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Abstract—The main problem of the today’s IEEE 802.11
WLANs is the small number of available channels. In this
paper we focus on a novel way of maximization of the network
throughput and the provision of fairness which are key challenges
in IEEE WLANs, using Game Theory. We examine two types
of power control games, namely the non-cooperative and the
cooperative power control game. In the case of non-cooperative
power control game we find the Nash equilibrium in a distributed
way. In the case of cooperative power control game we assume that
there exists a central entity called coordinator which announces
the calculated Nash bargaining solution to the access points.
Finally, we present the results of simulations implemented in
MATLAB through a series of plots and tables.

I. INTRODUCTION

To maximize network throughput while providing fairness is
one of the key challenges in IEEE 802.11 WLANs. The main
problem of today’s IEEE 802.11 WLANs is the small number
of available channels. Specifically, an IEEE 802.11 WLAN is
comprised of 14 channels. Two channels are not overlapped
when they are separated by 4 channels. Thus, considering
the case of deployment of three access points in a given
area, we conclude that the only assignment which satisfies the
requirements for non overlapped channels is the combinations
of channels 1, 6, 11 according to [1]. In this topology, if we
add one more access point, we will have the problem of the
overlapped channels. Obviously, interference management is
a critical research area which should be bloomed in order to
enhance IEEE 802.11 WLANs’ performance. Research works
such as [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13] apply power control in order to give a solution to this
arisen problem.

In this paper we focus on how to control the transmission
power of access points’ pilot signals using game theory. First,
we consider a non-cooperative power control game (NPG)
between competitive operators. In this case we compute the
power transmission level of each access point as the Nash
equilibrium (NE) of NPG. Second, we assume that operators
are cooperative namely we examine the case of a cooperative
power control game (CPG). In this type of game, we assume
the existence of a central authority called coordinator. In
such a game there exists a Nash bargaining solution (NBS).
Moreover, we prove the uniqueness and the feasibility of NBS.
Furthermore, we apply the well known bisection method in
order to derive NBS. Finally, we present a punishment strategy

enforced by the coordinator in order to punish selfish access
points.

The remainder of the paper is organized as follows. In
Section II we discuss related work. In Section III we describe
the proposed methodologies while in Section IV we present
the simulation results. We present our conclusions and plans
for future work in Section V.

II. RELATED WORK

Nowadays, a lot of researchers have argued in favor of a
more flexible and more efficient management of the wireless
spectrum, leading to the possible coexistence of various net-
work operators in a shared spectrum area.

In [14], authors suppose that mobile nodes can freely roam1

among various operators. They model the behavior of different
network operators in a game theoretic setting. According to
this methodology each operator decides the power of the pilot
signal of its base stations. First, they compute possible NE in
an theoretical setting when all base stations are located on the
vertices of a two-dimensional lattice. Afterwards, they show
that in a more general case, computing NE is an NP-complete
problem. In addition, they prove that a socially optimal NE
exists and it can be applied and enforced by using punishment
tactics.

In [9] authors show that a cross-layer approach is required
when is needed to perform starvation free power control in
IEEE 802.11 WLANs. Specifically, they say that transmitting
power levels and carrier sensing parameters of MAC layer
should be jointly tuned. In addition, they present a framework
which identifies optimum settings for the carrier sensing
parameters aiming to maximize the network throughput for
elastic traffic. In fact, they apply a distributed power control
algorithm which uses a Gibbs sampler.

In [15] authors highlight that interference in coexisting
wireless local area networks can be viewed as a layered
space-time (LST) structure, in which the number of access
points is equal to the number of transmitting antennas. Thus,
interference that is caused by access points of different vendors
is equivalent to interference between transmitting antennas
in LST architecture. This analogy can be further extended
to IEEE 802.11 WLANs receiver strategies, so that receiver

1the decision of connection to a base station is taken considering the
strength of the pilot signal of each base station. Every mobile node attaches
to the station with the strongest pilot signal.



structures derived from LST architectures can be directly ap-
plied to mitigate interference between vendors. To improve bit
error rate further, a cross-layer design in both PHY and MAC
layers is proposed. It is shown that the proposed receivers
demonstrate superior performance to standard receivers for
IEEE 802.11 WLANs.

Whilst Yates [16] treats distributed power control as a
general fixed point problem, Goodman [3], [4], [7], [13]
considers distributed power control as a distributed interactive
objective maximization problem. In fact, he treats this problem
as a game.

III. PROPOSED METHODOLOGY

We suppose that two network operators have employed
their access points in a given area alike to the scenario
described in [14]. Their access points operate within the same
unlicensed frequency band and they can adjust the power level
of their pilot signals in order to increase their utility functions2.
Thus, a two player game is emerging. Obviously, a problem
of co-channel interference is caused when clients associated
with these access points are within the overlapped area of
transmissions. In figures 1, 2 we depict the two different kind
of networks in NPG and CPG, respectively. Specifically, our
proposed methodology in the case of NPG implements the
following steps:

• Definition of utility function for each access point.
• Definition of non cooperative power control game.
• Derivation of Nash equilibrium.

For CPG we follow the steps which are listed below using
the same utility function we defined in NPG:

• Definition of cooperative power control game.
• Implementation of an algorithm to determine Nash bar-

gaining solution.
• Derivation of Nash bargaining solution in cooperative

power control game.
• Implementation of a method to enforce Nash bargaining

solution.
• Implementation of an algorithm to determine Nash bar-

gaining solution.

Each access point runs the CSMA/CA algortihm. Due to
the fact that the access points meet the hidden node problem
in both NPG and CPG each of them cannot sense the trans-
mission of the competitor as we can see in figures 1, 2. As
a result two transmissions to the associated mobile clients are
taking place concurrently causing a collision.

Assuming no RTS/CTS mechanism each access point can
never be informed about the concurrent transmission of the
other. This situation results to the degradation of the Signal-
to-Interference Ratio (SIR) because it actually increases the
interference seen by each client. As a result, every access
point has to adjust its transmission power level in a way that
maximizes: (i) its mean utility and (ii) the mean SIR.

2we will define below utility functions for each access point.

Fig. 1. An example of the wireless environment in the case of NPG .

Fig. 2. An example of the wireless environment in the case of CPG .

A. Non-cooperative power control game

Let G = [N, {Pk}, {uk(·)}] denote the two player NPG
where N = {Ai, A−i} is the index set of access points
in a given area, Pk is the strategy set and uk(·) is the
utility function of access point k. Each access point selects
a power level pk such that pk ∈ Pk. Let the power vector
p = (pAi , pA−i) ∈ P denote the outcome of NPG in terms of
selected power levels where P is the set of all power vectors.
The strategy space satisfies P = PAi

× PA−i
.

1) Utility Function: Let i,−i be the set of access points
who share the downlink bandwidth of the IEEE 802.11b cell.
We assume that access point i controls its transmitted power
pi chosen from a set of strategies Pi = [0,+∞). We assume
that access points’ preferences are expressed through the utility
function ui which quantifies the level of satisfaction for each
access point from using the wireless resources. According
to [10] we express the utility function as the number of bits
that are successfully received per unit of consumed energy as:

ui(pi, γj) =
R

pi
(1− 2BER(γj))L bits/Joule (1)



, with the following terminology to be considered:
• R: rate of access point’s transmitted information in bits/

second3.
• pi: access point’s i transmitted power.
• γj : SIR seen by client j which receives data from i.
• L: the number of bits per packet.
• BER: the bit error rate, which is the ratio between the

number of incorrect bits transmitted to the total number
of bits.

The level of utility that each access point gets depends on its
own power level and on the strategy chosen by the competitive
access point.

Supposing that the modulation scheme is DBPSK4 we will
have that:

BER =
1
2
e−γj (2)

In addition, according to [10] the value of SIR of client j
associated with access point i is equal to:

SIRj = γj =
W

R

gijpi
g−ijp−i

(3)

, with the following terminology to be considered:
• W : the bandwidth in Hertz.
• gij : link gain between access point i and associated client
j.

• g−ij : link gain between the competitive access point −i
and client j.

• p−i: transmitted power of the competitive access point
−i.

Finally, assuming a client j associated with access point i
and combining (1), (2), we have that the utility of access point
i obtained by serving client j, is equal to:

ui(pi, γj) =
R

pi
(1− e−γj )L bits/Joule (4)

In the two player NPG, each access point maximizes its
own utility in a distributed fashion. We assume two clients j, h
which are associated with access points i,−i, respectively. In
our implementation we will follow the following steps:
• We will reduce the power level of each access point from

the initial value Pmax5 until the achievement of NE.
• Every time the power level is reduced we check if the

current power strategies of access points comprise a NE.
If this happens, we will stop the power levels’ reduction.

Formally, NPG is expressed as:

(NPG) maxpi∈Piui(pi, p−i), ∀ i ∈ I (5)

, where ui is the utility of any access point i, given in (4),
Pi is the strategy space of i and p−i is the power level of
the competitive access point. It is necessary to characterize
a set of powers when an access point is satisfied with the

3we assume that R is equal for all access points.
4modulation scheme used by IEEE 802.11 WLANs for transmission at

1Mbps.
5in the section of simulation results we will discuss this value.

utility it receives given the power selection of the other access
point. Such an operating point is called an equilibrium6. At
NE, given the power level of the competitive access point, i
can not improve its utility level by making individual changes
in its power level.

Definition: A power vector p = (pAi , pA−i) is NE of G =
[N, {Pk}, {uk(·)}] if, for every access point k ∈ I = i,−i,
ui(pi, p−i) ≥ ui(p′i, p−i)∀ p′i ∈ Pi.

Specifically, the power level chosen by a rational self-
optimizing access point constitutes a best response to the
choice of the competitive access point.

2) Existence and Uniqueness of NE: In the problem we
examine there is one and only one NE, as shown in the
following theorem, according to [7].

Theorem 1: There exists a unique NE in NPG..
Proof: The proof follows from Debreu’s Theorem [17],

due to the fact that utility given in (4) is defined over the
convex set Γ and is quasi concave in pi ( [7], [18]).

3) Derivation of NE: The first derivative of the utility with
respect to pi is equal to:

dui
dpi

= −R
p2
i

(1− e−γj )L +
R

pi
L(1− e−γj )L−1e−γj

gij
g−ijp−i

(6)
Aim of each access point is to maximize its utility function.
At the point of maximization the first derivative of the utility
with respect to pi should be zero. Thus:

dui
dpi

= 0 (7)

We can easily see that for pi = 0 the utility is maximized,
but this power level cannot be a maximizer. Thus, according
to (6), (7), the solution of γ∗ is derived from the equation:

eγ
∗

= 1 + Lγ∗ (8)

The (8) can be solved numerically, and according to (4) we
have that:

u∗i =
R

p∗i
(1− e−γ

∗
)L (9)

In addition, we observe that at NE both clients j, h, enjoy
equal non-zero SIR γ∗. Also, we suppose that:

v(qij) = (1/gij)ui, ∀ i ∈ I (10)

, where qij is the received power by client j, namely:

qij = gijpi (11)

Moreover, from (9) and (10) we will have that:

u∗i = gijv(q∗) (12)

The derived equilibrium is fair, as both clients achieve the
same SIR and throughput. According to [7], this NE is not
Pareto optimal.

6this is the NE.



B. Cooperative power control game

Except from NPG we will examine the case of CPG. We
provide a fair and efficient solution to the power control game
similar with the one that is proposed in [19] for CDMA
wireless data networks. We will show that if there exists a
coordinator then it is possible for access points to achieve a
Pareto optimal solution.

In this scenario there exists a central authority, as it is
depicted in figure 2, which plays the role of coordinator
between access points. To be specific, coordinator enforces
cooperation resulting in derivation of a more efficient point
than NE. This point is called NBS [20]. NBS is a Pareto
optimal point and as a result it maximizes the social welfare.

An other concept, generally different from NE, is Pareto
efficiency or Pareto optimality. A strategy profile is Pareto
optimal or Pareto efficient if there is no way to improve the
performance of one player without harming the performance
of another one. Formally a strategy profile σ∗ is said to be
Pareto optimal if only if there exists no other strategy profile
σ′, such that:

if for some k, uk(σ′) > uk(σ∗)⇒ ui(σ′) > ui(σ∗) (13)

, ∀ i ∈ set of other players

Obviously, a strategy profile that constitutes NE may not
be Pareto efficient. Pareto efficient is a cooperative dominat-
ing solution. In cooperative games, users are able to make
enforceable outcomes through centralized authorities. Thus,
for cooperative games, the interests lie in how good the
game outcome can be, namely how to define and choose the
optimality criteria in cooperative scenarios.

Further, it is worth mentioning that NBS plays an important
role in cooperative games. NBS which is a unique Pareto
optimal solution to the game modeling bargaining interactions
based on six intuitive axioms. Nash gave four axioms that
any NBS should satisfy which are: (i) invariant to affine
transformations, (ii) Pareto optimality, (iii) independence from
irrelevant alternatives and (iv) symmetry. To be specific, in
a transaction when the seller and the buyer value a product
differently, a surplus is created. A bargaining solution is then
a way in which buyers and sellers agree to divide the surplus.
A definition of NBS is the following:

Definition: A mapping F : G → <N is said to be NBS,
where G denotes the set of achievable utilities with respect to
the status quo utility u0, if:
a.1: F (U, u0) ∈ U0, where U0 is the set of achievable utilities

which are superior to u0.
a.2: F (U, u0) is Pareto optimal.
a.3: F satisfies the linearity axiom, thus if φ: <N → <N ,

φ(u) = u′ with u′i = aiui + bi, ai > 0, i = 1, ..., N
then F (φ(u), φ(u0)) = φ(F (u, u0)).

a.4: F satisfies the irrelevant alternatives axiom, thus if V ⊂
U , (v, U0) ∈ G and F (U, u0) ∈ V , then F (U, u0) =
F (V, u0).

a.5: F satisfies the symmetry axiom, namely if U is sym-
metric with respect to a subject J ⊆ 1, ..., N of indices.

More specific if u ∈ U and i, j ∈ J , then if u0
i = u0

j

then F (U, u0)i = F (U, u0)j .
The solution of Nash, which satisfies all the above axioms, is
achieved at the point where the product of utility functions of
users, with respect to the status quo utilities of the game is
maximized. At NBS, the product of utilities of involved users
is maximized, subject to the constraint that the SIR of every
user must be within the respective bounds and that the utility
of each user must be superior to his status quo utility, thus:

maxp{
N∏
j=1

(uj(p)− u0
j )}, p ∈ X, X = {r ∈ Γ u(r) > u0}

(14)
1) NBS in CPG: Consider a linear function φ : <n →

<n, where φ(u) = v and v(qi) = (1/gi)ui, ∀ i ∈ I . The
transformed function vi can be expressed as:

vi(qij) =
R

qij
(1− e−γj )L (15)

, where qij = gijpi.
From (15) we can see that the utility of two access points

are symmetric. In addition, v0
A1

= v0
A2

= v∗. Thus, according
to a.5 we have that at NBS:

vA1(q) = vA2(q) (16)

Formally, CPG is expressed as:

(CPG)maxq{(vA1(q)− v0
A1

)(vA2(q)− v0
A2

)}, (17)

q ∈ {r ∈ S : v(r) > v0, v0
A1

= v0
A2

= v∗}

Due to (16), the optimization problem becomes:

(CPG)maxqv(q)⇒ maxq{
R

q
(1−e−γ)L}, q ∈ {r ∈ Si : (r) > v∗}

(18)

2) Uniqueness of NBS: Lemma: There is a unique positive
power qnbs that maximizes function v(q).

Proof: At the point where function v(q) is maximized the
first-order optimality condition must hold:

dv(q)
dq

= 0⇒
d(Rq (1− e−γ)L)

dq
= 0 (19)

dv(q)
dq

=
R

q
(1− e−γ)L−1{Le−γ σ2

(q + σ2)2
− 1
q

(1− e−γ)}
(20)

For q = 0, from (20) the first order optimality is satisfied.
Furthermore, v(0) = 0 whilst v∗ violates the first axiom of
NBS. Therefore, we can derive the following condition for the
first derivative:

dv(q)
dq

= 0⇒ e−γL
σ2q

(σ2 + q)2
− (1− e−γ) = 0 (21)

⇒ L
σ2q

(σ2 + q)2
= eγ − 1 (22)

We define r(q) = L σ2q
(σ2+q)2 − eγ + 1. We will prove that

the function r(q) has a unique root in the interval (0,+∞).



Towards this proof we have to find that the interval within the
left-hand side of (21), let it be k(q), is increasing, checking
the monotonicity of this clause. We have that:

k(q) = 0⇒
d{ Lσ2q

(σ2+q)2 }
dq

= 0⇒ q = σ2 or q = −σ2 (23)

From the above solutions we ignore q = −σ2 because we
cannot have a negative received power. The only solution
therefore of (23) is q = σ2 and k(q) = L/4. Thus, (σ2, L4 ) is
a minimum or maximum point of k(q) because at this point
the first derivative of the clause is equal to zero. Now, we have
to check if the (σ2, L4 ) is minimum or maximum. Observing
that k(0) = 0 and k(σ2) = L

4 we derive that k is increasing
in the interval [0, σ2] and decreasing in the interval [σ2,+∞).
Accordingly, the point (σ2, L4 ) is a maximum of k function.
Moreover, the right-hand side of (21), is increasing in [0,+∞).
For the first derivative of r(q) we have that:

dr(q)
dq

=
Lσ2(σ2 − q)

(σ2 + q)3
− eγσ2

(σ2 + q)2
(24)

At q = 0:
dr(q)
dq

|q=0=
L− 1
σ2

(25)

For the length of data packet L, we know that L > 1 supposing
header information and data information. So, dr(q)

dq |q=0 > 0.
This implies that r is increasing at q = 0. Moreover, r(0) = 0,
hence, there is a sufficiently small positive scalar δ for which
r(δ) > 0 which means that at δ, k dominates the right-hand
side of (21). Moreover:

r(q) < 0⇒ Lσ2q

(σ2 + q)2
< 1− eγ (26)

From the well-known inequality eγ − 1 > γ, ∀ γ > 0 ⇔
1− eγ < −γ, we have that:

Lσ2q

(σ2 + q)2)
< −γ ⇒ q > σ2(L+ 1), r(q) < 0 (27)

Thereupon, for values q ∈ [σ2(L + 1),+∞) the right-hand
side of (21) dominates the left-hand side. We summarize the
above facts in the following:
• The left-hand side dominates the right-hand side in (21)

for 0 < q < σ2(L+ 1).
• The right-hand side dominates the left-hand side in (21)

for q > σ2(L+ 1).
So, there is one point of intersection of left-hand side and
right-hand side quantities for q > 0. As a result, r(q) has a
single positive root for q > 0. We assume that qnbs is root
of r(q). We will have that qnbs ∈ [δ, σ2(L + 1)]. Due to the
fact that r(q) is the first derivative of v(q), qnbs is a point
where the first-order optimality condition of CPG problem is
satisfied. As well as, we have that:
• for a small scalar δ, r(δ) > 0 implies that v(q) is

increasing.
• for q > σ2(L + 1), r(q) < 0 implies that v(q) is

decreasing.

So, qnbs is a maximum of vq in the interval (0,+∞). Combin-
ing this with (25) and the fact that qnbs is the single root of
r(q) we have proved the statement of lemma. Thus, ”there is
a unique positive power qnbs that maximizes function v(q)”.

We believe that qnbs is Pareto efficient point due to the fact
whereas the clients receive the same power qnbs.

3) Feasibility of NBS: Lemma: The positive received power
qnbs that maximizes function v(q) is a feasible solution for
CPG.

Proof: Due to the fact that v0
A = v0

B = v∗, in order to
prove the lemma we need to show that v(qnbs) > v(q∗). The
root of r(q) is a global maximum of v(q). Thus, v(q∗) ≤
v(qnbs). So, we have to prove that the v(q∗) = v(qnbs) does
not hold. In other words we have to prove that the q∗ is not a
maximizer of v(q). For this purpose we will use the method
of contradiction. Assuming that q∗ maximizes v(q) we know
that q∗ is root of v(q). Moreover:

r(q∗) =
−Lq∗2

(q∗ + σ2)2
= −Lγ∗2 (28)

We know that q∗ > 0. So, from (28), we have that r(q∗) < 0.
It is obvious that q∗ cannot be root of r(q) and cannot be
maximizer of v(q). As a result v(q∗) ≤ v(qnbs)

4) Algorithm to Determine NBS: In order to determine
the discussed NBS, coordinator runs an iterative algorithm.
After the implementation of the algorithm, the coordinator
announces to access points the value of the received power
qnbs when NBS is achieved. Each of them has to adjust
its transmission power level pnbs according to the equation
pnbs = qnbs

gij
, namely they have to adjust their power levels of

their pilot signal in order to achieve the announced value qnbs.
As we proved in the previous sections NBS in CPG coin-

cides with qnbs ∈ [δ, σ2(L+1)] and function r(q) is continuous
in this interval. As we have located the interval where root
is belonged to, we have to apply a root-finding algorithm in
this interval for the determination of NBS. According to [21]
we can use the bisection method [22] in order to find the
NBS. Actually, bisection method iteratively divides in half an
interval and then it selects the subinterval in which a root
exists. Therefore, we set the limits qinf , qsup towards the
derivation of NBS. We implement the following algorithm:

5) Enforcement of NBS: NBS is a point where the utilities
of two cooperative access points are maximized, and it is
announced by the coordinator to the access points. This point
is the threshold value of received power by any client in the
overlapped area. In addition, NBS is a point where social
welfare is maximized although may not be adopted by one or
more players. For example, a non compliant player may desire
to change its transmission power violating the maximization
of the social welfare in order to achieve larger utility. This
violation, in the most of cases, causes significant degradation
to the performance of the competitors. Thus, it is essential to
propose a mechanism to enforce NBS and conform the selfish
access points.



Algorithm 1 Algorithm for the derivation of NBS
1: set qinf = 0, qsup = σ2(L+ 1)
2: while | qsup − qinf |> 2 ∗ ε do
3: � termination criterion 2 ∗ ε is a positive small scalar
4: set qmidpoint =

qinf +qsup

2
5: if r(qmidpoint) = 0 then
6: set qnbs = qmidpoint

7: return qnbs

8: exit running
9: else

10: if r(qinf )r(qmidpoint) > 0 then
11: qinf = qmidpoint

12: else
13: qsup = qmidpoint

14: end if
15: end if
16: end while
17: set qnbs = qmidpoint
18: return qnbs
19: exit running

To be more specific, as we have discussed, at NBS, two
clients associated with competitive access points receive the
same power. As a result, a selfish access point is an access
point whose associated client receives a more powerful signal
than the one indicated by the coordinator. On the other hand,
this deviation is not intentional. For example suppose an access
point which underestimate the path link gain and it transmits
with higher than the threshold transmission power.

Assume that a selfish access point i transmits with power p′i.
Let q′i be the received power at the associated client. Supposing
that q′i is χ Watts larger than qnbs, then client’s SIR will be:

γ′i =
W

R

q′i
qnbs + σ2

=
W

R

χ+ qnbs
qnbs + σ2

⇒ ∆γi =
W

R

χ

qnbs + σ2

(29)
The bit error rate is equal to 1

2e
−γi , hence according to (29):

∆BERi = BERie
−∆γi (30)

As we have discussed one role of coordinator is to derive and
announce the NBS to the access points. Another role is to
punish the selfish players. A mechanism for the latter purpose
is proposed in [10]. In order to punish an access point for
improving his BER to the harm of other users, the coordinator
should increase the errant user’s BER by randomly inverting
bits in the client’s packet with a certain probability. Supposing
that BERnbs is the bit error rate at NBS, the aim of the
punishment is to give the client a BER equal to BERnbs.
As a result the utility of the access point is smaller than the
utility obtained at NBS because the consumption of energy is
larger in the case of a selfish behavior. Although transmitted
power increases, BER remains the same due to the punishment
procedure. The procedure implemented by the coordinator is
summarized at the following steps:
• coordinator calculates the NBS considering the systems

parameters, namely the gain links between the access
points and their associated clients.

• coordinator announces the NBS to the access points,
namely the required level of received power at their
associated clients.

• coordinator monitors for selfish users and punishes each
of them reducing their BER to BERnbs.

We highlight that for the purpose of NBS’s enforcement the
type of games where the coordinator can apply the punishment
procedure are the repeated games. Actually, a repeated game
is an extensive form game which consists of some number
of repetitions of a stage game. Thus, the set of players they
compete each other on multiple occasions. In a single stage
game the coordinator does not have the chance to apply
the punishment in future steps. Thus, in order to achieve
cooperation in the power control game we consider it as a
repeated game.

IV. SIMULATION RESULTS

In this section, we present the results of simulations regard-
ing our proposed methodologies through a series of topologies,
plots and bars. The assumptions of our scenarios are summa-
rized in the following:
• Simulation of an access point-driven mechanism.
• Assumption of two access points which belong to com-

petitive operators and they:
– operate in the same frequency, time and location.
– meet the hidden node problem.
– use the IEEE 802.11b and IEEE 802.11e protocols.
– adopt the BPSK modulation scheme.
– set their transmission power at the maximum value

serving all the clients they can at the beginning
considering that the maximum permissible power is
equal to +30dBm7.

• The RTS/CTS mechanism is not used in order to avoid
increased delivery delays and reduced throughput accord-
ing to [15].

• Carrying out simulations considering:
– 10, 20, 30, 50 and 100 clients.
– clients are distributed uniformly.
– clients are static namely they do not have mobility

for the period of time we apply our methodologies
in the wireless network.

More analytically, we assume an IEEE 802.11b standard
implementation with BPSK modulation scheme, achieving 1
Mbit data rate. The simplest form of PSK uses two carrier
waves, shifted by a half cycle relative to each other. One
wave, the reference wave, is used to encode an 0; the half-
cycle shifted wave is used to encode an 1. The modulation for
1 Mbit is BPSK. From [23] the BER becomes:

BERBPSK =
1
2
e−

Eb
N0 (31)

, where Eb

N0
indicates the signal-to-interference ratio (SIR).

7FCC regulatory standards set upper bounds on the transmitted power for
IEEE 802.11 WLANs operating in the US. The maximum theoretical range
of an IEEE 802.11b WLAN operating at the maximum EIRP of 30 dBm and
for path loss coefficient N = 3, is 154 meters.
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Fig. 3. The mean utility of access point 1 as a function of the power reduction
steps in NPG.

Reducing the power level gradually (pure strategies):
Let two competitive access points be access point 1 and access
point 2. We assume that 100 clients are associated with each
access point. The strategy of each access point is described
in the following. Specifically, each access point reduces its
transmission power level gradually, until the achievement of
NE. At the beginning, we assume that the access points act
selfishly and greedily transmitting with the maximum power
level, namely 30 dBm or 1 Watt. This value is the maximum
permissible limit appointed by the FCC as we have mentioned.
In every step of our simulation, each access point decreases
its power level by 0.05 Watt which is considered as enough
small decrement towards the achievement of NE. Thus, the
process of power reduction continues until NE is achieved.
The derived NE is considering as pure, see [24], because each
access point chooses to take one action with probability 1.
According to theoretical results, at NE the SIR of the nearest
to access point 2 client j associated with access point 1 is
equal to the SIR of the corresponding client h associated
with access point 2, namely SIRclientj = SIRclienth , as we
have proved. First, in figure 3, we depict the mean utility of
access point 1 as a function of the power reduction steps. In
figure 4, we depict the corresponding utility of access point
2. In figures 5 and 6 we depict the mean SIR observed by
the clients of the network. Second, in figure 7, we depict
the improvement percentage of mean utility of the access
points at NE. We observe that for different number of clients
the improvement percentage function fluctuates in the interval
[11%, 18%]. Third, in figure 8 we depict the improvement of
mean SIR observed by the clients of the network, at NE. We
observe that for different number of clients the improvement
percentage function fluctuates in the interval [3%, 6.5%].

As we have described in the CPG, an entity called coordi-
nator computes the NBS and it announces it to the competitive
access points. In the following we appose a series of diagrams
to indicate the effectiveness in terms of utility and mean SIR
in the case of CPG for both access points and the associated
clients. First, in figures 9 and 10 we depict the mean utility
of access point 1 and 2, at NBS. In figures 11 and 12 we
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Fig. 4. The mean utility of access point 2 as a function of the power reduction
steps in NPG.
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Fig. 5. The mean SIR of access point 1 as a function of the power reduction
steps in NPG.
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Fig. 6. The mean SIR of access point 2 as a function of the power reduction
steps in NPG.
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Fig. 7. The improvement of mean utility of the access points, at pure NE,
as a function of the number of clients, let it be 20, 30, 50 and 100.
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Fig. 8. The improvement of mean SIR, at pure NE, observed by the clients
associated with access points as a function of the number of clients, let it be
20, 30, 50 and 100.

depict the corresponding plot of mean SIR observed by the
clients. Second, in figure 13 we depict the improvement of
the utilities of access points 1, 2 which fluctuates within the
interval [13%, 40%]. Moreover, in figure 14 we depict the
improvement of the mean SIR observed by the clients at
NBS. We observe that for different number of clients the
improvement percentage function fluctuates in the interval
[2.5%, 8.5%].

We observe that in CPG the mean utility of the access
points resembles a linear function due to the fact that we need
only one reduction step assuming that all the entities are not
cheaters and they reduce their power to the value announced
by the coordinator. Actually, the coordinator computes and
announces the proper transmission level power for the achieve-
ment of NBS as we have discussed. On the other hand, in NPG,
the number of power reduction steps until the achievement of
NE is larger than the corresponding in CPG. As a result, the
convergence of NBS is quicker than the convergence of NE. In
addition, the simulation concludes that the final mean utility
in CPG is higher than the mean utility in NPG. The same
trends are observed for the mean SIR of the clients associated
with both access points. In table I we present the results for
the mean utility and the mean SIR in order two compare
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Fig. 9. The mean utility of access point 1 as a function of the steps until
the enforcement of NBS in CPG.
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Fig. 10. The mean utility of access point 2 as a function of the steps until
the enforcement of NBS in CPG.

the efficiency of the different type of games. Due to space
limitations we present the results for access point 1 mentioning
that the same trends are observed for access point 2. According
to the improvement of the mean utility, we observe in figures
7, 13 that in the most cases the improvement is larger in the
case of CPG, as we expected. The same trends are observed
for the improvement of the mean SIR though the percentage
differences are smaller. Moreover, in tables II, III we present
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Fig. 11. The mean SIR of access point 1 as a function of the steps until the
enforcement of NBS in CPG.
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Fig. 12. The mean SIR of access point 2 as a function of the steps until the
enforcement of NBS in CPG.
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Fig. 13. The improvement of mean utility of the access points, at NBS, as
a function of the number of clients, let it be 20, 30, 50 and 100.

the final power transmission level regarding the cases of 20,
30, 50 and 100 clients associated with both access points and
the type of game played between the competitors.

Last but not least, in figure 16 we depict the total income of
one access point as a function of the number of the associated
clients. We assume that each client has to pay 20 euros when
it is connected to an access point. According to figure 16,
in the case of NPG the operators make more profit8 due to
the fact that more clients are connected with them. However,

8except for the case of 100 clients.
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Fig. 14. The improvement of mean SIR, at NBS, observed by the clients
associated with the access points as a function of the number of clients, let
it be 20, 30, 50 and 100.
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Fig. 15. The final mean utility of the access points, at NBS, as a function
of the number of clients, let it be 20, 30, 50 and 100.
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Fig. 16. The total income of the operators in euros assuming that each client
is charged 20 euros to be associated with the access point of an operator.

as we proved, clients mean SIR and access point’s utility are
worst than in the case of CPG. Therefore, the existence of a
coordinator is essential to punish any selfish operator which
does not want to cooperate targeting to attract more clients and
make more profit. In the case of NPG and when the number
of clients is equal to 100, operators have to reduce their power
in a lower level than in the case of CPG in order to achieve
a NE. Thus, their incomes are higher in CPG scenario.

V. CONCLUSIONS

In this paper, we investigated the case of an open spectrum
shared area using game theory. In particular, we proposed a
new way of maximization of the network throughput and the
provision of fairness. We calculated the Nash equilibrium and
the Nash bargaining solution of a non-cooperative and of a
cooperative power control game, respectively. Our future work
involves experimenting with more access points in the open
spectrum shared area evaluating more QoS metrics.

TABLE I
THE FINAL MEAN UTILITY AND MEAN SIR IN NPG AND CPG WITH

INITIAL NUMBER OF ASSOCIATED CLIENTS EQUAL TO 100 FOR ONE OF
THE TWO ACCESS POINT

Type of game Final Mean Utility Final Mean SIR
NPG ∼ 1350 bits/joule ∼ 0.0175
CPG ∼ 2350 bits/joule ∼ 0.021



TABLE II
FINAL TRANSMITTED POWER BY EACH ACCESS POINT IN NPG

Number Transmitted Transmitted
of Power of Power of

clients access point 1 access point 2
20 0.55 Watts 0.55 Watts
30 0.5 Watts 0.5 Watts
50 0.6 Watts 0.6 Watts

100 0.5 Watts 0.5 Watts

TABLE III
FINAL TRANSMITTED POWER BY EACH ACCESS POINT IN CPG

Number Transmitted Transmitted
of Power of Power of

clients access point 1 access point 2
20 0.5663 Watts 0.2583 Watts
30 0.5268 Watts 0.4892 Watts
50 0.4023 Watts 0.4445 Watts

100 0.4685 Watts 0.4788 Watts
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