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Abstract—During the past few years, large, reliable and resulting in a continuous need for new file systems. Moreover,
efficient storage systems have become increasingly importantthere are applications that bypass the file system layer so as
in enterprise environments. Additional requirements for these to avoid the overhead associated with it.

environments include low installation, maintenance and admin- R di distributed st ¢ imol ted in th
istration costs. In this paper we propose a hash-based storage égarding distributed storage systems impiemented in the

approach, combined with block-level operating system seman- block level, we can distinguish two categories: client-server
tics. The experimental evaluation confirms that the proposed block devices and distributed block-level storage systems.
approach is viable and can offer a cost-effective storage solution. The former are used to build two-node clusters by mirroring
all data to a secondary storage host. However, they cannot
distribute data to multiple storage devices and, thus, tend to be
vulnerable to multiple disk failures, while their performance is
bounded by the maximum 1/O throughput provided by a single
Key requirements of an enterprise storage system inclusterage server. The latter follow a design where all participants
high 1/0 throughput rates, resilience to component failureis the system run the same software modules. The location
capabilities for on-the-fly storage expansion and low deplogf each block is kept in some kind of global data structure,
ment, administrative and maintenance costs. As pointed autich must be kept consistent across all storage servers, a fact
in [1], “the ideal storage system is globally accessible, alwaysat increases system complexity and potentially bounds their
available, provides unlimited performance and capacity fperformance.
a large number of clients and requires no management”. Aln this paper we present the design and implementation of
plethora of software and hardware storage systems has bBeAST, a Block-Level hAsh Table based STorage system,
designed to fulfill those requirements. Notable innovations iahich is completely decentralized. The storage devices that
clude hardware-based storage area networks, distributed blddkm the core layer are connected in a structured overlay
based storage systems as well as remote and distributed rfid¢¢éwork, on top of which a distributed hash table (DHT) is
systems. implemented. Our system fulfills the requirements mentioned
Traditional hardware-based storage systems utilize disk above and overcomes the deficiencies of storage systems
rays, interconnected via centralized disk controllers. Theakready proposed in the literature. BLAST is a software-based
systems are able to achieve very high 1/O throughput rateystem that is able to run on off-the-shelf hardware, supporting
while supporting redundant hardware components and hystems that are heterogeneous in terms of network, CPU,
swappable disks. Nevertheless, their deployment cost is vemgmory and storage hardware. Thus, the deployment cost of
high. Moreover, these systems are completely proprietary asheé proposed system remains very low, while its performance,
are highly customized for specific storage environments wiets presented in the evaluation section, is sustained in high
respect to the number of supported workstations and servéesels. BLAST is able to support data redundancy via semi-
as well as to the supported storage space. As a result, theysgnchronous replication and device snapshots. Moreover it is a
not scale well as the demand for storage space grows beytigttweight storage system that can perform at least as well as
the initial estimations and their proprietary nature precludesher state-of-the-art distributed storage systems, while being
compatibility with commodity hardware. simple and easy to administer. The DHT perspective allows
Distributed file systems are implemented in the file level afs to design a system that keeps absolutely no metadata about
the operating system (OS) I/O stack. These systems consiit physical location of the stored blocks. By decoupling file
of a number of hosts that store the actual data and onesystem related semantics from the actual distribution of data
more metadata servers which are responsible for managing éifed by providing a low-level OS storage interface, BLAST
metadata and the physical location of every file block. Thebecomes a file system-neutral storage infrastructure.
servers need to be very powerful in terms of CPU and memoryThe remainder of this paper is structured as follows: In
as they are accessed by the clients during every file transseetion Il we briefly describe related work and in section Il
tion. They therefore increase system complexity and tendwe@ present an overview of our system. Sections IV and V
become bottlenecks and points of failure. While distributed filaclude a thorough analysis of the clients and the storage core
systems are optimized for specific application characteristi¢tayer of our system, respectively. In section VI we present an
disk access patterns change over time as applications evoesperimental evaluation of the 1/0 performance of our system.

I. INTRODUCTION
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Finally, section VIl outlines the main conclusions of this work—x=H P i & o AL
as well as our future research work. : . “—@.A ' i /"
patove’ y -.B I & o /.f.C
[l. RELATED WORK ;.- ) ";;\maﬂ ac \ “'"{di\’
The Network and the Enhanced Network Block Device: i ' I : % v
(NBD, ENBD) [7], [8] are simple client server systems that e )
support storing blocks of data at a remote storage host throu oL o, / 'E_/Leafdgeit(li),
a TCP connection. The Distributed Replicated Block Devic—grs—— @ Resisrrsy] g e
(DRBD) [9] is a Linux kernel module for building a two-node[m" ¥ Client: AY] largar:| Fi.
high availability cluster by mirroring all data to a secondary (a) (b)

storage host, following a RAID1 approach. Compared to

BLAST, these systems are based on the client-server mobi€l 1. System overview (@), chunk storage (b)

and, therefore, they lack a lot of characteristics, such as storage

decentralization, self-management and resilience to failure?. . . . .
The Global Network Block Device (GNBD) [10] provides0 Servers, Wh'Ch serve their /O requests in a round-robin
block device access to GFS [2] over TCP/IP. Contrary {8‘Sh'0n (i.e. client A). ) . . .
BLAST, GNBD servers access a centralized shared storaaeIn order to support file system neutrality and direct inte-

The idea of distributed disk arrays was pioneered by Tic ration of the proposed system, clients are implemented as
y P y \yértual device drivers in the OS kernel. Using this approach,

erTAIP [11] and Petal [1]. The latter uses a master-sla il b d facli Th
replication protocol, which cannot tolerate network partition"’-my lle system can be mounted on top of a client. The type

ing. Additionally, it has a period of unavailability during fail-(e-g-tﬁ'”g',e‘acﬁﬁs > m“'“p'de‘a.ccessh.r eﬁ‘?"""“te o ;eid‘on'yg
over, which can cause clients to initiate unnecessary recover, € size ot Ine storage device, which IS exported by eac

actions. LeftHand Networks [12] and IBM [13] have proposea ent, is a matter of administrative policy and, thus, irrelevant

similar storage systems, but no details about them have bé%r[nhe storage interface provided by the DHT. Whether a C"‘?“t
published. The FAB [20] design follows the same lines 3 single-access or mqupIe-a_ccess (i.e. one or more phyS|ca}I
Petal, but it can recover from network partitioning. Al thes osts can access the device simultaneously) depends on the file

systems require the maintenance of some global data, wh tem that is mounted on top of it. For example, mounting

involve the physical location of each block by all storaggn EXT-3 file system on top of a virtual device precludes the

nodes, using algorithms such as [14]. This approach increagggultaneous re_ad/writt_a access by multiple physical_ho_sts. In
their complexity and may lead to performance deficiencie%‘.)m.raSt’ mount_mg a file system that supports a d_|str|buted
Contrary to BLAST, they do not keep any kind of proximi qckmg mechanism, such as GFS [2], on top of a "'”“3' de-

ice, and flushes every write request to the DHT immediately

state so their performance in multi-sited clusters may suff b itchi # block level hi leads t ;
due to interconnection latencies. A similar approach to o & Dy switehing off block level cac ing), leads to a storage

system has been presented in [18] but the experimental resfifyironment that can be shared among several physical hosts.
have been very poor. Lustre [15], Ceph [16] and Panasas [17]
are the most recent research contributions in the field of IV. THE CLIENT SIDE
cluster file systems. These systems store file metadata inn this section, we provide a detailed description of the
separate servers, which are contacted by all clients duridigent architecture. Without loss of generality the following
every file transaction. Their file-level design increases systatascription is based on the Linux I/O system semantics.
complexity and means that they cannot support applicatioBfients are low-level kernel components that implement the
that prefer direct access to the block-level storage interfatdock device driver interface exported by the Linux kernel.
Note that the Global File System [2] is designed for use inA& block device driver provides access to storage devices
cluster environment and can be combined with the GNBD §shysical or virtual) that transfer randomly accessible data in
well as with BLAST. fixed-size blocks. Their main data structure is a request queue
into which the I/O subsystem places requests for data blocks.
The description of the complete set of structures that the Linux
kernel utilizes for managing 1/0 requests is widely discussed
Figure 1a depicts an abstract view of the proposed system]3].
A number of storage servers form a structured peer-to-peeVe identify several advantages of implementing clients as
network (shown as a ring), which is completely decentralizelernel modules that lie below the file system level. First of
Storage servers utilize their back-end storage devices to foafh the block device driver is completely agnostic to the I/O
a storage infrastructure, which is completely transparent tequests’ contents, leading to file system neutrality, since the
the clients. Clients are able to connect to one or mofiee system is the only responsible entity for organizing data
storage servers according to various connection strategies. &od metadata into the flat storage space exported by the device
instance, client C maintains a primary connection with thdriver. Placing the client into the kernel minimizes the context
storage server C, while a second, failover connection to sergavitching between kernel and user space when data are being
B exists. Clients may be simultaneously connected to a numisgored, thus minimizing CPU overhead.

I1l. OVERVIEW
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by @ H H . . . .
g8 [ __Applications | grow extremely large, while the leafset size is a configurable
Dm—-,’-—-I—--L--Syslem Calls--%--—j———-— parameter of the overlay network. The above assumption
o File System Layer translates into a structured overlay network where all nodes
(5] \ i
g . 5 = are one overlay hop “away” from any other node.
7] 4 Block I/O Subsystem \ g _0o : . .
5 | = — — 352 BLAST clients handle 1/O requests for fixed-size blocks
e | MIIIITTls MITTTTTk SITTTII o33 i i i i i
5 | S = e k2 of data, whose size is statically configured during their ini-
| i | i i 3 = .. . .
% {B'“(';E;,V'CQ P | *Device, sCSITE § 2 tialization. The DHT layer processes I/O requests in larger
—--—-%—--—Physical{Devices—--—--—-- - &38 data units, called data chunks. Data chunks are the unit of
= * L % disk allocation for every storage node. For every data chunk

that is to be stored to or retrieved from the DHT, a 160 bit
cryptographic hash value of its number, concatenated with the
device ID, is computed. A secure hash function, which is
common to all storage nodes, is used. Grouping more blocks
The basic functionality of BLAST clients is describecsf gata into a single chunk results in fewer computations and,
below. Applications running in the user space of an OS cannflis, less CPU overhead. Assuming that for a time interval no
directly access the block device driver, as shown in Figure @jlures and no new arrivals occur, a data chitikat contains
Instead, they forward their I/O requests to the file system vigta belonging to a devicé, can be stored by one or more
the system calls exported by the kernel. The file system dgecific storage servers, depending on the replication policy
mounted on top of the virtual device driver, receives thesgjlowed for this device. During a store operation, BLAST
requests and transforms them to block I/O requests, taki§@res a chunk on the + 1 BLAST nodes whose nodelDs
into account the file metadata, which are also stored in thge numerically closer to the 128 most significant bits of the
virtual disk. The final step is performed by the block 1/Qnynk ID. The replication factor is a device-specific system
subsystem, which distributes the I/O requests for blocks &rameter. This deterministic approach allows our system to
the responsible device drivers. The specific I/O scheduler independent of any kind of metadata regarding the physical
the device driver may rearrange the requests so as to confghtion of a data chunk. Any chunk can be located by any
contiguous blocks of data. In our case, the device driver pullgorage node by just computing the respective hash value.
the requests from the request queue and forwards thempioaST achieves a high level of load balancing without extra
the DHT. Each client is able to forward several I/O requesgpmputational or network overhead, since both sets of existing

to the DHT before it starts receiving responses, a fact th@delDs and chunkiDs are quasi-uniformly distributed in their
allows parallel 1/O processing in BLAST. Regarding reagospective ID spaces.

requests, each client supports block prefetching, which can
be configured at runtime. Finally, using the 1/O control system '
call (ioctl()), several administrative tasks, such as taking devide Chunk storage and retrieval

snapshots and real-time monitoring and reconfiguration can bey gemonstration of BLAST operation, in the absence of

accomplished without interfering with the device's operationyny node failures and arrivals, is described below. In Table |,

a number of sample I/O requests from a client, which is

connected to a storage node, are depicted. Clients forward
The core storage layer is a structured overlay netwotls the core layer storage requests of tygdevicelD, Type,

running on top of the physical network, in which storag€irst_Block, numberf_blocks, [data]>.

servers are attached. Structured overlay networks, such as [4],

Fig. 2. An abstract view of the client

V. THE CORE STORAGE LAYER

[5], are mainly targeted for large scale networks. We argue that TABLE |
a similar approach, where routing takes place in hash-based SAMPLE I/O REQUESTS
fashion, is able to support several desirable characteristics in Request Type| First Block | Number of Blocks
a cluster storage system, as well. More specifically, system W!:e g 624
. . . . . rite
decentralization, self-organization and transparent handling Read 16 78

of node failures can be achieved by a structured overlay
network that runs on top of a high performance network. The
following description is based on the Pastry overlay network, Assuming that the chunk size, the replication factor and the
as thoroughly described in [4], albeit it could be easily applidalock size supported by the client are 32 kilobytes, 2 replicas
to any other structured overlay network. A Pastry node @&nd 1024 bytes, respectively, the storage node transforms the
assigned with a unique 128 bit nodelD, which is used tbove requests to the chunk requests shown in Table II. Given
indicate its position in a circular nodelD space in the range client's I/O request, the respective chunks that should be
from 0 to 2'28-1, BLAST servers are assigned with nodelDsequested by the DHT are trivially calculated using the chunk
based on the computation of a cryptographic hash of their $e. For instance, the first request is transformed to two DHT
address. The basic assumption followed in the BLAST desigtorage requests, since it contains 64 blocks of 1024 bytes
is that the leafset size of each node is greater than the taath and the chunk size is 32 Kilobytes. A chunk request
number of storage nodes. In a cluster storage environment ttimtains the calculated chunkiD, the chunk offset at which the
assumption holds, since the number of storage servers cameguested data should be placed and the size of the request.
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TABLE Il

TRANSFORMEDDHT REQUESTS using its local map and responds to the requesting node.

Request Type ChunkID Offset | Size B. Chunk Replication
1 Store Hash(conc(devicelD,0 0 32K . L.
> Store Hash(conc(devicelD,1) 0 35K Our system uses semi-synchronous replication of data
3 Store Hash(conc(devicelD,0) 8 2K chunks. More specifically, storage nodes that receive a storage
4 | Retrieve | Hash(conc(devicelD,0) 16 | 16K request mark it as pending and immediately respond to the
5 Retrieve Hash(conc(devicelD,1 0 32K

requesting node. Assuming that the replication factor is larger
than the number of nodes that can simultaneously fail, at least

Figure 1b, illustrates how node E processes the transfornfdtf stor_age node W'”. respond_to th_e requesting node, which,
chunk requests. Regarding the first storage request, néraéum, informs the client that its write request succeeded. If
E discovers the nodes which are numerically closer to t}q&e reques;c] has been trans;ormed I;tjohmore th_andofne ?]torage
chunkID. The closest node is node B and, since the replicatiﬁergueSts’ the requesting node would have waited for the re-
factor is 2, nodes A and C are also chosen. Then, the storg§&@">¢S from every nodg. All destination nodes keep a storage
request is transmitted to the selected nodes. Regarding f gukest dast pendw;jg 9”"'Ith§1¥ qush'the ct:wnk data in their
second request, the numerically closest node to the calculal?@&_ ~end storage device. In this SEmI-Syncnronous manner, we

ChunkID is node E itself. The next two closer nodes are noggmmize the response time visible to a client, while system

G and F, which are virtually located on node’s E “left Side,,consi:stency remains assured. The possible system failures that
sinced, < do can take place while a write request is being processed are as

Figure 3 depicts the back-end storage of node B. Evefg)lows: If the requesting node fails while a write request is

BLAST node keeps a local map, into which every chunki§€ing processed there is a high chance that some of the target

currently stored by the node is mapped to the physical offsiprage nodes_ will end up holding the new version of one or
of the device where the chunk is stored. BLAST nodes u8e®r€ chunks, in contrast to some qthers that neyer_recewed the
Oracle BerkeleyDB [6] to maintain this mapping. The stora quest. In any case, system consistency is maintained because

space for each chunk is allocated the first time a node recei g cI.|ent ne\C/ier rr}gcewes a responrs1e fg[:;_ll_/ O crjeqli_?t ;‘ndﬁ
a storage request for it. This space is allocated even if t S, itresends this request to another node. The has

request contains part of a chunk. In fact, BLAST nodes are _SEd st_orage approach ensures that the same storage nodes

aware of what chunks they store (i.e. the chunk number and tg receve the request_ an_d store the chunk (_jata. _Th_e case

responsible client), since they only keep a hashed value of tH\{Qere one or more destination nodes crash during this interval

information. After allocating the storage space to hold the da{glanalyzed in the next subsection.

the nodes cannot know whether part of or the entire chunk is

written. BLAST is independent of the back-end storage artet Node failures and arrivals

supports heterogeneous storage ranging from local files to fasgtorage nodes are built from commodity hardware and so

network storage devices. they are expected to fail quite often. However, we notice
that failure frequency does not cause the well-known node

\Back-end Storage Device churn problem that large scale overlay networks suffer from.

ChunkID Offset

Hash(clientA,0) The BLAST design follows an optimistic approach, based on
Hash(clientB,0) - the following assumptions: Storage servers are trusted nodes,
Hash(clientA,6) which leave the network only if they fail or if they have
Hash(clientA,18) | ~ to be reconfigured. They join the network only if they have
Hash(clientC,1) | -+ Free Space previously crashed, reconfigured or if the storage infrastructure
is being expanded or upgraded. BLAST nodes that hold the
Fig. 3. Back-end storage system replicas of a specific chunk cannot fail simultaneously. If a

node fails, it cannot rejoin the network before the overlay
Chunk retrieval is straightforward. Following the previousetwork gets stabilized (i.e. leaf and neighborhood sets are
example, we observe that the third client request is a readtomatically reconfigured). A failed node always rejoins the
request for 48 blocks of 1024 bytes each. Node E transformetwork after a time period so that the number of live replicas
this request to the retrieval requests shown in Table Il afor a specific chunklD does not fall under a certain critical
calculates the respective chunkIDs. Then, it discovers tlevel. A backup offline node may be used for that reason.
r 4+ 1 nodes that are numerically closer to them, where r is To handle node failures, BLAST storage nodes periodically
the replication factor assigned to the requesting client. If tlexchange keep-alive messages. If a node is unresponsive for
cluster extends to multiple physical sites, the calculated nodegeriod T, it is presumed failed. The node that discovered
are compared to the nodelDs residing in its neighborhodite failure notifies the nodes in its leafset (actually all nodes
set. The neighborhood set involves the storage nodes thatiar¢he cluster) about the failure. Finally, the failed node is
physically closer to the present node and is maintained @snoved from the leafset of every participating node. The
analyzed in [4]. If the cluster does not extend to multiple sitestorage system must overcome the failure transparently to the
the neighborhood set is ignored and a random node is pickednnected clients. Figure 4 depicts the two possible cases that
The target node receives the request, locates the requested i@ty take place when a storage node tries to store a chunk,
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and the responsible node for storing the data is down. In theighbors of the joining node so that a consistent view of the
first case (Figure 4a), node E has not discovered yet that nqutgsical neighborhoods is kept. Then, the joining node asks
C has crashed. Node E calculates the 1 nodelDs that are its bootstrap node to route a join message with its nodelD as
numerically closer to the chunkID and forwards them a storagfee key to the overlay network. Given that the leafset size is
request. Nodes A and B receive the request, mark this requalstays larger than the maximum number of storage servers
as pending and respond to node E with an acknowledgméotming the overlay network, the bootstrap node can directly
message. Node C is down and so it never receives the requéisicover the destination node and forward this message to it.
Node E waits for the last response until a timeout expireShe destination node forwards its leafset to the joining node,
After the timeout expiration, it sends a special message wdich in turn, creates its own leafset. Finally, the joining
nodes A and B indicating that they should record the specifiode broadcasts its newly created leafset to all BLAST nodes.
chunkID in their local log, because a failure has potentiallikt this point all nodes have the same view of the overlay
occurred. After receiving the response for this message,nigtwork, which is now stabilized again. If the new node just
informs the client that its request has been completed. Trexovered from a previous failure all other nodes would have
client suffers performance degradation for each write requedteady known it because they track node failures. Therefore,
it sends until node E realizes the failure. This degradation tise new node requests all chunk updates that took place while
not critical because, even in the worst case, where the cli@nhas been off-line. Each BLAST node checks its local log
processes bulk writes, only part of the storage requests véhd responds respectively. While updating the chunks in its
be actually affected by the failure. local storage, the new node responds to all retrieval requests
with a “not ready” message, whereas it processes all storage
" Ty A o - e f‘i‘ 5 requests arriving to it as usual. Eventually, and with minimum
He //'/i-!___B He //k network overhead, the new node gets updated and is ready
/ C / I~ / »C to completely cooperate in the overlay network. On the other

58 W | oo
g &

é’ S8 t §Qg3§ ‘ hand, if a new node joins the network because the storage layer

’D \/’ D is being expanded, its “overlay neighbors” are aware that they

Leaf S l(E " LestS t‘é‘F’ // ' should migrate part of their data to it. In case some other node

ear oe ear oe 1 . . . .

Smaller-|A B C. D E Smaller]| A.B.D | B F’WS has previously failed, part of their logs should be potentially

Larger: | F, G, H, | cnent A Larger: | F, G, H, | | [Client mlgre_lted. This procedure may last for hours depending on

@) (b) the size of the data that has to be transferred to the new node

and, as in any similar bandwidth-intensive administrative task,
Fig. 4. Chunk storage in the middle of a failure should be scheduled for a non-peak period.
In the second case (Figure 4b), node E is already aware VI, EXPERIMENTAL EVALUATION

of node’s C failure. It calculates the+ 1 nodelDs that are

numerically closer to the chunkiD (i.e. nodes A, B and D). In this section, we present an evaluation of BLAST, which
Then, it calculates the distance between the chunkID and theludes a thorough performance benchmarking of several
nodelD of A, B, D and C. Letd; be the distance betweenstorage systems. The experiments took place in a gigabit Eth-
the chunklD and node. If d. > d; or d. < d;, where ernet network, consisting of 8 identical desktop PCs (3.2GHz
j is A, B or D, the failure of node C does not affect thi€©PU, 1IMB RAM, 1 SATA disk) running Ubuntu 8.10. We
request and, thus, node E sends the three storage requesteive installed the Lustre file system with 1 metadata server
the respective nodes. If the above formula does not hold, asaimd 7 object storage devices and configured it to support three
Figure 4b, node E does not send the request to node D, whiite striping policies -no striping, 256 KB and 2MB striping-.
temporarily “owns” node’s C chunkiDs. Instead, it includes &NBD and DRBD have also been deployed with an EXT3
flag in its message to nodes A and B indicating that they shotil®# system mounted on top of them. The set of experiments
record this chunkiID in their log. Read request processing iivolved measurements from the local file system (EXT3). The
as follows: if the node that processes a client request is rBItAST core layer implementation has been based on FreeP-
aware of the node failure, it creates a retrieval request aastry, a Java implementation of the Pastry routing algorithm,
forwards it to the respective node. If the destination node waile system clients have been implemented as Linux kernel
the one that has previously failed, the requesting node realimedules. The BLAST core storage layer has been deployed to
it, because a timeout assigned to this request would expirealavailable PCs and a client was run in one of these machines.
second request to another replica holder is sent and the dBte BLAST deployment supported blocks and chunks of 4096
are retrieved. In the opposite case, it uses the aforementiofwytes and 128 kilobytes with an EXT3 file system being
formulas and forwards a retrieval request to a node that holtounted on top of it. The 10zone [19] benchmarking tool
a replica of the chunk. has been used to support the experimental procedure.

When a node joins the overlay network, it needs to initialize The first set of experiments includes several file access
its state sets (i.e. leaf and neighborhood set) and to infopatterns for various file sizes. All experiments have been
other nodes of its presence. The node bootstraps via anottegreated multiple times and the measurements were averaged.
BLAST node. When servers are distributed in several physiddLAST ran without support for chunk replication, so that
locations, the bootstrap node should be one of the physicabasurements are comparable. Figure 5a depicts the I/O
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throughput measured during a bulk write of files whose siZe DIRECT file system flag being set. Database servers usually
ranged from 100 up to 1024 MBs. DRBD and GNBD perforaccess the device using the MRECT flag, because they
mance is getting poor as the block caching effect, providgdefer to implement the caching level by themselves. When
by the OS kernel, fades out and file sizes grow. For fileetting the ODIRECT flag, the size of the file involved in the
larger than 500 MBs, they can perform approximately #O does not affect the 1/O throughput rate, since no caching
30MB/sec. The throughput observed for local I/O is relativelgccur and data are directly stored in the storage device. On the
higher since the local disk takes advantage from its dedicatetther hand, a very important factor that greatly influences 1/0
cache memory and no network latencies occur. The Lustre fidethe record size that the application passes to the file system
system, without support for file striping, has similar behaviofor read or write. Figure 6a depicts the 1/0O throughput rate for
since a single storage device is used for each file copy. ®@aquential writes with record sizes ranging from 8KB up to
the other hand, Lustre performance is significantly high&6MB passed to the file system. As we can observe, BLAST
when files are striped to several storage devices. BLASUtperforms all other systems for record sizes between 128
outperforms all client-server storage systems and reacheKBand 4MB. It is worth noticing that the Lustre file system
write throughput of about 105 MB/sec even for file sizes thaierforms very poorly under these circumstances, for every file
approximate total system RAM. We should notice that th&riping strategy. The reason for this is that Lustre runs on
Lustre deployment which supports file striping presumes ancustomized Linux kernel, for which preemption must be
external mechanism that guarantees data redundancy, sidigabled. As a result storage nodes are much less responsive,
without such a mechanism, a single failure would result &specially during direct 1/O of small record sizes, where the
the corruption of all stored files. Figure 5b depicts the I/@bserved I/O rate was about 100-400KB/sec. Note that the
throughput of random writes in files of the same sizes. Thespective I/O rate for BLAST ranged between 15-50MB/sec.
block caching provided by the kernel smoothes the randomness

of writes and so the results are similar to the previous case’Zs®

We notice that BLAST handles more efficiently writes of
small files when block caching occurs, since its memory
requirements are very lon~60MB per storage node).
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Figure 6b illustrates I/O performance when random writes
take place. The BLAST design involves multiple storage nodes
and, therefore, randomness in write /0O does not make any
difference compared to sequential writes. Actually, BLAST
Fig. 5. Sequential (a) and random (b) write faces every 1/0 as random, because, for every chunk that has

to be stored in the DHT, a hash value is calculated and one

Table Ill presents the read throughput measurements,dhmore storage nodes are chosen for storing the data. These
KB/sec, for file sizes ranging from 800 to 1024 MBs. I0nodes take advantage of the block level caching provided by
zone performs file reading after having written the same fil)eir OS for their back-end storage and, thus, they smooth
therefore, the measurements for file sizes less than 800MB Hreir local 1/0. The reason why BLAST performance, both
of no interest, since almost the entire file is cached leadingito sequential and random write 1/0, is getting degraded for

so*g x?ﬂ
404 §§§§L§§gg$'g'§§:-g-s

0 ] g 0
10 300 E‘G‘J‘al 700 500 ME 300 500 Im?GO 900 g

extremely high 1/O rates. very large record sizes is related to the Linux kernel rather
than to the storage core layer. An indication that supports
TABLE Il this statement is that in both figures we see that GNBD
SEQUENTIAL READ measurements follow the same pattern as BLAST, whose
— 8f205'\f13 9;32061\42 125‘7‘2/'18 clients’ implementation is based on GNBD. Figure 7a and
°°D""RBD Aor1s | ag0vL 45608 7b illustrate the 1/0 throughput rates for direct sequential and
GNBD | 46038 | 46312 | 46362 random read 1/O.
Lustre 46241 | 46272 | 46304 In these cases, BLAST performs exceptionally reaching
Lustre512 | 95727 | 91428 | 96496 throughput rates of about 100MB/sec, while Lustre barely

Lustre2 88166 | 89409 89322

BLAST 84774 85580 | 85144 reaches 30MB/sec. Compared to the measurements presented

in Table 1ll, we observe that BLAST is able to reach slightly
larger 1/O rates when direct 1/O is used, because direct /0O
The second experimental set involves a comparison of timvolves much less CPU overhead than asynchronous I/O and,
same storage systems in the absence of block caching. We haveour system is able to process I/O requests faster. Moreover,
performed a number of benchmarks with 10zone, with thge observe that GNBD performs much better than the other
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systems, because on the server side most of the data are Ioc%?/
cached by the OS. However, if the server crashes all cach
data will be lost and dsckiike application must run in order
to make the device operable again. 4]

Figure 8 shows a performance comparison of BLAST
for three different replication factors. When chunks are nots]
replicated, the measurements, both in asynchronous and dir?
I/O, are as described before. We notice that a write throughpé}
of about 105 MB/sec is slightly less than the maximum
bandwidth provided by the gigabit connection of the storagé?!
node. Actually, when no replication occurs, the storage node E]
bounded by the CPU. On the other hand, the network uplin
almost gets saturated when chunks are replicated to one o
two more storage nodes, leading to throughput rates of abélt?g
60 and 40 MB/sec, respectively. The throughput rate of regd]
I/O is independent of the replication factor supported by the

system and, therefore, read I/O sustains the same levels;;3p
before.

t

(13]

-O-BLAST {RF=0) -0} BLAST(RF=1)

MEisec

&-BLAST (RF=2)
MBisec
140 \
"\
\

(14]
80

& 15
100\ ISR [15]
T 40
60 e85 s 5 o [16]
S Gy —

17

2 0 [17]

100 30 500 700 900w § 32 128 512 2048 8192K8

(18]

Fig. 8. Replication cost in sequential writes without (a) and with (b) direct
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Finally, it is worth mentioning that we have also tested
the Ceph (version 0.7.1) system but this version did not
support direct I/O and was not stable enough to complete the
benchmarks produced by the I0zone application. On the other
hand, FAB and Petal systems are not publicly available so we
could not include them in the evaluation of BLAST.

VIl. CONCLUSIONS

In this paper we have presented BLAST, a completely
decentralized storage system that takes advantage of the spe-
cial properties provided by a structured overlay network. Its
block level approach makes its design relatively simple, while
providing file-system neutrality. An extensive experimental
evaluation confirms the performance benefits of our system
in a cluster of off-the-shelf desktop PCs. BLAST proves to be
competitive with respect to performance with other publicly

lable state-of-the-art storage systems. Part of our current

research work involves BLAST evaluation in larger computer
clusters that expand in several physical locations. Moreover,
we are planning to test a C implementation of our system

is built on top of the Chord DHT, in order to identify

potential performance improvements compared to the current
Java implementation.
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