
PUBLISHED IN: PROCEEDINGS OF THE NPC 2009, PP. 148–155 1

BLAST: Off-the-shelf hardware for building an
efficient hash-based cluster storage system

George Parissis, George Xylomenos and Dimitris Gritzalis
Athens University of Economics and Business, Department of Informatics

{parissis,xgeorge,dgrit}@aueb.gr

Abstract— During the past few years, large, reliable and
efficient storage systems have become increasingly important
in enterprise environments. Additional requirements for these
environments include low installation, maintenance and admin-
istration costs. In this paper we propose a hash-based storage
approach, combined with block-level operating system seman-
tics. The experimental evaluation confirms that the proposed
approach is viable and can offer a cost-effective storage solution.

I. I NTRODUCTION

Key requirements of an enterprise storage system include
high I/O throughput rates, resilience to component failures,
capabilities for on-the-fly storage expansion and low deploy-
ment, administrative and maintenance costs. As pointed out
in [1], “the ideal storage system is globally accessible, always
available, provides unlimited performance and capacity for
a large number of clients and requires no management”. A
plethora of software and hardware storage systems has been
designed to fulfill those requirements. Notable innovations in-
clude hardware-based storage area networks, distributed block-
based storage systems as well as remote and distributed file
systems.

Traditional hardware-based storage systems utilize disk ar-
rays, interconnected via centralized disk controllers. These
systems are able to achieve very high I/O throughput rates,
while supporting redundant hardware components and hot
swappable disks. Nevertheless, their deployment cost is very
high. Moreover, these systems are completely proprietary and
are highly customized for specific storage environments with
respect to the number of supported workstations and servers,
as well as to the supported storage space. As a result, they do
not scale well as the demand for storage space grows beyond
the initial estimations and their proprietary nature precludes
compatibility with commodity hardware.

Distributed file systems are implemented in the file level of
the operating system (OS) I/O stack. These systems consist
of a number of hosts that store the actual data and one or
more metadata servers which are responsible for managing file
metadata and the physical location of every file block. These
servers need to be very powerful in terms of CPU and memory
as they are accessed by the clients during every file transac-
tion. They therefore increase system complexity and tend to
become bottlenecks and points of failure. While distributed file
systems are optimized for specific application characteristics,
disk access patterns change over time as applications evolve,

resulting in a continuous need for new file systems. Moreover,
there are applications that bypass the file system layer so as
to avoid the overhead associated with it.

Regarding distributed storage systems implemented in the
block level, we can distinguish two categories: client-server
block devices and distributed block-level storage systems.
The former are used to build two-node clusters by mirroring
all data to a secondary storage host. However, they cannot
distribute data to multiple storage devices and, thus, tend to be
vulnerable to multiple disk failures, while their performance is
bounded by the maximum I/O throughput provided by a single
storage server. The latter follow a design where all participants
in the system run the same software modules. The location
of each block is kept in some kind of global data structure,
which must be kept consistent across all storage servers, a fact
that increases system complexity and potentially bounds their
performance.

In this paper we present the design and implementation of
BLAST, a Block-Level hAsh Table based STorage system,
which is completely decentralized. The storage devices that
form the core layer are connected in a structured overlay
network, on top of which a distributed hash table (DHT) is
implemented. Our system fulfills the requirements mentioned
above and overcomes the deficiencies of storage systems
already proposed in the literature. BLAST is a software-based
system that is able to run on off-the-shelf hardware, supporting
systems that are heterogeneous in terms of network, CPU,
memory and storage hardware. Thus, the deployment cost of
the proposed system remains very low, while its performance,
as presented in the evaluation section, is sustained in high
levels. BLAST is able to support data redundancy via semi-
synchronous replication and device snapshots. Moreover it is a
lightweight storage system that can perform at least as well as
other state-of-the-art distributed storage systems, while being
simple and easy to administer. The DHT perspective allows
us to design a system that keeps absolutely no metadata about
the physical location of the stored blocks. By decoupling file
system related semantics from the actual distribution of data
and by providing a low-level OS storage interface, BLAST
becomes a file system-neutral storage infrastructure.

The remainder of this paper is structured as follows: In
section II we briefly describe related work and in section III
we present an overview of our system. Sections IV and V
include a thorough analysis of the clients and the storage core
layer of our system, respectively. In section VI we present an
experimental evaluation of the I/O performance of our system.



2 PUBLISHED IN: PROCEEDINGS OF THE NPC 2009, PP. 148–155

Finally, section VII outlines the main conclusions of this work
as well as our future research work.

II. RELATED WORK

The Network and the Enhanced Network Block Devices
(NBD, ENBD) [7], [8] are simple client server systems that
support storing blocks of data at a remote storage host through
a TCP connection. The Distributed Replicated Block Device
(DRBD) [9] is a Linux kernel module for building a two-node
high availability cluster by mirroring all data to a secondary
storage host, following a RAID1 approach. Compared to
BLAST, these systems are based on the client-server model
and, therefore, they lack a lot of characteristics, such as storage
decentralization, self-management and resilience to failures.
The Global Network Block Device (GNBD) [10] provides
block device access to GFS [2] over TCP/IP. Contrary to
BLAST, GNBD servers access a centralized shared storage.
The idea of distributed disk arrays was pioneered by Tick-
erTAIP [11] and Petal [1]. The latter uses a master-slave
replication protocol, which cannot tolerate network partition-
ing. Additionally, it has a period of unavailability during fail-
over, which can cause clients to initiate unnecessary recovery
actions. LeftHand Networks [12] and IBM [13] have proposed
similar storage systems, but no details about them have been
published. The FAB [20] design follows the same lines as
Petal, but it can recover from network partitioning. All these
systems require the maintenance of some global data, which
involve the physical location of each block by all storage
nodes, using algorithms such as [14]. This approach increases
their complexity and may lead to performance deficiencies.
Contrary to BLAST, they do not keep any kind of proximity
state so their performance in multi-sited clusters may suffer
due to interconnection latencies. A similar approach to our
system has been presented in [18] but the experimental results
have been very poor. Lustre [15], Ceph [16] and Panasas [17]
are the most recent research contributions in the field of
cluster file systems. These systems store file metadata in
separate servers, which are contacted by all clients during
every file transaction. Their file-level design increases system
complexity and means that they cannot support applications
that prefer direct access to the block-level storage interface.
Note that the Global File System [2] is designed for use in a
cluster environment and can be combined with the GNBD as
well as with BLAST.

III. OVERVIEW

Figure 1a depicts an abstract view of the proposed system.
A number of storage servers form a structured peer-to-peer
network (shown as a ring), which is completely decentralized.
Storage servers utilize their back-end storage devices to form
a storage infrastructure, which is completely transparent to
the clients. Clients are able to connect to one or more
storage servers according to various connection strategies. For
instance, client C maintains a primary connection with the
storage server C, while a second, failover connection to server
B exists. Clients may be simultaneously connected to a number

Fig. 1. System overview (a), chunk storage (b)

of servers, which serve their I/O requests in a round-robin
fashion (i.e. client A).

In order to support file system neutrality and direct inte-
gration of the proposed system, clients are implemented as
virtual device drivers in the OS kernel. Using this approach,
any file system can be mounted on top of a client. The type
(e.g. single-access or multiple-access, read-write or read-only)
and the size of the storage device, which is exported by each
client, is a matter of administrative policy and, thus, irrelevant
to the storage interface provided by the DHT. Whether a client
is single-access or multiple-access (i.e. one or more physical
hosts can access the device simultaneously) depends on the file
system that is mounted on top of it. For example, mounting
an EXT-3 file system on top of a virtual device precludes the
simultaneous read/write access by multiple physical hosts. In
contrast, mounting a file system that supports a distributed
locking mechanism, such as GFS [2], on top of a virtual de-
vice, and flushes every write request to the DHT immediately
(i.e. by switching off block level caching), leads to a storage
environment that can be shared among several physical hosts.

IV. T HE CLIENT SIDE

In this section, we provide a detailed description of the
client architecture. Without loss of generality the following
description is based on the Linux I/O system semantics.
Clients are low-level kernel components that implement the
block device driver interface exported by the Linux kernel.
A block device driver provides access to storage devices
(physical or virtual) that transfer randomly accessible data in
fixed-size blocks. Their main data structure is a request queue
into which the I/O subsystem places requests for data blocks.
The description of the complete set of structures that the Linux
kernel utilizes for managing I/O requests is widely discussed
in [3].

We identify several advantages of implementing clients as
kernel modules that lie below the file system level. First of
all, the block device driver is completely agnostic to the I/O
requests’ contents, leading to file system neutrality, since the
file system is the only responsible entity for organizing data
and metadata into the flat storage space exported by the device
driver. Placing the client into the kernel minimizes the context
switching between kernel and user space when data are being
stored, thus minimizing CPU overhead.



PUBLISHED IN: PROCEEDINGS OF THE NPC 2009, PP. 148–155 3

Fig. 2. An abstract view of the client

The basic functionality of BLAST clients is described
below. Applications running in the user space of an OS cannot
directly access the block device driver, as shown in Figure 2.
Instead, they forward their I/O requests to the file system via
the system calls exported by the kernel. The file system is
mounted on top of the virtual device driver, receives these
requests and transforms them to block I/O requests, taking
into account the file metadata, which are also stored in the
virtual disk. The final step is performed by the block I/O
subsystem, which distributes the I/O requests for blocks to
the responsible device drivers. The specific I/O scheduler for
the device driver may rearrange the requests so as to contain
contiguous blocks of data. In our case, the device driver pulls
the requests from the request queue and forwards them to
the DHT. Each client is able to forward several I/O requests
to the DHT before it starts receiving responses, a fact that
allows parallel I/O processing in BLAST. Regarding read
requests, each client supports block prefetching, which can
be configured at runtime. Finally, using the I/O control system
call (ioctl()), several administrative tasks, such as taking device
snapshots and real-time monitoring and reconfiguration can be
accomplished without interfering with the device’s operation.

V. THE CORE STORAGE LAYER

The core storage layer is a structured overlay network
running on top of the physical network, in which storage
servers are attached. Structured overlay networks, such as [4],
[5], are mainly targeted for large scale networks. We argue that
a similar approach, where routing takes place in hash-based
fashion, is able to support several desirable characteristics in
a cluster storage system, as well. More specifically, system
decentralization, self-organization and transparent handling
of node failures can be achieved by a structured overlay
network that runs on top of a high performance network. The
following description is based on the Pastry overlay network,
as thoroughly described in [4], albeit it could be easily applied
to any other structured overlay network. A Pastry node is
assigned with a unique 128 bit nodeID, which is used to
indicate its position in a circular nodeID space in the range
from 0 to 2128−1. BLAST servers are assigned with nodeIDs
based on the computation of a cryptographic hash of their IP
address. The basic assumption followed in the BLAST design
is that the leafset size of each node is greater than the total
number of storage nodes. In a cluster storage environment this
assumption holds, since the number of storage servers cannot

grow extremely large, while the leafset size is a configurable
parameter of the overlay network. The above assumption
translates into a structured overlay network where all nodes
are one overlay hop “away” from any other node.

BLAST clients handle I/O requests for fixed-size blocks
of data, whose size is statically configured during their ini-
tialization. The DHT layer processes I/O requests in larger
data units, called data chunks. Data chunks are the unit of
disk allocation for every storage node. For every data chunk
that is to be stored to or retrieved from the DHT, a 160 bit
cryptographic hash value of its number, concatenated with the
device ID, is computed. A secure hash function, which is
common to all storage nodes, is used. Grouping more blocks
of data into a single chunk results in fewer computations and,
thus, less CPU overhead. Assuming that for a time interval no
failures and no new arrivals occur, a data chunki that contains
data belonging to a deviced, can be stored by one or more
specific storage servers, depending on the replication policy
followed for this device. During a store operation, BLAST
stores a chunk on ther + 1 BLAST nodes whose nodeIDs
are numerically closer to the 128 most significant bits of the
chunk ID. The replication factorr is a device-specific system
parameter. This deterministic approach allows our system to
be independent of any kind of metadata regarding the physical
location of a data chunk. Any chunk can be located by any
storage node by just computing the respective hash value.
BLAST achieves a high level of load balancing without extra
computational or network overhead, since both sets of existing
nodeIDs and chunkIDs are quasi-uniformly distributed in their
respective ID spaces.

A. Chunk storage and retrieval

A demonstration of BLAST operation, in the absence of
any node failures and arrivals, is described below. In Table I,
a number of sample I/O requests from a client, which is
connected to a storage node, are depicted. Clients forward
to the core layer storage requests of type:<DeviceID, Type,
First Block, numberof blocks, [data]>.

TABLE I

SAMPLE I/O REQUESTS

Request Type First Block Number of Blocks
Write 0 64
Write 8 2
Read 16 48

Assuming that the chunk size, the replication factor and the
block size supported by the client are 32 kilobytes, 2 replicas
and 1024 bytes, respectively, the storage node transforms the
above requests to the chunk requests shown in Table II. Given
a client’s I/O request, the respective chunks that should be
requested by the DHT are trivially calculated using the chunk
size. For instance, the first request is transformed to two DHT
storage requests, since it contains 64 blocks of 1024 bytes
each and the chunk size is 32 Kilobytes. A chunk request
contains the calculated chunkID, the chunk offset at which the
requested data should be placed and the size of the request.



4 PUBLISHED IN: PROCEEDINGS OF THE NPC 2009, PP. 148–155

TABLE II

TRANSFORMEDDHT REQUESTS

Request Type ChunkID Offset Size
1 Store Hash(conc(deviceID,0) 0 32K
2 Store Hash(conc(deviceID,1) 0 32K
3 Store Hash(conc(deviceID,0) 8 2K
4 Retrieve Hash(conc(deviceID,0) 16 16K
5 Retrieve Hash(conc(deviceID,1) 0 32K

Figure 1b, illustrates how node E processes the transformed
chunk requests. Regarding the first storage request, node
E discovers the nodes which are numerically closer to the
chunkID. The closest node is node B and, since the replication
factor is 2, nodes A and C are also chosen. Then, the storage
request is transmitted to the selected nodes. Regarding the
second request, the numerically closest node to the calculated
ChunkID is node E itself. The next two closer nodes are node
G and F, which are virtually located on node’s E “left side”,
sinced1 < d2.

Figure 3 depicts the back-end storage of node B. Every
BLAST node keeps a local map, into which every chunkID
currently stored by the node is mapped to the physical offset
of the device where the chunk is stored. BLAST nodes use
Oracle BerkeleyDB [6] to maintain this mapping. The storage
space for each chunk is allocated the first time a node receives
a storage request for it. This space is allocated even if the
request contains part of a chunk. In fact, BLAST nodes are not
aware of what chunks they store (i.e. the chunk number and the
responsible client), since they only keep a hashed value of this
information. After allocating the storage space to hold the data,
the nodes cannot know whether part of or the entire chunk is
written. BLAST is independent of the back-end storage and
supports heterogeneous storage ranging from local files to fast
network storage devices.

Fig. 3. Back-end storage system

Chunk retrieval is straightforward. Following the previous
example, we observe that the third client request is a read
request for 48 blocks of 1024 bytes each. Node E transforms
this request to the retrieval requests shown in Table II and
calculates the respective chunkIDs. Then, it discovers the
r + 1 nodes that are numerically closer to them, where r is
the replication factor assigned to the requesting client. If the
cluster extends to multiple physical sites, the calculated nodes
are compared to the nodeIDs residing in its neighborhood
set. The neighborhood set involves the storage nodes that are
physically closer to the present node and is maintained as
analyzed in [4]. If the cluster does not extend to multiple sites,
the neighborhood set is ignored and a random node is picked.
The target node receives the request, locates the requested data

using its local map and responds to the requesting node.

B. Chunk Replication

Our system uses semi-synchronous replication of data
chunks. More specifically, storage nodes that receive a storage
request mark it as pending and immediately respond to the
requesting node. Assuming that the replication factor is larger
than the number of nodes that can simultaneously fail, at least
one storage node will respond to the requesting node, which,
in turn, informs the client that its write request succeeded. If
the request has been transformed to more than one storage
requests, the requesting node would have waited for the re-
sponses from every node. All destination nodes keep a storage
request as pending until they flush the chunk data in their
back-end storage device. In this semi-synchronous manner, we
minimize the response time visible to a client, while system
consistency remains assured. The possible system failures that
can take place while a write request is being processed are as
follows: If the requesting node fails while a write request is
being processed there is a high chance that some of the target
storage nodes will end up holding the new version of one or
more chunks, in contrast to some others that never received the
request. In any case, system consistency is maintained because
the client never receives a response for its I/O request and,
thus, it resends this request to another BLAST node. The hash
based storage approach ensures that the same storage nodes
will receive the request and store the chunk data. The case
where one or more destination nodes crash during this interval
is analyzed in the next subsection.

C. Node failures and arrivals

Storage nodes are built from commodity hardware and so
they are expected to fail quite often. However, we notice
that failure frequency does not cause the well-known node
churn problem that large scale overlay networks suffer from.
The BLAST design follows an optimistic approach, based on
the following assumptions: Storage servers are trusted nodes,
which leave the network only if they fail or if they have
to be reconfigured. They join the network only if they have
previously crashed, reconfigured or if the storage infrastructure
is being expanded or upgraded. BLAST nodes that hold the
replicas of a specific chunk cannot fail simultaneously. If a
node fails, it cannot rejoin the network before the overlay
network gets stabilized (i.e. leaf and neighborhood sets are
automatically reconfigured). A failed node always rejoins the
network after a time period so that the number of live replicas
for a specific chunkID does not fall under a certain critical
level. A backup offline node may be used for that reason.

To handle node failures, BLAST storage nodes periodically
exchange keep-alive messages. If a node is unresponsive for
a period T, it is presumed failed. The node that discovered
the failure notifies the nodes in its leafset (actually all nodes
in the cluster) about the failure. Finally, the failed node is
removed from the leafset of every participating node. The
storage system must overcome the failure transparently to the
connected clients. Figure 4 depicts the two possible cases that
may take place when a storage node tries to store a chunk,



PUBLISHED IN: PROCEEDINGS OF THE NPC 2009, PP. 148–155 5

and the responsible node for storing the data is down. In the
first case (Figure 4a), node E has not discovered yet that node
C has crashed. Node E calculates ther + 1 nodeIDs that are
numerically closer to the chunkID and forwards them a storage
request. Nodes A and B receive the request, mark this request
as pending and respond to node E with an acknowledgment
message. Node C is down and so it never receives the request.
Node E waits for the last response until a timeout expires.
After the timeout expiration, it sends a special message to
nodes A and B indicating that they should record the specific
chunkID in their local log, because a failure has potentially
occurred. After receiving the response for this message, it
informs the client that its request has been completed. The
client suffers performance degradation for each write request
it sends until node E realizes the failure. This degradation is
not critical because, even in the worst case, where the client
processes bulk writes, only part of the storage requests will
be actually affected by the failure.

Fig. 4. Chunk storage in the middle of a failure

In the second case (Figure 4b), node E is already aware
of node’s C failure. It calculates ther + 1 nodeIDs that are
numerically closer to the chunkID (i.e. nodes A, B and D).
Then, it calculates the distance between the chunkID and the
nodeID of A, B, D and C. Letdi be the distance between
the chunkID and nodei. If dc > dj or dc < dj , where
j is A, B or D, the failure of node C does not affect this
request and, thus, node E sends the three storage requests to
the respective nodes. If the above formula does not hold, as in
Figure 4b, node E does not send the request to node D, which
temporarily “owns” node’s C chunkIDs. Instead, it includes a
flag in its message to nodes A and B indicating that they should
record this chunkID in their log. Read request processing is
as follows: if the node that processes a client request is not
aware of the node failure, it creates a retrieval request and
forwards it to the respective node. If the destination node was
the one that has previously failed, the requesting node realizes
it, because a timeout assigned to this request would expire. A
second request to another replica holder is sent and the data
are retrieved. In the opposite case, it uses the aforementioned
formulas and forwards a retrieval request to a node that holds
a replica of the chunk.

When a node joins the overlay network, it needs to initialize
its state sets (i.e. leaf and neighborhood set) and to inform
other nodes of its presence. The node bootstraps via another
BLAST node. When servers are distributed in several physical
locations, the bootstrap node should be one of the physical

neighbors of the joining node so that a consistent view of the
physical neighborhoods is kept. Then, the joining node asks
its bootstrap node to route a join message with its nodeID as
the key to the overlay network. Given that the leafset size is
always larger than the maximum number of storage servers
forming the overlay network, the bootstrap node can directly
discover the destination node and forward this message to it.
The destination node forwards its leafset to the joining node,
which in turn, creates its own leafset. Finally, the joining
node broadcasts its newly created leafset to all BLAST nodes.
At this point all nodes have the same view of the overlay
network, which is now stabilized again. If the new node just
recovered from a previous failure all other nodes would have
already known it because they track node failures. Therefore,
the new node requests all chunk updates that took place while
it has been off-line. Each BLAST node checks its local log
and responds respectively. While updating the chunks in its
local storage, the new node responds to all retrieval requests
with a “not ready” message, whereas it processes all storage
requests arriving to it as usual. Eventually, and with minimum
network overhead, the new node gets updated and is ready
to completely cooperate in the overlay network. On the other
hand, if a new node joins the network because the storage layer
is being expanded, its “overlay neighbors” are aware that they
should migrate part of their data to it. In case some other node
has previously failed, part of their logs should be potentially
migrated. This procedure may last for hours depending on
the size of the data that has to be transferred to the new node
and, as in any similar bandwidth-intensive administrative task,
should be scheduled for a non-peak period.

VI. EXPERIMENTAL EVALUATION

In this section, we present an evaluation of BLAST, which
includes a thorough performance benchmarking of several
storage systems. The experiments took place in a gigabit Eth-
ernet network, consisting of 8 identical desktop PCs (3.2GHz
CPU, 1MB RAM, 1 SATA disk) running Ubuntu 8.10. We
have installed the Lustre file system with 1 metadata server
and 7 object storage devices and configured it to support three
file striping policies -no striping, 256 KB and 2MB striping-.
GNBD and DRBD have also been deployed with an EXT3
file system mounted on top of them. The set of experiments
involved measurements from the local file system (EXT3). The
BLAST core layer implementation has been based on FreeP-
astry, a Java implementation of the Pastry routing algorithm,
while system clients have been implemented as Linux kernel
modules. The BLAST core storage layer has been deployed to
all available PCs and a client was run in one of these machines.
The BLAST deployment supported blocks and chunks of 4096
bytes and 128 kilobytes with an EXT3 file system being
mounted on top of it. The IOzone [19] benchmarking tool
has been used to support the experimental procedure.

The first set of experiments includes several file access
patterns for various file sizes. All experiments have been
repeated multiple times and the measurements were averaged.
BLAST ran without support for chunk replication, so that
measurements are comparable. Figure 5a depicts the I/O



6 PUBLISHED IN: PROCEEDINGS OF THE NPC 2009, PP. 148–155

throughput measured during a bulk write of files whose size
ranged from 100 up to 1024 MBs. DRBD and GNBD perfor-
mance is getting poor as the block caching effect, provided
by the OS kernel, fades out and file sizes grow. For files
larger than 500 MBs, they can perform approximately at
30MB/sec. The throughput observed for local I/O is relatively
higher since the local disk takes advantage from its dedicated
cache memory and no network latencies occur. The Lustre file
system, without support for file striping, has similar behavior,
since a single storage device is used for each file copy. On
the other hand, Lustre performance is significantly higher
when files are striped to several storage devices. BLAST
outperforms all client-server storage systems and reaches a
write throughput of about 105 MB/sec even for file sizes that
approximate total system RAM. We should notice that the
Lustre deployment which supports file striping presumes an
external mechanism that guarantees data redundancy, since,
without such a mechanism, a single failure would result to
the corruption of all stored files. Figure 5b depicts the I/O
throughput of random writes in files of the same sizes. The
block caching provided by the kernel smoothes the randomness
of writes and so the results are similar to the previous case.
We notice that BLAST handles more efficiently writes of
small files when block caching occurs, since its memory
requirements are very low (∼50MB per storage node).

Fig. 5. Sequential (a) and random (b) write

Table III presents the read throughput measurements, in
KB/sec, for file sizes ranging from 800 to 1024 MBs. IO-
zone performs file reading after having written the same file,
therefore, the measurements for file sizes less than 800MB are
of no interest, since almost the entire file is cached leading to
extremely high I/O rates.

TABLE III

SEQUENTIAL READ

800MB 900MB 1024MB
localEXT3 42544 42678 42721

DRBD 49415 49071 46508
GNBD 46038 46312 46362
Lustre 46241 46272 46304

Lustre512 95727 91428 96496
Lustre2 88166 89409 89322
BLAST 84774 85580 85144

The second experimental set involves a comparison of the
same storage systems in the absence of block caching. We have
performed a number of benchmarks with IOzone, with the

O DIRECT file system flag being set. Database servers usually
access the device using the ODIRECT flag, because they
prefer to implement the caching level by themselves. When
setting the ODIRECT flag, the size of the file involved in the
I/O does not affect the I/O throughput rate, since no caching
occur and data are directly stored in the storage device. On the
other hand, a very important factor that greatly influences I/O
is the record size that the application passes to the file system
for read or write. Figure 6a depicts the I/O throughput rate for
sequential writes with record sizes ranging from 8KB up to
16MB passed to the file system. As we can observe, BLAST
outperforms all other systems for record sizes between 128
KB and 4MB. It is worth noticing that the Lustre file system
performs very poorly under these circumstances, for every file
striping strategy. The reason for this is that Lustre runs on
a customized Linux kernel, for which preemption must be
disabled. As a result storage nodes are much less responsive,
especially during direct I/O of small record sizes, where the
observed I/O rate was about 100-400KB/sec. Note that the
respective I/O rate for BLAST ranged between 15-50MB/sec.

Fig. 6. Sequential (a) and random (b) write (ODIRECT)

Figure 6b illustrates I/O performance when random writes
take place. The BLAST design involves multiple storage nodes
and, therefore, randomness in write I/O does not make any
difference compared to sequential writes. Actually, BLAST
faces every I/O as random, because, for every chunk that has
to be stored in the DHT, a hash value is calculated and one
or more storage nodes are chosen for storing the data. These
nodes take advantage of the block level caching provided by
their OS for their back-end storage and, thus, they smooth
their local I/O. The reason why BLAST performance, both
in sequential and random write I/O, is getting degraded for
very large record sizes is related to the Linux kernel rather
than to the storage core layer. An indication that supports
this statement is that in both figures we see that GNBD
measurements follow the same pattern as BLAST, whose
clients’ implementation is based on GNBD. Figure 7a and
7b illustrate the I/O throughput rates for direct sequential and
random read I/O.

In these cases, BLAST performs exceptionally reaching
throughput rates of about 100MB/sec, while Lustre barely
reaches 30MB/sec. Compared to the measurements presented
in Table III, we observe that BLAST is able to reach slightly
larger I/O rates when direct I/O is used, because direct I/O
involves much less CPU overhead than asynchronous I/O and,
so, our system is able to process I/O requests faster. Moreover,
we observe that GNBD performs much better than the other



PUBLISHED IN: PROCEEDINGS OF THE NPC 2009, PP. 148–155 7

Fig. 7. Sequential (a) and random (b) read (ODIRECT)

systems, because on the server side most of the data are locally
cached by the OS. However, if the server crashes all cached
data will be lost and afsck-like application must run in order
to make the device operable again.

Figure 8 shows a performance comparison of BLAST
for three different replication factors. When chunks are not
replicated, the measurements, both in asynchronous and direct
I/O, are as described before. We notice that a write throughput
of about 105 MB/sec is slightly less than the maximum
bandwidth provided by the gigabit connection of the storage
node. Actually, when no replication occurs, the storage node is
bounded by the CPU. On the other hand, the network uplink
almost gets saturated when chunks are replicated to one or
two more storage nodes, leading to throughput rates of about
60 and 40 MB/sec, respectively. The throughput rate of read
I/O is independent of the replication factor supported by the
system and, therefore, read I/O sustains the same levels as
before.

Fig. 8. Replication cost in sequential writes without (a) and with (b) direct
I/O

Finally, it is worth mentioning that we have also tested
the Ceph (version 0.7.1) system but this version did not
support direct I/O and was not stable enough to complete the
benchmarks produced by the IOzone application. On the other
hand, FAB and Petal systems are not publicly available so we
could not include them in the evaluation of BLAST.

VII. C ONCLUSIONS

In this paper we have presented BLAST, a completely
decentralized storage system that takes advantage of the spe-
cial properties provided by a structured overlay network. Its
block level approach makes its design relatively simple, while
providing file-system neutrality. An extensive experimental
evaluation confirms the performance benefits of our system
in a cluster of off-the-shelf desktop PCs. BLAST proves to be
competitive with respect to performance with other publicly

available state-of-the-art storage systems. Part of our current
research work involves BLAST evaluation in larger computer
clusters that expand in several physical locations. Moreover,
we are planning to test a C implementation of our system
that is built on top of the Chord DHT, in order to identify
potential performance improvements compared to the current
Java implementation.

REFERENCES

[1] E. K. Lee, C. A. Thekkath: Petal: Distributed Virtual Disks.ASPLOS
1996: 84-92

[2] Red Hat Inc., Red Hat GFS, http://www.redhat.com/gfs/.
[3] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers,

pages 464-496, Third Edition.OReilly Media Inc, 2005.
[4] A. I. T. Rowstron, P. Druschel: Pastry: Scalable, Decentralized Object

Location, and Routing for Large-Scale Peer-to-Peer Systems.Middle-
ware 2001: 329-350

[5] I. Stoica, R. Morris, D. R. Karger, et al.: Chord: A scalable peer-to-peer
lookup service for internet applications.SIGCOMM 2001: 149-160.

[6] Oracle, inc. Oracle Berkeley DB Java Edition. http://www.oracle.com/.
[7] P. T. Breuer, A. M. Lopez, and A. G. Ares. The network block device.

Linux Journal, Issue 73, March, 2000.
[8] P. T. Breuer. The enhanced network block device, http://www.it.uc3m.es/

ptb/nbd/, August 2008.
[9] L. Ellenberg. Drbd 9 and device-mapper: Linux block level storage

replication. In Proceedings of the 15th International Linux System
Technology Conference, 2008.

[10] Red hat gfs 6.1: Administrator’s guide, using the global network block
device, May 2008.

[11] P. Cao, S. B. Lin, S. Venkataraman, and J. Wilkes. The TickerTAIP par-
allel RAID architecture.ACM Trans. on Comp. Sys. (TOCS), 12(3):236–
269, 1994.

[12] LeftHand Networks. IP-based storage area networks.
http://h18006.www1.hp.com/storage/highlights/lefthandsans.html.

[13] IBM, inc. Intelligent Bricks - Hardware.
http://www.almaden.ibm.com/StorageSystems/projects/cibh, April
2005.

[14] L. Lamport. The part-time parliament.ACM Trans. On Comp. Sys.
(TOCS), 16(2):133–169, 1998.

[15] Sun Microsystems, Inc. “Lustre File System. High-Performance Storage
Architecture and Scalable Cluster File System,”http://wiki.lustre.org/,
October 2008.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, et al.: Ceph: A Scalable, High-
Performance Distributed File System.OSDI 2006: 307-320.

[17] B. Welch, G. A. Gibson: Managing Scalability in Object Storage
Systems for HPC Linux Clusters.MSST 2004.

[18] G. Parissis and T. Apostolopoulos, A distributed hash table-based
approach for providing a file system neutral, robust and resilient storage
infrastructure,NGI 2009.

[19] IOzone Filesystem Benchmark, http://www.iozone.org/, October 2006.
[20] Y. Saito, S. Frølund, A. C. Veitch, et al: FAB: building distributed

enterprise disk arrays from commodity components.ASPLOS 2004: 48-
58.


