
PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2010 CONFERENCE 1

Socket Emulation over a Publish/Subscribe Network
Architecture

George XYLOMENOS, Blerim CICI
Athens University of Economics and Business, Patision 76, Athens, 104 34, Greece

Tel: + 30 210 8203693, Fax: + 30 210 8203686
Email: xgeorge@aueb.gr, blerim153@gmail.com

Abstract— The current drive towards new networking
paradigms that make information the center of the network
architecture, cannot ignore the fact that any new architecture
will have to co-exist with the existing Internet for an extended
period of time. In order for a new architecture to be globally
deployed, it must ensure that existing applications will continue
to operate, preferably without the need to even recompile them.
As part of the Publish Subscribe Internet Routing Paradigm
(PSIRP) project, we have explored the options for making existing
applications based on the ubiquitous Sockets Application Pro-
gramming Interface (API) compatible with the PSIRP prototype
implementation, which is based on publish/subscribe principles
throughout the protocol stack. We describe an emulator which
mediates between the client/server socket calls and the pub-
lish/subscribe calls implemented by the PSIRP prototype. Our
socket emulator allows existing applications, either TCP or UDP
based, to run unmodified over an information centric network
architecture that is radically different from the endpoint centric
Internet architecture for which they were designed.

Index Terms— TCP/IP, Sockets, Publish/Subscribe, PSIRP.

I. I NTRODUCTION

A large fraction of current Internet traffic is due to peer to
peer content distribution applications [1], in which participants
are solely interested in the exchanged data rather than in the
endpoint addresses of their peers, indicating that the Internet
is evolving from a network connecting pairs of end hosts
to a substrate for information dissemination. There are many
proposals for evolving or redesigning the Internet architecture
based on an information centric paradigm, for example, the
Content Centric Networking(CCN) [2] project and thePub-
lish/Subscribe Internet Routing Paradigm(PSIRP) project [3].
The PSIRP project in particular is working on a network archi-
tecture based entirely on publish/subscribe principles, and its
prototype implementation employs publish/subscribe concepts
throughout the protocol stack [4]. In the publish/subscribe
model, publishers announce available data, subscribers express
their interests, and the network allows them to rendezvous for
the exchange of data.

Any proposal that seeks to radically change the architecture
of the Internet must plan to co-exist with the existing Internet
for an extended period of time. In particular, in order to
be deployed, a new architecture must ensure that it will
be possible to execute existing applications on top of it.
While many applications, especially content distribution ones,
can reasonably be expected to be rewritten so as to operate
optimally over an information centric architecture, there is a

vast number of existing, endpoint centric, applications that
will have to operate in some type of compatibility mode,
preferably without the need to even recompile them. Since
most existing Internet applications were written on top of
the widespread SocketsApplication Programming Interface
(API) [5], the most direct way to make them compatible with
a new architecture is to develop middleware to transparently
translate Socket API calls to the underlying information centric
calls offered by the new architecture.

In this paper we describe the design and implementation
of a Socket API emulator for PSIRP, which allows un-
modified Internet applications to operate on top of a native
publish/subscribe protocol stack. In Section 2 we introduce
the basic concepts of the PSIRP architecture and implementa-
tion. In Section 3 we discuss the different emulation options
available and motivate our selection. In Section 4 we explain
how IP addresses and socket calls are translated into PSIRP
calls. Finally, in Section 5 we summarize our work and discuss
future development directions.

II. PSIRP IMPLEMENTATION CONCEPTS

In the PSIRP prototype implementation, which is based
on the FreeBSD operating system, publications are handled
via a set of calls encapsulated in thelibpsirp library [4].
In order for the reader to understand how publish/subscribe
communication is achieved and appreciate the intricacies of
this programming model, in this section we provide an intro-
duction to thelibpsirp concepts and calls. In the PSIRP
architecture, the central entity is apublicationwhich is made
available bypublishersto subscribers. The network provides
mechanisms for publishers and subscribers to rendezvous in
order for publications to be transported from the former to the
latter. A publication is identified by aScope Identifier(SId)
and aRendezvous Identifier(RId) [3]; the SId represents an
information collection, while the RId represents an information
item within this collection. For example, a user may publish
a set of holiday pictures, each identified by an RId, within a
scope representing his friends, identified by an SId. Note that
there are no global endpoint identifiers whatsoever in PSIRP.

Publications consist of data and metadata; data are
transparently mapped to the memory space of the publishers
and subscribers of a publication. A publisher creates a
new publication by calling int psirp create(int
size, psirp pub t * pub) . This allocates a memory



2 PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2010 CONFERENCE

area of size bytes for the publication data, initializes a
data structure for the publication and returns a handle of
type psirp pub t to this structure. The publisher can call
caddr t psirp pub data(psirp pub t pub) to get
a pointer to the memory block of the publication. When
the publication is ready, it is made available to the kernel
via the int psirp publish(psirp id t * sid,
psirp id t * rid, psirp pub t pub) call, which
takes as parameters two structures of typepsirp id t
holding the desired SId and RId for the publication,
as well as a handle to the publication. The kernel can
then decide where to forward the publication to. If a
publication with the same SId/RId already exists, then the
new publication is assumed to be a new version of the
original publication, therefore its version number is increased.
The int psirp atoid(psirp id t * rid, const
char * str) call converts an SId or RId represented as an
ASCII string to the internal format used in thepsirp id t
structures.

In order to subscribe to a publication with a
specified SId/RId pair, a subscriber must callint
psirp subscribe sync(psirp id t * sid,
psirp id t * rid, psirp pub t * pub, struct
timeval * timeout) . This blocks the subscriber
for at most timeout (forever if timeout is 0); if a
matching publication is found before the interval expires, a
handle is returned to the latest version of the publication.
The caller can distinguish new from old versions of a
publication by asking for their version numbers via the
int psirp pub version count(psirp pub t
pub) call. In order to retrieve previous versions
of a publication, the subscriber must first callint
psirp subscribe versions(psirp pub t pub,
psirp pub t * versions,
int start index, int max count) , which returns
in the versions array up to max count handles to
earlier versions of publicationpub starting from version
start index . The publication data can be accessed in
the same manner as in the publisher side, that is, via the
caddr t psirp pub data(psirp pub t pub) call.
Finally, the void psirp free(psirp pub t pub)
call frees the publication structure and unmaps the memory
allocated for the publication.

III. E MULATION OPTIONS

In the Sockets API, a socket represents a communication
endpoint, identified by an IP address and a TCP/UDP port.
Communication takes place by having each application attach
to a local socket and then perform calls on these sockets. The
actual communication between sockets is achieved by exploit-
ing the services of the TCP/UDP protocols, transparently to
the applications. As shown in Figure 1.(a), the socket uses
either TCP or UDP at the transport layer, the transport layer
uses IP at the network layer, and IP uses some kind of link and
physical layer protocols (such as Ethernet) for data transmis-
sion [5]. In contrast, in the PSIRP prototype, publish/subscribe
applications talk tolibpsirp which implements its own

transport and network layer protocols directly on top of
the physical and link layers, providing an entirely different
publish/subscribe oriented API. The goal of the Sockets API
emulator is therefore to translate between socket calls and
libpsirp calls, despite their entirely different approaches.

Application

Socket

TCP/UDP

IP

Lower Layers

Emulator

libpsirp

Lower Layers

Application

Socket

TCP/UDP

IP

Emulator

libpsirp

Lower Layers

Application

Socket

(a) (c)(b)

Fig. 1. Socket emulator structure: (a) standard TCP/IP stack, (b) network
level emulation, (c) transport level emulation.

One approach, shown in Figure 1.(b) is to exploit an existing
TCP/UDP/IP implementation to transform the socket calls to
IP packets, and then exchange these packets vialibpsirp
calls. The advantage of this approach is that the emulator
only has to provide a best effort service, analogous to that
offered by IP. For TCP in particular, flow, congestion and error
control are essentially provided by TCP, and the emulator only
sees ready to transport IP packets. For UDP the benefits are
not so clear, since the corresponding socket calls essentially
map directly to UDP and IP packets. The disadvantage is
that by treating PSIRP as a dumb transport, not only do we
lose all the advantages of its redesigned architecture, but we
also apply the IP specific TCP assumptions to an entirely
different architecture. A similar approach has been found to
be very detrimental for the performance of TCP applications
on top of ATM networks [6]. In addition, going through the
TCP/UDP/IP implementation represents a significant commu-
nication overhead for the emulator.

The other approach, shown in Figure 1.(c) is to translate
each socket call directly tolibpsirp calls. While this is
roughly the same as above for UDP, for TCP it is considerably
harder, as the emulator needs to provide semantics equivalent
to those of TCP to the applications. For example, it has
to deal with connection establishment and termination, as
well as with flow, congestion and error control. However, in
addition to avoiding TCP/UDP/IP overhead, in this manner the
emulator can take full advantage of the facilities provided by
libpsirp . For example, if the PSIRP prototype provided
a reliable congestion controlled transport layer service for
publish/subscribe networks, this could be used as a substitute
for TCP. Despite the additional complexity, this approach will
provide better performance in the long term, as it can take full
advantage of the underlying publish/subscribe transport and



PUBLISHED IN: PROCEEDINGS OF FUTURE NETWORK AND MOBILE SUMMIT 2010 CONFERENCE 3

Client

Socket
IP: a.b.c.d

Port: e
Protocol: z

(a)

Server

Socket
IP: f.g.h.i

Port: j
Protocol: z

Client

Emulator

Server

Emulator

Publication
SID: a.b.c.d

RID: a.b.c.d:e:z

(b)

Publication
SID: f.g.h.i

RID: f.g.h.i:j:z

Subscribe Subscribe

Publish

Fig. 2. Address translation: (a) standard TCP/IP socket, (b) emulated socket.

network layer implementations, therefore we have selected it
for the emulator.

IV. EMULATOR IMPLEMENTATION

A. Mapping Addresses to Identifiers

Since PSIRP does not have a notion of endpoint identifiers,
the Sockets API emulator needs a direct way of translating
the TCP/UDP/IP addresses used by sockets to the SId/RId
pairs used to exchange publications in PSIRP. The scheme that
we have implemented is to create an SId for each machine
based on its IP address and an RId for each socket in that
machine by combining its IP address, its port number and the
corresponding protocol (TCP or UDP). Therefore publishing
to an SId translates to sending data to a machine, while
publishing to an RId translates to sending data to a TCP or
UDP port of that machine.

A client can establish communication with a server via
the socket emulator based only on knowledge of the server’s
endpoint details, exactly as in the TCP/UDP/IP protocol suite.
Say that a client with an IP address ofa.b.c.d uses porte of
protocolz to communicate with a server with an IP address of
f.g.h.i using portj of protocolz , as shown in Figure 2.(a).
The emulator translates the client to server messages to
publications to the SId generated byf.g.h.i (the server’s
IP address) and the RId generated byf.g.h.i:j:z ; the
client publishes and the server subscribes to this SId/RId pair.
In the server to client direction, messages are translated to
publications to the SId generated bya.b.c.d (the client’s
IP address) and the RId generated bya.b.c.d:e:z ; the
server publishes and the client subscribes to this SId/RId pair.
This arrangement is shown in Figure 2.(b). New messages
sent in the same direction are represented as new versions
of the same publication, thus allowing a sequence of packets
to be transmitted in both directions. The SId/RId pair is
directly generated from the above ASCII strings via theint
psirp atoid() libpsirp call.

B. Datagram Socket Calls

Sockets come in two varieties: Datagram sockets, imple-
mented on top of UDP, and Stream sockets, implemented on
top of TCP. In this subsection we explain how Datagram socket
calls are emulated, while the next one deals with Stream socket

calls. In Datagram sockets, each endpoint usessocket() to
create a communication endpoint andbind() to assign an
address to it, consisting of an IP address and a UDP port.
Then, messages can be sent to another socket viasendto()
which takes as parameters the data to send and the address of
the remote socket. Messages are received viarecvfrom()
which returns the data received and the address of the remote
socket.

Figure 3 shows how Datagram calls are emulated; the dotted
arrows show how Socket calls are mapped to emulator actions,
while the solid arrows show the publications exchanged be-
tween machines. The server first callssocket() to create
a data structure for its communication endpoint and get a
handle to it for later use; this translates to the creation of
an equivalent data structure in the emulator. In order for
the socket to become accessible to clients, the server calls
bind() to assign an IP address and a UDP port to the socket;
the emulator uses this information to calculate an SId/RId pair
for incoming data and stores both the socket address and the
PSIRP identifiers in its own structure. The client performs the
exact same calls before communication.

In order to receive data via the socket, the server issues
the recvfrom() call on the socket, which is translated by
the emulator to apsirp subscribe sync() call on its
incoming SId/RId pair. In order to distinguish consecutive
packets, the emulator ensures that eachrecvfrom() call
returns the next version of the same publication; the last
version number seen is stored in the socket structure. Each
publication contains in its metadata field the IP address and
UDP port stored in the socket from which the message was
sent. The emulator passes these data to the server via the return
parameters of therecvfrom() call, so that the server may
later use them to send replies to the client. Thesendto() call
is translated by the emulator to apsirp publish() call
on the outgoing SId/RId pair generated by the IP address and
UDP port provided by the caller in the socket call. In addition,
the IP address and UDP port stored in the socket structure
of the sender are inserted as metadata in the publication, in
order for the receiver to be able to reply, as explained above.
The behavior of the client is completely symmetric; the only
difference is that the client must know in advance the IP
address and UDP port of the server, so that it may issue the
first sendto() call.



4 PUBLISHED IN: PROCEEDINGS OF THE FUTURE NETWORK AND MOBILE SUMMIT 2010 CONFERENCE

socket()

bind()

recvfrom()

sendto()

Process

Server

psirp_subscribe_sync()

psirp_publish()

psirp_publish()

psirp_subscribe_sync()

Socket calls

Process

Blocks

PSIRP calls

socket()

bind()

sendto()

recvfrom()

Blocks

Client

Socket callsPSIRP calls

Blocks

Process

Blocks

Process

Calculate SId/RId Calculate SId/RId

Fig. 3. Datagram socket calls

C. Stream Socket Calls

In Stream sockets, each endpoint also usessocket() to
create a communication endpoint andbind() to assign a
local address and port to it; clients may omitbind() , letting
the system select a local address and port. The server then calls
listen() to create a queue to store incoming connection
requests while a previous connection is being handled. Finally,
accept() is called to wait for an incoming connection on
the server side; when it returns, it points to a new socket
connected to a client, that is, a socket containing both local
and remote endpoint addresses. The client on the other hand
callsconnect() with the address of a remote server, in order
to connect to that server; when it returns, the existing socket
is connected to the server. Data can then be sent by calling
send() , while therecv() call returns received data; these
calls have no need for endpoint addresses, as these are stored
in the sockets.

Figure 4 shows how Stream calls are emulated. The
socket() and bind() calls (optional on the client side)
operate exactly as in the Datagram case, leading to the
calculation of an SId/RId pair for incoming publications at
each endpoint. Only the structure created in the emulator is
different: a connected Stream socket must store both local and
remote endpoint address and SId/RId pairs, while Datagram
sockets only need the local part. Thelisten() call is only
used for housekeeping: it creates a list for storing incoming
connection requests until the emulator can service them.

The main differentiation from a Datagram Socket is that
in a Stream socket a new socket needs to be created on
the server side when a connection is established, leaving
the original socket for additional concurrent connections. In
the emulator, whenaccept() is called the server calls
psirp subscribe sync() on its incoming SId/RId pair

in order to receive the next connection request. On the client
side, whenconnect() is called the emulator first uses the
IP address and TCP port passed to that call, which the client
knows in advance, to calculate the SId/RId pair of the server
and then callspsirp publish() to send it an empty pub-
lication, containing as metadata its own IP address and TCP
port. Finally, the client callspsirp subscribe sync()
on its incoming SId/RId pair and waits for a reply from the
server.

On reception of the client’s publication at the server, the
emulator creates a new socket structure, using the local end-
point address from the existing socket and the remote endpoint
address from the publication metadata. The server calculates
the SId and RId for each endpoint as usual, but then it XORs
the original local and remote RId and stores the result as
its new local RId, which will be used for incoming data.
As a result, connected sockets are differentiated in the server
from unconnected ones as they use both endpoint addresses to
calculate the RId for incoming data, exactly as in a connected
TCP socket. Finally, the server callspsirp publish() to
send an empty publication to the client’s incoming SId/RId
pair. When this publication is received by the client, the
client’s socket structure is also updated by calculating the
new incoming SId/RId pair of the server as above and the
connect() call returns.

At this point connection establishment is complete, and
either side can use thesend() andrecv() calls to send and
receive data, respectively, as in the Datagram socket case. Due
to the modified server RId used for connected sockets, there
is no confusion between publications to connected sockets,
which represent user data, and publications to unconnected
sockets, which represent connection establishment packets.



PUBLISHED IN: PROCEEDINGS OF FUTURE NETWORK AND MOBILE SUMMIT 2010 CONFERENCE 5

socket()

bind()

recv()

send()

Process

Server

psirp_subscribe_sync()

psirp_publish()

psirp_publish()

psirp_subscribe_sync()

Socket calls

Process

Blocks

PSIRP calls

socket()

connect()

send()

recv()

Blocks

Client

Socket callsPSIRP calls

Blocks

Process

Blocks

Process

listen()

accept()

psirp_subscribe_sync()

Blocks

psirp_publish()

psirp_publish()

psirp_subscribe_sync()

Blocks

bind()

Calculate SId/RIdCalculate SId/RId

Calculate SId/RId

Fig. 4. Stream socket calls.

V. CONCLUSIONS ANDFUTURE WORK

We have presented the design and implementation of a
Sockets API emulator for the publish/subscribe oriented proto-
type implementation of the PSIRP architecture. This emulator
translates the socket calls used by existing Internet applications
into the calls provided by thelibpsirp library of the PSIRP
prototype implementation. While the implementation details
are specific to PSIRP, the emulation options and, to some
extent, the emulator design, are relevant to other information
centric architectures, where content rather than endpoints is at
the center of the network architecture.

Regarding future work, many emulator features are still
work in progress. For example, theclose() calls have not
yet been implemented for Stream sockets, therefore there is
no connection release signaling, and handling of concurrent
connection requests is still incomplete. Most importantly, the
emulator inherits some of the limitations of the PSIRP proto-
type, therefore it will have to be further extended following
the prototype itself. For example, in the current prototype only
a UDP like service is provided for publication delivery, with
the emulator using it for both Datagram and Stream sockets;

as the publication transport services are further developed,
the emulator will need to be modified so as to match TCP
semantics as closely as possible.

REFERENCES

[1] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should Internet
service providers fear peer-assisted content distribution?,” inProc. of the
Internet Measurement Conference (IMC), pp. 63–76, 2005.

[2] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and N. Bray-
nard, “Networking Named Content,” inProc. of the ACM Int. Conference
on emerging Networking EXperiments and Technologies ACM (CoNEXT),
pp. 1–12, 2009.

[3] N. Fotiou, G. Polyzos, and D. Trossen, “Illustrating a publish-subscribe
Internet architecture,” inProc. of the 2nd Euro-NF Workshop on Future
Internet Architectures, June 2009.

[4] P. Jokela and J. Tuonnonen, “Progress report and evaluation of imple-
mented upper and lower layer.” PSIRP Deliverable 3.3, June 2009.

[5] W. Stevens,UNIX Network Programming: Networking APIs, vol. 1.
Prentice Hall, second ed., 1998.

[6] D. Comer and J. Lin, “TCP buffering and performance over an ATM
network,” Internetworking: Research and Expreinece, vol. 6, pp. 1–13,
March 1995.


