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Abstract— Although TCP and UDP application performance
over wireless links may be substantially improved via link layer
error recovery, different schemes are appropriate for each appli-
cation class. We present a multi-service link layer architecture that
simultaneously enhances the performance of diverse applications
by supporting multiple error recovery mechanisms in parallel. We
simulated concurrent file transfers and WWW browsing over TCP
and continuous media distribution over UDP using our architec-
ture. The results show that each application achieves similar im-
provements as when it operates alone over its preferred scheme,
despite the parallel execution of diverse applications.

I. I NTRODUCTION

The growth of the Internet is only paralleled by the growth
in wireless communications, especially in the areas ofCellular
TelephonyandWireless Local Area Networks(WLANs). While
the popularity of such wireless systems makes their integra-
tion into the Internet desirable, higher layers make assumptions
about link performance that cannot be met by wireless links,
which are slower and less reliable than wired ones. Thus, al-
though supporting IP over such links is easy, the resulting per-
formance is poor [1].

While UDP performance over wireless links has not been ex-
tensively studied, considerable work has been devoted to TCP.
Most TCP enhancements try to avoid triggering congestion re-
covery due to wireless errors. One approach is tosplit TCP
connections into a wireless and a wired part [2], so as to per-
form recovery over the wireless part only. Other schemesfreeze
TCP state when persistent errors are detected [3], so as to avoid
invoking congestion control.

Alternatively, error recovery can be performed locally at the
link layer, as in CellularRadio Link Protocols(RLPs) [4]. RLPs
use a single scheme which may be inappropriate for some traf-
fic and they may interfere with TCP [5], leading to conflicting
TCP and link layer retransmissions. Another local approach is
to snoopinside TCP streams at the wireless base station so as to
transparently retransmit lost segments when duplicate ACKs ar-
rive [6]. This fails with IP security which hides the TCP header.

We have previously studied the performance of file transfer
over TCP and continuous media distribution over UDP with
various link layer schemes [7]. Our results showed that both
TCP and UDP performance can be considerably improved,
but that each application class preferred different approaches.
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Fig. 1. Multi-service link layer architecture

While TCP applications favored mostly reliable error recovery,
the delay sensitive UDP application favored less reliable but
lower delay solutions.

We present below a multi-service link layer approach for im-
proving the application performance over wireless links. Sec-
tion II presents our multi-service link layer architecture. Sec-
tion III describes our simulation setup. We then discuss the
performance of three applications executing in parallel: Sec-
tion IV covers file transfer, Section V covers World Wide Web
browsing and Section VI covers continuous media distribution.
Section VII summarizes our conclusions.

II. M ULTI -SERVICE L INK LAYER ARCHITECTURE

In order to support diverse Internet applications we have de-
signed amulti-service link layerarchitecture supporting multi-
ple enhancement services over a single physical link. With one
service per transport protocol we would have to bundle together
different applications, while with one service per application
we would have to provide too many services. We therefore used
one service perapplication class, that is, a group of applications
with similar requirements. All TCP applications belong to the
same class, as TCP fully controls their network behavior. For
UDP applications, requirements may vary widely. Continuous
media distribution belongs to an error tolerant delay sensitive
class.

Fig. 1 outlines our multi-service architecture, showing data
flow in one direction. Network layer packets are passed to ser-
vices based on their application class. Since higher layers are
unaware of the multi-service concept, a classifier is used for
this task. A heuristic classification scheme is to check the IP
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Fig. 2. Self clocked fair queueing scheduler

protocol field to distinguish between TCP and UDP, and the
TCP/UDPport field to detect applications [7]. When theDif-
ferentiated Servicesarchitecture [8] is used, we can exploit the
IP DS field, which is visible even with IP security, unlike the
protocol and port fields. Packets that cannot be matched to any
service are mapped to a default service providing no error re-
covery. Services can use any mechanisms they desire and their
parameters may be optimized for the underlying wireless link.

All services eventually pass their outgoing frames to the
scheduler, which tags each frame with a service number and
passes it to the MAC sublayer for transmission. At the re-
ceiver, frames are passed by the MAC sublayer to a demulti-
plexer which distributes them to services based on their tags.
The services may eventually release packets to the multiplexer
which passes them to the network layer. Thus, the peer ser-
vices communicate overvirtual links, multiplexed over a single
physical link. New services may be added by simply inserting a
module at both ends of the link. Services have single entry and
exit points, thus allowing existing link layer code to be used
without modifications.

Since services may inflate their data streams with arbitrary
error recovery overhead, we have introduced a frame scheduler
to ensure that the link will beimpartially shared. Impartial-
ity means that each service should receive the same amount of
bandwidth as in a single service system. Assume that over a
period of time the classifier allocatesai bytes of traffic to ser-
vice i. With a single service, all these data would be trans-
mitted over that period, thus servicei would receive a fraction
fi = ai/

∑n
j=1 aj of the total bandwidth. The multi-service

system is impartial if it allocates this exact fractionfi to ser-
vicei. A service performing no error recovery will get the same
data bandwidth as with a single service. An error recovery ser-
vice will have to split this bandwidth between its data and its
overhead.

Impartiality is achieved by aSelf Clocked Fair Queueing
(SCFQ) scheduler [9], which enforces the desired bandwidth
allocations when the link is loaded. When a service is idle,
its bandwidth is proportionately shared among the rest. Fig. 2
gives an outline of the scheduler. The rate table holds the band-
width fraction allocated to each service. The scheduler main-
tains avirtual time, initially 0, which is equal to thetime stamp
of the last packet transmitted. Frames submitted to the sched-
uler are kept in separate FIFO queues per service. To determine
the time stamp of an incoming packet, we divide its size by its
service rate and add it to the time stamp of the previous frame in
its queue. If the queue is empty, we add it to the current virtual
time. When the link is idle, the frame with thelowestvirtual
time is dequeued, the virtual time is updated and the frame is
transmitted.
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Fig. 3. Simulation topologies

Since the time stamps in each queue are increasing, the
scheduler keeps all queues in a sortedheap, based on their first
frame, thus allowing immediate selection of the next frame to
send. The heap is always sorted when a frame is removed for
transmission. If the queue becomes empty, it is removed from
the heap. When an empty queue receives a new frame, it is
added back to the heap and the heap is sorted. Therefore, each
frame requires a few operations to calculate its time stamp and
O(log2 n) operations (forn services) to sort the heap once or
twice. A simple method to set the service rates is to measure the
traffic allocated to each service by the classifier over a period of
time, dynamically calculate thefi fractions and use them as
service rates. If a higher layer scheduler is used, the frames
will already be scheduled as desired. Therefore, this scheme
transparently preserves higher layer scheduling decisions.

III. S IMULATION SETUP

In order to evaluate our architecture we performed exten-
sive tests using the ns-2 simulator [10], extended with addi-
tional wireless error modules, link layer schemes and applica-
tion models. We repeated each experiment 30 times, using the
random seeds embedded in ns-2. The results shown below rep-
resent averages from all runs.HSCSDlinks simulate theHigh
Speed Circuit Switched Dataservice of GSM, which bundles
multiple circuit switched links to increase bandwidth. We used
a bandwidth of 86.4 Kbps with 100 byte frames. To randomize
losses, bit interleaving is used, simulated by a 100 ms delay, so
we used independent frame losses at rates of 1%, 2%, 5% and
10%.

WLAN links simulate an IEEE 802.11b system with 5 Mbps
of bandwidth and a 3 ms delay, using 1000 byte frames. WLAN
links are treated as full-duplex for simplicity. To allow compar-
isons with other studies, WLAN links corrupt bits at exponen-
tially distributed intervals with average durations of214, 215,
216 or 217 bits [6], leading to frame loss rates of 0.8%, 1.5%,
3% and 5.9%, respectively. We also ran experiments under error
free conditions for reference. We ignored higher layer headers
as they uniformly influence all schemes, but accounted for the
exactframing overhead required by each link layer scheme.

We simulated two topologies, shown in Fig. 3. In the two
wireless link topology (solid frame) wireless host A (WH A)
communicates with wireless host B (WH B), simulating peer-
to-peer communication. Both wireless links are of the same
type. In the one wireless link topology (dotted frame), base
station A (BS A) communicates with WH B, via base station
B (BS B). Most data flows from BS A to WH B, simulating
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client-server communication. For WLAN tests the wired link
was a 10 Mbps LAN with 1 ms delay. For HSCSD tests it was
a 2 Mbps WAN with 50 ms delay.

We simulated two TCP applications and one UDP applica-
tion in parallel operation, with different link layer schemes
for each application class. For TCP, we simulated file trans-
fer and World Wide Web (WWW) browsing, over TCP Reno
with 500 ms timers. For UDP, we simulated continuous media
distribution, a delay sensitive error tolerant application. All ap-
plications used the same path, with the TCP servers and UDP
sender at one end and the TCP clients and UDP receiver at the
other. All applications started together and the test ended when
the file transfer ended.

We used the link layer schemes that were found to be most ef-
fective for TCP and UDP in single application experiments [7],
offering one TCP and one UDP service. The classifier assigned
packets to services based on their IP DS fields [8] which were
set by the applications. File transfer and WWW browsing traffic
used thesameservice. The rate table for the scheduler was set
statically so that the UDP application was guaranteed itspeak
bandwidth,beforeadding link layer overhead. Since continu-
ous media distribution was not constantly active, the average
bandwidth available for TCP was higher than implied by its
rate.

We first simulated aRaw Linkscheme, which does not per-
form any error recovery, but with distinct services for TCP
and UDP. The other experiments combine three TCP oriented
schemes with one UDP oriented scheme. For TCP we tested re-
liable schemes that deliver frames in sequence to avoid trigger-
ing TCP retransmissions. InSelective Repeatthe sender buffers
outgoing frames and retransmits unacknowledged frames after
a timeout. The receiver acknowledges frames received in se-
quence, buffers out of sequence frames and returnsnegative
ACKs (NACKs) for each gap, allowing the sender to retrans-
mit only lost frames. The variant used allows multiple NACKs
per loss [11]. Each frame includes sequence and ACK numbers
(2 bytes).

To avoid conflicts with TCP retransmissions, the sender in
Karn’s RLPabandons frames after 3 retransmissions [4]. Thus,
the sender never stalls, indefinitely retransmitting the same
frame. In this scheme only NACK andkeepalivemessages dur-
ing idle periods are needed, thus frames only include a sequence
number (1 byte).Berkeley Snoopis a TCP aware scheme [6].
The wireless base stationsnoopsinside TCP segments, buffer-
ing data sent to the wireless host. If duplicate TCP ACKs indi-
cate a loss, the packet is retransmitted by the base station and
the ACKs are suppressed. Snoop does not incur any link layer
header overhead.

Continuous media distribution prefers low delay over full re-
liability. While in sequence delivery is critical for TCP, it is
useless for this playback application. We thus tested this appli-
cation over ourOut of Sequence(OOS) variant of Karn’s RLP,
which immediately releases all received frames to higher lay-
ers, with up to 1 retransmission per loss [7]. With OOS RLP,
when a frame is lost subsequently received frames are not de-
layed waiting for the lost one.
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Fig. 4. FTP throughput, one HSCSD link

IV. F ILE TRANSFER

The first TCP application simulated was file transfer over
FTP. We sent a large file from a wireless or wired server to a
wireless client (see Section III). The file sizes were 10 MBytes
for HSCSD and 100 MBytes for WLAN experiments, large
enough to provide stable results but small enough to complete
within a reasonable period. When the file transfer completed,
the simulation ended forall applications. FTP sends data as
fast as possible, with TCP in complete control of flow and con-
gestion control. We measured application throughput, defined
as the amount ofapplicationdata transferred divided by total
time. Retransmissions areexcludedfrom this metric as they
signify overhead.

Fig. 4 presents file transfer throughput in the one HSCSD
link scenario, showing for each curve the scheme used for TCP
(in parentheses, the scheme used for UDP). The throughput
curves are similar to those of single application experiments,
but with lower average throughput due to contention with the
other applications. All schemes provide considerable improve-
ments over Raw Link, with Karn’s RLP lagging behind Selec-
tive Repeat. Berkeley Snoop performs best, except at the high-
est loss rate, due to its lower overhead, an important factor for
low bandwidth links. Its performance improvement relative to
the other schemes with increasing loss rates is due to a cor-
responding performance drop with WWW browsing (see Sec-
tion V).

Fig. 5 shows the corresponding results for the two WLAN
link scenario, where Selective Repeat is again ahead of Karn’s
RLP. The crucial change from the previous case is that Berke-
ley Snoop performs only slightly better than Raw Link. This
phenomenon, also evident in single application tests, appears in
this topology because Berkeley Snoop only performs retrans-
missions from the base station. As a result, local recovery is
performed over one wireless link in the path only, with losses
over the other one handled by TCP.

Overall, our file transfer throughput results are similar to
those of single application tests. Selective Repeat and Karn’s
RLP provide considerable gains regardless of the underlying
wireless link and topology. Berkeley Snoop works well only
in single wireless link topologies, with data transfers from the
wired towards the wireless host. The changes from single ap-
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Fig. 5. FTP throughput, two WLAN links
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Fig. 6. HTTP throughput, one HSCSD link

plication tests are the lower throughput and the performance
gains of Berkeley Snoop with higher losses due to lower WWW
browsing performance.

V. WORLD WIDE WEB BROWSING

The second TCP application simulated was World Wide Web
(WWW) browsing over HTTP. A WWW client accessespages
containing text, links and embedded objects, from a WWW
server. The interaction consists of transactions: the client re-
quests a page, the server returns it, the client requests each em-
bedded object, and the server returns them. The ns-2 HTTP
module uses empirical distributions to draw request, page and
embedded object sizes and the number of embedded objects per
page [12].

WWW browsing was simulated between a wired or wireless
server and a wireless client (see Section III) until the simulta-
neous file transfer completed. We measured WWW browsing
throughput, defined as the amount ofapplication data trans-
ferred from the server to the client divided by total time. Client
requests are reflected in WWW browsing throughput by intro-
ducing delays between data transfers. The HTTP module of
ns-2 provided measurements only at the end of each transaction,
thus the performance metrics forall applications were calcu-
lated at the end of the last completed WWW transaction within

0

100

200

300

400

500

600

700

800

0 0.8 1.5 3 5.9

T
hr

ou
gh

pu
t (

K
bp

s)

Frame loss rate (%)

TCP: Raw Link (UDP: Raw Link)
TCP: Selective Repeat (UDP: OOS RLP)

TCP: Karn’s RLP (UDP: OOS RLP)
TCP: Berkeley Snoop (UDP: OOS RLP)

Fig. 7. HTTP throughput, two WLAN links

the simulation period. Only one transaction was in progress at
any time.

Fig. 6 presents WWW browsing throughput in the one
HSCSD link scenario. Selective Repeat provides the best per-
formance, followed by Karn’s RLP. In contrast to FTP tests,
Berkeley Snoop lags behind both due to its topological limita-
tions, even though its lower overhead is critical for low band-
width links. While most data flows in the wired to wireless
direction, client requests in the reverse direction are critical for
performance. Berkeley Snoop cannot retransmit both client and
server data, thus it cannot optimize WWW browsing perfor-
mance. The resulting drop in WWW browsing throughput ex-
plains why file transfer throughput increased with higher loss
rates in this scenario.

Fig 7 shows WWW browsing throughput in the two WLAN
link scenario. The relative performance of most schemes is
very similar to the previous case, with Selective Repeat ahead
of Karn’s RLP. However, Berkeley Snoop is only marginally
better than Raw Link, since it cannot retransmit client data over
one wireless link and server data over the other, thus resorting to
TCP in both directions. The relative performance of all schemes
is quite similar to the corresponding file transfer throughput re-
sults.

Overall, our WWW browsing throughput results are similar
to those of single application tests. Both TCP unaware schemes
offer considerable throughput improvements regardless of the
underlying wireless link and topology. The short bidirectional
transfers of WWW browsing differentiate it from the unidirec-
tional file transfers, showing that FTP is unable to capture the
behavior of interactive applications. This is clearly demon-
strated by the performance problems of Berkeley Snoop with
WWW browsing.

VI. CONTINUOUS MEDIA DISTRIBUTION

The UDP application simulated was continuous media distri-
bution, where a single speaker sends audio, and possibly video,
to a wireless client. The speaker alternates betweentalking
andsilent states with exponential durations, averaging 1 s and
1.35 s, respectively. When talking, the speaker transmits data
at a Constant Bit Rate(CBR) of 14.4 Kbps for HSCSD and
1 Mbps for WLAN. The rate tables in each multi-service link
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guaranteed this bandwidth to the UDP service, to reduce con-
tention with the TCP service. Since the UDP application is ac-
tive only 42.5% of the time, the average bandwidth available for
TCP was 80.3 Kbps in HSCSD tests and 4.575 Mbps in WLAN
tests.

We assumed that the UDP application used an error recov-
ery mechanism to tolerate some congestion induced losses and
that received packets were buffered up to aplayback pointfor
smooth playback. To characterize application performance we
measured theresidualloss rate at the receiver after link layer re-
covery. Since packets missing the playback point are dropped,
we also calculated a delay metric coveringmostpackets. We
used mean packet delay plus twice its standard deviation to ac-
count for delay variance. Fig. 8 shows residual loss in the one
HSCSD link scenario. Each curve indicates the scheme used
for UDP (in parentheses, the scheme used for TCP). Residual
loss was exactly the same as in single application experiments,
since the schemes used operate in the exact same manner.

Delay for the one HSCSD link scenario is shown in Fig. 9.
Since the link only transmits a single frame at any time, with
any non-preemptive scheduler contention between TCP and
UDP will increase delay for both. The scheduler allocates suf-
ficient bandwidth for the UDP application though, thus it suf-
fers only a modest delay increase. The differences between the
OOS RLP curves are explained by the aggregate TCP perfor-
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mance provided by the corresponding TCP scheme. With Raw
Link delay dropswith increasing loss rates, as TCP through-
put drops dramatically. Delay in the two HSCSD link scenario,
shown in Fig. 10, is similar to that in the previous case. The
exception is Berkeley Snoop, since in this scenario its perfor-
mance for both TCP applications lags behind Selective Repeat
and Karn’s RLP, leading to the smallest delay increase for UDP.

Overall, our continuous media distribution results indicate
that while loss rates are identical to single application experi-
ments, the contention between TCP and UDP leads to a delay
increase for UDP traffic. Since part of the delay increase is due
to the retransmissions of OOS RLP, it seems that the scheduler
manages to maintain delay at acceptable levels, without pre-
venting the TCP applications from exploiting as much band-
width as possible.

VII. C ONCLUSIONS

We presented a multi-service link layer architecture that at-
tempts to enhance the performance of diverse applications by
supporting multiple error recovery schemes in parallel. Our re-
sults extend our previous work [7] by testing WWW brows-
ing along with file transfer and continuous media distribution.
Based on these results we can draw some conclusions regarding
the multi-service link layer architecture.

First, application performance was similar to that of single
application tests with the same link layer scheme, thus the ar-
chitecture provides the performance gains of each individual
scheme. Second, the TCP unaware schemes improved both
file transfer and WWW browsing performance, thus there is
no need to provide separate services for different TCP applica-
tions. Third, the additional UDP delay due to contention with
TCP was kept low by the scheduler, thus the scheduler effec-
tively protects services from each other. Fourth, these gains
were achieved by the exact same schemes as in single applica-
tion tests, thus existing code can be used as is. Fifth, the best
performing schemes were transport layer unaware, thus our ar-
chitecture can provide enhanced performance without violating
protocol layering.
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