
PUBLISHED IN: PROCEEDINGS OF THE PACKET VIDEO WORKSHOP 2013 1

Reduced Switching Delay for Networked Music
Performance

George Xylomenos, Christos Tsilopoulos, Yannis Thomas and George C. Polyzos
Mobile Multimedia Laboratory, Department of Informatics

Athens University of Economics and Business
Athens 10434, Greece

{xgeorge,tsilochr,thomasi,polyzos}@aueb.gr

Abstract—Networked Music Performance (NMP), where mu-
sicians located in different places perform together in real time
via a network, requires extremely low end-to-end delay. As part
of an effort to reduce all aspects of NMP delay, we are focusing
on the packet processing and replication delay at the centralized
node which enables communication between the multiple NMP
participants. We propose three approaches to dramatically reduce
this delay, based on both hardware and software optimizations.

Index Terms—Networked music performance, multipoint con-
ferencing unit, delay

I. INTRODUCTION

Among real-time multimedia applications, Networked Music
Performance (NMP), where musicians located at different
places perform together via a network, has probably the most
stringent delay requirements, as proper interaction between
musicians has a very low delay tolerance. Considering NMP
as a special case of conferencing applications, there are many
obvious sources of delay to attack, including media capture,
coding and packetization, as well as network transmission
and queuing. A less obvious target is the delay introduced
by the Multipoint Conferencing Unit (MCU), the centralized
server which relays data between all NMP participants. MCUs
are normally application layer processes which receive media
packets from each participant, decide where to forward each
packet, replicate it accordingly and inject the copies to the
network. Since packet copying between the kernel and applica-
tions is a notorious source of delay, we propose three different
strategies for reducing this delay, as part of a comprehensive
project on advancing the state of the art in NMP.

II. THE MUSINET APPROACH

The MusiNet project [1], a collaboration among groups
at the University of Crete, the University of Athens, the
Technological Institute of Crete, and the Athens University
of Economics and Business, is building a system that will
advance the NMP state of the art in many fronts. In an NMP
context, the acceptable upper bound of end-to-end latency
has been reported to be as low as 25 ms [2], compared to
the 150 ms considered acceptable for audio conferencing,
therefore our primary target is reducing delay in all stages of
an NMP session. The main tasks of the project focus on ultra-
low delay audio and video coding, based on recent advances
in these fields, coupled with optimizing the media capture and

packetization procedures. On the other hand, the transmission
and queueing delays between the communicating endpoints are
beyond our scope; when using the Internet for communication,
the best we can do is attempt to use lightly loaded paths.

There is, however, another element of delay between the
endpoints: the MCU which receives media from all NMP
participants and relays them appropriately. A traditional MCU
decodes all incoming media streams, composes them (e.g.
mixing all audio streams or selecting only the current speaker,
and composing all video streams into a single video pane),
re-encodes the result and separately transmits it to each
participant. In an NMP system participants would prefer to
choose how to mix the media streams themselves, e.g. the
drummer of a rock band may want to hear the bass guitar
more than the vocals. For this reason, in the MusiNet project
the MCU is a media router rather than a media transcoder [3]:
each participant indicates to the MCU which media streams
it desires to receive, and the MCU simply replicates and
forwards these streams, without processing them.

Even this approach introduces MCU delays of up to
20 ms [4], which, while perfectly acceptable for conferencing,
are disastrous for NMP. Therefore, some NMP approaches
employ direct communication between participants [5]. This is
inefficient with multiple participants, as it requires transmitting
a copy of each media stream to every other participant. For
this reason, in previous work we studied the option of avoiding
the MCU by letting NMP participants directly multicast their
media streams to all other participants [6]. While this does
indeed reduce latency, it requires network protocols that are
not currently deployed on the Internet at large. As a result,
the MCU remains essential for media routing, hence it makes
sense to reduce its latency as much as possible.

III. BUILDING AN ULTRA-LOW DELAY MCU

In order for an MCU to properly perform its packet routing
role, it receives signaling packets and media packets from the
NMP participants. The signaling packets indicate which media
streams are desired by a recipient, i.e. which video and audio
streams the participant wants to receive. The media packets
contain the media streams produced by each participant. Based
on the signaling packets and, possibly, on prevailing network
conditions, the MCU maintains a table (or other data structure)
indicating how to treat the packets of each media stream, i.e.



2 PUBLISHED IN: PROCEEDINGS OF THE PACKET VIDEO WORKSHOP 2013

Kernel

MCU

Network Interface

(a)

Kernel

NetFPGA

MCU

(b)

Kernel+Click

Network Interface

MCU

(c)

Kernel

MCU

Network Interface

(d)

Fig. 1. (a) Regular MCU operation, (b) MCU with NetFPGA, (c) MCU with Click, (d) MCU with netmap.

drop them, or replicate them for each participant that has
requested them. The data flow in the MCU is therefore as
depicted in Figure 1(a): packets are passed to the MCU process
by the kernel, the MCU replicates them for each recipient, and
the replicated packets are passed to the kernel for transmission.
This requires context switching between the kernel and the
application, as well as data copying which grows with the
number of participants. Both these activities are well-known
sources of delay [7]. Considering the simple task that the MCU
performs in our context, it is only natural to look for options
to avoid this delay; we are considering the following three.

The first option is to ask the hardware for help. While
a standard network interface cannot perform complex table
lookups, this is possible with the NetFPGA boards, where a set
of network interfaces are coupled with a Field Programmable
Gate Array that can be programmed to perform arbitrary
tasks [8]. A possible MCU architecture exploiting a NetFPGA
is shown in Figure 1(b). The application handles the signaling
packets, which are not time critical, while the NetFPGA
handles the time critical tasks of receiving, copying and trans-
mitting the media packets. A table indicating how to treat each
packet resides in the NetFPGA memory; this table is modified
based on the signaling packets received by the application. As
a result, the entire routing procedure executes in the hardware,
not even interrupting the kernel. Furthermore, the NetFPGA
can avoid copying a packet multiple times: it can instead
rewrite its header and transmit the same packet multiple times,
thus reducing memory bandwidth requirements.

The second option is to use the Click modular router [9], a
toolkit for composing software routers from a set of simpler
modules. Click can run either at the user or at the kernel
level, with the former option being more useful for testing
and debugging, and the latter being more useful for optimized
performance. As in the previous case, the router can be split
in two parts, a control part residing at the application level,
and a routing part residing at the kernel level, as shown in
Figure 1(c). Compared to the NetFPGA option, Click is easier
to program (in C++ rather than in VHDL), it allows testing to
take place at the user level, but, while it avoids most packet
copying and context switching due to in-kernel execution,
it takes up processor time and may not be able to perform
optimizations like packet replication without copying.

The third option is to use the netmap framework for packet
handling at the application level [7]. In this case, the entire

MCU resides at the user level, as shown in Figure 1(d), so
while context switching does take place, no packet exchanges
are needed between the kernel and the user level, since the
MCU can directly manipulate the media packets in kernel
memory. Previous work has shown that with the netmap frame-
work user-level Click routers can match the performance of
their kernel-level counterparts [7], therefore an MCU written
directly over netmap should be able to at least match the
performance of a kernel-level MCU written in Click.

IV. CONCLUSION AND FUTURE WORK

We presented three options for dramatically reducing the la-
tency of an MCU by avoiding context switching and excessive
packet copying between the application and the kernel. We are
currently working on both the Click and netmap approaches.
Since the NetFPGA approach requires specialized hardware
and is the most complex to program, it will only be pursued if
the other two approaches do not yield sufficient latency gains.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALIS - University
of Crete - MUSINET.

REFERENCES

[1] The MusiNet project. [Online]. Available: http://musinet.aueb.gr/
[2] A. Renaud, A. Carôt, and P. Rebelo, “Networked music performance:

State of the art,” in Proc. of the AES International Conference, 2007.
[3] A. Eleftheriadis, R. M. Civanlar, and O. Shapiro, “Multipoint videocon-

ferencing with scalable video coding,” Journal of Shejiang University
SCIENCE A, vol. 7, pp. 696–705, 2006.

[4] VidyoRouter datasheet. [Online]. Available: http://www.vidyo.com/wp-
content/uploads/DS-VidyoRouter.pdf

[5] Soundjack. [Online]. Available: http://www.carot.de/soundjack/
[6] C. Stais, Y. Thomas, G. Xylomenos, and C. Tsilopoulos, “Networked

music performance over information-centric networks,” in Proc. of the
IEEE IIMC, 2013.

[7] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in Proc. of
the USENIX ATC, 2012.

[8] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-rate
network switching and routing,” in Proc. of the IEEE MSE, 2007.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems, vol. 18,
pp. 263–297, 2000.


