

Stimulating Participation in Wireless Community
Networks

Elias C. Efstathiou, Pantelis A. Frangoudis, and George C. Polyzos
Mobile Multimedia Laboratory, Department of Computer Science

Athens University of Economics and Business
Athens, Greece

{efstath, pfrag, polyzos}@aueb.gr

Abstract—Wireless Community Networks (WCNs) are wide-area
wireless networks whose nodes are owned and managed by
volunteers. We focus on the provision of Internet access to mobile
users through WCN-controlled wireless LAN access points (APs).
We rely on reciprocity: a person participates in the WCN and
provides ‘free’ Internet access to mobile users in order to enjoy
the same benefit when mobile. Our reciprocity scheme is
compatible with the distinctive structure of WCNs: it does not
require registration with authorities, relying only on uncertified
free identities (public-private key pairs). Users sign digital
receipts when they consume service. The receipts form a receipt
graph, which is used as input to a reciprocity algorithm that
identifies contributing users using network flow techniques.
Simulations show that this algorithm can sustain reciprocal
cooperation. We have implemented our algorithm to run on
common APs.

I. INTRODUCTION

Wireless Community Networks (WCNs) are wide-area wire-
less networks whose nodes are owned and managed by volu-
nteers. WCNs include Seattle Wireless [1], NYCwireless [2],
Consume (London, UK) [3], and the Athens Wireless Metro-
politan Network (Athens, Greece) [4]. WCNs offer various
services to their participants and to the public. In this paper, we
focus exclusively on the provision of Internet access to mobile
users through WCN-controlled wireless LAN access points
(WLAN APs). We want to stimulate participation in WCNs so
that more WLAN APs become available. WLAN-enabled
mobile phones are now on the market [5, 6], and WCNs could
complement 3G networks in metropolitan areas.

We will assume that all WCN-controlled WLAN APs are
connected to metered DSL connections. This assumption does
not hold true for many WCNs that bypass wired ISPs and
interconnect their nodes with point-to-point wireless links. We
anticipate, however, that—with a further drop in DSL prices—
our assumption will hold true for metropolitan WCNs. We will
also assume that ISP contracts permit the not-for-profit sharing
of DSL connections with nearby mobile users over a WLAN.
Sharing-friendly ISPs exist today [7, 8].

Why should volunteers set up WLAN APs and share their
metered connections with nearby mobile users? Altruism is one
answer. However, we assume that there are not enough altruists
to allow WCNs to rival 3G networks in citywide coverage, or
to make WCNs robust to failures through redundancy.

Instead of altruism, we rely on reciprocity. The idea is that
a person participates in the WCN and provides free Internet
access to mobile users—who also participate in the WCN—in
order to enjoy the same benefit when mobile; mobile users who
do not participate in the WCN are excluded from the service.
We assume that a mobile user benefits when using a foreign
WLAN/DSL connection for free, and that this benefit offsets
the cost of allowing other mobile users to access his or her
home WLAN/DSL connection. Our reciprocity scheme encou-
rages participants to have consumption–contribution ratios that
are near 1:1. By consumption we refer to the volume of Internet
traffic a mobile user transfers through foreign WLAN/DSL
connections, and by contribution to the volume of Internet
traffic the user relays for others through his or her home
WLAN/DSL connection. In our scheme, individuals can also
group in teams whose aggregate ratio is near 1:1.

The reciprocity scheme that we will propose is compatible
with the distinctive structure of WCNs. For example, we do not
rely on authorities that punish or reward because WCNs rarely
have a powerful centralized authority. Participants do not regi-
ster with a Trusted Third Party and are free to choose their own
system identifiers (IDs). We do not restrict the rate of ID
generation by requiring, for example, that IDs contain solutions
to cryptographic puzzles. Participants may use an unlimited
number of free (and unforgeable and unique) IDs. This impor-
tant requirement makes our reciprocity enforcement problem
different from similar problems in the area of ad hoc networks
where exactly one (unforgeable and unique) ID per node is
assumed. Furthermore, we assume that participants can modify
the modules that implement the reciprocity protocol and we do
not rely on tamperproof hardware. We assume that participants
do not know or trust most of the other participants, but also that
participants can form teams with other participants that they do
trust. Finally, two or more teams can collude.

We will present the design, evaluation, and implementation
of a protocol that encourages cooperation in WCNs and con-
forms to the requirements stated above. We call it Peer-to-Peer
Wireless Network Confederation (P2PWNC) protocol. We
have already presented a basic P2PWNC reciprocity algorithm
[9] and have used evolutionary simulations to evaluate it [10].
Here we extend our previous results with (1) an improved
collusion-proof reciprocity algorithm, (2) a centralized version
of our scheme—with minimal demands on the center—that
could be practical for certain WCNs, (3) comprehensive

This research is supported in part by the project “Mobile Multimedia Communica-
tions” (EP-1212-13), funded by the program “Herakleitos—Fellowships for Re-
search at the Athens University of Economics and Business,” which is co-financed
by the Greek Government and the EU through the program “EPEAEK II.”

simulation results for the performance of our algorithms in
centralized and decentralized mode, (4) specification of our
protocol, and (5) performance results from our implementation
on the Linksys WRT54GS WLAN AP.

A. Overview
Our scheme works as follows. We assume that WCN

participants divide into teams of a few tens of members each.
Members of the same team must know and trust each other.
Teams own and manage a number of APs (WLAN access
points, connected to DSL lines) at locations throughout the
city. We assume that aggregate team consumption rates are
homogeneous. This is an important assumption that we will
return to in Section VII. We gave the precise meaning of
consumption and contribution before; we say now that a team
consumes when one of its members uses an AP of another
team, and contributes when a member of another team uses an
AP of this team. The objective of our reciprocity protocol is to
encourage teams to match their consumption with at least an
equal amount of contribution. Free-riding teams that contribute
much less than they consume will find it hard to obtain service.
And only short-term history is important: teams must contri-
bute continuously in order to be able to consume continuously.

Members sign digital receipts when they consume service
from another team. The receipts form a receipt graph, which is
used as input to a reciprocity algorithm that identifies
contributing teams using network flow techniques. Simulations
show that this algorithm can sustain reciprocal cooperation.
Receipts are stored either in a central server, or they are
distributed among multiple team servers with a gossiping pro-
tocol. Two (non-colluding) teams never exchange information
over the Internet: team servers are not accessible to outsiders.
Different teams interact only when a member is physically
close to the AP of another team and requests its services. We
will show that gossiping is beneficial then to both teams.

The receipt graph may contain fake receipts—the result of
collusion among two or more teams, or of a Sybil attack1. All
member IDs and team IDs are unique public/private key pairs.
We assume that it is computationally infeasible to break the
digital signature scheme used to sign receipts and member
certificates (member certificates are signed by the leader of
each team). We do not rely on a Public Key Infrastructure and
we do not assume that teams know the IDs of other teams.

We use “peer-to-peer” in our protocol’s title; however, no
searching for resources occurs. We assume that members,
when mobile, try to access any AP that is close to their current
location. Also, we assume that members, if granted access, will
tunnel all their traffic to a trusted Internet gateway, so we are
not concerned with the security of the wireless link or with APs
that spy on foreign traffic. Our receipt generation protocol
(Section IV-D) ensures that hijacking of the wireless session
cannot occur.

We wanted to design a reciprocity protocol that is simple to
implement directly on WLAN APs. Our implementation (Se-
ction VI) that runs on the Linksys WRT54GS AP proves this.

In our scheme, WCNs are meant to complement 3G
networks in metropolitan areas. The growth of WLAN/DSL

deployments makes our scheme relevant—at least as long as
DSL rates remain lower than 3G rates. We support that our
protocol is simple to implement and can achieve its basic goal,
which is to stimulate participation in WCNs while respecting
their open and self-organized nature.

B. Organization of the Paper
The remainder of this paper is organized as follows. Section

II reviews and compares with related work. Section III
specifies system models, including the trust model and the
uncooperative behavior model, and presents the system entities
involved. Section IV describes our reciprocity algorithm and
communication protocols. Algorithm performance is evaluated
via simulations in Section V. Section VI presents our reference
implementation of the P2PWNC protocol on the Linux-based
Linksys WRT54GS AP, along with measurements of its
performance. We discuss several important issues in Section
VII, where we also conclude the paper.

II. RELATED WORK

A. Distinctive Characteristics of our Approach
The area of economics-informed design of peer-to-peer

systems attracts a lot of research interest. Packet relaying in ad
hoc networks is a standard example of a function that requires
sustained cooperation among independent and selfish peers. At
first, the Wireless Community Network context seems different
only in two details: (1) there is only one intermediate relaying
node (the WLAN AP), which is also connected to a fixed
power supply and to the Internet; (2) the functions of provider
and consumer are split: APs are providing and mobile users
are consuming. A P2PWNC “peer” is a distributed entity com-
prising APs and members that are all part of the same team.

Two additional requirements, however, go beyond what is
usually encountered in the literature. First, peers do not register
with authorities and our peer (team) IDs are free; a peer may
use multiple IDs if it is in its interest. This makes recognition
difficult. We do not impose other artificial start-up costs on
new IDs by requiring, for example, that IDs contain solutions
to cryptographic puzzles. To bootstrap our reciprocity
algorithm, we require some contribution from a new team/ID
before this new ID can start consuming; therefore, IDs may be
free, but new peers must contribute to the system first. Our
bootstraps are designed to be relatively cheap, however,
because they may have to happen often: since we rely only on
short-term history, if a peer (team) stops participating for some
time it will have to go through the equivalent of the bootstrap
phase upon reappearing, irrespective of a change in ID.

Second, we do not assume that it is incentive compatible to
perform distributed accounting tasks. One standard use of
accounting is to detect and punish free-riders. However,
second-order free-riders [12] may not be willing to spend
resources in detecting or punishing free-riders. The dilemma of
second-order free-riders is: “why help others in punishing free-
riders and improving system performance when I can free-ride
on the efforts of others that do that?” This is similar to the
dilemma of free-riders: “why help others and improve system
performance when I can free-ride on the efforts of others that

1 Sybil attack [11]: the creation of multiple identities per real entity; a
fundamental problem in open and self-organizing electronically mediated commu-
nities without identity-certifying authorities. Sybil attacks can invalidate any
number of system assumptions and make collusion-based attacks much easier.

do that?” We either need an accounting system to punish
second-order free-riders (which may lead to third-order free-
riding, and so on), or all distributed accounting tasks must have
an obvious and direct benefit to the peer that performs them.
Also, “punishments” should be limited to refusals to cooperate.

B. Literature Survey

Catch [13], CONFIDANT [14], and CORE [15] are
examples of incentive schemes for multi-hop wireless networks
that assume nodes: (1) have exactly one ID, (2) do not collude,
and (3) are willing to perform distributed accounting tasks
(cooperating nodes also cooperate in punishing free-riders “for
the good of the community”). Sprite [16], like our P2PWNC
protocol, is a receipt-based protocol that assumes nodes can
collude; however, unlike P2PWNC, it requires a powerful
Credit Clearance Service that determines the real-world charge
and credit to each node. Follow-on work [17] still relies on
centralized clearing. The Nuglet approach [18] requires that
nodes have tamper-resistant security modules, manufactured by
a limited number of trusted manufacturers who also cross-
certify each other’s public keys. A formal model for
cooperation in static multi-hop wireless networks based on
game theory and graph theory is presented in [19]. Simulation
results show that, in practice, the conditions for cooperation
without incentives are virtually never satisfied, and that
cooperation needs to be encouraged.

Our reciprocity algorithm is a generalization of the algo-
rithm we presented in [9, 10], and an extension to the maxi-
mum-flow decision function presented by Feldman et al. [20]
(itself inspired by older work on authentication metrics [21,
22]). The context studied by [20] is similar to ours: there are no
identity-certifying authorities, IDs are free, and collusion is
possible. However, colluders in [20] are naïve; they only
engage in false trading with each other and never contribute to
anyone outside the colluding group. Our reciprocity algorithm
is robust against less naïve colluders who may contribute to
others outside their group. A follow-on work of [20] is [23],
where the effect of free IDs on the cooperation strategies
studied by Axelrod (Tit-for-Tat) [24] and Nowak and Sigmund
(Image) [25] is analyzed. Their theoretical results confirm the
result of Friedman and Resnick [26] that free IDs incur a social
cost. Our experimental results in this paper also show this
fundamental problem.

The maximum-flow decision function [20] that we exten-
ded belongs to a class of cooperation strategies that rely on
multi-way exchanges, a generalization of 2-way exchanges and
a special (cyclical) case of indirect reciprocity [27]. Multi-way
exchanges have been adopted as an incentive mechanism for
file sharing [28], storage sharing [29], and in our own previous
work [9, 10]. However, our algorithm in [9, 10] was simple: it
did not consider receipt weights and it could not discourage
peers that consumed more than they contributed if their con-
sumptions occurred in quick succession and at different peers.

Earlier work on partially observable distributed graphs
includes [30, 31]; reference [30] does not focus on incentive
issues; reference [31] addresses the incentives of nodes: they
store accounting information only if it is in their interest;

however, reference [31] also assumes that nodes are simply
willing to share their stored accounting data with others.

Micropayment-based incentive techniques for peer-to-peer
systems include PPay [32] and Karma [33]. PPay requires a
central authority to generate currency and to check for double
spending. Karma requires other peers to keep track of a peer’s
account balance, and assumes that distributed accounting is
incentive compatible. Also, Karma is susceptible to the Sybil
attack: a peer can repeatedly join the system and obtain new
start-up funds each time. The cryptographic puzzle that new
entrants must solve limits only the rate of new ID generation.

Reference [34] is a work with the same objective as ours
(fuelling WLAN deployment), and focuses also on QoS. Wire-
less ISPs have multilateral roaming contracts and must register
with a central authority that maintains reputation records,
which are updated with QoS reports submitted by the roamers.

Several problems faced by system designers who consider
incentive issues in their designs are discussed in [35, 36].

III. SYSTEM MODELS AND DESIGN
In this section, we specify the trust model and the uncoope-

rative behavior model for the Peer-to-Peer Wireless Network
Confederation (P2PWNC) protocol, and describe the relevant
P2PWNC entities. Detailed algorithms follow in Section IV.

A. Entities and Trust Relationships
We consider citywide Wireless Community Networks

(WCNs) comprising tens of thousands of Wireless LAN access
points (WLAN APs). Each AP is connected to an always-on
metered DSL line. The APs and DSL lines are owned by
different WCN participants. APs provide WLAN coverage to
the publicly accessible areas that surround the households of
their owners. We do not assume the existence of a WCN
backbone with point-to-point wireless links.

1) Teams: WCN participants divide into teams. The
members of a team must know and trust each other so we
anticipate that teams will be small, with a few tens of members.
Team members may reside close to each other, but a team can
also be distributed across the city. By team consumption we
refer to the aggregate consumption of its members, meaning
the aggregate volume of Internet traffic that its members, when
mobile, transfer through APs that belong to other teams. We
assume that—even though individual consumption rates may
vary—the aggregate team consumption rates are homogeneous.

 The idea behind using teams—and enforcing reciprocity
between teams and not individuals—is that individual WCN
participants may reside in areas where there are not many
mobile users to serve. Because our reciprocity algorithm
encourages consumption–contribution ratios near 1:1, these
participants would receive little value from our scheme.
However, if we allow them to team with other participants who
trust them and who contribute a lot, then a team as a whole
could still maintain a consumption–contribution ratio near 1:1.
We do not specify how members settle their different
consumption and contribution rates within a team. Our protocol
allows teams to monitor the consumption and contribution rates

of their individual members; because there is no anonymity
within a team and teams are small, we assume that teams will
use social pressure or intra-team monetary transfers to balance
their aggregate consumption-contribution ratio, aided also by
careful selection of their members. In general, however, our
scheme does pose problems for those who reside in neighbor-
hoods that are rarely visited by mobile users.

A team requires a team founder. The role of the founder is
to generate the team identifier, which is a unique public key
whose corresponding private key is kept secret by the founder.
The founder uses this private key to sign a member certificate
for each team member. Each member certificate binds a unique
member identifier (ID) to the team’s ID (public key). A
member ID is also a unique public key, whose corresponding
private key is known only to the member who generated the
key pair. We do not require a Public Key Infrastructure—team
public keys remain uncertified. Using their certificates,
members request service in the name of their team. We assume
that teams do not trust most other teams, and that they may not
even know of the existence of other teams.

2) Receipts: A receipt is evidence that WLAN service was
contributed and consumed. Receipts are signed by team
members when they use an AP of another team, and are
transferred to the contributing team during the WLAN session.
We will describe our receipt generation protocol in Section IV-
D. This protocol ensures that none of the two parties is at a
significant disadvantage during the exchange. Fig. 1 shows the
format of receipts. Receipts contain: (1) the public key of the
contributing team, (2) the certificate of the consuming member,
which contains the public key of the consuming team, (3) a
timestamp noting the start time of the WLAN session, (4) a
weight noting the volume of traffic the member transferred
through the AP during the WLAN session, and (5) the
member’s signature, that is, a hash of the above fields encry-
pted with the consuming member’s private key.

We can verify the two signatures that the receipts contain
(the team signature on the member certificate and the member
signature on the receipt) using information on the receipt itself
(the team public key and the member public key). If both
verifications succeed we are sure that a team with a given ID
(found on the member certificate) has authorized the member
who signed the receipt to consume in the team’s name.

Receipts form a logical receipt graph. The vertices of this
graph are team IDs (public keys) and the weighted directed
edges point from the consuming ID to the contributing ID. An
edge’s weight is equal to the volume of traffic the source has
consumed from the destination, that is, the edge weight is equal
to the sum of the weights of the corresponding receipts. The
direction of the edge denotes the “owes to” relation.

3) Receipt Servers: After a WLAN session is over, the
contributing team will store the newly generated receipt in a
receipt server. Our protocol supports two types of servers: a
central server, and multiple team servers. These correspond,
respectively, to a centralized and a decentralized mode of
operation. We compare the two modes of operation in our
simulations (Section V). Our reference implementation
(Section VI) supports both modes. The centralized mode
requires that all teams of a WCN agree on the same central

server—which may be impossible. Decentralized mode does
not have this problem.

In centralized mode, all APs communicate through the
Internet with the central server. In decentralized mode, each AP
is configured to connect to its team server. In our reference
implementation the team server is co-located with one of the
team APs—teams do not have to maintain another dedicated
device. The APs store the receipts they earn in the server.
When a receipt server is full, it deletes the receipt with the
oldest timestamp in order to store a new one. In decentralized
mode, a team’s members may contact their team server in order
to receive an update with the latest receipts, which they will
use when gossiping (see Section IV-C). We assume that servers
are always online; however, this is not crucial (members can
use stale data). Fig. 2 shows both modes of protocol operation.

B. Uncooperative Behavior Model
We assume that members are selfish but not malicious.

However, we do not consider selfish MAC-layer behavior. We
do not consider localized Denial-of-Service (DoS) attacks like
physical layer jamming. Also, we do not consider Internet DoS
attacks on the receipt servers; the central server is the obvious
target, however, even team servers can be attacked if their
Internet address is revealed. However, an important characteri-
stic of our protocol is that it does not require that different
teams communicate through the Internet, so the probability of
DoS attacks due to publicized IP addresses is lowered.

We assume that standard cryptography works, and that
attackers cannot steal private keys in order to break our digital
signature schemes. Such private keys are contained in the
WLAN clients used by members (because these clients sign
receipts). There is also one private key per team—kept secret
by the team founder—that is used to sign member certificates.
APs do not store private keys, only their team’s public key,
which they advertise during receipt generation (Section IV-D).

Figure 1. Receipt format. Receipts are self-verifiable signed documents that
report a completed WLAN session in which a total of weight bytes was
relayed. The WLAN session had started at the time encoded in timestamp.

Figure 2. Centralized and decentralized mode. In decentralized mode, team
APs communicate with their own team server (which may also be an AP).

Central
Server

1
Team
Server

1
Team
Server

2
Team
Server

3

1

3

3

1

2

2
1

1

3

3

1

1 2

2 1

Provider public
key

Consumer
certificate

Timestamp

Weight
(bytes)

Consumer
signature

Receipt

Team public
key

Member public
key

Team
signature

Member cert.

We assume that teams will attempt to cheat the reciprocity
algorithm and contribute less than they consume. To do that,
naïve teams will simply refuse all service requests. Less naïve
teams will engage in false trading, that is, they will generate
fake receipts. They can do this either on their own, by creating
fake team IDs in a Sybil attack, or in collusion with other
teams. Even less naïve teams can combine false trading with
(some) actual contribution. In terms of our receipt graph, an
attacker cannot add a new outgoing edge or change the weight
of an existing edge that starts from a vertex that corresponds to
a real team with which the attacker is not colluding—this
would require access to the private key of the team, or to the
private key of one of the team’s members, which we assumed
is impossible. Fig. 3 shows potential attacks on the graph.

IV. ALGORITHMS AND PROTOCOLS

A. Reciprocity Algorithm
The reciprocity algorithm we will present is a generaliza-

tion of our algorithm in [9, 10]. It provides a YES/NO answer
to the question “should team P provide service to team C?” P is
short for provider and C is short for consumer. The algorithm
uses the receipt graph as input. In centralized mode, the central
server executes the algorithm on its view of the graph; APs
send their queries to the central server; queries contain the IDs
of P and C. In decentralized mode, APs send their queries to
their team servers. Our objective with this algorithm is to
encourage cooperation by cooperating only with contributors.

The decentralized algorithm in [9,10] does this by searching
the receipt graph for directed paths starting from P and ending
at C. If such a path is found, the algorithm decides that P owes
service to C (directly, or indirectly, that is, by owing to teams
that directly or indirectly owe service to C), and, therefore, C is
a contributor. To maintain a balance between contribution and
consumption, P never considers the receipts of this path in the
future, and so C cannot repeatedly take advantage of the same
path to P. Two limitations of this algorithm are: (1) it does not
consider the weights on the receipts; (2) receipt discarding is
local to P, which means that C can potentially take advantage
of the same receipts elsewhere (if they do not expire [9, 10]).
The idea behind finding a path from P to C is to prevent false
trading attacks. If P does not find such a path, it cannot trust
any of the other receipts (or chains of receipts) that point to C:
they could all be the result of collusion or of a Sybil attack.

Figure 3. Receipt Graph. Attackers can create fake vertices (teams) and
edges (receipts), but cannot create outgoing edges from real teams that are not
in collusion with the attacker because they do not have access to the private
signing key of the team, nor to the private signing key of one of its members.

Feldman et al. [20] presented a decision function that is
based on maximum flow (maxflow), which does not have the
two limitations mentioned above. Reference [20] shows via
analysis and simulation that this decision function is robust to
collusion and can encourage cooperation in communities with
free IDs. In this paper, we adopt the algorithm from [20], and
extend it, making it robust against less naïve colluders who
combine false trading with (some) real contribution.

1) Basic Algorithm: The decision function in [20] is
probabilistic. Peer P provides service to C with probability:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→
→

= 1,
)(
)(min

PCmf
CPmfp (1)

where mf (·) is the result of the maxflow algorithm for a pair of
vertices. In [20], the vertices represent peer IDs and the edges
represent amount of service consumed. In our context, the
graph vertices are team IDs and the edges show the volume of
transferred traffic the source team ID “owes to” the destination
team ID; weights are measured in bytes. We also define that if
the denominator in Eq. (1) is 0, P provides service only if the
numerator is strictly positive.

This algorithm takes indirect consumption of the prospe-
ctive consumer into account (in the denominator), balancing
consumption and contribution without the need for receipt
discarding. The simulations in [20] show that peers who adopt
this function in an environment where (naïve) collusion is
possible perform better (in a manner to be defined in Section
V) than peers who follow other strategies like Always
Cooperate or Always Defect. The algorithm is robust to (naïve)
collusion: non-contributors cannot appear to be contributing if
they falsely trade with non-contributors only. See also Fig. 4.

The maxflow function is, however, vulnerable to another
attack. We give an example: Let C be a contributing team;
however, instead of consuming using ID C, each time C
consumes it uses a fresh ID Ci, i > 0, which C never reuses.
This simple Sybil attack does not benefit C because mf (·→Ci)
is 0 for all i (because there are no receipts pointing to the fresh
ID). Therefore, P will refuse to cooperate with Ci.

However, if C falsely trades with the new ID and creates a
new C→Ci edge, with weight w, then, if w>mf (P→C), we have
that mf (P→Ci) = mf (P→C), that is, by the definition of
maxflow, all the flow from P that reaches C will also reach Ci
if the C→Ci weight is enough to carry it, and mf (Ci→P) = 0
(because Ci is fresh). In effect, ID Ci earns all the “contribution
reputation” of ID C but none of its “consumption reputation.”
In our context, this means that team C can recruit an arbitrary
number of members because even if one member can consume,
then any number of members can consume, as long as they
erase the consequences of their consumption using fresh IDs as
described above. This creates the wrong incentives for teams
because they can recruit members disproportionately to their
contribution. Note that ID C will indirectly owe more to others
as a result of these Sybil attacks, however, because the
members of C appear with a fresh team ID Ci each time, the
denominator of Eq. (1) will always equal 0, irrespective of the
value of mf (C→P). Fig. 5 shows this attack.

2

3

1 F1

F2

F3

1, 2, 3: real teams

F1, F2, F3: fake
teams, created by
attacker

Attacker colludes with
Team 1 only

Attacker cannot
create edge 3 F1

Figure 4. The maximum-flow decision function of [20] is robust to naïve
collusion in which colluders falsely trade only with each other and never
contribute to outsiders.

Figure 5. Less naïve collusion. The numerator in Eq. (1) is the same for C
and the Ci’s, but the denominator is 0 for all Ci’s (fresh IDs with no history).

2) Extended Algorithm: To limit the consequences of this
attack we observe that an attacking C will tend to have many
high-weight outgoing edges. Also, we observe that, compared
to C, the Ci’s will be farther away from P in terms of path
length. How much weight is “high” and what path distance is
“far”? To answer this, we defined GMF, a generalized maxflow
[37] algorithm with an estimator that detects excessive false
trading.

If we assume that most teams are homogeneous in their
consumption rates and that the probability of two teams inter-
acting is uniform across all pairs of teams, we hypothesize that
some uniformity will be evident in the receipt graph. We
therefore define GMF as the following variant of maxflow: in
GMF, the weight we of an edge e encountered during the
standard maxflow computation is discounted depending on the
distance, d(P, Se,), of e’s source vertex, Se, from the maxflow
source, P. we is further discounted depending on q(P, Se),
which is equal to the following ratio: the sum of the weights of
all the outgoing edges that originate from Se, divided by the
sum of the weights of all the outgoing edges that originate from
P. The exact discounting occurs as follows: we is first divided
by gd(P, Se), where g is a GMF constant (we use g = 2); we is
then further divided by q(P, Se), but only if q(P, Se) > 1.

Fig. 6 shows a GMF example. GMF discounts the value of
flow as we go farther away from the maxflow source, and it
also discounts flow when it passes through vertices with a high

Figure 6. GMF example. In GMF, flow is discounted for 2 reasons: for being
more than 1 hop away from the maxflow source, or for having passed through
vertices with more total outgoing flow compared to the maxflow source.

sum of outgoing edge weights (compared to the sum of
outgoing edge weights originating from the maxflow source).
In the attack described above, GMF(P→Ci) will be less than
GMF(P→C), and their difference will become even greater if
C adds more outgoing edges.

The idea is to use the result of GMF to (subjectively) judge
prospective consumers. A GMF result that is much smaller
than the GMF results that P usually sees in the community
should alert P to the possibility of false trading. P must employ
the GMF test before the test of Eq. (1); P must first check for
the GMF to C, and compare it to a running GMF average that P
maintains as P interacts with the community. P only allows a
request from C to proceed to the test of Eq. (1) with
probability:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →×
= 1,)(min

gmf
CPGMFgp (2)

where g is the constant mentioned above (we use g = 2). Think
of g as P’s generosity; gmf, on the other hand, is updated every
time a new, strictly positive GMF result is computed by P. This
update follows a standard formula for running estimators:

 gmf = a × gmfold + (1-a) × GMF(P→C) (3)

and we use a = 0.5. See also Algorithm 1 below.

Algorithm 1 RECIPROCITYALGORITHM. Should P provide service to C ?

 1: gmfsample ← GMF(P→C)
 2: if gmfsample > 0 then
 3: gmf ← α × gmf + (1-α) × gmfsample
 4: end if
 5: Apply Eq. (2) test: if pass then
 6: Apply Eq. (1) test: if pass then
 7: return YES
 8: end if
 9: end if
10: return NO

B. Bootstrapping
The reciprocity algorithm requires unconditional coopera-

tion in order to bootstrap. New teams (or teams that return

C

A

P

g = 2
assume unit weights

maxflow(P C1) = 1

Se = C

q(P, Se) = 3/2 = 1.5

d(P, Se) = 2

GMF(P C1) =
= 1 / 22 / 1.5 = 0.16...

GMF(P C) = 0.50

C1

rest of
graph

C

C1

A

P

C has provided
service to P, both
directly and indirectly

Instead of consuming
as “C”, C’s members
use disposable Ci’s

Fake receipts are
“wide” enough to carry
all of P’s flow from C
to Ci’s

A Ci is never reused:
debt vanishes!

C2

C3

rest of
graph

C

C

C

2

1

C’s: colluding teams
(or multiple IDs of the
same team)

maxflow from team 1
or 2 to any C equals 0

(Free-riders cannot
appear as providers!)

If the 2 C edge were
possible, both 1 and 2
would (indirectly) owe
to every one of the C’s

C

after an absence, whose transaction history is forgotten) must
contribute unconditionally first without using the reciprocity
algorithm. This must happen because teams, in their early life,
do not have outgoing receipts (since they have not yet
consumed). In such a case, the result of Eq. (1) will always be
0, and new teams would never cooperate; therefore, they
would be no different from free-riders. To break this cycle,
teams must contribute unconditionally at first; meanwhile, we
assume that their members will try their luck in the
community. We define the following: after the members of a
new team finally manage to consume service for a total of
patience times, the team can safely assume that it has finally
become “known” for its contribution to the community, and it
can start to use the reciprocity algorithm properly.

C. Gossiping Protocol

If the teams cannot agree on a central server, receipt
dissemination through gossiping is required. Without
gossiping, each team has a limited view of the receipt graph: it
can only see its incoming edges (having earned the
corresponding receipts directly from consuming members).
This situation is equivalent to the private history of [20]. If we
applied the maxflow heuristic in such a setting, it would be
capable of measuring direct debt only. A community with this
restriction would find it difficult to reach citywide scale; teams
would have to be very few in number, with large membership,
and a large number of APs, so that consuming members could
always hope to access APs of teams that owe them directly.

At the opposite end of the spectrum of choices is our
centralized mode, where the central server has knowledge of all
receipts—at least all the recent ones that can fit in its memory.

Our gossiping protocol and decentralized mode is a third
option: there is no central server, but teams attempt to create a
consistent view of the receipt graph by sharing their views
whenever they interact. A similar technique is studied in [30].
More specifically, members carry in their portable devices a
small repository of receipts. We will see (Section VI-G) that
the size of a receipt is in the order of 100 bytes, so modern
mobile phones can store thousands of receipts. Members then,
occasionally, request an update with the latest receipts by com-
municating with their own team server (over the community
WLAN system or over 3G for example). Then, they share these
new receipts with their prospective providers before they
request service from them. Assume for example that team C is
about to request service from team P. If the member of C
shares with P the newly earned receipts of C, these would
correspond to graph edges that point to C, which can only
increase the result of mf (P→C) that P would calculate.

In addition, team C could also keep in its team server (and
transmit to its members) other random receipts—themselves
obtained by previous visiting members through the procedure
we described above. Interestingly, the providers found on these
receipts would have recently been consuming from C (which is
how C got these receipts in the first place). If they had been
consuming, then they would also have signed a receipt to C.
Therefore, by sharing random receipts along with receipts that
point to C, C shows to P essentially a tree of receipts, all the

nodes of which directly or indirectly point to C, and thereby
potentially increasing the result of mf (P→C). In this process,
which we call merging, P’s team server, when full, will never
replace a receipt with an older receipt, only a newer one.

As a side effect, both teams are informed about (some of)
their outgoing edges through this process. Note that members
do not have to report the receipts they sign to their team server,
but these receipts are required for the numerator of Eq. (1) or
Eq. (2) to be strictly positive. Also, C does not reveal its
outgoing edges to P: doing so would potentially increase the
result of mf (C→P), and C does not want that. However, again,
P learns about (some of) C’s outgoing receipts through the
same gossiping process. Therefore, in decentralized mode, P’s
calculation of both mf (C→P) and mf (P→C) is done in a
balanced way: P has a lot of information for edges near the
target vertices for both maxflow calculations, but less
information for edges near the source vertices. The ratio of
maxflow is not influenced much because this loss of
information is caused by the same underlying process.

One difficulty with gossiping is that because members may
present many receipts before requesting service, team servers
may not want to spend the time to verify the signatures on all
of them in “real-time” (for signature verification times see
Section VI-G). Team servers, however, could verify receipts in
a background process. Then, however, consuming members
have an incentive to show forged receipts that appear to be
signed by P even if they would never pass signature
verification. However, P’s team server can allow unverified
receipts to be stored and used in maxflow calculations, as long
as all receipts that are part of the maxflow-discovered paths are
verified. The number of these receipts will generally be small.

D. Receipt Generation Protocol

During a WLAN session, APs request receipts from all
WLAN-connected foreign members periodically. The requests
contain the public key of the contributing team. Members are
required to sign the appropriate receipts, which must contain
the weight the provider is measuring. As a side-effect, by
receiving such a receipt, the AP is sure that the session is not
hijacked because nobody else has the appropriate private key,
which must correspond to the member certificate that was
presented initially. APs will only store the last receipt in such a
series. Every receipt is uniquely identified in the system by the
{provider public key, consumer certificate, timestamp} set of
fields, so another receipt with different weight but the same
timestamp (which always encodes the session start time) will
be seen as the same. The AP has an incentive to hold the one
with the biggest weight—the last one. By requesting receipts
periodically, none of the two parties is at a significant
disadvantage. To guard against members that attempt to avoid
signing the first receipt, the AP, in the beginning of a session,
can ask for receipts at a higher rate, and lower it after the
member has proven trustworthy. There is no concept of
members refusing to sign a receipt: this indeed happens as part
of normal operation and such a timeout indicates that the
session has ended. The AP will store the last receipt from that
session in its team server or in the central server (depending on
the operational mode), and will block further member traffic.

V. SIMULATION RESULTS
In this section we present results from simulations that

evaluate the performance of the reciprocity algorithm, the
bootstrap algorithm, and the gossiping protocol, including the
reciprocity algorithm’s robustness to attacks.

A. Simulation Environment and Parameters
We programmed our custom simulator in Java, which can

be downloaded from:
http://mm.aueb.gr/research/P2PWNC

Our objective was to model a peer-to-peer environment and
examine the robustness of our reciprocity algorithms, not to
perform low-level WLAN simulations. Time in our simulations
consists of rounds. During a round, teams are randomly
matched, and each team gets exactly one chance to consume
and exactly one chance to contribute. The number of these
matches per round is equal to the number of available teams.
The number of teams changes: at round 1, we start with 2
teams, and at the end of each round a new team joins the
community. This models community growth, and it continues
up to a maximum number of n teams. For simplicity we assume
that all WLAN sessions result in a new receipt with unit
weight. If, in a match, the prospective contributor decides to
provide service, its score is reduced by c. At the same time, the
score of the consumer is increased by b. This models the cost
and benefit of providing service. This is a standard setup for
similar (evolutionary) games in sociology and biology; see, for
example [25], or the peer-to-peer evaluation framework of [20].
This benefit-to-cost ratio, b / c, models how much the teams
value the Wireless Community Network service. Using current
3G and DSL rates as an indicator, we set this ratio to equal 10
(with b = 10 and c = 1). Our results are, however, qualitatively
the same for a wide-range of b / c ratios (not presented here).

The rating of a strategy, following [20], is the average of
the running averages of scores per round of its followers, with
each term weighted according to how many rounds the team
has been using the strategy: “veterans” of a particular strategy
carry more weight that than “amateurs” when calculating a
strategy’s rating. This is useful when teams change strategies
(in the experiments where this is supported) because the early
scores of amateurs do not affect much the overall rating of the
strategy. For cooperative strategies, the top rating is 9 (= b – c
= 10 – 1). This corresponds to a situation in which, for every
round played, all the teams following the strategy contributed
once and also managed to consume once per round. In Table I
we give nominal values for our simulator parameters, as well as
the Section of the paper that first discusses them.

TABLE I. SIMULATION PARAMETERS

Parameter Nominal value Section

Number of teams (n) 150 V-A

Mode of operation Decentralized III-A-3

Server repository size (receipts) 1500 III-A-3

Patience (successful consumptions) 10 IV-B

Receipts to merge when gossiping 150 IV-C

B. Reciprocative Strategy Against Itself

1) Repository Sizes (Fig. 7): For our first experiment we
wanted to see how our Reciprocative strategy (called RECI
from now on) performs under various receipt repository sizes.
An instance of a receipt repository is located either on the
central server, or there is a different instance of the repository
on every team server; this depends on the mode of operation.
Fig. 7 shows the rating of RECI (remember that 9 is optimal,
which equals b – c) for a community that grows to n = 150
teams, and two different repository sizes: 1500 and 500
receipts (all receipts are assumed to be unit-weight).

Having short-term history (that is, a finite repository with
oldest-receipt-out replacement rule) is important because it
encourages continous contribution—fresh receipts replace old
ones and teams that delay in replenishing their incoming
receipts find it harder to obtain service. However, a small
repository size of 500 (small compared to the number of teams
which equals 150, after the last team joins at round 150)
causes the maxflow and GMF tests to mistake contributors for
non-contributors. This starts a vicious cycle which ends with
the collapse of cooperation. The two cases with 1500 receipts
per repository do not have this problem, and approach the
maximum rating of 9. Note that in centralized mode there is
only one repository of 1500 receipts. In decentralized mode
there are 150 team repositories each one storing 1500 receipts.

Note also that a rating of 9 will never be reached. This is
because of the occasional mistakes made by the GMF and
maxflow tests. These mistakes, and their result, represent the
“social cost” of free IDs and of our algorithms.

2) Merging Receipts (Fig. 8): In decentralized mode of the
previous experiment, consuming teams merged all their
receipts with the provider. This is a burden for the provider
who must verify them, and a burden for the member who must
store and present a large number of receipts to prospective
providers. We see, however, that even when merging only 50
receipts, the rating of RECI stays consistently above 8, that is,
the information loss is not crucial. After ratings stabilize, near
round 350, merging only 50 receipts corresponds to a running
average of 90% success for RECI teams. That is, 1 in 10
requests is not satisified. However, increasing this to 500
merged receipts leads to 98% success; that is, the probability
that a RECI does not recognize another RECI as a contributor
is 2%. (During a merge, the consuming member shows the
latest receipts from the consumer’s team server to the
provider; also, the consumer hides any receipts in which the
consuming team appears as consumer. See also Section IV-C).

3) The Effect of Patience (Fig. 9): Here we examine how

the initial patience parameter (see Section IV-B) affects the
ratings later in the game. With the exception of the very small
patience value of 1, the remaining patience values result in
high levels of cooperation in the steady state, practically
converging on the same rating; patience does not appear to be
a crucially significant parameter. A patience value of 1 does
not allow enough time to new teams to build a repository of
incoming and outgoing receipts before they start using the

reciprocity algorithm, which makes them unecessarilty strict,
causing a vicious cycle.

4) Merging and Repository Sizes Revisited (Fig. 10): We

see here how the community performs once steady state has
been reached (at round 500). Centralized mode does
marginally better, followed by decentralized. We see again the
effect of the repository size and its relation to the number of
teams. In all our experiments, the best results were
consistently obtained for repository sizes whose size was 10
times larger than the number of teams. The receipts to merge
can be in the order of the number of teams.

C. Reciprocative Strategy against Free-Riders, Under-
Providers, and Uncondtional Cooperators

1) Under-Providers and Evolutionary Learning (Fig. 11):
Here, RECI confronts three other strategies: Unconditional
Cooperators (ALLC), Unconditional Defectors (ALLD), and
Random (RAND), a strategy that cooperates 50% of the time.
In this experiment we simulated evolutionary learning [20]: at
the end of each round, each team would consider the ratings of
all the other strategies, pick one at random, and, if the rating
for that strategy was higher than the rating for its own, it
would switch to that strategy with a probability proportional to
the difference in rating between the two strategies. Each team
that joins chooses one of the 4 available strategies with proba-
bility 0.25. As time progresses, the winning strategies are
RECI and ALLC, that is, the cooperative strategies. ALLD is
doing less well because unconditional free-riders are easily
recognized by the GMF test immediately (GMF to them is 0).
However, ALLC and RAND followers may cooperate with
them, and this is why ALLD followers persist for a while.
ALLD is indeed decreased in the population, which, in turn,
allows ALLC to endure because their potential exploiters are
driven away through the “efforts” of RECI. RAND does well,
but consistently worse than RECI. Providing service once
every two rounds did not result in an increase in RAND’s
rating because their under-provision was detected by the GMF
and maxflow tests. At round 500, the running average of
RECI-RECI cooperations is 96.5%, and the running average of
RECI-RAND cooperations (percentage of times RECI contri-
buted to RAND) is only 68.4%. Due to evolutionary learning,
at the end of round 500 the team population consists of 171
RECIs, 100 ALLCs, 20 RANDs, 5 ALLDs and 4 pre-RECIs
(for a total of n = 300 teams). “Pre-RECIs” are RECI
followers that undergo bootstrap because they switched to
RECI only recently. Pre-RECIs are patient with their initial
low ratings, expecting that they will soon switch to RECI.

2) Under-Providers without Learning (Fig. 12): Here we

experimented with the probability with which RAND players
cooperate. We test 5 different values, for two different
strategic mixes. For low probability values RAND more
closely resembles ALLD, while for high values it more closely
resembles ALLC. RAND’s best choice is shown to be 0.5,
which is still an inefficient way to increase its payoff: RECI
followers still do better.

D. Reciprocative Strategy against Sophisticated Colluders
In this experiment (Fig. 13) we simulated an attack similar

to that of Fig. 5. Team 100 appears in the system at round 100.
It follows the RECI strategy until round 200, at which time,
every time it asks for service it does so twice, at different
teams, each time using a new fake ID, which it never reuses.
Because we use unit weights, we used 5, 10, or 15 receipts to
“carry” the flow from the real ID to each of the two fake ones,
each time. With 5 receipts, the fake IDs may not receive all the
flow (maxflow averaged 10 units in the community of this
experiment), but they risk less from the GMF test of excessive
consumption. With 10 receipts, approximately all the incoming
maxflow of Team 100 will be carried to its fake IDs. In all
three situations Team 100 did badly: no team cooperated with
Team 100 after a few tens of rounds (hence the regular drop in
Team 100’s running average rating). Team 100 would not do a
lot worse if it simply stopped contributing. The GMF test was
successful in detecting and punishing the most moderate use of
concurrent false IDs, which is 2. If Team 100 tried to use 3 or
more false IDs, excessive consumption would be recognized by
the others even sooner. The GMF test achieved this without
compromising RECI behavior in the previous experiments.

Figure 7. Repository sizes experiment (Section V-B-1)

Figure 8. Merging receipts (Section V-B-2)

Figure 9. The effect of patience (Section V-B-3)

Figure 10. Merging and repository sizes (Section V-B-4)

Figure 11. Under-providers and evolutionary learning (Section V-C-1)

Figure 12. Under-providers without learning (Section V-C-2)

Figure 13. Sophisticated colluders and the GMF test (Section V-D)

VI. IMPLEMENTATION
This section summarizes the main results of the technical

report [38].

A. Platforms
We implemented the P2PWNC protocol (AP and Team

Server) on the Linux-based Linksys WRT54GS wireless AP
[39] (currently retailing for less than $70). We included our
software modules on the AP’s firmware. We also implemented
the client side of the protocol as a Java application that runs on
Windows and Linux, and as a C application that runs on Linux.
We left the implementation of a smart-phone client for future
work.

We conducted experiments to test the performance of the
software running on the Linksys AP. For comparison, we also
ran the software on an AMD Athlon XP 2800 laptop. Table II
shows the specifications of these two platforms.

RCPT P2PWNC/1.0
Content-length: 357
Algorithm: ECC160
Timestamp: Tue, 24 May 2005 17:26:41 +0000
Weight: 6336
BNibmxStfJlod/LnZubH6pzWHQqKyZFcSMjnZurmTe4KjCRkllhV93MEegPvCsxz
2oe/hqevoPSrwO1JLO/36J8HTIeyeKQqTCfx+EPxweAvYC/ZFb8URLa2faIbvSgD
3lm6Wa1S4cYlSWeSNmFzS/ebDFfzakqNSEsERefwEcdWJD9gzIXafL4pojhhfP5b
rS4QPtHzBl58POfKdx9AqCDMBxRoGALKJSJYYXlsrwtiyZJKvPlU5B3lWrFuL25P
d+kv2iMVRElXk/4=

TABLE II. PLATFORM SPECIFICATIONS

Characteristic Athlon XP 2800 Linksys WRT54GS

 CPU speed 2.08 GHz 200 MHz

 CPU type AMD Athlon XP 2800 Broadcom MIPS32

 RAM 512 MB 32 MB

 Storage 60 GB HD 8 MB Flash (read only)
32 KB NVRAM

 Operating system Linux kernel 2.4.18
(Red Hat Linux 8.0)

Linux kernel 2.4.18
(Linksys specific)

 Cryptographic
 Library OpenSSL 0.9.8 beta 5 OpenSSL 0.9.8 beta 5

 Compiler gcc 3.2 gcc 3.2
 Compiler
 Optimizations -O3 -O3 –mcpu=r4600 –mips2

B. Protocol Messages
The P2PWNC protocol comprises a set of 7 text-based

messages, and operates on top of TCP/IP. A Base64 encoder is
used to convert binary data to the text-based wire format. Table
III shows the protocol messages, the entities that exchange
them, and a short description for each message.

TABLE III. P2PWNC PROTOCOL MESSAGES

Message Description Direction

CONN
WLAN session initiation

request Client → AP

CACK WLAN session initiation
response AP → Client

RREQ Receipt request AP → Client

RCPT Receipt
Client → AP

AP → Central or Team Server
Team Server → Client

QUER Query the
Central or Team Server AP → Central or Team Server

QRSP Query response Central or Team Server → AP

UPDT Client receipt update request Client → Team Server

Fig. 14 shows the format of an RCPT message that contains
a receipt (in its Base64 wire format) signed using the Elliptic
Curve Digital Signature Algorithm (ECDSA).

Figure 14. RCPT message. It contains the receipt encoded in its Base64 wire
format. The timestamp and weight fields of a receipt are contained in human-
readable form also.

C. Network Access Control
The AP software uses the Linux iptables firewall for

network access control. We built our own Linux kernel module
for measuring the volume of forwarded traffic per client. When

WLAN clients associate with the AP they are assigned
dynamic IP addresses from an address pool via DHCP, and are
denied Internet access until the AP receives a positive QRSP
from the Central or Team Server. When a session ends (RREQ
timeout) the particular IP address is once again blocked, and
measurement of traffic for or from that address is stopped.

D. Receipt Server Implementation
We implemented the team server to run on the AP itself.

The code is only slightly different from the central server
version that runs on PCs. We assume that teams will pick one
of their APs for the role of team server.

A receipt server needs to support dictionary and graph
operations. It should support efficient receipt insertion, dele-
tion, search, and maximum flow computation. A composite
data structure was built to accommodate this. The structure
includes hash tables that store pointers to receipts and team IDs
in order to achieve fast look-ups. A red-black tree [40]
structure keeps receipts sorted by their timestamp. Each tree
node corresponds to a receipt. A red-black tree supports
logarithmic-time insertion, deletion and searching for receipts
based on their timestamp. Finally, there is an adjacency-list
representation of the receipt graph, with each red-black tree
node also storing a pointer to the respective graph edge. A
FIFO variant of the push-relabel maximum flow algorithm [41]
has been implemented. Its O(V3) worst case running time is
long; therefore, we used the global relabeling heuristic [41,
42], which yielded dramatic performance improvements.

E. Maximum-flow Performance
We measured the performance of the FIFO-based push-

relabel algorithm with the global relabeling heuristic for
various random graph instances. In our experiments, we
created random directed graphs comprising 1000 and 10 000
receipts (edges), and 100 and 1000 teams (vertices). Table IV
shows the pure CPU time spent on executing the algorithm
(measured with the Linux times function). Each reported value
is the average time spent on the execution of the maximum
flow algorithm for 20 random source-destination pairs of the
same graph. Time is measured in milliseconds.

TABLE IV. MAXIMUM FLOW ALGORITHM PERFORMANCE

 Athlon XP 2800 Linksys WRT54GS
Number of

receipts

100
teams

1000
teams

100
teams

1000
teams

1000 0.43 ms 0.23 ms 12.64 ms 3.75 ms

10 000 5.88 ms 12.72 ms 59.27 ms 134.04 ms

F. Cryptographic Parameters
The P2PWNC protocol supports both the RSA and Elliptic

Curve Digital Signature Algorithm (ECDSA). RSA crypto-
system parameters include the bit length of the keys and the
public exponent value (for us, fixed to 65 537). For ECDSA, we
used verifiably random curves over the Fp finite field. More
specifically, we used the sec160r1, secp192r1, secp224r1, and
secp256r1 named curves [43, 44] for key lengths of 160, 192,
224, and 256 bits, respectively.

G. Receipt Sizes and Cryptographic Performance
We performed tests to study the performance of both the

RSA and the ECDSA signature schemes. The operations of
interest are the generation and verification of digital signatures.
In our protocol, clients sign receipts and APs verify them.
Tables V and VI shows the results of these tests. ECDSA is
faster for signatures than it is for verifications and is appro-
priate for use in battery-powered devices like mobile phones.
Also, the use of ECDSA results in smaller receipts, since
ECDSA keys and signatures are shorter than their RSA
counterparts for the same security level. The smallest receipt in
P2PWNC, when all keys and signatures use 160-bit Elliptic
Curve Cryptography (ECC) requires 211 bytes (3 ECC public
keys, represented without point compression, requiring 41
bytes each, two ECDSA signatures requiring 40 bytes each,
and two 4-byte integers representing the timestamp and weight
fields). With 1024-bit RSA keys the receipt size is 648 bytes.

TABLE V. CRYPTOGRAPHIC OPERATION PERFORMANCE : SIGNING

 Athlon XP 2800 Linksys WRT54GS
Bit length

(RSA/ECC)
RSA ECC RSA ECC

1024/160 9.0 ms 1.3 ms 300.6 ms 20.3 ms

1536/192 25.9 ms 1.2 ms 655.6 ms 18.5 ms

2048/224 47.3 ms 1.4 ms 1529.0 ms 23.4 ms

3072/256 149.1 ms 1.7 ms 3939.0 ms 73.1 ms

TABLE VI. CRYPTOGRAPHIC OPERATION PERFORMANCE : VERIFICATION

 Athlon XP 2800 Linksys WRT54GS
Bit length

(RSA/ECC)
RSA ECC RSA ECC

1024/160 0.4 ms 6.5 ms 12.3 ms 114.7 ms

1536/192 0.8 ms 6.0 ms 21.4 ms 99.9 ms

2048/224 1.3 ms 7.1 ms 37.9 ms 135.7 ms

3072/256 2.8 ms 8.6 ms 75.3 ms 453.0 ms

H. Routing Performance under Verification Load
We carried out experiments to test the Linksys AP routing

behavior under CPU-intensive ECDSA signature verifications.
We transferred a 223 MB file via FTP through the AP’s wired
router interface and performed 160-bit ECDSA signature
verifications at the same time. Table VII shows the effect of
these verifications on throughput. From Table VI, the
verification time for one ECC-160 signature is 115
milliseconds.

I. Reference Implementation Distribution
Our reference implementation is available to download

from http://mm.aueb.gr/research/P2PWNC

There, firmware for the Linksys WRT54GS AP that
includes configuration and management utilities is available in
binary and source-code format. For client software, both our C
and Java implementations are available. We used GNU tools

autoconf and automake to package the software. Program
sources are ready to compile and install.

TABLE VII. LINKSYS WRT54GS ROUTING PERFORMANCE UNDER
SIGNATURE VERIFICATION LOAD

Verifications / s Average TCP throughput
(KB/s)

% of “no load”
performance

0.0 (“no load”) 3965 100%

0.7 3858 98%

1.3 3600 91%

2.6 3145 79%

3.8 2783 70%

8.7 (maximum rate) — —

VII. DISCUSSION AND CONCLUSIONS
The guiding vision behind the design of the Peer-to-Peer

Wireless Network Confederation scheme and its algorithms
was that of a broadband subscriber who purchases a P2PWNC-
compatible Wireless LAN access point, sets it up at home in
“sharing” mode, and earns the right to roam the streets of the
city, enjoying ubiquitous high-speed wireless access through
similar access points. We wanted the scheme to be: (1) open to
all, with no registration procedure; (2) free to use, with
reciprocity as the only driving force; (3) simple to implement.

Support for free IDs is the most challenging aspect of our
design. This is followed by the problem of providing incentives
for distributed accounting. Our work on the analysis,
simulation, and implementation of P2PWNC is in its early
stages. There are still restrictive assumptions, and team
homogeneity tops the list; we need to analyze the effect of non-
homogeneity on the GMF algorithm, and possibly extend it.

On the theoretical level, formal analysis of the effect of free
IDs is required. The theoretical work on the area so far has
been about proving impossibilities [11, 26]. However, there is
still a huge space of available tradeoffs to explore before we
dismiss free IDs as a useful identity and accounting system. It
is important that we pursue this for two reasons: a system with
free IDs has built-in privacy support, and the freedom of not
having to register with authorities may permit massively
distributed systems to grow organically.

We are concerned with the scalability of our system. Can it
scale to large cities or just small towns? And how does user
mobility affect this? Can QoS be useful? Currently, we do not
examine the QoS that contributors offer to consumers. Also,
can some of the parameters (the sizes of receipt repositories
and the number of receipts to merge) be adjusted dynamically?

And what happens when team members do not trust each
other? Excess consumption by members can be detected if the
team just looks at the available graph, but what about more
sophisticated attacks? In many ways, cooperation enforcement
is like security engineering [36]. In this paper we showed how
we deal with some obvious attacks first. We still require a
systematic way to approach attacks against incentive schemes.

ACKNOWLEDGMENT
We thank our fellow participants in the Athens Wireless

Metropolitan Network for their advice and support, and the
anonymous reviewers whose comments helped improve the
quality of the paper.

REFERENCES
[1] Seattle Wireless. http://www.seattlewireless.net
[2] NYCwireless. http:/www.nycwireless.net
[3] Consume. http://www.consume.net
[4] Athens Wireless Metropolitan Network. http://www.awmn.net
[5] Motorola CN620. http://www.motorola.com/wlan/solution_cn620.html
[6] Nokia 9500. http://www.nokia.com/nokia/0,,54106,00.html
[7] Electronic Frontier Foundation (EFF) Wireless friendly ISP list.

http://www.eff.org/Infrastructure/Wireless_cellular_radio/wireless_frien
dly_isp_list.html

[8] Speakeasy NetShare. http://www.speakeasy.net/netshare/
[9] E. C. Efstathiou and G. C. Polyzos, “Self-organized peering of wireless

LAN hotspots,” European Transactions on Telecommunications, vol. 16,
no. 5 (special issue on Self-Organization in Mobile Networking), in
press.

[10] E. C. Efstathiou and G. C. Polyzos, “A self-managed scheme for free
citywide wi-fi,” In Proc. 1st IEEE WoWMoM International Workshop on
Autonomic Communications and Computing, Taormina-Giardini Naxos,
Italy, June 13, 2005.

[11] J. Douceur, “The Sybil attack,” in Electronic Proceedings 1st
International Workshop on Peer-to-Peer Systems (IPTPS’02),
Cambridge, MA, March 7-8, 2002.

[12] K. Panchanathan and R. Boyd, “Indirect reciprocity can stabilize
cooperation without the second-order free rider problem,” Nature, vol.
432, pp. 499-502, 2004.

[13] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Sustaining
cooperation in multi-hop wireless networks,” In Proc. 2nd USENIX
Symposium on Networked System Design and Implementation (NSDI
’05), Boston, MA, May 2-4, 2005.

[14] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the
Confidant protocol (cooperation of nodes–fairness in dynamic ad-hoc
networks),” In Proc. 3rd ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2002), Lausanne,
Switzerland, June 9-11, 2002.

[15] P. Michiardi and R. Molva, “Core: a collaborative reputation mechanism
to enforce node cooperation in mobile ad hoc networks,” In Proc. IFIP
TC6/TC11 6th Joint Working Conference on Communications and
Multimedia Security, Portoroz, Slovenia, 2002.

[16] S. Zhong, J. Chen, and Y. R. Yang, “Sprite: a simple, cheat-proof,
credit-based system for mobile ad-hoc networks,” In Proc. IEEE
INFOCOM, San Francisco, CA, March 30-April 3, 2003.

[17] S. Zhong, L. Li, Y. Liu, and Y. R. Yang, “On designing incentive-
compatible routing and forwarding protocols in wireless ad-hoc
networks,” In Proc. ACM MOBICOM, Cologne, Germany, August 28-
September 2, 2005, in press.

[18] L. Buttyán and J.-P. Hubaux, “Stimulating cooperation in self-
organizing mobile ad hoc networks,” ACM/Kluwer Mobile Networks
and Applications, vol. 8, no. 5, pp. 579-592, 2003.

[19] M. Félegyházi, J.-P. Hubaux, and L. Buttyán, “Nash equilibria of packet
forwarding strategies in wireless ad hoc networks,” IEEE Transactions
on Mobile Computing, in press.

[20] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive
techniques for peer-to-peer networks,” In Proc. ACM Conference on
Electronic Commerce (EC’04), New York, NY, May 17-20, 2004.

[21] R. Levien and A. Aiken, “Attack-resistant trust metrics for public key
certification,” In Proc. of the USENIX Security Symposium, 1998.

[22] M. K. Reiter and S. G. Stubblebine, “Authentication metric analysis and
design,” ACM Transactions on Information and System Security, vol. 2,
no. 2, pp. 138-158, 1999.

[23] M. Feldman and J. Chuang, “The evolution of cooperation under cheap
pseudonyms,” In Proc. 7th IEEE Conference on E-Commerce
Technology (CEC), München, Germany, July 19-22, 2005, in press.

[24] R. Axelrod, “The evolution of co-operation,” Penguin Books, London,
1990. (First published by Basic Books, New York, 1984.)

[25] M. A. Nowak and K. Sigmund, “Evolution of indirect reciprocity by
image scoring,” Nature, vol. 393, pp. 573-577, 1998.

[26] E. Friedman and P. Resnick, “The social cost of cheap pseudonyms,”
Journal of Economics and Management Strategy, vol. 10, no. 2, 1998.

[27] B. Greiner and M. V. Levati, “Indirect reciprocity in cyclical networks –
an experimental study,” Discussion Papers on Strategic Interaction,
2003-15, Max Planck Institute of Economics, 2003.

[28] K. G. Anagnostakis and M. B. Greenwald, “Exchange-based incentive
mechanisms for peer-to-peer file sharing,” In Proc. 24th International
Conference on Distributed Computing Systems (ICDCS 2004), Tokyo,
Japan, March 23-26, 2004.

[29] L. P. Cox and B. D. Noble, “Samsara: honor among thieves in peer-to-
peer storage,” In Proc. 19th ACM Symposium on Operating System
Principles (SOSP’03), Bolton Landing, NY, October 19-22, 2003.

[30] S. Čapkun, L. Buttyán, and J.-P. Hubaux, “Self-organized public-key
management for mobile ad hoc networks,” IEEE Transactions on Mobile
Computing, vol. 2, no. 1, 2003.

[31] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative peer groups in
NICE,” In Proc. IEEE INFOCOM, San Francisco, CA, March 30-April
3, 2003.

[32] B. Yang and H. Garcia-Molina, “Ppay: micropayments for peer-to-peer
sytems,” In Proc. 10th ACM Conference on Computer and
Communications Security (CCS), Washington, DC, Oct. 27-30, 2003.

[33] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “Karma: a secure
economic framework for p2p resource sharing,” In Electronic
Proceedings 1st Workshop on Economics of Peer-to-Peer Systems,
Berkeley, CA, June 5-6, 2003.

[34] N. Ben Salem, J.-P. Hubaux, and M. Jakobsson, “Reputation-based wi-fi
deployment,” Mobile Computing and Communications Review (MC2R),
July 2005, in press.

[35] E. Huang, J. Crowcroft, and I. Wassel, “Rethinking incentives for
mobile ad hoc networks,” In Proc. SIGCOMM Workshop on Practice
and Theory of Incentives and Game Theory in Networked Systems
(PINS), Portland, OR, August 30-September 3, 2004.

[36] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Experiences
applying game theory to system design,” In Proc. SIGCOMM Workshop
on Practice and Theory of Incentives and Game Theory in Networked
Systems (PINS), Portland, OR, August 30-September 3, 2004.

[37] É. Tardos and K. D. Wayne, “Simple generalized maximum flow
algorithms,” In Proc. 6th International Conference on Integer
Programming and Combinatorial Optimization, pp. 310-324, 1998.

[38] P. A. Frangoudis, “The peer-to-peer wireless network confederation
protocol: design specification and performance analysis,” Technical
Report 2005-MMLAB-TR-02, Mobile Multimedia Laboratory, Athens
University of Economics and Business, June 2005. Available at
http://mm.aueb.gr/technicalreports/

[39] Linksys Wireless-G broadband router. http://www.linksys.com
[40] L. Guibas and R. Sedgewick, “A dichromatic framework for balanced

trees,” In Proc. 19th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 8-21, 1978.

[41] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-
flow problem,” Journal of the ACM, vol. 35, no. 4, pp. 921-940, 1988.

[42] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-
relabel method for the maximum flow problem,” Algorithmica, vol. 19,
no. 4, pp. 390-310, 1997.

[43] Standards for Efficient Cryptography group, “SEC1: Elliptic curve
cryptography,” September 2000. http://www.secg.org

[44] Standards for Efficient Cryprography group, “SEC2: Recommended
elliptic curve domain parameters,” September 2000. http://www.secg.org

