) if within any interval
[s + 1, t] in which the server is continuously backlogged, the
amount of output traffic of the server is at least C(t - s). A
fixed-rate server, i.e., a server with a fixed capacity to serve c
packets in every slot (where c is a constant), is just a special
case of a server with a capacity curve C(z) = cx. Note that the
constraint associated with a capacity curve is a much stricter
service characterization than a service curve, and this stricter
characterization is consistent with ,me universal service-curve
definition of [20]. By considering a general variable capacity
server instead of a fixed-rate server, this extends the scope of
our analysis to include hierarchical scheduling architectures
[12], [Z]. For example, a fixed-rate server could allocate
capacity curves to classes of sessions. Each class corresponds
to a group of sessions, which are conceptually served by an
associated variable rate server with its associated capacity
curve C(.). The sessions belonging to a given class could
then be scheduled using the SCED policy.

Theorem IZl.2- (Feasible Allocation for the SCED Policy):
Consider a variable capacity server with capacity curve C(.)
that serves M sessions. The traffic arriving from session i is
assumed to be bi-smooth. Then the SCED policy guarantees
service curve [Si(.)] to session i for i = 1, . . . , 111 if the
following condition is satisfied:

M

C(bi * si>(t) 5 C(t)
i=l

(14)

for all positive integers t. With no assumptions on the arriving
traffic from each session, a simpler sufficient condition is

(15)

for all positive integers t.
The admission control policy says that a set of sessions

can be simultaneously served by a server with capacity curve
C(.) if the sum of their service curves, i.e., Ci S,(t), is below
the curve C(t). This condition has a very interesting analogy
to circuit-switching. Specifically, a set of circuits, each with
bandwidth c; : can be simultaneously served if the sum of their
bandwidth, i.e., & ci, is smaller than the total bandwidth c of
the link. Hence, the service curve Si(.) can be thought of as
a generalization of the fixed bandwidth ci. Rather than being
represented by a single number ci, the generalized bandwidth
is represented by a function S;(a).

Proof of Theorem 111.2: It suffices to show that if condi-
tion (14) is satisfied, then all packets depart no later than their
assigned deadlines, and hence by Theorem 111.1, each session
is guaranteed its service curve. To show this, we will show
that if a packet misses its deadline, then (14) does not hold.

Let p be the first packet that misses its deadline, and let t,
be the deadline of this packet. Thus, the packet is not served
in the interval [l, tm]. Let r* 2 I be the last slot no later
than t, that the total backlog in the server was zero, i.e., T*
= max{s: s 5 t, and Cg, Bi[s] = 0). Let t, be the last slot
in [r* + 1, tm] in which a packet with a deadline greater than

614

t, is served. If there is no such slot, define t, = T*. Thus,
all packets served in the interval [ts + 1, tm] have deadlines
no greater than t,. Furthermore, since the total backlog in
the system was positive during this interval, it follows that the
total number of packets served by the server in this interval
is at least C(t, - ts). Note that since a deadline is missed in
slot t,, and priority is given to packets with earlier deadlines,
it follows that t, < t,.

Define T[t,+l, tm] to be the number of packets which arrive
and are assigned deadlines in the interval [7-(tm) + 1, &I, but
do not depart in [7(tm) + 1, ts]. Each such packet “has to”
depart in the interval [ts + 1, tm]. We will first show that
T[t, + 1, tm] is strictly greater than C(t, - ts).

Since p is counted in T[t, + 1, t,], as well as each packet
served in the interval [ts + 1, &I, we have

M

qt, + 1) tm] 2 1 + c RFUt [& + 1, &I
z=l

L 1 + q&L - ts)

> C(t, - ts). (16)

We now proceed to upper bound T[t, -I- 1, &I. Define A to
be the set of all sessions which have zero backlog at the end
of slot t, and have no packets with deadlines greater than t,
departing in [7(t,) + 1, is]. Define B to be the complement
of A.

Claim: Only packets from sessions in A, and none in t3,
are counted in T[t, + 1, tm].

Proof of Claim: The claim is equivalent to saying that
none of the packets from sessions in D are counted in
T[t, + 1, tm]. Suppose a session j belongs to B. Either some
packet from session j with deadline greater than t, is served in
the interval [I + 1, t,], or Bj[t,] > 0. Suppose the former
case is true. Note that packets from a given session are served
in order of their deadlines. Thus, all packets from session
j which arrived and are assigned deadlines in the interval
[I + 1, tm] must be served in the interval [7(t,) + 1, t3].
Thus, no packets from session j are counted in T[t, + 1, tm].
If the latter case is true, then by definition of t, some packet,

say P*, with a deadline greater than t, is served in slot t,.
Note that session j has at least one packet queued in the server
during slot t,. All packets from session j that are queued in
the server during slot t, must have a deadline greater than
t TTL> for otherwise packet p* would not have been served,
since the server gives priority to packets with earlier deadlines.
Again, since packets from a given session are served in order
of their deadlines, it follows that all packets from session
j which arrived and are assigned deadlines in the interval
[T(tm) + 1, tm] must be served in the interval [T(&) + 1, ts].
Thus, in the latter case, no packet from session j is counted
in T[t, + l&l. 0

By definition of A, any packet from a session in A that

It follows that

Combining inequalities (16) and (18), we obtain

which implies that (14) does not hold. Condition (15) easily
follows from (14) by substituting b; = 60. 0

C. Algorithms for Calculating Deadlines

In this sub-section we shall use (11) to develop the algo-
rithms depicted in Figs. 1 and 2 for calculating deadlines under
the SCED policy.

The deadline of a packet ni = RF [l, u - 11 + I from stream
i which arrives during slot IL is given by

departs during the interval [T(tm) + 1, ts] must have a deadline
that is no greater than t,,,. Thus, the number of packets from
a session i belonging to A that are counted in T[t, + 1, tm] is
equal to the total number of packets from session i that arrive
and are assigned deadlines in the interval [I + l,tm],
namely A$(&), minus the total number of packets from

D;(n;) = min{t: t 2 u and Z;(t; u - 1) 2 n;}

= max{u, Y,(~;u)}, (19)

where Yi(l;u) = min{t: Zi(t;u. - 1) 2 Ry[l,u - l] + I}.
Define

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. I, NO. 5, OCTOBER 1999

session i that are served in the interval [T(tm) + 1, tS] . Thus, by
the claim and the last statement, T[t, + 1, L,] is upper-bounded

by

qt, + 1, tm] I C{iv,(L, - R;‘y+J + 1, ts]}. (17)
1’EA

From Lemma 111.1, we have

N(L) = l~‘i(tm)J
= min

T(L)~SlL
{RF[7(t,) + 1, s] + LSi(t, - s)]}

and hence, we have for i E A

N,(L) - Ry[-r(t,) + 1, t3]

I min
T(L)<SlL

{R:[T(&) + 1, s] + S;(t, - s)}

- lqut[7(tm) + 1,ts]

= ruin
SISAL

{f@[7(tm) + 1, s] + &(t, - s)}

- RjyT(tm) + 1, ts]

I t <msi<nt {Ry[t, + 1, s] + S;(t, - s)}

5 ?‘$jtm{Oi(s - ts) + S;(t, - s)}
s- - nt

= (bi * S;)(t, - ts>.

qs + 1, tm] 5 C(h” * Si)(LL - t,)
iEA

(18)
i=l

F(bi * S;)(t,, - ts> > qt, - ts)
i=l

S-‘(nj = minim: m > 1 and S;(m)) n). (20)

SARIOWAN er al.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEElNG QoS 675

If the server is empty at the end of current slot
and the server resets then

RESETXLAG(e 1
end if

In each slot u where packets arrive from stream i:
If RESETJLAGi = 1 then

RESET-FLAGi e 0
A+u-GAY
For 1= 1 to Mj

Table&) t u - 1 + ,.$7’(I)
end for

else
Ai t max{Ai, u- 1 + A?}
For 1= 1 to Mi
e,‘dh’;;(Z) t max{TabZei(1), u - 1+ SZ:‘(l)}

end if
For each of the Rfn[u] packets that have arrived,
assign the deadlines as follows:

For 1 = 1 to RF[u]
If I < Mi then

Aszgn the deadline max(u, Tablei(
to packet T:” (u - 1) + 1.

else
Assign the deadline ma.x{u, [Ai + q&j}
to packet T:~(u - 1) + 1.

end if
end for

Update Tablei and Ai as follows:
For 1= 1 to Mi

If 1+ Ry[u] 5 Mi then
e12$Zei(Z) t Table& + Rf”[u])

eT;;F(l) + [Ai + rli(l + Ri"[u]>l
end for

Fig. 1. Algorithm for computing the deadlines assigned to packets from
session i, in the case where the inverse of the service curve, S,’ (.), is
parameterized by S;‘(1) = [At) +q;ll for 1 > M;. In this algorithm, at
the end of a slot u where packets from stream i arrive, TubEe,(l) holds the
value of I:(1 + RF [IL]; u) for 1 = 1, 2, . , 174~. and a; holds the value
of n;(u) + 7; R:” [u], relative to the definitions in the text, implementing
(23) and (25).

We now show that Yi(Z; U) can be computed recursively. For
1 2 1, we have

Yi(l; U) = min{t: Z;(t; u - 1) 2 Rp[l, u - l] + 1)
= min{t: ,(,~~p<,,-lw?[li 4 + Si(i - 311 -

(21)

Suppose that the server resets at the end of slot 70, i.e. T(Q) =
ro. Furthermore, suppose that after slot TO there are no arrivals

If the server is empty at the end of current, slot
and the server resets then

RESET-FLAG$ t 1
end if

In each slot zd where packets arrive from stream i:
If RESETJ’LAGi = 1 then

RESET-FLAG; t 0
6j,k t U - 1 + 6th for k = l,, . . Kj

else
6j,k t ITl&X{bj,k,U - 1 + 6i,k} for k = 1,. . . Ki

end if
For each of the Rfn[u] packets that have arrived,
assign the deadlines as follows:

For 1 = 1 to Rf”[u]
6j,k t d&k i- 7)i,k for k = 1,. . . Ki
Assign the geadline max{u, rnaxf& rfij,k]}

to packet T:“(u - 1) + 2.
end for

Fig. 2. Algorithm for computing the deadlines assigned to packets from
session i, in ,tie case where the service curve is a CPL curve S;(s) =
max{O, rninLAI {a;,,, + pi,hz}}. As in the text, bp,k = -CYi,k/Pi,k and
q;,k = l/fli,k. In this algorithm, at the end of a stot U, where packets from

. stream 1 arrtve, 6Z,k holds the value of 6i,k(u) + v;,k@[v], implementing
(27).

from stream i until slot ul, i.e., Rf”[To + 1,Ul - 11 = 0 <
Ri”[ul]. Then, it follows from (21) that

Y;z(l;u1) = Ul - 1 + sz:l(z). (22)

Proceeding iteratively, suppose there are no arrivals from
stream i after slot u, until slot ~,+l, i.e., Ry [urn + 1, u,+~ -
I] = 0 < Rj”[u,], and the server does not reset in the interval
hl, urn+1 - 11, i.e., ~(74, - 1) = ~(u,+I - 1). In this case,
using (21), we have

Y;(k %+1)
= max{Yi(Z + R~[u,,u,+I - 11; urn),

,,,~s~~x+,~l{s + q-v + Ri”b + l,%LSl - 11)) -m
= max{Yi(l + R”[u,]; urn), %x+1 - 1 + sp(l)}.

(23)

Therefore, in order to implement the calculation of deadlines
for stream i, we may recursively calculate Yi(.; u), using (22)
and (23), in every slot u where packets from stream i arrive,
and then use (19). In general, this may be a difficult task
unless Yi(.; U) can be parameterized.

One case where this is possible is the case where S,:‘(l)
= [A; + qZ1 f or all I> Mi, for some integer Mi and
constants A! and Q. In this case we claim that Y;(1; u,+~)
= [&(um+l) + qill for I > Mi, where &(u,,+l) can be
recursively computed in terms of &(um) for m 2 1. To see
this, proceed by induction. For m = 1 and 1> Mi we have
from (22) that

Y,(Z; Ul) =u1 - 1 + S,-1(E) = Ul - 1 + pq + QZl

= [(Ul - 1 + A:) + qiz1 = yni(u,) + Tjiq

616 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 5, OCTOBER 1999

where

A,(ul) = u1 - 1 + A;. (24)

Assume inductively that Yi (I; urn) = [Ai (urn) + qill for
some m 2 1 and I> Mi. From (23) we then obtain for 1 > Mi
that

Y,(k %%+1)

= max{Yi(Z + RF[u,]; %), wn+1 - 1+ s,+(l))

= max{ [Ai + q;(Z + Ry[w,])l,

urn+1 - 1 + I&’ + 71dl)

= [max{&(u,) + q(Z + Rp[u,]),

urn+1 - 1 + A; + qiZ}l

= bi(wn+~) + d

where

Suppose that S;(.) = Sp’(.) where P; = {(a+, &)}f&
is the parameter vector. We shall find that in this case, we can
obtain a simpler algorithm for computing deadlines, which
requires only O(Ki) storage space for state variables, and re-
quires only O(Ki) comparison and memory access operations.
Note that in this case, we have Spi (t) = minkzl,...,~~ Si,k(t),
where Si,k(t) = max{O, Qi,k + /3i,kt}. Upon examination of
(21), it is evident that if we separately calculate the deadlines
assuming that Si(.) = Si,k(.) for each k, then the deadlines
assuming that Si(.) = Spi (.) can be obtained by taking the
maximum of the deadlines calculated separately for each k.
Thus, let us temporarily assume that Si(.) = Si,h(‘). In this
case, note that S$(Z) = [SF,, + qi,kZ] for 1 2 1, where
6%, = -Clli,k//?i,k and qi,k = l/p;&. Repeating the same
a&uments as in (24) and (23, it follows that Yi(Z; u,) =
[ai,k(U,) + qi,kZl for all I> 0, where

&(u,+l) = max{Ai(u,) + @?[u,], urn+1 - 1 + A!}.

(25) and

The values of Yi(l;u) for 1 = 1, 2, ... Mi can be stored
in a table with Mi elements and recursively updated. This
leads to the algorithm for calculating deadlines illustrated
in Fig. 1. This algorithm requires O(Mi) storage space for
“state” variables associated with session i, and requires 0(Mi)
comparison and memory access operations in each slot where
packets from session i arrive. With appropriate hardware
support, the comparison and memory operations could be
executed in parallel in 0(1) time. Finally, we note that this
algorithm is closely related to the “hybrid” FIR/IIR regulator
introduced by Chang [3].

b,k(um+l) = max{&,k(h) + rli,k~in[%~l,~~+~ - 1 + SF,k),
(27)

Using (19) and then combining all the calculations for lc = 1,

Bear in mind that the service curve S,(X) may take on
an arbitrary (nondecreasing) shape for x = 1, 2, . . . , Mi.
Thus, the size of Mi is dependent on the duration of time
for which we want the service curve to take on an arbitrary
shape, roughly speaking. As we shall see later, the capability
of supporting service curves with an arbitrary shape may be
important in a network of servers.

. . . Ki, we obtain the algorithm in Fig. 2.
\;J, note that the algorithm in Fig. 2 was independently

proposed in [21], where it was called “multirate scheduling.”
Finally, we note that the two proposed algorithms are used
only for computing the deadline assignment for each packet.
Another algorithm is needed to sort the deadlines of queued
packets in order to determine the order of departure of these
packets. Typically, such sorting algorithms require O(log M)
operations in each slot, where M is the number of sessions
sharing the server.

D. Implementing Regulators with Deadlines

Nevertheless, an important special case is where a service
curve is “concave piecewise linear,” defined below. In this
case, the deadline calculations can be simplified considerably,
as we discuss next.

Dejinition 111.2: (CPL Curves) Define P to be the vector
{(ah, ,&)}fE1. Without any loss of generality, we assume
PI >/32> ..* > ,0~ > 0. Furthermore, we assume that the
following inequality is satisfied:

We now discuss a close relationship between the deadline
calculations for the SCED algorithm and a possible implemen-
tation of regulators. From (12), assuming that the server does
not reset, i.e., 7(t) = 0 for all t, we have that the number
of packets that are assigned deadlines in the interval [l, t] is
given by

aK - QK-1

PK--1 -OK
(26)

A Concave Piecewise Linear (CPL) curve with parameter P,
denoted by Sp(.), is defined to be

Note that SP(t) is defined not only for integers, but for all
real t. We note that numbers CX;+~ - a;/Pi - /3i+1 are the
values of t where the slope of Sp(t) changes. Without loss of
generality, we can assume that SP(a2 - (Ye/& - ,&I) > 0.

S;,&) = u1 - 1 + a;“&

N;(t) = O~l~,{Ri”[l, S] + LSi(t - S)]}. (28)

Comparing this with (8), and identifying departure times with
deadlines, it is immediately evident that a @-regulator can
be implemented by calculating deadlines as in the SCED
algorithm for a stream with service curve Si(.) = @(.),
and then using these deadlines as the departure times for the
regulator. In other words, if a packet is assigned the “deadline”
d, then it departs the regulator during slot d.

A special case of particular interest is the case where bR(.)
is a CPL curve. The next lemma shows that, in fact, [@(.)j
is sub-additive in this case, as long as bR(0) 2 1. The reader
is referred to [22] for a formal proof.

SARIOWAN eta!.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEEING QoS 617

Lemma 111.2: (Sub-additive CPL Curves) Let Sp(.) be
a CPL curve, defined on the nonnegative real line, with
parameter vector P = {(ok,/?k)}f=,. If Sp(0) 2, 1, then
LS’(.)] is sub-additive.

Combining these observations, it follows that the algorithm
of Fig. 2 can be used to implement a regulator with bR(z) =
mink=l,...,K{a; + ,&x}, as long as QI; 2 1 for each i. We note
that this is equivalent to K “leaky bucket” regulators in series,
as discussed in [7]. We also note that this differs slightly from
the regulators defined in [3], since there the output streams
of regulators are allowed to contain fractional packets in each
slot, whereas here we constrain an output stream so that the
number of packets in each slot is an integer. Note also that
the service curve [bR(.)j f o a regulator here is integer valued,
whereas the service curves of regulators in [3] may take on
real values.

IV. COMPARISON WITH OTHER SCHEDULING ALGORITHMS

In this section, we demonstrate that in certain cases, the
SCED policy reduces to or is closely related to other well-
known policies. We also demonstrate that the flexibility of
SCED to allocate and guarantee arbitrarily specified service
curves endows it with a greater capability to support end-to-
end delay guarantees than other algorithms.

A. Reduction to VirtualClock

Consider the SCED algorithm whereby each service curve
5’; is a “straight line,” i.e., S;(s) = p;z for all z > 0 and
all i. Thus, the service curves are all of the CPL type and we
may use Fig. 2 to calculate deadlines, where we set Ki = 1,
S;,J = 0, and vi,1 = l/pi. If we assume that the server never
resets, it is seen that in this case the SCED algorithm reduces to
the discrete time equivalent of the “VirtualClock” scheduling
discipline [27] (see also [lo], [24]). If the server resets at
the end of each server busy period, we obtain a variation of
VirtualClock whereby the “punishment” effect described in
1201 is reduced, since the server effectively “forgets” about
extra service a session may have received when a server busy
period ends.

We note that the service curves guaranteed by a general
class of schedulers called the “Latency-Rate Servers” [23],
which is a generalization of VirtualClock, PGPS, Weighted
Round Robin, Deficit Round Robin, and other schedulers, are
a special case of the service curves guaranteed by SCED in
which the curves are affine.

B. Reduction to EDF

Next consider the case where3 Si = Sd; for all i, where di is
a nonnegative integer constant for all i. In this case, SZyl (1) =
d; + 1 for all 1> 0, and hence Fig. 1 can be used to calculate
deadlines, with Mi = 0, A! = d; + 1, and ~i = 0, which
yields the following reduction: A packet from stream i that
arrives during slot u is assigned the deadline u + d;. Thus, in
this case, the SCED algorithm reduces to the EDF algorithm.

3 Recall the definition in (3).

Assume that each session i is bi-smooth and that the
server capacity function is C(X) = LC. In this case, we have
(b; * Si)(zT) = bi(X - di) f or all LC, and hqce Theorem III.2
implies that all deadlines will be met if Y’ :.

.,“.

5 bi(t - di) 5 t (29)
> ’ i=l

for t = 1, 2, . . Note that this is a discrete time equivalent of
the admission control condition for the EDF algorithm found
in [13], [19], 1251.

Note also that (29) is a necessary condition to guarantee
that no deadlines will be missed under the assumed traffic
mode@ To see this, suppose that RF[l, t] = b;(t) for all
t > 1. In this case, the total number of packets that must
be served by time t is given by the left hand side of (29), so
if this quantity is greater than t it is clear that a deadline will
be missed. Thus, the EDF and SCED policies are “optimal”
scheduling policies in the sense of having the largest possible
schedulability region, defined by (29), in the case of a single
server.

Finally, we note that if no deadlines are missed for session
i under the EDF policy’ then we have r:““(t) 2 ri”(t - di)
= ($’ * Sd,)(t) and h ence session i is guaranteed the service
curve si = S&.

C. Relationship to RCS-EDF

Another class of scheduling policies, called RCS [26], is
obtained by passing packets from each session through a reg-
ulator before allowing entry into the scheduler. If the scheduler
implements the EDF policy, then we use the acronym RCS-
EDF to denote the overall scheduling policy. In an RCS-EDF
policy, each session is passed through a bi-regulator5 before
entering the EDF scheduler, and the deadlines for the ith
session are equal to the arrival times at the scheduler plus
a constant d;. The service curve guaranteed to each session
with this policy is obtained by convolving the service curve
of the associated regulator with the service curve guaranteed
by the EDF scheduler. Thus, under this policy, session i
receives service curve &i(x) = (bi * S,,)(X) = bi(z - di),
where we assume that bi is integer valued. Since bi is a
sub-additive function, we say the service curve ,!?i(~) =
bi(z - di) guaranteed by an RCS-EDF policy is a “shifted
sub-additive” function. Note that an RCS-EDF policy is not
work-conserving, in the sense that packets may be buffered in
the system, in particular packets may be buffered in a regulator,
while the server transmits fewer packets than it is capable of.

It is interesting to compare this to the SCED policy whereby
we set S,(X) = bi(z - di) for each i, and whereby the server
never resets. Both policies guarantee the same service curve
to each session. The difference is that the SCED policy is
work conserving, in the sense that the server serves as many
packets as possible in each slot. For example, in the RCS-
EDF policy, consider a packet from session i that arrives at
the regulator in slot u and departs the regulator in slot s. This

4Here we also assume that the traffic envelopes h; are integer valued.
51n this context, the arriving traffic for session i is not necessarily b;-

smooth.

678 IEEE/ACM TRANSACTIONS ONNETW~RKINC~,~OL.~,N~.~,OCTOBER 1999

packet is assigned the deadline s + di in the EDF scheduler. In
the SCED scheduler, the same packet would also be assigned
the deadline s + di when it arrives at the scheduler in slot
U. Thus, this packet is assigned the same deadline in both
systems. The difference is that this packet will never leave the
RCS-EDF system before slot s (because it does not enter the
EDF scheduler until slot ,s), whereas in the SCED system it is
possible that the packet may depart at any slot after slot U, in
particular it may depart the SCED scheduler before slot s.

A work-conserving version of the RCS-EDF policy was
discussed in [14], wherein packets are allowed to leave a
regulator if the server would otherwise serve fewer packets
than its capacity. The SCED policy is similar to this policy,
but different in the following sense. The work conserving
RCS-EDF policy in [14] does not specify the exact order in
which packets may leave the regulator when there is excess

capacity, whereas in the SCED policy this “excess” bandwidth
is distributed according to deadlines, and hence according to
the allocated service curves. In this sense, a SCED policy
which guarantees “shifted sub-additive” service curves can be
considered as a special case of the work conserving RCS-EDF
policy.

Since the service curve guaranteed by an RCS-EDF policy
is a shifted sub-additive function and the same service curve
can also be guaranteed by the SCED policy, the SCED policy
can guarantee the same delay bounds as that of the RCS-EDF
policy. The main advantage of the SCED policy compared to
the RCS-EDF policy is that the SCED policy can allocate more
general service curves than the shifted sub-additive curves
guaranteed by the RCS-EDF policy. In the next sub-section,
we explore the benefits of SCED’s flexibility for allocating
general service curves, which ultimately results in a SCED’s
larger schedulability region than that of RCS-EDF in the
network case.

D. End-to-End Scheduling

Next, we consider a more general problem, where a set of
sessions shares a network of servers. Each session traverses a
fixed path through a subset of servers in the network. Each
session generates traffic that conforms to a known envelope.
We are interested in the set of end-to-end delay bounds that
can be obtained for each of the sessions, for various scheduling
policies used at each of the servers. We formally define a
schedulability region R, for a given scheduling policy r as
the set of end-to-end delay bounds that can be obtained for
each of the sessions.

In particular, we formally define the schedulability region
corresponding to the SCED policy, %&ED, as follows. Sup-
pose there are n sessions, and they are indexed by the integers
1, 2, “‘(n. It is given that the traffic offered to the network
by session i conforms to the envelope b; . Suppose that session
i travels through a total of Hi servers in the network, and that
it is allocated the service curve SZ@ at the server at hop h
along the path of servers it traverses, h = 1,2, . , Hi. The
end-to-end service curve allocated to the session is thus SZp””
zz s; * q * . . * $5,) and the end-to-end delay bound
for session i is ;I)(bil)S;et). Suppose there are a total of Q

servers in the network, indexed by the integers 1, 2 . . . Q.
Let p(i, h) be the index of the server traversed by session i
at hop h. In accordance with Theorem 111.2, we require that
the service curves 15’2) allocated at each server satisfy the
feasibility condition

c $(4 I cq2, for allx,q = 1,2,...,&
(i,h):p(i,h)=q

(30)

where cq is the number of packets that server q can serve
in each slot. The schedulability region %&ED is the set
of delay bounds that can be realized by some allocation of
service curves (S,b} at each server that satisfies the feasibility
condition (30), i.e.,

RSCED ={(dl,"', d,): there exists {Sf}

satisfying (30) and di 2 D(billSf”t)}. (31)

Next, we consider the schedulability region corresponding
to the RCS-EDF policy, Rn~s. Suppose that session i passes
through a b:-regulator before entering the EDF scheduler at
hop h, where the deadlines of packets are equal to their
arrival times at scheduler plus the constant dl. Recall from
our discusion of the RCS-EDF policy earlier that session i is
guaranteed the shifted sub-additive service curve 3: = b: * Sd+

at server p(i, h), as long as no deadlines are missed. In turn,
no deadlines are missed as long as the feasibility condition

c bf(x - dt) 5 cqx, for all 2 (32)
(i,h):p(i,h)=q

is satisfied at each server q. The end-to-end service curve
guaranteed to session i is glet = ,!?j- * $ * . * >%?%I and
the end-to-end delay bound is ‘D(bi 11 Sqe”). The schedulability
region for the RCS-EDF policy is therefore

RRCS ={(dl,-.- , d,) : there exists {b” , dl }

satisfying (32) and di 2 D(bi 1 Isret)}. (33)

It is clear that since the SCED policy can allocate the same
service curve gh = bh * S dh at server p(i, h) that the RCS-
EDF policy can guaraniee at the same server, the schedulability
region for SCED is at least as large as that for RCS-EDF, i.e.,

RRCS c RSCED- (34)

In fact, we shall see that the scedulability region for SCED can
be strictly larger than that for RCS-EDF. The reason for this is
that the service curves 3: guaranteed at each hop by the RCS-
EDF policy are shifted sub-additive, whereas the generality of
the SCED policy allows allocation of service curves that are
not necessarily shifted sub-additive.

Next, we consider the use of the SCED policy at each
server, but where the allocated service curves {St+} at each
hop are constrained to be shifted sub-additive. We shall call
this the SCED-S policy. From the discussion in the previous
paragraph, it follows that the corresponding schedulability
region for SCED-S is the same as that for RCS-EDF, i.e.,

RRCS = RSCED-S. (35)

SARIOWAN et al.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEEING QoS 619

Y
l

Fig. 3. Network configuration used to demonstrate that the SCED policy has
a larger schedulability region than other policies.

We remark that in a continuous time context, it is shown in
[14] that the class of RCS-EDF policies outperforms policies
based on Generalized Processor Sharing (GPS) [20], such as
WFQ (91 and Packetized-GPS [20], with respect to the schedu-
lability region. In the following example we will show that
RSCED is strictly larger than Rn~s. It is not known, however,
whether or not RSCED is the largest possible schedulability
region.

I) Flexibility of SCED: An Example: Consider a network
of two servers, labeled 1 and 2, each with a constant trans-
mission capacity of one packet per slot, i.e., each server has
a capacity function C(X) = IF for all Z. The network is
illustrated in Fig. 3. There are four “local” sessions arriving to
the network. These sessions are labeled ai and pi, 1 5 i 5 2.
Traffic from sessions ai and /Xi arrives to the network at server
i, and departs from the network after departing server i. There
is one “global” session, y, which arrives to the network at
server 1. After the global session departs from server 1, it is
fed to server 2 with zero propagation delay. After the global
session departs from server 2, it leaves the network. Thus,
each server supports two local sessions as well as the global
session y. For this network, we shall show that K&ED is
strictly larger than Rncs.

In order to simplify the discussion, we shall consider the
SCED-S policy instead of the RCS-EDF policy and show that
K&ED is strictly larger than ~&ED-S. In view of (35), this
shows that Y&ED is strictly larger than Rn~s. Also, in order
to simplify the exposition of this example, throughout this sub-
section we ignore the integer constraints from all variables and
equations. A more detailed analysis of the example, taking into
account the integer constraints, is outlined in the Appendix.

Suppose the traffic arriving to the network from session
cyi is &-smooth, where b,% is sub-additive. Each session o;
requires a delay bound of daZ slots. Similarly, suppose the
traffic arriving to the network from session p; is bp,-smooth,
and requires a delay bound of dp- .

Assuming that the SCED policy is used at the servers, the
local sessions Q; and ,& can be allocated the shifted sub-
additive service curves S,,(X) = &(z - dai) and Sp%(z)
= bp,(z - dp;) at server i, respectively, for i = 1, 2. The
‘&excess capacity curve” at each server i -is defined to be

Ei(x) = x - b,* (x - daz) - bp,(z - dpi) (36)

which will be nonnegative for all LG in our example. In
accordance with Theorem 111.2, we shall allocate the global
session y a service curve S; at server i, where S;(Z) <
&F;(Z) for all IC. Defining S, = S; * SG, the delay bound

for the global session under the SCED policy with general
service curves is given by dy” = D(b, 1 IS,). Thus, under the
SCED policy, by Theorem III.2, the local sessions a; and ,6;
have delay upper bounded by dai and dp, , i = 1, 2, and the
global session has an end-to-end delay upper bounded by d:.
In other,words, we have (dCY1, d,, , dp,, dp,, dy) E RScED.

We shall discuss a particular case where the delay bounds
obtained above for all sessions under SCED with general
service curves can not be achieved by any SCED-S policy.
More specifically, consider any SCED-S policy that is able to
guarantee the local sessions the same upper bounds on delay
that the SCED policy is able to guarantee, namely d,? and
dp,, i = 1, 2. Let dt be the end-to-end delay bound for the
global session y under the SCED-S policy. We shall give
an example where d: must be at least approximately 2dy.
Thus, under any SCED-S (and hence any RCS-EDF) policy,
the end-to-end delay for the global session is at least roughly
twice what is achievable under the SCED policy, assuming
that the delay requirements for the local sessions are met. This
shows that (d,, , d,, , dp,, dp, , d:) $! RnCs if dy” is less than
approximately 2dv, and in particular that 77,s~~~ is strictly
larger than RnCs.

We first compute d, , G the upper bound for the maximum
end-to-end delay for the global session y. Let PH and ILL
be positive constants satisfying VH > ,UL and PH + PL = 1.
Suppose that 6,; is the sub-additive function

h;(x) = lo@+ + (CLL - PH)(X - TX,)+

and r,% is a nonnegative constant, sometimes called the
maximum burst length.

If we set the delay bound for session a, to zero, we may
assign session a; the service curve to S,-(X) = b,&(z).
Furthermore, set 7u1 = 0 and ra2 = r, > 0. In this case
we have

’ $2, (x) = pJLX
+

s!,(x) = Piwf + (PL - PH)(X - 4+.

Similarly, suppose that
+

b&(X) = (PH - II.L)X .

The delay bound for session pi is dp, = rp, dp, = T, + rp,
and rp is a positive constant. Thus we may assign to session
,D; the service curve Spi (x) = bpi (Z - do,), i.e.,

SP, (xl = (PH - PL)b - v>+

sp, (x) = (pi7 - CL& - 701 - q?>+. -

With these definitions, we have for i = 1, 2

SA (x> = x - bzri (x) - b, (x - 4, >

= Ei(x)

where

El(x) = pHx+ + (PL - pH)(x - T/3)+

E2(5) = ax+ f (PH - PL)(n: - cd+ + (JLL - CLH)

(x - r, - rp)f

as illustrated in Figs. 4 and 5.
Note that El(z) has slope ,UH for 0 < x < rp and slope PL

for z > rp. Also, Ed has slope PL for 0 < z < T,, slope
fiH for r, < 5 < rol + ‘i-p, and again slope PL for zc > ‘ra +

680 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. I. NO. 5, OCTOBER 1999

Fig. 4. Illustration of the calculation of the excess capacity curve El at
server 1.

3 =a =CX.+=p

Fig. 5. Illustration of the calculation of the excess capacity curve Ez at
server 2.

up. For a general SCED policy at each server, according to
Theorem 111.2, each session will receive their corresponding
service curves as long as S,,(x) + Sp, (x) + s;(x) 5 x for
all IC. In view of (36), this will be satisfied if S;(z) 5 &(z).
We will therefore set S%(z) = &(x).

The end-to-end service curve for the global session y, say
S,, is6

S,(x) = (S{ * s;)(x) = (El * Ep)(x) = E2(x)

= lw+ + (Ml - PL)(X - c-J+ + (I-LL - pn>

. (x - rcu - rp)f*

Next, we assume the arrival curve b, of the global session is
given by

b-,(x) = PHX+ + (PL - I-LH)(X - r-J+. gi(z - 4) 5 Ed, for all II: 2 1.

y/ E2(x)=E1 *Ed

Fig. 6. Illustration of delay calculations for global session y in network
of Fig. 3. Under the SCED policy, the global session y is assigned the
service curve El and Ez at servers 1 and 2, ignoring integer constraints. The
end-to-end service curve for session 7~ under SCED is therefore approximately
El * E2 = Ez, which leads to an end-to-end delay bound of approximately
d,. Under any SCED-S policy, the delay at server 1 is at least D(b, 1 IE1) =
d, . as is evident in the illustration. The dashed line with slope ph extending
the curve EZ helps to illustrate why in the best case, the delay bound in the
SCED-S scheduler at server 2 must be at least d, Hence, under any SCED-S
policy, the delay of the global session is at least 2d,.

cxi and ,/3i the delay bounds of d,; and dpi, respectively, and
guarantee the global session y an upper bound on end-to-end
delay of dv. We remark that the deadline calculations for the
global session can be done using the algorithm in Fig. 1, but
not using the algorithm in Fig. 2 since the service curve for
the global session at server 2 is not a CPL curve.

Next, we examine the delay bounds achievable by any
SCED-S policy. We assume that at each server i, the global
session y is guaranteed shifted sub-additive service curve
gi + 6di, where gi is some sub-additive function and d; is some
nonnegative integer. Under the SCED-S policy, the global
session y receives the end-to-end service curve S,“(x) =

(a*&,) * (a*b)(x) =g(z-dl-d2),whereg=gl*g2.
The end-to-end delay bound for the global session y under the
SCED-S policy is dz = D(b.,l IS:).

In order for sessions CY; and /3; to be guaranteed the delay
bounds of d,, and do,, it is necessary that they be allocated
service curves no smaller than b,% (x - dmi) and ba, (x - dot) ,
respectively, for i = 1, 2. Thus, in order to satisfy the
feasibility condition, the allocated service curves for the global
session y at server i must satisfy

(39)

We set the burst length T? so that b, (x,) = S, (r, + ~0)) or
equivalently

Given any q such that 0 < 7 < 1 we shall show that if ~~
and rp are sufficiently large, then d; > (1 + q)dv. Thus, in

“,=rp+r&. (37)
this case, the smallest end-to-end delay for the global session y

PH that is possible to achieve under any SCED-S (and hence any

Referring to Fig. 6, this implies that the maximum end-to-end
delay for the global session y is upper bounded by D(b,j IS,)
= d$, where

= r, (38)

Thus, we have shown that by using the general SCED policy
at each server, it is possible to guarantee the local sessions

6Recall that here, we are ignoring integer constraints, so that the convolu-
tions below are performed over the set of real numbers.

RCS-EDF) policy must be roughly twice the end-to-end delay
bound that could be guaranteed with a general SCED policy.

The main idea is as follows. First, we may assume without
loss of generality that gi = g, since we may replace each
g; with the smaller envelope g = g1 * g2 and the end-
to-end service curve 5’: remains the same. Assuming that
g1 = g2 = g, then constraint (39) is given by g(z - di) 2
E;(x). From Fig. 6, since the slope of the dashed line segment
is PH, it is evident that if dz is set significantly smaller than
d,, then the constraint g(x - d2) 5 Ed at n: = 7a implies
that the slope of g must be strictly less than fi,Kj because of the
sub-additivity of g, In turn, this would imply that D(b,llg) is

SARIOWAN ef al.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEEING QoS 681

large, and hence the maximum delay for the global session at
server 1 is large, since the initial slope of b, is equal to PH and
we choose r, and 70 to be large. Thus if the maximum end-
to-end delay is minimized, the maximum delay at the second
server is at least on the order of d,. On the other hand, the
maximum delay for the global session at server 1 is at leq d,
= D(b,llE& Th us, the total end-to-end delay for the glblial
session y under any SCED-S policy is at least on the order.
of Zd,.

We now argue this more carefully. We have

dy” = Wb,I IS”)

= W,l Id. - dl - dd)

= zrxyl min{d: d 2 0 and b.,(x) 5 g(x - dl - dZ + d)}

2 zrzi~ min{d: by(x) < g(z - dl - d2 + d)}

= d2 i ,r~z min{d: by(x) 5 g(x - dl + d)}
-

= df + d2 (40)

where we define

ds = ,???I min{d: by(z) 5 g(x - dl + d)}. (41)
-

Fix any 17 such that 0 < q < 1. We now distinguish two
cases. In the first case, suppose that dz > vd$. Note that
since (39) holds we have

df = mz~~min{d: by(x) 5 g(x - dl + d)}

2 Mie min{d: by(x) 2 gl(x - dl + d)}
-

2 mz~xlmin{d: by(z) 5 El(z + d)}

2 mii{d: AIL 5 EI(T~ + d)}

= min d: pHTp+rap~ I pHTfi+pLTaE+pLd
{ 1

=4 >

1-E

PH

=d$

Using (40), it therefore follows that in this case we have dy”

2 df + d2 2 (1 + rl)d,G.
Next we consider the other case, where dz < vd$. In this

case, we will show that ds is large, in particular larger than
(1 f q)dq. First, note that since g is a sub-additive function,
then for ani n > 0 we have

g(x) 5 &(4 + g(x - l;]A)

< da>
- a” + g(A).

From (39), we have

Ll(Ta - &I 5 n(Ta - dd I E2(7a).

Setting A = rol - d2 in the above upper bound for g yields

We thus have

ds = Fzylmin{d: by(x) 5 g(z - dl + d)]

2 zr~~ min{d: b-,(z) 5 g(z + k).]
- ;ri;’

(42)

Define 6 = 0.5((pH/pL) - l)(l - v), and note that 6 > 0.
Defining Ic = (1 + 20/l + 19)) note that Ic > 1 and

(43)

Using ALTO 5 ~LICT~ in (42), and then substituting (43) we

(44)

Now fixing r,, we may make the right hand side of (44)
arbitrarily large by making ~0 sufficiently large. In particular,
by choosing 70 sufficiently large, we have d: 2 ds 2

(1 + 0;.
It follows that 7a and 7-p can be chosen such that dy” >

(1 +v)dT in any case. Thus, choosing q near unity, any SCED-
S policy yields a maximum delay for the global session which
must be approximately twice that achievable using the SCED
policy. In particular, this proves that the schedulability region
in the network with a general SCED policy at each server is
strictly greater than the schedulability region with a RCS-EDF
policy at each server.

682 IEEE/ACM TRANSACTIONS ON NETWORKING,VOL.7.NO.5,OCTOBER 1999

2) Comparison of Schedulability Regions: It is not known
in general how much smaller the achievable end-to-end delays
are for the SCED policy, as compared to the RCS-EDF policy.
However, we now present a simple analysis that may provide
an answer to this question. In particular, we show that if

(dl,d2,... ,d,) E RSCED then (Hldl, H2d2, .“, H,d,) E
RRCs, where we use the notation defined at the beginning of
Section IV-D. For simplicity, assume that each server has a
capacity function of C(X) = 2. Suppose we use the SCED
policy to allocate the service curve 5’: to session i at the hth>
server along its route through the network. The end-to-end
service curve for session i under the SCED policy is then
S,?--t = s,! * s,z * . . . * si H1. Thus, we have (dl, d2, ’ . ’ d,)
E RSCED, where di = YD(~;IIS,~“~).

In order to guarantee the allocated service curves at each
server, we are assuming that we have

c S?(x) 5 x (45)
(i,h):p(i,h)=q

for each server Q. Note that for all i and h we have

S,“(x) 2 bi(X - di) (46)

for otherwise we would have ,Syt (x) < S:(z) < bi (X - di)
for some i, which would contradict the definition of d;.

We now show the existence of a RCS-EDF policy which is
able to guarantee session i the end-to-end delay bound Hidi.
Specifically, the traffic from session 1: is passed through a g”-
regulator before entering the EDF scheduler at the hth server
along its path, where g:(x) = bi (x), and it is assigned the
delay bound d: at this EDF scheduler, where dh = d;. For all
servers q, we then have

c g;(x - dz”) = c bi(x-4)
(i,h):p(i,h)=q (i,h):p(i,h)=q

(i,h):p(i,h)=q

Lx

where the inequalities follow from (45) and (46). Since this is
the sufficient condition for schedulability of the delay vector
{d{} under the RCS-EDF policy at each server, it follows that
no deadlines will be missed at any EDF scheduler. The end-
to-end service curve for session i under the RCS-EDF policy
is scet(,) = bi(z - Hidi), and thus the RCS-EDF policy is
capable of guaranteeing the delay bound Hidi for session i.
In other words, we have (Hldl, Hzdz, . , H,d,) E RRCS.

It may appear that this argument significantly underesti-
mates the schedulability region of the RCS-EDF policies with
respect to that of the SCED policies. On the other hand,
the example of Section IV-D.1 shows that for a session that
traverses two hops, the best end-to-end delay for RCS-EDF
may be a factor of two larger than that achievable under the
SCED policy. It is an open question whether or not there exists
an example whereby a session that traverses H hops has a
best-case end-to-end delay under the RCS-EDF policy that

is H times larger than what is achievable under the SCED
policy, for H > 2.

V. DISCUSSION AND CONCLUSION

We have presented SCED, a versatile scheduling policy
which is a generalization of both the VirtualClock and the EDF
algorithms. Like the EDF algorithm, the SCED policy has the
optimal schedulability region for the case of a single server.
The deadline assignments in SCED are more flexible than
in EDF, which may be of some value for other performance
measures besides maximum delay, such as average delay. We
have seen that if the allocated service curves are parameterized
by concave piece-wise linear functions, the SCED deadline
assignment algorithm reduces to a simple generalization of
the VirtualClock policy.

As with the EDF policy,. it is necessary to check several
inequalities in order to determine whether or not it is feasible
for a single server to support a given set of sessions with
pre-specified performance requirements. This is more complex
than what is necessary for scheduling algorithms which are
based on bandwidth-allocations. It may be possible to use
techniques as introduced in [l l] to reduce the computational
complexity of admission control.

In the case of a network of servers, we have shown by
example that the SCED policy has a greater capability than
other known policies to support end-to-end delay bounds. The
key to this capability is the ability of SCED to efficiently
support service curves with arbitrary shapes. However, by
allocating service curves with a general shape, the deadline
assignments under SCED are more complex. It is not known
whether or not using the SCED policy at each server yields
an optimal schedulability region for a network of servers.

It is worth noting that since we have defined schedulability
regions in terms of easily obtained delay bounds, we have
not shown that the actual worst-case end-to-end delay for
the SCED policy can be strictly less than for other policies.
We conjecture, however, that this is indeed the case. Such a
“sample path” result is beyond the scope of this paper.

The problem of synthesizing a rational approach to the
allocation of service curves in the context of a network of
servers is a wide open problem. The problem appears difficult,
because there are many degrees of freedom in choosing a
service curve, since it is a function. In particular there are
many possible service curves that could be allocated for a
session at each hop, that result in the same end-to-end service
curve. It is not clear how the service curves should be allocated
at each hop in order to maximize the number of sessions that
can be supported by the network.

These issues need to be investigated further, before the prac-
tical utility of the SCED policy can be accurately evaluated.
At the least, the framework of allocating service curves offers
new insight to the synthesis of network scheduling algorithms.

APPENDIX

In this section, we outline how the argument in Section IV-
D.l can be modified to take into account the integer con-
straints.

SARIOWAN et al.: SCED: A GENERALIZED SCHEDULING POLICY FOR GUARANTEEING QoS 683

First, we perform the substitution to the following quantities
defined in Section IV-D. 1:

d
2

0, +-
PL

Essentially the same arguments can be made, taking into
account the modifications above and by setting r, and 70
sufficiently large. The key idea is to use the inequality 11 +
~1 2 z which holds for any real x, and to lower bound
convolutions over integer sets by convolutions over sets of
real numbers. In particular, the delay bound for the global
session under the SCED policy becomes

dy” = r,

and we can show that if r, and rp are sufficiently large,
then the maximum end-to-end delay d; for the global session
under any SCED-S (and hence any RCS-EDF) policy is lower
bounded as follows:

where ECI = 2 + z(pH/p~). The terms ~/PA and EO/~L
become negligible if we choose ra and TV to be sufficiently
large, so that d; is at least approximately (1 + v)d$.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees and
the editor, Prof. R. GuCrin, for their generous comments and
suggestions that have improved the paper.

REFERENCES

[l] R. Agrawal and R. Rajan, “A general framework for analyzing sched-
ulers and regulators, ” in Proc. 34th Annu. Allerton Conf: Communica-
tion, Control, and Computing, 1996, pp. 239-248.

[2] J. Bennett and H. Zhang, Hierarchical packet fair queueing algorithms,
ZEEUACM Trans. Networking, vol. 5, pp. 675689, Oct. 1997.

[3] C.-S. Chang, “On deterministic traffic regulation and service guarantees:
a systematic approach by filtering,” IEEE Trans. Znform. Theory, vol.
44, pp. 1097-1110, May 1998.

[4] R. L. Cruz, “A calculus for network delay, Part I: Network Elements in
Isolation,” IEEE Trans. Inform. Theory, vol. 37, pp. 114-131, Jan. 1991.

[51 -7 “Service burstiness and dynamic burstiness measures: A frame-
work,” J. High Speed Networks, vol. 1, no. 2, pp. 105-127, 1992.

[6] R. L. Cruz and H.-N. Liu, “End-to-end queueing delay in ATM net-
works,” J. High Speed Networks, vol. 3, no. 4, 1994.

[7] R. L. Cruz, “Quality of service guarantees in virtual circuit switched
networks,” IEEE J. Select. Areas Commun., vol. 13, pp. 1048-1056,
1995.

@I -> “SCED+: Efficient management of quality of service guaran-
tees,” in Proc. IEEE ZNFOCOM, 1998, pp. 625-642.

[9] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in Proc. ACM SZGCOMM, 1989, pp. l-12.

[lo] N. Figueira and J. Pasquale, “An upper bound on delay for the virtual-
clock service discipline,” IEEE/ACM Trans. Networking, vol. 3, pp.
399408, Aug. 1995.

[l 11 V. Firoiu, J. Kurose, and 9. Towsley, “Efficient admission control of
piecewise linear traffic envelopes at EDF schedulers,” IEEE/ACM Trans.
Networking, vol. 6, pp. 558-570, Oct. 1998.

[12] S. Floyd and V. Jacobson, “Link-sharing and resource management
models for packet networks,” IEEE/ACM Trans. Networking, vol. 3,
pp. 365-386, Aug. 1995.

[13] L. Georgiadis, R. Gutrin, and A. Parekh, “Optima1 multiplexing on a
single link: Delay and buffer requirements,” IEEE Trans. Inform. Theory,
vol. 43, pp. 1518-1535, Sept. 1997.

[141 L. Georgiadis, R. Gu&in, V. Peris, and K. Sivarajan, “Efficient network
QoS provisioning based on per node traffic shaping,” IEEE/ACM Trans.
Networking, vol. 4, pp. 482-501, Aug. 1996.

[151 S. J. Golestani, “Congestion-free communication in high-speed packet
networks,” IEEE Trans. Commun., vol. 39, pp. 1802-1812, Dec. 1991.

[16] P. Goyal, S. Lam, and H. Vin, “Determining end-to-end delay bounds
in heterogeneous networks,” in Proc. 5th Znt. Workshop Network and
Operating System Support for Digital Audio and Video (NOSSDAV),
1995, pp. 287-298.

[17] A. Hung and G. Kesidis, “Bandwidth scheduling for wide-area ATM
networks using victual finishing times,” IEEE/ACM Trans. Nerworking,
vol. 4, pp. 49-54, Feb. 1996.

[181 J.-Y, Le Boudec, “Application of network calculus to guaranteed service
networks,” IEEE Trans. Inform. Theory, vol. 44, pp. 1087-1096, May
1998.

[191 J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control for
networks with a bounded delay service,” IEEE/ACM Trans. Networking,
vol. 4, pp. 885-901, Dec. 1996.

WI

VII

WI

[231

[241

~251

WI

~271

A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single-
node case,” IEEE/ACM Trans. Networking, vol. 1, pp. 344-357, June
1993.
D. Saha, S. Mukherjee, and S. K. Tripathi, “Multirate scheduling of
VBR video traffic in ATM networks,” IEEE J. Select. Areas Commun.,
vol. 15, no. 6, pp. 1132-1147, Aug. 1997.
H. Sariowan, “A service curve approach to performance guarantees in
integrated-service networks,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Univ. California at San Diego, 1996.
D. Stiliadis and A. Varma, “Latency-Rate Servers: A general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Network-
ing, vol. 6, pp. 61 l-624, Oct. 1998.
G. Xie and S. Lam, “Delay guarantee of virtual clock server,”
IEEE/ACM Trans. Networking, vol. 3, pp. 683-689, Dec. 1995.
Q. Z. Zheng and K. G. Shin, “On the ability of establishing real-
time channels in point-to-point packet switching networks,” ZEEE Trans.
Commun., vol. 42, pp. 1096-1105, Mar. 1994.
H. Zhang and D. Ferrari, “Rate-controlled service disciplines,” J. High
Speed Networks, vol. 3, no. 4, 1994, pp. 389-412.
L. Zhang, “VirtualClock: A new traffic control algorithm for packet-
switched networks,” ACM Trans. Comput. Syst., vol. 9, no. 2, pp.
101-124, May 1991.

Hanrijanto Sariowan (S’91-M’95) received
the B.S. (cum laude) degree from the Sepuluh-
Nopember Institute of Technology, Surabaya,
Indonesia, in 1987, the M.S. degree from Columbia
University, NY, in 1990, and the Ph.D. degree from
the University of California at San Diego in 1996,
all in electrical engineering.

From 1996 to 1998, he was with Linkabit
Wireless (previously Titan Information Systems),
San Diego, working on rhe architecture design
of a very small aperture terminal network. Since

1998, he has been with Tieman Communications, San Diego, working on
networking, multiplexing, and data broadcasting for high-definition television
systems. His research interests include quality-of-service provisioning for
multimedia broadband networks, wireless networks, and protocol design.

684 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. I, NO. 5, OCTOBER 1999

Rene L. Cruz (S’80-M’8&SM’90) received the B.S. and Ph.D. degrees
in electrical engineering from the University of Illinois, Urbana, and the
S.M. degree in electrical engineering from the Massachusetts Institute of
Technology, Cambridge.

Currently, he is a Professor in the Department of Electrical and Computer
Engineering, University of California at San Diego, La Jolla. His present
research interests include resource allocation and scheduling in integrated
broadband networks, wireless networks, and high-speed switching systems.

George C. Polyzos (M’88) received the Dipl. E.E.
degree from the NTUA, Athens, Greece, and the
M.A.Sc. degree in electrical engineering and the
Ph.D. degree in computer science, both from the
University of Toronto, Toronto, Canada,

He joined the faculty of the Department of Com-
puter Science and Engineering, University of Cal-
ifornia at San Diego, La Jolla, in July 1988. His
research interests include communications networks
and multimedia systems design and performance
evaluation.

