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Abstract—Wireless Community Networks (WCNs) are wide-area 
wireless networks whose nodes are owned and managed by 
volunteers. We focus on the provision of Internet access to mobile 
users through WCN-controlled wireless LAN access points (APs). 
We rely on reciprocity: a person participates in the WCN and 
provides ‘free’ Internet access to mobile users in order to enjoy 
the same benefit when mobile. Our reciprocity scheme is 
compatible with the distinctive structure of WCNs: it does not 
require registration with authorities, relying only on uncertified 
free identities (public-private key pairs).  Users sign digital 
receipts when they consume service. The receipts form a receipt 
graph, which is used as input to a reciprocity algorithm that 
identifies contributing users using network flow techniques. 
Simulations show that this algorithm can sustain reciprocal 
cooperation. We have implemented our algorithm to run on 
common APs. 

I. INTRODUCTION 

Wireless Community Networks (WCNs) are wide-area wire-
less networks whose nodes are owned and managed by volu-
nteers. WCNs include Seattle Wireless [1], NYCwireless [2], 
Consume (London, UK) [3], and the Athens Wireless Metro-
politan Network (Athens, Greece) [4]. WCNs offer various 
services to their participants and to the public. In this paper, we 
focus exclusively on the provision of Internet access to mobile 
users through WCN-controlled wireless LAN access points 
(WLAN APs). We want to stimulate participation in WCNs so 
that more WLAN APs become available. WLAN-enabled 
mobile phones are now on the market [5, 6], and WCNs could 
complement 3G networks in metropolitan areas. 

We will assume that all WCN-controlled WLAN APs are 
connected to metered DSL connections. This assumption does 
not hold true for many WCNs that bypass wired ISPs and 
interconnect their nodes with point-to-point wireless links. We 
anticipate, however, that—with a further drop in DSL prices—
our assumption will hold true for metropolitan WCNs. We will 
also assume that ISP contracts permit the not-for-profit sharing 
of DSL connections with nearby mobile users over a WLAN. 
Sharing-friendly ISPs exist today [7, 8]. 

Why should volunteers set up WLAN APs and share their 
metered connections with nearby mobile users? Altruism is one 
answer. However, we assume that there are not enough altruists 
to allow WCNs to rival 3G networks in citywide coverage, or 
to make WCNs robust to failures through redundancy. 

Instead of altruism, we rely on reciprocity. The idea is that 
a person participates in the WCN and provides free Internet 
access to mobile users—who also participate in the WCN—in 
order to enjoy the same benefit when mobile; mobile users who 
do not participate in the WCN are excluded from the service. 
We assume that a mobile user benefits when using a foreign 
WLAN/DSL connection for free, and that this benefit offsets 
the cost of allowing other mobile users to access his or her 
home WLAN/DSL connection. Our reciprocity scheme encou-
rages participants to have consumption–contribution ratios that 
are near 1:1. By consumption we refer to the volume of Internet 
traffic a mobile user transfers through foreign WLAN/DSL 
connections, and by contribution to the volume of Internet 
traffic the user relays for others through his or her home 
WLAN/DSL connection. In our scheme, individuals can also 
group in teams whose aggregate ratio is near 1:1. 

The reciprocity scheme that we will propose is compatible 
with the distinctive structure of WCNs. For example, we do not 
rely on authorities that punish or reward because WCNs rarely 
have a powerful centralized authority. Participants do not regi-
ster with a Trusted Third Party and are free to choose their own 
system identifiers (IDs). We do not restrict the rate of ID 
generation by requiring, for example, that IDs contain solutions 
to cryptographic puzzles. Participants may use an unlimited 
number of free (and unforgeable and unique) IDs. This impor-
tant requirement makes our reciprocity enforcement problem 
different from similar problems in the area of ad hoc networks 
where exactly one (unforgeable and unique) ID per node is 
assumed. Furthermore, we assume that participants can modify 
the modules that implement the reciprocity protocol and we do 
not rely on tamperproof hardware. We assume that participants 
do not know or trust most of the other participants, but also that 
participants can form teams with other participants that they do 
trust. Finally, two or more teams can collude. 

We will present the design, evaluation, and implementation 
of a protocol that encourages cooperation in WCNs and con-
forms to the requirements stated above. We call it Peer-to-Peer 
Wireless Network Confederation (P2PWNC) protocol. We 
have already presented a basic P2PWNC reciprocity algorithm 
[9] and have used evolutionary simulations to evaluate it [10]. 
Here we extend our previous results with (1) an improved 
collusion-proof reciprocity algorithm, (2) a centralized version 
of our scheme—with minimal demands on the center—that 
could be practical for certain WCNs, (3) comprehensive 
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simulation results for the performance of our algorithms in 
centralized and decentralized mode, (4) specification of our 
protocol, and (5) performance results from our implementation 
on the Linksys WRT54GS WLAN AP. 

A. Overview 
Our scheme works as follows. We assume that WCN 

participants divide into teams of a few tens of members each. 
Members of the same team must know and trust each other. 
Teams own and manage a number of APs (WLAN access 
points, connected to DSL lines) at locations throughout the 
city. We assume that aggregate team consumption rates are 
homogeneous. This is an important assumption that we will 
return to in Section VII. We gave the precise meaning of 
consumption and contribution before; we say now that a team 
consumes when one of its members uses an AP of another 
team, and contributes when a member of another team uses an 
AP of this team. The objective of our reciprocity protocol is to 
encourage teams to match their consumption with at least an 
equal amount of contribution. Free-riding teams that contribute 
much less than they consume will find it hard to obtain service. 
And only short-term history is important: teams must contri-
bute continuously in order to be able to consume continuously. 

Members sign digital receipts when they consume service 
from another team. The receipts form a receipt graph, which is 
used as input to a reciprocity algorithm that identifies 
contributing teams using network flow techniques. Simulations 
show that this algorithm can sustain reciprocal cooperation. 
Receipts are stored either in a central server, or they are 
distributed among multiple team servers with a gossiping pro-
tocol. Two (non-colluding) teams never exchange information 
over the Internet: team servers are not accessible to outsiders. 
Different teams interact only when a member is physically 
close to the AP of another team and requests its services. We 
will show that gossiping is beneficial then to both teams. 

The receipt graph may contain fake receipts—the result of 
collusion among two or more teams, or of a Sybil attack1. All 
member IDs and team IDs are unique public/private key pairs. 
We assume that it is computationally infeasible to break the 
digital signature scheme used to sign receipts and member 
certificates (member certificates are signed by the leader of 
each team). We do not rely on a Public Key Infrastructure and 
we do not assume that teams know the IDs of other teams. 

We use “peer-to-peer” in our protocol’s title; however, no 
searching for resources occurs. We assume that members, 
when mobile, try to access any AP that is close to their current 
location. Also, we assume that members, if granted access, will 
tunnel all their traffic to a trusted Internet gateway, so we are 
not concerned with the security of the wireless link or with APs 
that spy on foreign traffic. Our receipt generation protocol 
(Section IV-D) ensures that hijacking of the wireless session 
cannot occur. 

We wanted to design a reciprocity protocol that is simple to 
implement directly on WLAN APs. Our implementation (Se-
ction VI) that runs on the Linksys WRT54GS AP proves this.  

In our scheme, WCNs are meant to complement 3G 
networks in metropolitan areas. The growth of WLAN/DSL 

deployments makes our scheme relevant—at least as long as 
DSL rates remain lower than 3G rates. We support that our 
protocol is simple to implement and can achieve its basic goal, 
which is to stimulate participation in WCNs while respecting 
their open and self-organized nature. 

B. Organization of the Paper 
The remainder of this paper is organized as follows. Section 

II reviews and compares with related work. Section III 
specifies system models, including the trust model and the 
uncooperative behavior model, and presents the system entities 
involved. Section IV describes our reciprocity algorithm and 
communication protocols. Algorithm performance is evaluated 
via simulations in Section V. Section VI presents our reference 
implementation of the P2PWNC protocol on the Linux-based 
Linksys WRT54GS AP, along with measurements of its 
performance. We discuss several important issues in Section 
VII, where we also conclude the paper. 

II. RELATED WORK 

A. Distinctive Characteristics of our Approach 
The area of economics-informed design of peer-to-peer 

systems attracts a lot of research interest. Packet relaying in ad 
hoc networks is a standard example of a function that requires 
sustained cooperation among independent and selfish peers. At 
first, the Wireless Community Network context seems different 
only in two details: (1) there is only one intermediate relaying 
node (the WLAN AP), which is also connected to a fixed 
power supply and to the Internet; (2) the functions of provider 
and consumer are split:  APs are providing and mobile users 
are consuming. A P2PWNC “peer” is a distributed entity com-
prising APs and members that are all part of the same team. 

Two additional requirements, however, go beyond what is 
usually encountered in the literature. First, peers do not register 
with authorities and our peer (team) IDs are free; a peer may 
use multiple IDs if it is in its interest. This makes recognition 
difficult. We do not impose other artificial start-up costs on 
new IDs by requiring, for example, that IDs contain solutions 
to cryptographic puzzles. To bootstrap our reciprocity 
algorithm, we require some contribution from a new team/ID 
before this new ID can start consuming; therefore, IDs may be 
free, but new peers must contribute to the system first. Our 
bootstraps are designed to be relatively cheap, however, 
because they may have to happen often: since we rely only on 
short-term history, if a peer (team) stops participating for some 
time it will have to go through the equivalent of the bootstrap 
phase upon reappearing, irrespective of a change in ID. 

Second, we do not assume that it is incentive compatible to 
perform distributed accounting tasks. One standard use of 
accounting is to detect and punish free-riders. However, 
second-order free-riders [12] may not be willing to spend 
resources in detecting or punishing free-riders. The dilemma of 
second-order free-riders is: “why help others in punishing free-
riders and improving system performance when I can free-ride 
on the efforts of others that do that?” This is similar to the 
dilemma of free-riders: “why help others and improve system 
performance when I can free-ride on the efforts of others that 

1  Sybil attack [11]: the creation of multiple identities per real entity; a 
fundamental problem in open and self-organizing electronically mediated commu-
nities without identity-certifying authorities. Sybil attacks can invalidate any 
number of system assumptions and make collusion-based attacks much easier. 



 

do that?” We either need an accounting system to punish 
second-order free-riders (which may lead to third-order free-
riding, and so on), or all distributed accounting tasks must have 
an obvious and direct benefit to the peer that performs them. 
Also, “punishments” should be limited to refusals to cooperate. 

B. Literature Survey 

Catch [13], CONFIDANT [14], and CORE [15] are 
examples of incentive schemes for multi-hop wireless networks 
that assume nodes: (1) have exactly one ID, (2) do not collude, 
and (3) are willing to perform distributed accounting tasks 
(cooperating nodes also cooperate in punishing free-riders “for 
the good of the community”). Sprite [16], like our P2PWNC 
protocol, is a receipt-based protocol that assumes nodes can 
collude; however, unlike P2PWNC, it requires a powerful 
Credit Clearance Service that determines the real-world charge 
and credit to each node. Follow-on work [17] still relies on 
centralized clearing. The Nuglet approach [18] requires that 
nodes have tamper-resistant security modules, manufactured by 
a limited number of trusted manufacturers who also cross-
certify each other’s public keys. A formal model for 
cooperation in static multi-hop wireless networks based on 
game theory and graph theory is presented in [19]. Simulation 
results show that, in practice, the conditions for cooperation 
without incentives are virtually never satisfied, and that 
cooperation needs to be encouraged. 

Our reciprocity algorithm is a generalization of the algo-
rithm we presented in [9, 10], and an extension to the maxi-
mum-flow decision function presented by Feldman et al. [20] 
(itself inspired by older work on authentication metrics [21, 
22]). The context studied by [20] is similar to ours: there are no 
identity-certifying authorities, IDs are free, and collusion is 
possible. However, colluders in [20] are naïve; they only 
engage in false trading with each other and never contribute to 
anyone outside the colluding group. Our reciprocity algorithm 
is robust against less naïve colluders who may contribute to 
others outside their group. A follow-on work of [20] is [23], 
where the effect of free IDs on the cooperation strategies 
studied by Axelrod (Tit-for-Tat) [24] and Nowak and Sigmund 
(Image) [25] is analyzed. Their theoretical results confirm the 
result of Friedman and Resnick [26] that free IDs incur a social 
cost. Our experimental results in this paper also show this 
fundamental problem. 

The maximum-flow decision function [20] that we exten-
ded belongs to a class of cooperation strategies that rely on 
multi-way exchanges, a generalization of 2-way exchanges and 
a special (cyclical) case of indirect reciprocity [27]. Multi-way 
exchanges have been adopted as an incentive mechanism for 
file sharing [28], storage sharing [29], and in our own previous 
work [9, 10]. However, our algorithm in [9, 10] was simple: it 
did not consider receipt weights and it could not discourage 
peers that consumed more than they contributed if their con-
sumptions occurred in quick succession and at different peers. 

Earlier work on partially observable distributed graphs 
includes [30, 31]; reference [30] does not focus on incentive 
issues; reference [31] addresses the incentives of nodes: they 
store accounting information only if it is in their interest; 

however, reference [31] also assumes that nodes are simply 
willing to share their stored accounting data with others.  

Micropayment-based incentive techniques for peer-to-peer 
systems include PPay [32] and Karma [33]. PPay requires a 
central authority to generate currency and to check for double 
spending. Karma requires other peers to keep track of a peer’s 
account balance, and assumes that distributed accounting is 
incentive compatible. Also, Karma is susceptible to the Sybil 
attack: a peer can repeatedly join the system and obtain new 
start-up funds each time. The cryptographic puzzle that new 
entrants must solve limits only the rate of new ID generation. 

Reference [34] is a work with the same objective as ours 
(fuelling WLAN deployment), and focuses also on QoS. Wire-
less ISPs have multilateral roaming contracts and must register 
with a central authority that maintains reputation records, 
which are updated with QoS reports submitted by the roamers.  

Several problems faced by system designers who consider 
incentive issues in their designs are discussed in [35, 36]. 

III. SYSTEM MODELS AND DESIGN 
In this section, we specify the trust model and the uncoope-

rative behavior model for the Peer-to-Peer Wireless Network 
Confederation (P2PWNC) protocol, and describe the relevant 
P2PWNC entities. Detailed algorithms follow in Section IV. 

A. Entities and Trust Relationships 
We consider citywide Wireless Community Networks 

(WCNs) comprising tens of thousands of Wireless LAN access 
points (WLAN APs). Each AP is connected to an always-on 
metered DSL line. The APs and DSL lines are owned by 
different WCN participants. APs provide WLAN coverage to 
the publicly accessible areas that surround the households of 
their owners. We do not assume the existence of a WCN 
backbone with point-to-point wireless links. 

1) Teams: WCN participants divide into teams. The 
members of a team must know and trust each other so we 
anticipate that teams will be small, with a few tens of members. 
Team members may reside close to each other, but a team can 
also be distributed across the city. By team consumption we 
refer to the aggregate consumption of its members, meaning 
the aggregate volume of Internet traffic that its members, when 
mobile, transfer through APs that belong to other teams. We 
assume that—even  though  individual  consumption  rates  may 
vary—the aggregate team consumption rates are homogeneous.  

  The idea behind using teams—and enforcing reciprocity 
between teams and not individuals—is that individual WCN 
participants may reside in areas where there are not many 
mobile users to serve. Because our reciprocity algorithm 
encourages consumption–contribution ratios near 1:1, these 
participants would receive little value from our scheme. 
However, if we allow them to team with other participants who 
trust them and who contribute a lot, then a team as a whole 
could still maintain a consumption–contribution ratio near 1:1. 
We do not specify how members settle their different 
consumption and contribution rates within a team. Our protocol 
allows teams to monitor the consumption and contribution rates 



 

of their individual members; because there is no anonymity 
within a team and teams are small, we assume that teams will 
use social pressure or intra-team monetary transfers to balance 
their aggregate consumption-contribution ratio, aided also by 
careful selection of their members. In general, however, our 
scheme does pose problems for those who reside in neighbor-
hoods that are rarely visited by mobile users. 

A team requires a team founder. The role of the founder is 
to generate the team identifier, which is a unique public key 
whose corresponding private key is kept secret by the founder. 
The founder uses this private key to sign a member certificate 
for each team member. Each member certificate binds a unique 
member identifier (ID) to the team’s ID (public key). A 
member ID is also a unique public key, whose corresponding 
private key is known only to the member who generated the 
key pair. We do not require a Public Key Infrastructure—team 
public keys remain uncertified. Using their certificates, 
members request service in the name of their team. We assume 
that teams do not trust most other teams, and that they may not 
even know of the existence of other teams. 

2) Receipts: A receipt is evidence that WLAN service was 
contributed and consumed. Receipts are signed by team 
members when they use an AP of another team, and are 
transferred to the contributing team during the WLAN session. 
We will describe our receipt generation protocol in Section IV-
D. This protocol ensures that none of the two parties is at a 
significant disadvantage during the exchange. Fig. 1 shows the 
format of receipts. Receipts contain: (1) the public key of the 
contributing team, (2) the certificate of the consuming member, 
which contains the public key of the consuming team, (3) a 
timestamp noting the start time of the WLAN session, (4) a 
weight noting the volume of traffic the member transferred 
through the AP during the WLAN session, and (5) the 
member’s signature, that is, a hash of the above fields encry-
pted with the consuming member’s private key.  

We can verify the two signatures that the receipts contain 
(the team signature on the member certificate and the member 
signature on the receipt) using information on the receipt itself 
(the team public key and the member public key). If both 
verifications succeed we are sure that a team with a given ID 
(found on the member certificate) has authorized the member 
who signed the receipt to consume in the team’s name.  

Receipts form a logical receipt graph. The vertices of this 
graph are team IDs (public keys) and the weighted directed 
edges point from the consuming ID to the contributing ID. An 
edge’s weight is equal to the volume of traffic the source has 
consumed from the destination, that is, the edge weight is equal 
to the sum of the weights of the corresponding receipts. The 
direction of the edge denotes the “owes to” relation.  

3) Receipt Servers: After a WLAN session is over, the 
contributing team will store the newly generated receipt in a 
receipt server. Our protocol supports two types of servers: a 
central server, and multiple team servers. These correspond, 
respectively, to a centralized and a decentralized mode of 
operation. We compare the two modes of operation in our 
simulations (Section V). Our reference implementation 
(Section VI) supports both modes. The centralized mode 
requires that all teams of a WCN agree on the same central 

server—which may be impossible. Decentralized mode does 
not have this problem. 

In centralized mode, all APs communicate through the 
Internet with the central server. In decentralized mode, each AP 
is configured to connect to its team server. In our reference 
implementation the team server is co-located with one of the 
team APs—teams do not have to maintain another dedicated 
device. The APs store the receipts they earn in the server. 
When a receipt server is full, it deletes the receipt with the 
oldest timestamp in order to store a new one. In decentralized 
mode, a team’s members may contact their team server in order 
to receive an update with the latest receipts, which they will 
use when gossiping (see Section IV-C). We assume that servers 
are always online; however, this is not crucial (members can 
use stale data). Fig. 2 shows both modes of protocol operation. 

B. Uncooperative Behavior Model 
We assume that members are selfish but not malicious. 

However, we do not consider selfish MAC-layer behavior. We 
do not consider localized Denial-of-Service (DoS) attacks like 
physical layer jamming. Also, we do not consider Internet DoS 
attacks on the receipt servers; the central server is the obvious 
target, however, even team servers can be attacked if their 
Internet address is revealed. However, an important characteri-
stic of our protocol is that it does not require that different 
teams communicate through the Internet, so the probability of 
DoS attacks due to publicized IP addresses is lowered. 

We assume that standard cryptography works, and that 
attackers cannot steal private keys in order to break our digital 
signature schemes. Such private keys are contained in the 
WLAN clients used by members (because these clients sign 
receipts). There is also one private key per team—kept secret 
by the team founder—that is used to sign member certificates. 
APs do not store private keys, only their team’s public key, 
which they advertise during receipt generation (Section IV-D). 

 

Figure 1.  Receipt format. Receipts are self-verifiable signed documents that 
report a completed WLAN session in which a total of weight bytes was 
relayed. The WLAN session had started at the time encoded in timestamp. 

 

Figure 2.  Centralized and decentralized mode. In decentralized mode, team 
APs communicate with their own team server (which may also be an AP). 
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We assume that teams will attempt to cheat the reciprocity 
algorithm and contribute less than they consume. To do that, 
naïve teams will simply refuse all service requests. Less naïve 
teams will engage in false trading, that is, they will generate 
fake receipts. They can do this either on their own, by creating 
fake team IDs in a Sybil attack, or in collusion with other 
teams. Even less naïve teams can combine false trading with 
(some) actual contribution. In terms of our receipt graph, an 
attacker cannot add a new outgoing edge or change the weight 
of an existing edge that starts from a vertex that corresponds to 
a real team with which the attacker is not colluding—this 
would require access to the private key of the team, or to the 
private key of one of the team’s members, which we assumed 
is impossible. Fig. 3 shows potential attacks on the graph. 

IV. ALGORITHMS AND PROTOCOLS 

A. Reciprocity Algorithm 
The reciprocity algorithm we will present is a generaliza-

tion of our algorithm in [9, 10]. It provides a YES/NO answer 
to the question “should team P provide service to team C?” P is 
short for provider and C is short for consumer. The algorithm 
uses the receipt graph as input. In centralized mode, the central 
server executes the algorithm on its view of the graph; APs 
send their queries to the central server; queries contain the IDs 
of P and C. In decentralized mode, APs send their queries to 
their team servers. Our objective with this algorithm is to 
encourage cooperation by cooperating only with contributors. 

The decentralized algorithm in [9,10] does this by searching 
the receipt graph for directed paths starting from P and ending 
at C. If such a path is found, the algorithm decides that P owes 
service to C (directly, or indirectly, that is, by owing to teams 
that directly or indirectly owe service to C), and, therefore, C is 
a contributor. To maintain a balance between contribution and 
consumption, P never considers the receipts of this path in the 
future, and so C cannot repeatedly take advantage of the same 
path to P. Two limitations of this algorithm are: (1) it does not 
consider the weights on the receipts; (2) receipt discarding is 
local to P, which means that C can potentially take advantage 
of the same receipts elsewhere (if they do not expire [9, 10]). 
The idea behind finding a path from P to C is to prevent false 
trading attacks. If P does not find such a path, it cannot trust 
any of the other receipts (or chains of receipts) that point to C: 
they could all be the result of collusion or of a Sybil attack. 

 

  

Figure 3.  Receipt Graph. Attackers can create fake vertices (teams) and 
edges (receipts), but cannot create outgoing edges from real teams that are not 
in collusion with the attacker because they do not have access to the private 
signing key of the team, nor to the private signing key of one of its members. 

Feldman et al. [20] presented a decision function that is 
based on maximum flow (maxflow), which does not have the 
two limitations mentioned above. Reference [20] shows via 
analysis and simulation that this decision function is robust to 
collusion and can encourage cooperation in communities with 
free IDs. In this paper, we adopt the algorithm from [20], and 
extend it, making it robust against less naïve colluders who 
combine false trading with (some) real contribution. 

1) Basic Algorithm: The decision function in [20] is 
probabilistic. Peer P provides service to C with probability: 
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where mf (·) is the result of the maxflow algorithm for a pair of 
vertices. In [20], the vertices represent peer IDs and the edges 
represent amount of service consumed. In our context, the 
graph vertices are team IDs and the edges show the volume of 
transferred traffic the source team ID “owes to” the destination 
team ID; weights are measured in bytes. We also define that if 
the denominator in Eq. (1) is 0, P provides service only if the 
numerator is strictly positive. 

This algorithm takes indirect consumption of the prospe-
ctive consumer into account (in the denominator), balancing 
consumption and contribution without the need for receipt 
discarding. The simulations in [20] show that peers who adopt 
this function in an environment where (naïve) collusion is 
possible perform better (in a manner to be defined in Section 
V) than peers who follow other strategies like Always 
Cooperate or Always Defect. The algorithm is robust to (naïve) 
collusion: non-contributors cannot appear to be contributing if 
they falsely trade with non-contributors only. See also Fig. 4. 

The maxflow function is, however, vulnerable to another 
attack. We give an example: Let C be a contributing team; 
however, instead of consuming using ID C, each time C 
consumes it uses a fresh ID Ci, i > 0, which C never reuses. 
This simple Sybil attack does not benefit C because mf (·→Ci) 
is 0 for all i (because there are no receipts pointing to the fresh 
ID). Therefore, P will refuse to cooperate with Ci. 

However, if C falsely trades with the new ID and creates a 
new C→Ci  edge, with weight w, then, if w>mf (P→C), we have 
that mf (P→Ci) = mf (P→C), that is, by the definition of 
maxflow, all the flow from P that reaches C will also reach Ci 
if the C→Ci weight is enough to carry it, and mf  (Ci→P) = 0 
(because Ci is fresh). In effect, ID Ci earns all the “contribution 
reputation” of ID C but none of its “consumption reputation.” 
In our context, this means that team C can recruit an arbitrary 
number of members because even if one member can consume, 
then any number of members can consume, as long as they 
erase the consequences of their consumption using fresh IDs as 
described above. This creates the wrong incentives for teams 
because they can recruit members disproportionately to their 
contribution. Note that ID C will indirectly owe more to others 
as a result of these Sybil attacks, however, because the 
members of C appear with a fresh team ID Ci each time, the 
denominator of Eq. (1) will always equal 0, irrespective of the 
value of mf (C→P). Fig. 5 shows this attack. 
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Figure 4.  The maximum-flow decision function of [20] is robust to naïve 
collusion in which colluders falsely trade only with each other and never 
contribute to outsiders. 

 

 
Figure 5.  Less naïve collusion. The numerator in Eq. (1) is the same for C 
and the Ci’s, but the denominator is 0 for all Ci’s (fresh IDs with no history). 

2) Extended Algorithm: To limit the consequences of this 
attack we observe that an attacking C will tend to have many 
high-weight outgoing edges. Also, we observe that, compared 
to C, the Ci’s will be farther away from P in terms of path 
length. How much weight is “high” and what path distance is 
“far”? To answer this, we defined GMF, a generalized maxflow 
[37] algorithm with an estimator that detects excessive false 
trading. 

If we assume that most teams are homogeneous in their 
consumption rates and that the probability of two teams inter-
acting is uniform across all pairs of teams, we hypothesize that 
some uniformity will be evident in the receipt graph. We 
therefore define GMF as the following variant of maxflow: in 
GMF, the weight we of an edge e encountered during the 
standard maxflow computation is discounted depending on the 
distance, d(P, Se,), of e’s source vertex, Se, from the maxflow 
source, P. we is further discounted depending on q(P, Se), 
which is equal to the following ratio: the sum of the weights of 
all the outgoing edges that originate from Se, divided by the 
sum of the weights of all the outgoing edges that originate from 
P. The exact discounting occurs as follows: we is first divided 
by gd(P, Se ), where g is a GMF constant (we use g = 2); we is 
then further divided by q(P, Se), but only if q(P, Se) > 1. 

Fig. 6 shows a GMF example. GMF discounts the value of 
flow as we go farther away from the maxflow source, and it 
also discounts flow when it passes through vertices with a high 

  

Figure 6.  GMF example. In GMF, flow is discounted for 2 reasons: for being 
more than 1 hop away from the maxflow source, or for having passed through 
vertices with more total outgoing flow compared to the maxflow source. 

sum of outgoing edge weights (compared to the sum of 
outgoing edge weights originating from the maxflow source). 
In the attack described above, GMF(P→Ci) will be less than  
GMF(P→C), and their difference will become even greater if 
C adds more outgoing edges. 

The idea is to use the result of GMF to (subjectively) judge 
prospective consumers. A GMF result that is much smaller 
than the GMF results that P usually sees in the community 
should alert P to the possibility of false trading. P must employ 
the GMF test before the test of Eq. (1); P must first check for 
the GMF to C, and compare it to a running GMF average that P 
maintains as P interacts with the community. P only allows a 
request from C to proceed to the test of Eq. (1) with 
probability: 
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where g is the constant mentioned above (we use g = 2). Think 
of g as P’s generosity; gmf, on the other hand, is updated every 
time a new, strictly positive GMF result is computed by P. This 
update follows a standard formula for running estimators: 

 gmf = a × gmfold  +  (1-a) × GMF(P→C) (3) 

and we use a = 0.5. See also Algorithm 1 below. 

Algorithm 1 RECIPROCITYALGORITHM. Should P provide service to C ? 

  1: gmfsample ← GMF(P→C) 
  2: if gmfsample > 0 then 
  3:    gmf ←  α × gmf   +  (1-α) × gmfsample 
  4: end if 
  5: Apply Eq. (2) test:  if pass then 
  6:    Apply Eq. (1) test:  if pass then  
  7:        return YES 
  8:    end if 
  9: end if 
10: return NO 

B. Bootstrapping 
The reciprocity algorithm requires unconditional coopera-

tion in order to bootstrap. New teams (or teams that return 
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after an absence, whose transaction history is forgotten) must 
contribute unconditionally first without using the reciprocity 
algorithm. This must happen because teams, in their early life, 
do not have outgoing receipts (since they have not yet 
consumed). In such a case, the result of Eq. (1) will always be 
0, and new teams would never cooperate; therefore, they 
would be no different from free-riders. To break this cycle, 
teams must contribute unconditionally at first; meanwhile, we 
assume that their members will try their luck in the 
community. We define the following: after the members of a 
new team finally manage to consume service for a total of 
patience times, the team can safely assume that it has finally 
become “known” for its contribution to the community, and it 
can start to use the reciprocity algorithm properly. 
 

C. Gossiping Protocol 

If the teams cannot agree on a central server, receipt 
dissemination through gossiping is required. Without 
gossiping, each team has a limited view of the receipt graph: it 
can only see its incoming edges (having earned the 
corresponding receipts directly from consuming members). 
This situation is equivalent to the private history of [20]. If we 
applied the maxflow heuristic in such a setting, it would be 
capable of measuring direct debt only. A community with this 
restriction would find it difficult to reach citywide scale; teams 
would have to be very few in number, with large membership, 
and a large number of APs, so that consuming members could 
always hope to access APs of teams that owe them directly. 

At the opposite end of the spectrum of choices is our 
centralized mode, where the central server has knowledge of all 
receipts—at least all the recent ones that can fit in its memory. 

Our gossiping protocol and decentralized mode is a third 
option: there is no central server, but teams attempt to create a 
consistent view of the receipt graph by sharing their views 
whenever they interact. A similar technique is studied in [30]. 
More specifically, members carry in their portable devices a 
small repository of receipts. We will see (Section VI-G) that 
the size of a receipt is in the order of 100 bytes, so modern 
mobile phones can store thousands of receipts. Members then, 
occasionally, request an update with the latest receipts by com-
municating with their own team server (over the community 
WLAN system or over 3G for example). Then, they share these 
new receipts with their prospective providers before they 
request service from them. Assume for example that team C is 
about to request service from team P. If the member of C 
shares with P the newly earned receipts of C, these would 
correspond to graph edges that point to C, which can only 
increase the result of mf (P→C) that P would calculate. 

In addition, team C could also keep in its team server (and 
transmit to its members) other random receipts—themselves 
obtained by previous visiting members through the procedure 
we described above. Interestingly, the providers found on these 
receipts would have recently been consuming from C (which is 
how C got these receipts in the first place). If they had been 
consuming, then they would also have signed a receipt to C. 
Therefore, by sharing random receipts along with receipts that 
point to C, C shows to P essentially a tree of receipts, all the 

nodes of which directly or indirectly point to C, and thereby 
potentially increasing the result of mf (P→C). In this process, 
which we call merging, P’s team server, when full, will never 
replace a receipt with an older receipt, only a newer one. 

As a side effect, both teams are informed about (some of) 
their outgoing edges through this process. Note that members 
do not have to report the receipts they sign to their team server, 
but these receipts are required for the numerator of Eq. (1) or 
Eq. (2) to be strictly positive. Also, C does not reveal its 
outgoing edges to P: doing so would potentially increase the 
result of mf (C→P), and C does not want that. However, again, 
P learns about (some of) C’s outgoing receipts through the 
same gossiping process. Therefore, in decentralized mode, P’s 
calculation of both mf (C→P) and mf (P→C) is done in a 
balanced way: P has a lot of information for edges near the 
target vertices for both maxflow calculations, but less 
information for edges near the source vertices. The ratio of 
maxflow is not influenced much because this loss of 
information is caused by the same underlying process. 

One difficulty with gossiping is that because members may 
present many receipts before requesting service, team servers 
may not want to spend the time to verify the signatures on all 
of them in “real-time” (for signature verification times see 
Section VI-G). Team servers, however, could verify receipts in 
a background process. Then, however, consuming members 
have an incentive to show forged receipts that appear to be 
signed by P even if they would never pass signature 
verification. However, P’s team server can allow unverified 
receipts to be stored and used in maxflow calculations, as long 
as all receipts that are part of the maxflow-discovered paths are 
verified. The number of these receipts will generally be small. 

D. Receipt Generation Protocol 
 

During a WLAN session, APs request receipts from all 
WLAN-connected foreign members periodically. The requests 
contain the public key of the contributing team. Members are 
required to sign the appropriate receipts, which must contain 
the weight the provider is measuring. As a side-effect, by 
receiving such a receipt, the AP is sure that the session is not 
hijacked because nobody else has the appropriate private key, 
which must correspond to the member certificate that was 
presented initially. APs will only store the last receipt in such a 
series. Every receipt is uniquely identified in the system by the 
{provider public key, consumer certificate, timestamp} set of 
fields, so another receipt with different weight but the same 
timestamp (which always encodes the session start time) will 
be seen as the same. The AP has an incentive to hold the one 
with the biggest weight—the last one. By requesting receipts 
periodically, none of the two parties is at a significant 
disadvantage. To guard against members that attempt to avoid 
signing the first receipt, the AP, in the beginning of a session, 
can ask for receipts at a higher rate, and lower it after the 
member has proven trustworthy. There is no concept of 
members refusing to sign a receipt: this indeed happens as part 
of normal operation and such a timeout indicates that the 
session has ended. The AP will store the last receipt from that 
session in its team server or in the central server (depending on 
the operational mode), and will block further member traffic. 



 

V. SIMULATION RESULTS 
In this section we present results from simulations that 

evaluate the performance of the reciprocity algorithm, the 
bootstrap algorithm, and the gossiping protocol, including the 
reciprocity algorithm’s robustness to attacks. 

A. Simulation Environment and Parameters 
We programmed our custom simulator in Java, which can 

be downloaded from:  
http://mm.aueb.gr/research/P2PWNC  

Our objective was to model a peer-to-peer environment and 
examine the robustness of our reciprocity algorithms, not to 
perform low-level WLAN simulations. Time in our simulations 
consists of rounds. During a round, teams are randomly 
matched, and each team gets exactly one chance to consume 
and exactly one chance to contribute. The number of these 
matches per round is equal to the number of available teams. 
The number of teams changes: at round 1, we start with 2 
teams, and at the end of each round a new team joins the 
community. This models community growth, and it continues 
up to a maximum number of n teams. For simplicity we assume 
that all WLAN sessions result in a new receipt with unit 
weight. If, in a match, the prospective contributor decides to 
provide service, its score is reduced by c. At the same time, the 
score of the consumer is increased by b. This models the cost 
and benefit of providing service. This is a standard setup for 
similar (evolutionary) games in sociology and biology; see, for 
example [25], or the peer-to-peer evaluation framework of [20]. 
This benefit-to-cost ratio, b / c, models how much the teams 
value the Wireless Community Network service. Using current 
3G and DSL rates as an indicator, we set this ratio to equal 10 
(with b = 10 and c = 1). Our results are, however, qualitatively 
the same for a wide-range of b / c ratios (not presented here). 

The rating of a strategy, following [20], is the average of 
the running averages of scores per round of its followers, with 
each term weighted according to how many rounds the team 
has been using the strategy: “veterans” of a particular strategy 
carry more weight that than “amateurs” when calculating a 
strategy’s rating. This is useful when teams change strategies 
(in the experiments where this is supported) because the early 
scores of amateurs do not affect much the overall rating of the 
strategy. For cooperative strategies, the top rating is 9 (= b – c 
= 10 – 1). This corresponds to a situation in which, for every 
round played, all the teams following the strategy contributed 
once and also managed to consume once per round. In Table I 
we give nominal values for our simulator parameters, as well as 
the Section of the paper that first discusses them. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Nominal value Section 

Number of teams (n)  150 V-A 

Mode of operation Decentralized III-A-3 

Server repository size (receipts) 1500 III-A-3 

Patience (successful consumptions) 10 IV-B 

Receipts to merge when gossiping 150 IV-C 

B. Reciprocative Strategy Against Itself 
 

1) Repository Sizes (Fig. 7): For our first experiment we 
wanted to see how our Reciprocative strategy (called RECI 
from now on) performs under various receipt repository sizes. 
An instance of a receipt repository is located either on the 
central server, or there is a different instance of the repository 
on every team server; this depends on the mode of operation. 
Fig. 7 shows the rating of RECI (remember that 9 is optimal, 
which equals b – c) for a community that grows to n = 150 
teams, and two different repository sizes: 1500 and 500 
receipts (all receipts are assumed to be unit-weight).  

Having short-term history (that is, a finite repository with 
oldest-receipt-out replacement rule) is important because it 
encourages continous contribution—fresh receipts replace old 
ones and teams that delay in replenishing their incoming 
receipts find it harder to obtain service. However, a small 
repository size of 500 (small compared to the number of teams 
which equals 150, after the last team joins at round 150) 
causes the maxflow and GMF tests to mistake contributors for 
non-contributors. This starts a vicious cycle which ends with 
the collapse of cooperation. The two cases with 1500 receipts 
per repository do not have this problem, and approach the 
maximum rating of 9. Note that in centralized mode there is 
only one repository of 1500 receipts. In decentralized mode 
there are 150 team repositories each one storing 1500 receipts.  

Note also that a rating of 9 will never be reached. This is 
because of the occasional mistakes made by the GMF and 
maxflow tests. These mistakes, and their result, represent the 
“social cost” of free IDs and of our algorithms. 
 

2) Merging Receipts (Fig. 8): In decentralized mode of the 
previous experiment, consuming teams merged all their 
receipts with the provider. This is a burden for the provider 
who must verify them, and a burden for the member who must 
store and present a large number of receipts to prospective 
providers. We see, however, that even when merging only 50 
receipts, the rating of RECI stays consistently above 8, that is, 
the information loss is not crucial. After ratings stabilize, near 
round 350, merging only 50 receipts corresponds to a running 
average of 90% success for RECI teams. That is, 1 in 10 
requests is not satisified. However, increasing this to 500 
merged receipts leads to 98% success; that is, the probability 
that a RECI does not recognize another RECI as a contributor 
is 2%. (During a merge, the consuming member shows the 
latest receipts from the consumer’s team server to the 
provider; also, the consumer hides any receipts in which the 
consuming team appears as consumer. See also Section IV-C). 

 
3) The Effect of Patience (Fig. 9): Here we examine how 

the initial patience parameter (see Section IV-B) affects the 
ratings later in the game. With the exception of the very small 
patience value of 1, the remaining patience values result in 
high levels of cooperation in the steady state, practically 
converging on the same rating; patience does not appear to be 
a crucially significant parameter. A patience value of 1 does 
not allow enough time to new teams to build a repository of 
incoming and outgoing receipts before they start using the 



 

reciprocity algorithm, which makes them unecessarilty strict, 
causing a vicious cycle. 

 
4) Merging and Repository Sizes Revisited (Fig. 10): We 

see here how the community performs once steady state has 
been reached (at round 500). Centralized mode does 
marginally better, followed by decentralized. We see again the 
effect of the repository size and its relation to the number of 
teams. In all our experiments, the best results were 
consistently obtained for repository sizes whose size was 10 
times larger than the number of teams. The receipts to merge 
can be in the order of the number of teams. 

 

C. Reciprocative Strategy against Free-Riders, Under-
Providers, and Uncondtional Cooperators 

1) Under-Providers and Evolutionary Learning (Fig. 11): 
Here, RECI confronts three other strategies: Unconditional 
Cooperators (ALLC), Unconditional Defectors (ALLD), and 
Random (RAND), a strategy that cooperates 50% of the time. 
In this experiment we simulated evolutionary learning [20]: at 
the end of each round, each team would consider the ratings of 
all the other strategies, pick one at random, and, if the rating 
for that strategy was higher than the rating for its own, it 
would switch to that strategy with a probability proportional to 
the difference in rating between the two strategies. Each team 
that joins chooses one of the 4 available strategies with proba-
bility 0.25. As time progresses, the winning strategies are 
RECI and ALLC, that is, the cooperative strategies. ALLD is 
doing less well because unconditional free-riders are easily 
recognized by the GMF test immediately (GMF to them is 0). 
However, ALLC and RAND followers may cooperate with 
them, and this is why ALLD followers persist for a while. 
ALLD is indeed decreased in the population, which, in turn, 
allows ALLC to endure because their potential exploiters are 
driven away through the “efforts” of RECI. RAND does well, 
but consistently worse than RECI. Providing service once 
every two rounds did not result in an increase in RAND’s 
rating because their under-provision was detected by the GMF 
and maxflow tests. At round 500, the running average of 
RECI-RECI cooperations is 96.5%, and the running average of 
RECI-RAND cooperations (percentage of times RECI contri-
buted to RAND) is only 68.4%. Due to evolutionary learning, 
at the end of round 500 the team population consists of 171 
RECIs, 100 ALLCs, 20 RANDs, 5 ALLDs and 4 pre-RECIs 
(for a total of n = 300 teams). “Pre-RECIs” are RECI 
followers that undergo bootstrap because they switched to 
RECI only recently. Pre-RECIs are patient with their initial 
low ratings, expecting that they will soon switch to RECI.  

 
2) Under-Providers without Learning (Fig. 12): Here we 

experimented with the probability with which RAND players 
cooperate. We test 5 different values, for two different 
strategic mixes. For low probability values RAND more 
closely resembles ALLD, while for high values it more closely 
resembles ALLC. RAND’s best choice is shown to be 0.5, 
which is still an inefficient way to increase its payoff: RECI 
followers still do better. 

D. Reciprocative Strategy against Sophisticated Colluders 
In this experiment (Fig. 13) we simulated an attack similar 

to that of Fig. 5. Team 100 appears in the system at round 100. 
It follows the RECI strategy until round 200, at which time, 
every time it asks for service it does so twice, at different 
teams, each time using a new fake ID, which it never reuses. 
Because we use unit weights, we used 5, 10, or 15 receipts to 
“carry” the flow from the real ID to each of the two fake ones, 
each time. With 5 receipts, the fake IDs may not receive all the 
flow (maxflow averaged 10 units in the community of this 
experiment), but they risk less from the GMF test of excessive 
consumption. With 10 receipts, approximately all the incoming 
maxflow of Team 100 will be carried to its fake IDs. In all 
three situations Team 100 did badly: no team cooperated with 
Team 100 after a few tens of rounds (hence the regular drop in 
Team 100’s running average rating). Team 100 would not do a 
lot worse if it simply stopped contributing. The GMF test was 
successful in detecting and punishing the most moderate use of 
concurrent false IDs, which is 2. If Team 100 tried to use 3 or 
more false IDs, excessive consumption would be recognized by 
the others even sooner. The GMF test achieved this without 
compromising RECI behavior in the previous experiments. 

 

Figure 7.  Repository sizes experiment  (Section V-B-1) 

  

Figure 8.  Merging receipts (Section V-B-2) 



 

 

Figure 9.  The effect of patience (Section V-B-3) 

 

Figure 10.  Merging and repository sizes (Section V-B-4) 

 

Figure 11.  Under-providers and evolutionary learning (Section V-C-1) 

 

 

 

Figure 12.  Under-providers without learning (Section V-C-2) 

 

Figure 13.  Sophisticated colluders and the GMF test (Section V-D) 

VI. IMPLEMENTATION 
This section summarizes the main results of the technical 

report [38].  

A. Platforms 
We implemented the P2PWNC protocol (AP and Team 

Server) on the Linux-based Linksys WRT54GS wireless AP 
[39] (currently retailing for less than $70). We included our 
software modules on the AP’s firmware. We also implemented 
the client side of the protocol as a Java application that runs on 
Windows and Linux, and as a C application that runs on Linux. 
We left the implementation of a smart-phone client for future 
work. 

We conducted experiments to test the performance of the 
software running on the Linksys AP. For comparison, we also 
ran the software on an AMD Athlon XP 2800 laptop. Table II 
shows the specifications of these two platforms. 

 

 



 

RCPT P2PWNC/1.0 
Content-length: 357 
Algorithm: ECC160 
Timestamp: Tue, 24 May 2005 17:26:41 +0000 
Weight: 6336 
BNibmxStfJlod/LnZubH6pzWHQqKyZFcSMjnZurmTe4KjCRkllhV93MEegPvCsxz 
2oe/hqevoPSrwO1JLO/36J8HTIeyeKQqTCfx+EPxweAvYC/ZFb8URLa2faIbvSgD 
3lm6Wa1S4cYlSWeSNmFzS/ebDFfzakqNSEsERefwEcdWJD9gzIXafL4pojhhfP5b 
rS4QPtHzBl58POfKdx9AqCDMBxRoGALKJSJYYXlsrwtiyZJKvPlU5B3lWrFuL25P 
d+kv2iMVRElXk/4= 

TABLE II.  PLATFORM  SPECIFICATIONS 

Characteristic Athlon XP 2800 Linksys WRT54GS 

 CPU speed 2.08 GHz 200 MHz 

 CPU type AMD Athlon XP 2800 Broadcom MIPS32 

 RAM 512 MB 32 MB 

 Storage 60 GB HD 8 MB Flash (read only) 
32 KB NVRAM 

 Operating system Linux kernel 2.4.18 
(Red Hat Linux 8.0) 

Linux kernel 2.4.18 
(Linksys specific) 

 Cryptographic     
 Library OpenSSL 0.9.8 beta 5 OpenSSL 0.9.8 beta 5 

 Compiler gcc 3.2 gcc 3.2 
 Compiler   
 Optimizations -O3 -O3 –mcpu=r4600 –mips2

B. Protocol Messages 
The P2PWNC protocol comprises a set of 7 text-based 

messages, and operates on top of TCP/IP. A Base64 encoder is 
used to convert binary data to the text-based wire format. Table 
III shows the protocol messages, the entities that exchange 
them, and a short description for each message. 

TABLE III.  P2PWNC PROTOCOL MESSAGES 

Message Description Direction 

CONN 
WLAN session initiation 

request Client → AP 

CACK WLAN session initiation 
response AP → Client 

RREQ Receipt request AP → Client 

RCPT Receipt 
Client → AP 

AP → Central or Team Server 
Team Server → Client 

QUER Query the 
Central or Team Server AP → Central or Team Server 

QRSP Query response Central or Team Server → AP 

UPDT Client receipt update request Client → Team Server 

 

Fig. 14 shows the format of an RCPT message that contains 
a receipt (in its Base64 wire format) signed using the Elliptic 
Curve Digital Signature Algorithm (ECDSA). 

 

Figure 14.  RCPT message. It contains the receipt encoded in its Base64 wire 
format. The timestamp and weight fields of a receipt are contained in human-
readable form also. 

C. Network Access Control 
The AP software uses the Linux iptables firewall for 

network access control. We built our own Linux kernel module 
for measuring the volume of forwarded traffic per client. When 

WLAN clients associate with the AP they are assigned 
dynamic IP addresses from an address pool via DHCP, and are 
denied Internet access until the AP receives a positive QRSP 
from the Central or Team Server. When a session ends (RREQ 
timeout) the particular IP address is once again blocked, and 
measurement of traffic for or from that address is stopped. 

D. Receipt Server Implementation 
We implemented the team server to run on the AP itself. 

The code is only slightly different from the central server 
version that runs on PCs. We assume that teams will pick one 
of their APs for the role of team server.  

A receipt server needs to support dictionary and graph 
operations. It should support efficient receipt insertion, dele-
tion, search, and maximum flow computation. A composite 
data structure was built to accommodate this. The structure 
includes hash tables that store pointers to receipts and team IDs 
in order to achieve fast look-ups. A red-black tree [40] 
structure keeps receipts sorted by their timestamp. Each tree 
node corresponds to a receipt. A red-black tree supports 
logarithmic-time insertion, deletion and searching for receipts 
based on their timestamp. Finally, there is an adjacency-list 
representation of the receipt graph, with each red-black tree 
node also storing a pointer to the respective graph edge. A 
FIFO variant of the push-relabel maximum flow algorithm [41] 
has been implemented. Its O(V3) worst case running time is 
long; therefore, we used the global relabeling heuristic [41, 
42], which yielded dramatic performance improvements. 

E. Maximum-flow Performance 
We measured the performance of the FIFO-based push-

relabel algorithm with the global relabeling heuristic for 
various random graph instances. In our experiments, we 
created random directed graphs comprising 1000 and 10 000 
receipts (edges), and 100 and 1000 teams (vertices). Table IV 
shows the pure CPU time spent on executing the algorithm 
(measured with the Linux times function). Each reported value 
is the average time spent on the execution of the maximum 
flow algorithm for 20 random source-destination pairs of the 
same graph. Time is measured in milliseconds. 

TABLE IV.  MAXIMUM FLOW ALGORITHM PERFORMANCE 

 Athlon XP 2800 Linksys WRT54GS 
Number of 

receipts  

100 
teams 

1000 
teams 

100 
teams 

1000 
teams 

1000  0.43 ms   0.23 ms 12.64 ms     3.75 ms 

10 000 5.88 ms 12.72 ms 59.27 ms 134.04 ms 

F. Cryptographic Parameters 
The P2PWNC protocol supports both the RSA and Elliptic 

Curve Digital Signature Algorithm (ECDSA). RSA crypto-
system parameters include the bit length of the keys and the 
public exponent value (for us, fixed to 65 537). For ECDSA, we 
used verifiably random curves over the Fp finite field. More 
specifically, we used the sec160r1, secp192r1, secp224r1, and 
secp256r1 named curves [43, 44] for key lengths of 160, 192, 
224, and 256 bits, respectively. 



 

G. Receipt Sizes and Cryptographic Performance 
We performed tests to study the performance of both the 

RSA and the ECDSA signature schemes. The operations of 
interest are the generation and verification of digital signatures. 
In our protocol, clients sign receipts and APs verify them. 
Tables V and VI shows the results of these tests. ECDSA is 
faster for signatures than it is for verifications and is appro-
priate for use in battery-powered devices like mobile phones. 
Also, the use of ECDSA results in smaller receipts, since 
ECDSA keys and signatures are shorter than their RSA 
counterparts for the same security level. The smallest receipt in 
P2PWNC, when all keys and signatures use 160-bit Elliptic 
Curve Cryptography (ECC) requires 211 bytes (3 ECC public 
keys, represented without point compression, requiring 41 
bytes each, two ECDSA signatures requiring 40 bytes each, 
and two 4-byte integers representing the timestamp and weight 
fields). With 1024-bit RSA keys the receipt size is 648 bytes. 

TABLE V.  CRYPTOGRAPHIC OPERATION PERFORMANCE : SIGNING 

 Athlon XP 2800 Linksys WRT54GS 
Bit length 

(RSA/ECC) 
RSA ECC RSA ECC 

1024/160     9.0 ms 1.3 ms   300.6 ms 20.3 ms 

1536/192    25.9 ms 1.2 ms   655.6 ms   18.5 ms 

2048/224   47.3 ms 1.4 ms 1529.0 ms 23.4 ms 

3072/256 149.1 ms 1.7 ms 3939.0 ms 73.1 ms 

TABLE VI.  CRYPTOGRAPHIC OPERATION PERFORMANCE : VERIFICATION 

 Athlon XP 2800 Linksys WRT54GS 
Bit length 

(RSA/ECC) 
RSA ECC RSA ECC 

1024/160 0.4 ms 6.5 ms 12.3 ms 114.7 ms 

1536/192 0.8 ms 6.0 ms 21.4 ms   99.9 ms 

2048/224 1.3 ms 7.1 ms 37.9 ms 135.7 ms 

3072/256 2.8 ms 8.6 ms 75.3 ms 453.0 ms 

H. Routing Performance under Verification Load 
We carried out experiments to test the Linksys AP routing 

behavior under CPU-intensive ECDSA signature verifications. 
We transferred a 223 MB file via FTP through the AP’s wired 
router interface and performed 160-bit ECDSA signature 
verifications at the same time. Table VII shows the effect of 
these verifications on throughput. From Table VI, the 
verification time for one ECC-160 signature is 115 
milliseconds. 

I. Reference Implementation Distribution 
Our reference implementation is available to download 

from http://mm.aueb.gr/research/P2PWNC 

There, firmware for the Linksys WRT54GS AP that 
includes configuration and management utilities is available in 
binary and source-code format. For client software, both our C 
and Java implementations are available. We used GNU tools 

autoconf and automake to package the software. Program 
sources are ready to compile and install.  

TABLE VII.  LINKSYS WRT54GS ROUTING PERFORMANCE UNDER 
SIGNATURE VERIFICATION LOAD 

Verifications / s Average TCP throughput 
(KB/s) 

% of “no load” 
performance 

0.0 (“no load”) 3965 100% 

0.7 3858 98% 

1.3 3600 91% 

2.6 3145 79% 

3.8 2783 70% 

8.7 (maximum rate) — — 

 

VII. DISCUSSION AND CONCLUSIONS 
The guiding vision behind the design of the Peer-to-Peer 

Wireless Network Confederation scheme and its algorithms 
was that of a broadband subscriber who purchases a P2PWNC-
compatible Wireless LAN access point, sets it up at home in 
“sharing” mode, and earns the right to roam the streets of the 
city, enjoying ubiquitous high-speed wireless access through 
similar access points. We wanted the scheme to be: (1) open to 
all, with no registration procedure; (2) free to use, with 
reciprocity as the only driving force; (3) simple to implement. 

Support for free IDs is the most challenging aspect of our 
design. This is followed by the problem of providing incentives 
for distributed accounting. Our work on the analysis, 
simulation, and implementation of P2PWNC is in its early 
stages. There are still restrictive assumptions, and team 
homogeneity tops the list; we need to analyze the effect of non-
homogeneity on the GMF algorithm, and possibly extend it. 

On the theoretical level, formal analysis of the effect of free 
IDs is required. The theoretical work on the area so far has 
been about proving impossibilities [11, 26]. However, there is 
still a huge space of available tradeoffs to explore before we 
dismiss free IDs as a useful identity and accounting system. It 
is important that we pursue this for two reasons: a system with 
free IDs has built-in privacy support, and the freedom of not 
having to register with authorities may permit massively 
distributed systems to grow organically. 

We are concerned with the scalability of our system. Can it 
scale to large cities or just small towns? And how does user 
mobility affect this? Can QoS be useful? Currently, we do not 
examine the QoS that contributors offer to consumers. Also, 
can some of the parameters (the sizes of receipt repositories 
and the number of receipts to merge) be adjusted dynamically?  

And what happens when team members do not trust each 
other? Excess consumption by members can be detected if the 
team just looks at the available graph, but what about more 
sophisticated attacks? In many ways, cooperation enforcement 
is like security engineering [36]. In this paper we showed how 
we deal with some obvious attacks first. We still require a 
systematic way to approach attacks against incentive schemes.  
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