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Abstract—This work contributes towards improving the se-
curity infrastructure in Software-Defined Networking (SDN) en-
abled Mobile Ad Hoc Networks (MANETs), emphasizing efficient
deployment of a reactive firewall. This is a defense system that
comprises an SDN controller and several Intrusion Detection
Systems (IDSs), and it operates in real-time to detect potential
threats and respond to them. IDSs detect network cyber attacks
and policy violations, and inform the controller about detected
attacks in real-time. We introduce a model and an algorithmic
framework for deciding where to place the SDN controller and
IDS modules in a network graph. The constraints include a
maximum number of IDS modules to place, and a minimum
required attack traffic path coverage by IDSs, where a path is
said to be covered if there exists at least an IDS placed on a node
across the path.

We propose two algorithms: a Greedy Heuristic and a Sim-
ulated Annealing one. Our approaches are evaluated in terms
of attack mitigation delay, and they provide IDS deployments
with high network path coverage. Validation results using a
custom Python simulator and real-world scenarios demonstrate
the efficiency of our solutions in comparison to a solution
where all nodes are IDS-enabled, and to another one with
random IDS modules placement. Our algorithms significantly
outperform these baselines in terms of delay and achieve attack
path coverage of more than 90%. Additionally, the Simulated
Annealing algorithm shows superiority in terms of run-time, and
thus it is an attractive candidate for real-world implementations.

Index Terms—IDS, Controller Placement, Software Defined
Networking, MANETs, Cybersecurity, Networking Optimization.

I. INTRODUCTION

In recent years, the convergence of Software-Defined Net-
working (SDN) and Mobile Ad Hoc Networks (MANETs) has
come to the forefront of the networking industry. Net-centric
warfare, a military doctrine where information technology
and networked systems are used to gain strategic and tactical
advantages, heavily relies on the fusion of SDN and MANETs,
exploiting SDN’s centralized control and MANETs’ inherent
adaptability for tactical environments. Yet, this interdepen-
dence can also amplify cyber-attack risks. Therefore, efficient
countermeasures such as a reactive firewall [1], implemented
through an SDN controller and Intrusion Detection Systems
(IDSs) like the Snort IDS module [8], are critical. However,
the placement of these components in dynamic and resource-
limited SDN MANETs presents a significant challenge. Indis-
criminate or random placement of IDSs is clearly suboptimal,
which the naive solution of placing IDSs on all nodes may

turn out to be impractical, given the considerable processing
and communication burden they impose. This excess burden
can strain the limited capacities of nodes in terms of pro-
cessing power, memory availability and energy consumption,
thus adversely affecting network performance and making
this horizontal approach unsuitable for real-time, operational
tactical environments.

Therefore, it becomes essential to define a budget, namely
a maximum number of nodes on which we will activate IDSs,
which refers to a subset of all the MANET nodes equipped to
support IDS operation in order to preserve compute and energy
resources. This budget consideration is born out of the fact that
IDS operation is resource-intensive. Implementing IDS on all
nodes can result in substantial energy consumption, which is
a critical concern in MANETs given their dependency usually
on battery-operated devices.

Determining the optimal subset of nodes on which we will
activate IDS instances is a difficult problem because: i) it is
not known when the attack will be launched, ii) the path of the
attack traffic is unknown, and iii) the extent to which the attack
will be detected depends on where we will place the IDSs.
Moreover, when the network employs an SDN architecture,
the placement of IDSs is interdependent with the placement
of the SDN controller because of their cooperation for the
reactive firewall implementation. Specifically, the communica-
tion delay between the IDSs and the SDN controller, a crucial
component of the reactive firewall’s response time, highly
depends on their relative locations within the network. Thus,
optimal IDS and controller placement are critical in order to
minimize this delay for a faster and more effective response
to potential threats.

To the best of our knowledge, this is the first work that
explores jointly IDSs enablement and controller placement
within SDN MANETs.

A. Our contribution

This paper makes the following contributions:

This work has been carried out in the context of the project entitled,
Software defined MObile Tactical Ad hoc NETwork (SMOTANET), which
has received funding from the European Defence Industrial Development
Programme (EDIDP) under grant agreement No EDIDP-CSAMN-SDN-2019-
038-SMOTANET. This paper reflects only the authors’ views and the Euro-
pean Commission is not responsible for any use that may be made of the
information contained herein.



• We define an optimization problem, the Joint Controller
Placement and IDS Enablement (JCPIE) one, applied
in an SDN MANET, to minimize the firewall’s attack
mitigation delay. Key constraints of this problem include:
i. A budget of a maximum number of concurrently en-

abled IDS instances in the network.
ii. A requirement for a minimum attack path coverage by

the deployed IDS modules in the network, which en-
sures that a certain proportion of the possible network
communication paths are monitored by IDSs. This is
critical because without sufficient coverage, malicious
activities will not be effectively detected.

• We propose two algorithms to tackle this class of prob-
lem, which is recognized as NP-hard optimization prob-
lem. Firstly, we develop a Weighted Greedy Heuristic
algorithm that iteratively selects appropriate nodes for
IDS placement based on a set of criteria such as node
importance and a predefined budget of nodes that can
support the IDS operation. The second approach involves
a Simulated Annealing algorithm with the same criteria.
In our experiments, this latter approach provides faster
run-times than the greedy heuristic, while having a similar
solution quality, i.e. better mitigation delay.

• We evaluate our proposed algorithmic framework with a
methodology founded on a custom-built Python simulator
that we develop from scratch, and with artificial and
real-world mobility scenarios, which we make publicly
available on Github [15]. The proposed algorithms are
assessed against a static solution, where all nodes are
IDS-enabled, and another solution approach where some
randomly selected nodes are IDS-enabled.

The rest of the paper is organized as follows. Section
II reviews previous research. In section III, we present the
considered model. Section IV presents the problem statement,
and section V proposes a centralized solution approach. The
evaluation approach, evaluation setup, and results are dis-
cussed in section VI. Section VII concludes the paper and
gives future work directions.

II. RELATED WORK

Service and IDS placement. Prior research on ser-
vice placement in MANETs has been focused on ei-
ther middleware-based or facility location theory-based ap-
proaches. The facility location problem in MANETs involves
determining the optimal location to place a specific service
such as an IDS. Middleware-related approaches employ heuris-
tics based on information gathered from nodes in the neigh-
borhood of the node that hosts the service. In contrast, as it is
stated by Wittenberg et al. in their survey [11], facility loca-
tion theory-based approaches solve the Uncapacitated Facility
Location (UFL) problem either with centralized solutions after
collecting necessary information from the network or by using
distributed iterative approximations. Several approaches have
been proposed for IDS sensor placement in static networks.
Bhale et al. [10] introduced OPTIMIST, a solution for optimal

distributed IDS placement in terms of energy consumption
efficiency and capable of mitigating both high and low-rate
DDoS attacks in IoT networks. While this work focuses on op-
timizing IDS placement in IoT networks, our research extends
beyond that, by optimizing both the IDS and SDN controller
placement in SDN MANETs, thus adding a critical cybersecu-
rity dimension to the controller placement problem. Noel and
Jajodia [9] leveraged attack graph analysis for enumerating all
potential paths leading to the asset, and subsequently finding
the optimal IDS sensor placement to monitor all paths with
the fewest sensors possible. Yet, this method neglects crucial
factors like traffic load and does not fully encapsulate the
intricacies of real-world network environments. In contrast,
our research integrates a Simulated Annealing algorithm and a
weighted greedy heuristic algorithm, considering the firewall’s
attack mitigation delay.

Controller placement in SDNs. The objectives of the
controller placement problem (CPP) in SDN range from
minimizing control latency, improving network resiliency, re-
ducing control overhead to wards energy efficiency. Various
optimization models and heuristics have been proposed. For
instance, Heller et al. [3] were the first to introduce and
formulate the CPP in SDN and proposed three metrics for CPP
optimization in its classical basic form, where the objective
is to minimize the maximum switch-controller latency. [2]
The authors restricted their analysis to Wide-Area Networks
(WAN), and evaluated the trade-off between the number
of controllers and switch-controller propagation latency. In
other works in this direction, Wang et al. [4] proposed a
k-means-based network partitioning algorithm to minimize
switch-controller latency, while Zeng et al. [5] focused on
guaranteeing the flow setup time. Looking to other objectives
rather than those addressed by the classical CPP, in order to
reduce energy consumption, Hu et al. [6] proposed a binary
integer program and a genetic algorithm-based heuristic to
minimize the number of links on the switch-controller paths.
In terms of the controller’s response time, Cheng et al. [7] pro-
posed three heuristic approaches to find the number, location,
and switch assignments of controllers, with the objective of
meeting an upper bound on the response time of a controller
to a switch’s flow setup request. These works address the
CPP with objectives such as minimizing control latency, they
improve network resilience, they reduce control overhead, and
they enhance energy efficiency. However, they do not focus
attention on cybersecurity aspects, particularly IDS integration
and joint consideration with the SDN controller placement
problem. In contrast, our work integrates the optimization of
IDS and SDN controller placement in the context of SDN
MANETs, and thus it adds a crucial cybersecurity dimension
to the CPP.

Despite extensive research on the CPP in SDN and generally
the facility placement problem regarding facilities like the
IDSs, there is no work on the joint placement of SDN
controller and monitoring services, the latter acting as traffic
monitoring sensors and traffic analyzers in a network. In
traditional static network architectures, IDSs are deployed



in a static manner at strategic points in the network, such
as routers or switches, with the aim to monitor traffic for
potential security threats. Given the SDN controller’s central
role in executing our proposed algorithms to solve the JCPIE
problem, this approach leverages the unique benefits of SDN’s
centralized control, thereby paving the way for more efficient
solutions of reactive firewall implementations in MANETs.

III. MODEL

We assume that the network operates in an adversarial
environment, where one or more network nodes may act as
malicious sources of cyber-threats. In this work, we will focus
on DoS attacks.

A. Cyber-threat assumptions

We consider that one or more network nodes may execute
a malicious service targeting as victim one or more legitimate
nodes of the network. The attack can be a DoS flood attack
(e.g., a TCP SYN flood attack). As depicted in Fig. 1, the
malicious nodes generate traffic directed at a victim node v. It
is important to note that the source of flows is not known at the
outset, and so it is not known whether a flow is malicious or
not. We assume for simplicity that the malicious traffic flows
(i.e., flood attack flows) will consistently have much higher
data rate than the normal service traffic flows of the network.
Any network node can be considered as target of the attack.

B. Network model

The network is represented by an undirected graph G =
{N , E} (e.g., the network graph of Fig. 1), where set N =
{1, 2, ..., N} denotes all the nodes of the network, and set E =
{1, 2, ..., E} denotes the set of the undirected links connecting
the N nodes. We assume that one of the nodes is the SDN
controller.

Each node n ∈ N in the network is associated with a weight
wn, signifying its importance. We assign a high weight to
the controller node, considering its crucial role in managing
network resources, namely that it maintains a global view
of the network, and it makes strategic decisions regarding
network configuration and security policies, including the
placement of the IDS service. However, this high weight
may change with time, contingent on whether the node is
selected as the controller or not. As we see later, the proposed
algorithms which solve the JCPIE problem (in section V)
take these weights as an input to make the selection for
IDSs placement. For non-controller nodes, a lower weight is
assigned. Hence, while the initial potential weights are inputs
to our algorithm, the assigned weights reflect the state of the
network and the role of nodes at any given time.

Four main services may be deployed on each node n ∈ N ,
(i) the SDN switch service that is enabled by default to all
nodes, (ii) the SDN controller service, (iii) the IDS service
and (iv) a malicious service that launches the attacks. The
placement and enablement of the controller and IDS services
gives rise to the following binary variables:
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Fig. 1: DoS flood attack in a MANET launched from compromised
nodes m ∈ Nm, targeting as a victim a legitimate node v ∈ N .

• cn ∈ {0, 1}, where cn = 1 if node n has deployed and
enabled the SDN controller service (e.g., Ryu controller),
otherwise it is 0.

• an ∈ {0, 1}, where an = 1 if node n has deployed and
enabled the IDS service (e.g., Snort IDS), otherwise it is
0.

We have the following three subsets of nodes n ∈ N : Nm,
Ni and Nc of the set N , where,

• Ni ⊆ N is the subset of the SDN switches nodes which
have enabled the IDS service;

• Nm ⊆ N is the subset of the SDN switches nodes which
are compromised and have malicious behaviour;

• Nc ⊆ N with |Nc| = 1 is the singleton subset of the SDN
switches nodes which has enabled the SDN controller
service and has the role of the controller entity in the
network.

A switch node n may belong to more than one of the subsets
above at the same time, e.g. it can be a controller and a node
with deployed IDS.

C. Intrusion Detection System (IDS) service model

We take cues from practical IDS solutions such as Snort,
operate on a threshold-based system, where traffic that exceeds
a preset threshold is flagged as malicious and use this as the
rule in our IDS scenario. An IDS monitors the network inter-
faces of a node, evaluating both inbound and outbound traffic
for any malicious patterns through a rule-based recognition
system. For instance, a standard Snort rule for TCP SYN
flood attacks is designed to closely inspect all TCP traffic,
seeking TCP packets that have the SYN flag activated, which
indicates the initiation of a TCP connection. A monitoring
counter keeps track of each incoming packet’s source IP
address and increments it with the detection of each TCP
SYN packet. If this counter reaches a predefined threshold
within a set timeframe, Snort is triggered to send out an alert.
Note that, advanced Deep Learning (DL) based techniques
may be involved in the traffic’s analysis procedure by the
IDSs [12], however in this work we focus on simple threshold
based rules, in order to showcase the joint problem of the
IDS deployment and controller placement problem and the
solutions we propose.

Since only a limited number of nodes can support IDS
operation, there exists partial coverage of the communication



paths of the network by the IDSs, meaning that the activated
IDSs monitor only a subset of the set P of all possible paths.
Each IDS can monitor one or more paths and at least one IDS
service is required to reside on a node across a path so that the
path is considered to be covered by the IDS. Let us introduce
a binary parameter pin which equals 1 if path i passes through
node n, i.e. the node n monitors the path i, and 0 otherwise.
The minimum attack path coverage percentage, Pmin indicates
the minimum proportion of the network’s paths that must be
under surveillance by the IDSs to ensure an acceptable level
of security. A representative acceptable attack path coverage
percentage can be around 80% − 90%. In the absence of
any prior knowledge on attack deployment, it is impossible
to predict the precise route an attack will take, and thus we
have to consider all possible paths the traffic could traverse.
Therefore, the constraint for a minimum required attack path
coverage percentage Pmin can be expressed as follows:∑

i∈P maxn∈N (an · pin)
|P|

≥ Pmin, (1)

where pin is a binary parameter equal to 1 if path i is
monitored by an IDS on node n, and 0 otherwise. Here, an·pin
will be 1 if a node n is on path i and has an enabled IDS and 0
if no nodes on the path has enabled IDS. Thus, the numerator
counts the number of covered paths.

Upon receiving the IDS alerts, the SDN controller estab-
lishes countermeasures against compromised network nodes
i.e., black-listing of malicious nodes and setup of blocking
flow rules at all nodes of the network. It also orchestrates the
dynamic adjustment of the IDS state in at network nodes.

1) Budget-based IDS deployment in MANET: Resource
constraints in MANETs mandate a judicious, budget-based
IDS deployment. Besides computaitonal resources, the com-
munication links’ overhead—measured by bandwidth used for
non-data tasks such as control messages, IDS alerts, and oper-
ational data—is a critical factor. Each additional IDS instance
exacerbates this overhead with alert messages generated upon
threat detection, like flood attacks. These alerts, though small,
can have a significant cumulative impact on the constrained
bandwidth during sustained attacks, straining both computa-
tional resources and network links. For instance, popular IDSs
like Snort can generate alerts of the order of hundreds of Kbps
under heavy load, thus significantly impacting the limited
wireless bandwidth of MANETs. Moreover, as the network
expands, so does the number of paths needing surveillance,
potentially increasing the need for coverage by IDSs beyond
what nodes and links can handle. Thus, a minimum budget-
based IDS deployment adjustment becomes crucial.

The budget is defined as the number of nodes B that are
needed so as to support the IDS operation in order to ensure
a minimum attack path coverage percentage Pmin of network
paths by the IDSs’ monitoring. In our scenario, network paths
represent the set of elements to be covered. Placing the IDS
on a node corresponds to monitoring a subset of paths, those
that pass through the node that has the IDS. Thus, finding the
value of B is reminiscent of a set-covering problem, where

the goal is to cover at least the minimum percentage Pmin of
network paths using the minimum number of nodes. Since set-
covering problems are known to be NP-hard, in order to find
a feasible solution to the set-covering problem, we employ a
Greedy Heuristic Algorithm. The steps of the algorithm are as
follows:
Step 1. Initialize set B = ∅, and create a copy of the set of

all network paths P = Pcopy.
Step 2. While the coverage of Pcopy is less than Pmin, perform

the following steps:
Step 2.1 For each node n ∈ N , calculate the size of

the set of network paths, Pn, that can be
covered by enabling the IDS on node n.

Step 2.2 Select the node n′ = argmaxn∈N |Pn| that
covers the maximum number of uncovered
network paths.

Step 2.3 Add node n′ to B and remove the paths
covered by n′ from Pcopy: B = B ∪ {n′}
and Pcopy = Pcopy \ Pn′ .

Step 3. The output B is a feasible solution with the set of
nodes where the IDS must be enabled to achieve a
coverage of at least Pmin.

IV. THE JOINT CONTROLLER PLACEMENT AND IDSS
ENABLEMENT (JCPIE) PROBLEM

A fundamental objective of a cybersecurity framework is to
rapidly react to cyber-attacks. In our case, this is performed
with the aid of a reactive firewall implemented by the SDN
controller and the set of activated IDSs. The operation of the
firewall has 3 phases, as depicted in Fig. 2 (a) : (i) the attack
detection phase, where one or more IDSs detect an attack at
the network, (ii) the controller alerting phase, where the IDSs
inform the SDN controller about the attacks’ detection through
alert messages, and (iii) the black-listing of the malicious
nodes that the controller performs by sending flows’ setup
messages to the nodes of the network. As depicted in Fig.2
(b), the two main procedures of the firewall’s operation, the
Alerting and the Black-listing create significant delays:

• Dalerting , the alerting delay, is the time delay from the
moment when an enabled IDS on a node n (where an =
1) detects an attack, until the alert message sent by this
IDS arrives at the SDN controller, denoted as node c
(where cn = 1).

• Dblack−listing, the black-listing delay, is the time delay
from the point in time when the controller receives the
alert message, until all nodes in the network receive the
flow setup message sent by the controller for black-listing
the malicious node.

The attack mitigation delay Dmitigation is the sum of the alert-
ing and black-listing delays, i.e. Dmitigation = Dalerting +
Dblack−listing. This sum captures the critical interplay be-
tween IDSs and controller placement. Specifically, the alerting
delay Dalerting is impacted by the positioning of IDSs as it is
contingent on the propagation time of an alert from an IDS to
the SDN controller. Also, the black-listing delay Dblack−listing
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Fig. 2: (a): The three phases of reactive firewall operation of the
considered scenario: 1) Attack detection (red arrows: the attack flows
pass through the IDSs), 2) Controller alerting (blue arrows: the IDSs
send alert messages to the controller) and 3) Black-listing flows setup
(green arrows: the controller sends messages to all nodes informing
them about which flows are attack flows), (b): The mitigation delay
Dmitigation components, Dalerting and Dblack−listing .

is affected by the placement of the SDN controller. So, in order
to minimize mitigation delay, a joint consideration of both IDS
and controller placement is needed.

We define an average latency τ̄ per hop in the network, and
the distance between any two nodes n and n′ in number of
hops to be d(n, n′). Then we can express Dalerting as follows:

Dalerting =
∑

n,n′∈N
an · cn′ · τ̄ · d(n, n′), (2)

where, the delay Dalerting is computed for each pair of nodes
(n, n′) in the network. The term an · cn′ serves as a condition
that the delay is only accounted for when node n has an IDS
enabled (an = 1), and node n′ is the controller node (cn′ = 1).
Further, it is

Dblack−listing =
∑

n,n′∈N
cn · (1− cn′) · τ̄ · d(n, n′), (3)

Similar to the alerting delay, this formula sums up the delays
between each pair of nodes (n, n′) in the network. The term
cn · (1 − cn′) is a condition that signifies the delay is only
accounted for when node n is the controller (cn = 1) and
node n′ is any other node except the controller (cn′ = 0).

We define the Joint Controller Placement and IDS En-
ablement (JCPIE) problem as the problem of placing attack
monitoring modules (e.g. IDSs) and a single SDN controller
so as to minimize the attack mitigation delay of the reactive
firewall Dmitigation over the mitigation delays of all IDS-
enabled node-controller pairs subject to a budget B of IDS-
enabled nodes. The problem can be formulated as follows:

min
cn,an∀n

1∑
n∈N an

Dmitigation

s.t.
∑
n∈N

an ≤ B∑
n∈N

cn = 1∑
n∈N

wn · cn ≥ wmax∑
i∈P maxn∈N (an · pin)

|P|
≥ Pmin

cn ≤ in n ∈ N
cn ∈ {0, 1} n ∈ N
an ∈ {0, 1} n ∈ N

(4)

The solution to the JCPIE problem as described has two
outputs: i) a singleton subset Nc that identifies the selected
SDN controller, and ii) a policy represented as a binary vector
(a1, ..., aN ), where elements that are equal to 1 indicate nodes
where IDSs are placed. These decisions adhere to several
constraints. Firstly, the total count of IDS-enabled nodes must
not exceed the given budget, B. Secondly, there must be a
single SDN controller in the network, which must be the
node with the highest weight. This is guaranteed by the
constraint

∑
n∈N wn · cn ≥ wmax, reflecting the controller’s

crucial role. Importantly, the controller node, due to its high
weight, must also be under IDS surveillance, denoted by the
constraint cn ≤ in. Lastly, the percentage of IDSs coverage
over the paths of the considered MANET, represented as∑

i∈P maxn∈N (an·pin)

|P| , must meet or exceed the minimum
required attack path coverage, Pmin, which is captured by
the last constraint.

V. CENTRALIZED SOLUTION APPROACHES
FOR THE JCPIE PROBLEM

In this section, we propose centralized solution approaches
to tackle the JCPIE problem. The use of SDN allows for
greater flexibility and centralized control, enhancing the ability
to place and enable IDS instances across the network. The
controller has a global view of the network, and thus it collects
necessary information from the network, it decides on the
IDS placement, and it returns commands to the appropriate
network nodes to activate their IDSs. Two distinct approaches
are proposed in this work - the Weighted Greedy Heuristic
(WGH) and the Simulated Annealing (SA) algorithms. The
SDN controller executes the algorithms periodically, with the
period reflecting the network’s mobility dynamics.



A. Weighted Greedy Heuristic Algorithm

First, we propose a two-stage WGH algorithm, which is
a scalable approach and ideal for dynamic networks like
MANETs. This algorithm leverages the inherent simplicity of
greedy methods to reduce the attack mitigation delay of the
reactive firewall. The algorithm consists of two stages: 1) SDN
controller placement and 2) IDS enablement.

Stage 1: SDN Controller Placement
The first stage of the algorithm focuses on finding a good

location for the SDN controller, based on minimizing the
delay from the SDN controller node to other nodes. It has
the following steps:

Step 1. Each node n in the network periodically exchanges
messages with all other nodes n′ to measure the
average delay d(n, n′). Once the measurements are
collected by all nodes, each node then sends the values
of these delays to the current SDN controller.

Step 2. Initialize an empty set C to hold the candidate nodes
for the SDN controller.

Step 3. For each node n ∈ N , calculate the total sum of
average delays to all other nodes n′, τ̄ · d(n, n′).

Step 4. Determine the node n with the minimum sum of
delays, set as n∗ = argminn∈N τ̄ ·

∑
n′ d(n, n′). Mark

this node as the SDN controller by setting cn = 1 and
assign the SDN controller a higher weight than the
other nodes. And the remaining nodes are assigned a
lower weight, equal for all of them. These weights are
assigned before the algorithm runs.

Stage 2: IDS Enablement
The second stage of the algorithm solves the IDS enable-

ment problem that reduces Dmitigation while staying within
budget B that is the required number of nodes so as to support
the IDS operation in order to ensure a minimum attack path
coverage percentage Pmin of network paths by the IDSs’
monitoring.

Step 1. Start with an empty set Ni for nodes with enabled
IDS.

Step 2. While the budget B is not exceeded, perform the
following:
Step 2.1 For each node n ∈ N \ Ni, calculate

the potential reduction in mitigation delay
∆Dmitigation if the IDS is enabled on node
n.

Step 2.2 Select the node n′ that leads to the highest
possible product of node weight and reduc-
tion in Dmitigation.

Step 2.3 If by enabling the IDS on node n′, the
budget B is not exceeded, then update Ni =
Ni ∪ {n′}, and set an′ = 1.

Step 2.4 Compare the current attack traffic path cov-
erage to the minimum requirement Pmin. If
coverage has not reached the Pmin, continue
to the next iteration.

Step 2.5 Terminate the algorithm if B is exceeded or
if the coverage requirement Pmin is satis-
fied.

The solution to the WGH algorithm gives the location of the
SDN controller and the IDS enablement policy. The algorithm
is executed periodically through the SDN controller, which
collects network topology data, constraints, and requirements.
In MANETs the controller node may change, necessitating a
state transfer from the old controller to the new. An alterna-
tive, Simulated Annealing algorithm-based approach, which
mitigates issues with execution run-time, especially for large
number of nodes, is discussed next.

B. Simulated Annealing Algorithm

The SA algorithm provides a more scalable solution to the
JCPIE problem compared to the WGH one due to its ability to
explore a larger solution space through the iterative refinement
of temporary suboptimal solutions, facilitating enhanced opti-
mization especially in larger networks. The SA algorithm [14]
is a stochastic optimization technique that draws inspiration
from the annealing process in metallurgy, where a material
is slowly cooled to minimize its defects, thus achieving an
optimal state. The SA algorithm works as follows:

Step 1. Start by assigning initial values to the temperature
parameter T and the cooling rate parameter α. In
the SA context, temperature T is a tunable parameter
that controls the acceptance of solutions that do not
minimize immediately the mitigation delay.

Step 2. Start with an initial solution where IDS nodes are
randomly placed in the network, not exceeding budget
B and ensuring Pmin, including a randomly selected
controller node.

Step 3. Repeat the following process until T ≤ 1:
Step 3.1 Generate a new candidate solution by ran-

domly relocating an IDS node, ensuring that
it does not violate the budget B and the
minimum attack path coverage constraints.

Step 3.2 Compute mitigation delay Dmitigation for
the new solution.

Step 3.3 If the new solution improves the mitiga-
tion delay, then accept it. Otherwise, ac-
cept it with a probability P (accept) =

exp
(
−∆Dmitigation

T

)
. This cooling sched-

ule, based on the concept of temperature
in simulated annealing, allows acceptance of
suboptimal solutions to avoid local optima.

Step 3.4 Update the temperature T using the cooling
rate α via T = T (1 − α). The process of
gradually reducing T simulates the cooling
phase in the annealing process, allowing
the algorithm to eventually focus on the
exploration around a good solution [14].

Step 4. Finally, return the solution that resulted in the lowest
Dmitigation during the search.



The acceptance probability function at the SA algorithm’s
step 3.3 is based on the Boltzmann distribution [14], which is
fundamental to the simulated annealing process, allowing oc-
casional acceptance of worse solutions to avoid local optima.
Also, the stopping criterion of T ≤ 1, was chosen as it strikes
a balance between achieving a sufficient number of algorithm
iterations for exploring the solution space and ensuring com-
putational efficiency, as determined through empirical testing
that we performed.

The SA algorithm offers several advantages over the WGH
algorithm. It is capable of finding good solutions in larger
solution spaces, which is essential for larger networks, by
avoiding getting trapped in local optima. Also, due to its
stochastic nature, the SA algorithm is faster and can be
parallelized, leading to further speed up in the optimization
process. Nevertheless, the SA algorithm’s performance can be
optimized by carefully tuning its hyperparameters, particularly
the initial temperature T and the cooling rate α, so as to enable
a wider solution space exploration and more iterations for
convergence, respectively. This is particularly useful in larger,
more complex networks.

VI. EVALUATION

A. Evaluation setup

To evaluate the solutions to our proposed JCPIE problem,
we developed a custom Python-based MANET simulator
which we make available on GitHub [15]. The simulator
allows user-defined network topology parameters such as the
number of nodes and their mobility mode. Also it can execute
mobility scenarios using Network Simulator (NS) movement
files that contain coordinates representing nodes’ movements.
We consider three performance metrics:

i. average attack mitigation delay,
ii. average attack path coverage percentage, and

iii. average run-time of the algorithms.
All of these metrics are averaged over 50 mobility frames
where the MANET topology changes. Networks ranging from
5 to 18 nodes are evaluated under two mobility scenarios:

i. An artificial mobility scenario, where nodes move ran-
domly across a 1000 x 1000 m2 area, with varying speeds
and directions in each frame. This scenario serves to
stress-test the algorithms’ adaptability to rapid network
topology changes within each execution cycle.

ii. A real mobility scenario based on the Anglova [13]
tactical scenario during engagement phase, where nodes
split into small teams moving randomly in the terrain.
This scenario provides varying network topologies that
mirror real-world conditions, allowing us to evaluate the
algorithms’ potential performance in actual operational
environments.

We evaluated our proposed WGH and SA algorithms, using
a 2-minutes execution cycle at the SDN controller node. The
execution period is set in the order of minutes, tuned to the
medium-speed nodes’ movement of the considered scenarios,
thus striking a balance between adaptivity to network topology

changes and computational efficiency. Performance compar-
isons were made against two benchmark static solutions:

i. All IDSs Enabled, i.e. all nodes operating an IDS service.
ii. Random IDSs Enabled, i.e. we arbitrarily enable IDSs on

80% of nodes, chosen uniformly at random, with each
node having an equal chance of selection.

B. Performance Evaluation Results

Our evaluation results illustrate the average attack mitigation
delay of the firewall (Fig.3 (a).1, (b).1), the average attack
path coverage percentage by the IDSs’ surveillance (Fig. 3
(a).2, (b).2), and the proposed algorithms’ execution run-time
(Fig. 4) for each scenario. In all scenarios, the proposed
WGH and SA algorithms consistently outperform the solution
where a random subset of 80% of the nodes have IDS
enabled. Also, the random IDS activation solution fails to
achieve the 80% attack coverage threshold in any of the
evaluated scenarios, with its performance ranging between
65% and 71% attack path coverage across all scenarios. Our
proposed algorithms consistently maintain a value of attack
path coverage by the IDSs which is above the 80% threshold
across all paths, surpassing the 95% attack path coverage
on average, and performing much better than the Random
IDSs Enabled approach. Additionally, both the WGH and SA
algorithms perform better than the All IDSs Enabled static
solution approach in terms of average mitigation delay reduce.
As expected, the dynamic algorithms excel in attack mitigation
delay reduction, unlike the All IDSs Enabled solution which
focuses solely on achieving full network paths coverage by
the IDSs.

1) Lessons learned and key insights:
• Our proposed SA and WGH algorithms outperform both

the compared solution approaches (All IDSs Enabled and
Random IDSs Enabled) in terms of both the reduce of
attack mitigation delay, while keeping a path coverage
higher than the threshold in almost all scenarios. This
demonstrates their ability to adapt efficiently to network
changes, while improving the reactive firewall’s response
time.

• The WGH algorithm consistently outperforms all bench-
mark solution approaches in terms of attack mitigation
delay of the reactive firewall in the artificial mobility
scenario. However, in the Anglova scenario, the SA
algorithm slightly outperforms the WGH one by 250
msec on average in terms of attack mitigation delay across
all scenarios. This improvement is likely due to the SA’s
probabilistic nature, which allows it to explore a wider
range of potential solutions and thereby better adapt to
network dynamics.

• The WGH algorithm achieves almost 100% coverage over
the network paths at all scenarios (Fig. 3 (a).2, (b).2).
In contrast, the SA algorithm achieves slightly lower
coverage by 7% than the WGH algorithm’s achieved one.

• The SA algorithm is faster in terms of execution run-
time than WGH, which is a crucial attribute for real
implementations of the firewall.
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Fig. 3: (a) Artificial random mobility: a.1) Average attack mitigation delay (in sec) for different IDS placement approaches and different
network sizes. a.2) Average attack path coverage (%) by IDSs for different IDS placement approaches and different network sizes. (b)
Anglova scenario mobility: b.1) Average mitigation delay (in sec) and b.2) Average attack path coverage (%) by IDSs, both for different
IDS placement approaches and different network sizes.
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Fig. 4: A comparison between the WGH (red, blue and purple bars)
and SA algorithms (green, yellow and cyan bars) algorithms regarding
their average execution run-time (in sec) per mobility scenario
evaluated in 4 network sizes (5, 9, 12 and 18 nodes).

VII. CONCLUSION AND FUTURE WORK

In this work, we addressed the joint problem of the place-
ment of IDSs and of an SDN controller in SDN MANETs so
as to reduce attack mitigation delay of the deployed reactive
firewall (i.e., comprised by IDSs and controller) in dynamic
and resource-limited environments, like tactical networks. We
proposed two algorithms - a greedy one, and one based
on Simulated Annealing. Both algorithms ensure a certain
required attack path coverage while outperforming two other
standard IDS-enabled solutions in the evaluation metrics. Ad-
ditionally, the SA approach gives better run-time performance
than the greedy one. However, our algorithms currently face
scalability issues. As the network size expands, we note a
corresponding increase in both attack mitigation delay and ex-
ecution run-time, a trend confirmed by our evaluation results,
highlighting areas for future improvements.

In our pursuit of scalable solutions, we intend to explore
the potentials of a decentralized approach in the next phase of
our research. This approach stands to significantly diminish
computational load and time complexities which currently ex-
hibit linear or superlinear growth with increasing network size.

Utilizing decentralized algorithms, we anticipate leveraging
localized information, thereby expediting responses and adap-
tations to dynamic network conditions. This direction aims to
enhance the scalability of our security solutions, fostering a
robust defense mechanism that maintains its efficiency even
as network size expands significantly.
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