
PUBLISHED IN: PROCEEDINGS OF THE IEEE DMSS 2015 1

RT-SENMOS: Reliable Transport for Sensor
Networks with Mobile Sinks

Charilaos Stais and George Xylomenos
Mobile Multimedia Laboratory

Athens University of Economics and Business
Athens, Greece +30 210 8203693

Email: stais@aueb.gr, xgeorge@aueb.gr

Abstract—Gathering information efficiently from a, possibly
fragmented, sensor network presents a serious problem in
disaster recovery applications. Unless a transmission control
mechanism exists, a sink can be flooded with information sent
by sensors, or sensor transmissions may be lost on their way to
the sink. Consequently, there is a necessity for a reliable protocol
that automatically and speedily adapts to losses, congestion and
network changes due to sink mobility. This paper describes RT-
SENMOS, a reliable transport protocol for controlling sensor
transmissions based on sink-assigned rates. The sink decides
how to share the available bandwidth among the sensors and
also determines the reliability to be achieved in each case. Our
protocol operates on top of UDP/IP, therefore it can be directly
integrated into a disaster recovery application that will set its
parameters depending on the situation. Moreover, as it is fully
sink-controlled, it enables the use of simple and inexpensive
fixed sensors, which offload all protocol intelligence to a more
expensive but reusable mobile sink. We present the design of the
protocol, comparing it with similar approaches, and evaluate its
performance using a real implementation.

I. INTRODUCTION

In-building sensor networks can provide great assistance to
human or robotic rescuers in disaster recovery situations. In
such scenarios, a rescuer roams a disaster area, for example,
a building hit by fire or an earthquake, gathering information
from any surviving sensors: temperature sensors can indicate
whether nearby areas are on fire, chemical sensors can detect
the presence of people breathing, and audio and video sensors
can reveal what is behind a blocked passage. As part of the
DIstributed Sensor systems For Emergency Response (DIS-
FER) project,1 we aim to advance the state of the art in disaster
recovery using sensor network technologies to improve the
capabilities of the rescuers.

In such disaster recovery situations, the sensor network
may be partially connected, as the disaster may have wiped
out parts of the fixed infrastructure. However, the mobile
rescuer can come into contact with most of the sensors, either
directly, or via other sensors in a multi-hop configuration,
while roaming. This means that the transport protocol used to
transfer data from the sources (sensors) to the sink (rescuer)
must establish connections and exchange information quickly
and reconfigure itself efficiently. Moreover, it must be (mostly)
reliable, since the rescuer cannot count on sensor redundancy

1http://www.aueb.gr/disfer

for gathering critical information. Lastly, the transport protocol
must avoid losing packets due to congestion around the sink,
where data from many sources naturally converges.

A crucial observation is that all the aforementioned require-
ments revolve around the sink: the sink must reliably receive
data, sink mobility makes the network view change, and it is
the area near the sink that is most likely congested. We have
therefore designed the Reliable Transport protocol for SEnsor
Networks with MObile Sinks (RT-SENMOS), a novel, purely
sink-controlled protocol, in the sense that the sink allocates
transmission rates to all reachable sources and manages the
error recovery process depending on application objectives. In
previous work we presented the design of RT-SENSMOS [1];
in this paper, we review its design and its implementation
details, and present a preliminary performance evaluation of a
real RT-SENMOS implementation over an actual network.

The remainder of this paper is organized as follows. In
Section II we present our assumptions and motivate our design
choices. In Section III we review protocol operation and in
Section IV we explain the rate control scheme used to handle
congestion. Section V describes our implementation, while its
performance is evaluated in Section VI. We discuss related
work and contrast it with our protocol in Section VII. We
conclude and discuss our plans for future work in Section VIII.

II. ASSUMPTIONS AND RATIONALE

RT-SENMOS assumes a set of fixed sensors forming a
multi-hop network using a shared communication channel,
such as WiFi, Bluetooth or ZigBee. Each sensor acts as a
source attempting to transmit data to a mobile sink, i.e. a
human or robotic rescuer equipped with a mobile computer.
The sensors have been pre-programmed to send the data to the
sink, that is, they know the network address of the sink. At any
given time, the sink may be able to communicate with only a
subset of the sensors, since some may not be reachable at that
time. Additionally, it is assumed that an underlying protocol
routes data between all nodes in the current network. A routing
protocol based on the received signal strength (RSSI) metric,
available in most wireless interfaces, which triggers route
recalculations whenever the sink detects that the node with
the highest RSSI has changed [2], is suitable.

We also assume that there are multiple types of sensors,
which may need to be treated separately. The sink dedicates



2 PUBLISHED IN: PROCEEDINGS OF THE IEEE DMSS 2015

a portion of its available bandwidth to each sensor type and
then assigns a part of that bandwidth to each individual sensor
of that type. Dividing the sensors into type groups allows
disaster recovery applications to decide how to share the
available bandwidth between groups, as well as to operate
different bandwidth allocation schemes for each group. In RT-
SENMOS, all sensors are treated as data sources that may
alternate between active and idle states; when active, they
require a specific transfer rate. In our test scenario, sensors
are divided into two groups: event and continuous sensors.
An event sensor collects point data, e.g. a temperature value
or a camera snapshot, while a continuous sensor sends a
continuous data stream, e.g. live video or audio. Event sensors
send data periodically and not only when, for example, the
temperature changes or a movement is detected, since the sink
needs to gather as much data as possible over the, possibly
limited, period during which each sensor is reachable.

For congestion control, the sink explicitly controls the
transmission rate of all sources. As all source transmissions
converge at the sink, the latter is in a position to detect the
onset of congestion and take measures to restrain it. The sink is
also aware of application requirements, that is, the sink knows
which of the sensors are of greater importance, and therefore
appropriately regulates their transmission rates depending on
the situation. This centralized approach makes sensors simpler,
cheaper, and with longer battery life. Distributed congestion
control would be very complex in our setting, since reachable
sensors change all the time. In contrast, the sink is always in
the center of the reachable network, while sources seem to
join and leave the network.

In terms of reliability, our protocol uses negative acknowl-
edgments (NACKs) to trigger the retransmission of lost data.
Most protocols retransmit lost data immediately, but RT-
SENMOS retransmits lost data in so-called recovery rounds.
First, all the data packets are transmitted. Next, the data pack-
ets for which NACKs have been received are retransmitted,
then the ones for which NACKs have been received again
are retransmitted, and so on. This allows the sink to stop the
recovery process whenever it deems appropriate, for instance,
when enough packets have been received to reconstruct the
content. Furthermore, if a source loses connectivity with the
sink before the transmission of the data packets completes, the
sink can approximately reconstruct the content, as it will have
received incomplete data from beginning to end, rather than
complete data only from beginning.

For rate allocation, the sink can implement any desired
scheme, independently from the sensors. In our implemen-
tation, the sensors are divided into classes according to their
type, and separate rate allocation is performed for each class,
prioritizing the event sensors. The rationale behind our rate
allocation policy is that although higher transmission rates
make continuous sensors more useful by, for example, pro-
viding more informative videos, continuous sensors should be
restrained to allow the low-bandwidth event sensors to transmit
data all the time. However, the way the available bandwidth
is shared depends on the application and can be adjusted to
suit the needs of a specific rescue mission.

Our protocol executes at the application-layer over UDP/IP

and thus can be implemented for any device with IP con-
nectivity and a UDP socket interface. It is also written in
Java, allowing it to use multiple devices as mobile sinks,
e.g. Android smartphones and tablets, without requiring kernel
modifications or root privileges. In addition to portability and
ease of debugging, the protocol can be integrated into the
application in order to directly control protocol parameters,
such as the rate allocation to sensor types and the level of
reliability required. For instance, in a building with a few
sensors and many cameras, more bandwidth could be allocated
to continuous sensors before the rescuer enters the building.

III. PROTOCOL DESCRIPTION

In this section, we describe the five stages of communication
between the sink and the sensors in RT-SENMOS: connection
establishment, sensor information exchange, data exchange,
idle and connection release. For devices alternating between
active and idle periods, such as event sensors that periodically
send data, the data exchange and idle periods are repeated.

Sensor Sink 

Fig. 1. Connection establishment and sensor information exchange.

A. Connection establishment

The RT-SENMOS model defines two separate communi-
cation channels per sensor, one for control data and one for
user data. An additional common control channel attached to
a well-known UDP port is used for connection requests. This
approach allows the sink to dedicate one thread to listening for
connection requests and a set of threads for exchanging control
plane messages with sensors, adding data channel threads on
demand. As a result, there is no need for multiplexing control
messages from multiple sensors over a single channel.

When the sink begins to operate, it listens to a well-
known UDP port for connection requests from the sensors.
The sensors wait for the sink to become reachable before
trying to connect to it. As shown in Figure 1, each sensor
may periodically send a probe message, MSG_HELLO, to the
well-known IP address and UDP port of the sink until it
receives a response. Alternatively, the routing protocol used
may notify the sensor when the sink becomes reachable. The
MSG_HELLO message includes the sensor identifier and its
type, i.e. event or continuous sensor. The sink responds to
the MSG_HELLO message with a MSG_HELLO_ACK message.
The MSG_HELLO_ACK message indicates a UDP port dedi-
cated to that sensor for its control messages. If the sink does
not have a pre-configured sensor identifier, then it leaves the
corresponding field empty in the MSG_HELLO message and
the sink assigns it one in the MSG_HELLO_ACK message.

After receiving a response from the sink, the sensor prepares
an MSG_INFO message which includes the delay between
receiving the message from the sink and sending the response,



PUBLISHED IN: PROCEEDINGS OF IEEE DMSS 2015 3

the data rate requested by the sensor, whether the sensor is
ready to send data at this point in time or not, the data packet
size to be used and the total size of the data to send. When the
sink receives the MSG_INFO message it calculates the time
elapsed since sending the MSG_HELLO_ACK, subtracting the
delay in the message to get the round-trip time (RTT) to that
sensor. At this point, the connection has been established and
the sink is aware of the sensor’s bandwidth requirements.

Sensor Sink 

Fig. 2. Data exchange stage.

B. Data exchange and idle

If the sensor has indicated that it is not ready to send data
in its MSG_INFO message, the sink moves to an idle state,
waiting until the sensor sends a MSG_CTRL_DATA with no pa-
rameters through the control channel for that sensor, as shown
in Figure 2. Then, the sink starts the data exchange by sending
an MSG_CTRL_START message to the sensor, indicating the
data rate to use and a UDP data port to use for the data
transmission. If the sensor indicated in the MSG_INFO mes-
sage that it was ready to send data, the MSG_CTRL_START
message is sent immediately as a response. The initial rate
allocated to the sink is set as explained in Section IV.

After the sink sends the MSG_CTRL_START, the actual
data transfer begins, using the UDP data port assigned for
the transfer; control messages, such as NACKs and rate
updates, are exchanged out of band over the control channel,
without being rate controlled. This allows control messages
to be sent without waiting behind a, possibly long, queue of
data messages. The sensor breaks down its transmission into
packets of the size indicated in the MSG_INFO message, until
the data indicated in the MSG_INFO message are exhausted.
Data packets only have a single header field, a segment number
used to sequentially number all data packets.

When a missing packet is detected, the sink sends a
MSG_NACK to the sensor over the control channel. However,
the sensor does not immediately retransmit lost messages.
After the transmission is complete, all missing messages
are retransmitted, generating further NACKs from the sink,
if needed. This procedure is repeated in rounds, until all
messages are received [3]. Once recovery is complete, the sink
sends a MSG_CTRL_DONE message over the control channel
to indicate a successfully completed transfer. Both endpoints
then move to an idle state, until the sensor generates a new
MSG_CTRL_DATA message. If needed, the sink may send a
MSG_CTRL_RATE message to the sensor indicating its new
rate allocation, as explained in Section IV.

Note that round-based recovery allows the sink to use any
packets received without waiting for retransmissions. The sink
may even prematurely stop the recovery process by sending
the MSG_CTRL_DONE message. For example, when an image
is transmitted using redundancy coding, the sink may stop the
recovery process when enough packets have been received to
adequately reconstruct the image. This allows the application
to fine tune the reliability of the protocol.

Sensor Sink 

Fig. 3. Connection control and release stage.

C. Connection control and release

Since the path between the sink and the sensor may
become disconnected due to sink mobility, the connec-
tion may fail between data transfers, without either side
noticing. For this reason, the sink periodically sends an
MSG_CTRL_ALIVE message to the sensor, as shown in
Figure 3, which is acknowledged by an MSG_CTRL_ACK
message from the sensor that includes the delay incurred
between receiving the MSG_CTRL_ALIVE and responding
with the MSG_CTRL_ACK. In addition to confirming that the
connection is still alive, this procedure allows the sink to peri-
odically measure the RTT of the connection. If any side wishes
to complete the connection, they can send a MSG_CTRL_BYE
message, which does not need to be acknowledged, as after
either side drops the connection, the other one will eventually
timeout: the sink times out if no responses are received to its
MSG_CTRL_ALIVE messages, while the sensor times out if
no MSG_CTRL_ALIVE messages arrive.

IV. CONGESTION MANAGEMENT

The congestion management mechanism of RT-SENMOS
is agile and purely sink-driven. Since we focus on congestion
around the sink, we know the total available bandwidth, as it
depends on the technology used by the sink and sensors for
data exchange. We first reserve a fixed part of this bandwidth,
e.g. 10%-30%, for the control message exchanges which are
not rate-controlled. Then, the sink splits the remainder between
event and continuous sensors using a ratio determined by the
application, e.g. 10%-90%, depending on the number and type
of sensors present at the disaster site.

The congestion management algorithm periodically evalu-
ates the state of individual connections and the system as a
whole. The sink monitors the RTT of each connection using
the MSG_HELLO_ACK, MSG_INFO, MSG_CTRL_ALIVE and
MSG_CTRL_ACK messages; the processing delay at the sensor
is always subtracted to get an accurate RTT estimate. The
congestion management algorithm maintains the last few RTT
samples and their moving average.

Whenever the algorithm runs, it first checks whether the
average for each sensor has increased compared to the previous



4 PUBLISHED IN: PROCEEDINGS OF THE IEEE DMSS 2015

value by more than a configurable threshold. If this occurs
four times in a row, then the corresponding connection is
congested, otherwise it is not. If the connection is congested,
the sink instructs the sensor to reduce its rate by 20%, via a
MSG_CTRL_RATE message.

After each individual sensor is checked, if a new sensor has
been connected or an existing one has been disconnected, the
entire system is checked to see whether global adjustments
need to be made. This takes places separately for each sensor
class. First, we calculate the total rates requested (not assigned)
by the sensors of the class. If these are below the available
bandwidth, they will all get what they asked for. New sen-
sors will get their requested rate in the MSG_CTRL_START
message which directs them to start sending data. Sensors
that were previously rate limited, will increase their rate by
20%, while other sensors will get their requested rate; in both
cases, the change is announced via a MSG_CTRL_RATE. If,
however, the requested bandwidth is higher than the available
one, the available rate is shared equally among all sensors of
that class. The sensors are notified as above, i.e. either via a
MSG_CTRL_START or via a MSG_CTRL_RATE message.

The congestion management algorithm is very simple, as we
expect congestion to be concentrated around the sink. Since
the sink is constantly on the move, it is very unlikely that
a distributed congestion control management will have time
to converge. While TCP and many other transport protocols
use an Additive Increase - Multiplicative Decrease (AIMD)
algorithm, our scheme uses fixed and symmetric steps. This
is because TCP sources constantly probe the network for
capacity, hence entering deep into the congested region before
having to abruptly backoff. In our scheme sensors are conser-
vatively rate controlled, hence congestion is expected to appear
slowly, thus avoiding the need for dramatic rate reductions.

V. IMPLEMENTATION

Our RT-SENMOS prototype was implemented in Java,
requiring 21 KB of bytecode for the sensor and 37 KB of
bytecode for the sink. The implementation runs entirely at
the user level, allowing it to be compiled jointly with the
application that uses it, taking advantage of the API provided
by RT-SENMOS. In addition, the sensor side has been ported
to the Android OS, as most Android smart phones have
specifications that make them suitable for acting as sensors.
The prototype uses configuration files to set the behavior of
the protocol, for example, the shares of bandwidth between
the sensor categories; these can instead be set directly by the
application. Similarly, the prototype uses files stored on disk
in lieu of actual sensor data; these can instead be objects
generated by the sensor. A well-known UDP port and IP
address needs to be agreed between the sink and sensors
to allow them to rendezvous, but the additional control and
data ports for each sensor are assigned automatically by
the protocol. The protocol does not require any changes to
the kernel or the libraries of the operating system, or even
superuser access, since it operates over simple UDP/IP sockets.

TABLE I
EXPERIMENTATION PARAMETERS

Parameter Value
Content size (MB) 8
Requested bit rates (KBps) 82 (event) or 200 (continuous)
Chunk size (bytes) 512
RTT samples stored per sensor 10
Bandwidth available at sink (Mbps) 16, 40 or 54
User bandwidth share 70% or 90%
Reserved sensor share 10%
Loss probability 2% or 5%

VI. PERFORMANCE EVALUATION

A. Experimental setup

To evaluate the performance of our RT-SENMOS, we relied
on a deployment of sensors on 28 nodes, 14 event and 14
continuous, with one node acting as a sink, all connected over
a single hop. As our main target was to preliminary evaluate
the performance of RT-SENMOS, the adverse radio environ-
ment was emulated by artificially injecting packet losses of
either 2% of 5% and the sink was located at a fixed spot.
Each sensor node, regardless of its class, had 8 MB of data
to send to the sink in total, in 512 byte chunks. We assumed
that event sensors sent screenshots at a rate of 82 KBps, while
continuous sensors streamed video at 200 KBps. Experiments
were executed with the bandwidth available at the sink being
16, 40 and 54 Mbps. Sensors started transmitting one after
the other, with a 1 sec delay between them, and we gathered
data until all sensors had completed their transmissions. We
reserved either 10% or 30% of the available bandwidth for
control data, and split 10% of the remainder to event sensors
and the rest to continuous sensors.

B. Experimental results

We first recorded the actual resource needs for both the
sensor and sink packages. These values include the resource
consumption of a standard Java Virtual Machine and all code
and data memory consumed. Concerning memory usage, the
sink needs 283 MB on average (min: 147 MB, max: 377 MB),
while the sensors only need 10 MB. The sink required a
mean processing power of 427 MHz on a standard Intel
architecture CPU, while the sensors were separated based on
type – event sensors needed 102 MHz while continuous ones
needed 306 MHz. We observe that the sink needs are much
greater than those of the sensors, due to the fact that the
sink has to control multiple sensors simultaneously, receive
data, check for congestion, send control messages and handle
sensor connections and disconnections. On the other hand,
a typical sensor can support the operation of both types of
sensor package. For example, a Raspberry Pi with a quad core
900 MHz CPU and 1 GB of RAM can serve even as a sink.

We then evaluated the effectiveness of the RT-SENMOS
sink in rate controlling the sensors. Figures 4 and 5 show
the average allocated rate for event and continuous sensors,
respectively, against time, for an experiment with an available
bandwidth of 16 Mbps, a 5% loss and 70% of the bandwidth
available to sensor data. Note that the timescales are not linear,
since we only take rate samples whenever the sink changes



PUBLISHED IN: PROCEEDINGS OF IEEE DMSS 2015 5

0

10

20

30

40

50

60

70

80

90

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

6
7

7
1

7
8

8
2

8
7

9
1

9
6

1
0
0

6
7
5

6
8
7

7
1
8

7
3
4

7
4
1

7
9
4

8
4
4

8
5
1

8
5
5

8
6
7

Fig. 4. Average event sensor bandwidth over time (KBytes) at 16 Mbps, 5%
loss and 70% user bandwidth share.

0

50

100

150

200

250

2 5 8 11 14 17 20 23 26 29 66 69 72 78 81 86 89 95 98 101

Fig. 5. Average continuous sensor bandwidth over time (KBytes) at 16 Mbps,
5% loss and 70% user bandwidth share.

some rates, and that the two figures have different timescales,
since continuous sensors finish earlier due to their higher rates.
Based on the above experimental parameters, the bandwidth
available for user data is 11.2 Mbps, split to 1.1 Mbps to event
sensors and 10.1 Mbps to continuous sensors. Since there are
14 sensors of each type, the available rates per sensor are
10 KBps for event and 90 KBps for continuous sensors.

We observe that in both event and continuous sensors, the
average allocated bandwidth starts from the highest possible
value (82 KBps and 200 KBps respectively) and decreases
as sensors connect to the sink and start data transmission.
In Figure 4, this average rate stabilizes for a long period at
10 KBps, the guaranteed event sensor rate calculated above, as
the pool of sensors remains unchanged and rates are allocated
equally to all sensors. As Figure 5 shows, continuous sensors
also converged to their expected rates. As the continuous
sensors start disconnecting due to data exchange completion,
the average continuous sensor bandwidth increases. When they
all complete, the event sensor bandwidth also starts increasing.
The peaks we observe at a few points represent attempts of
the mechanism to slowly increase rates by getting advantage
of RTT stability. Unfortunately, this leads to congestion and
triggers the rate re-allocation algorithm, which leads all rates
back to their predicted points. Results from experiments with
different parameters are substantially the same as these.

We then examined the efficiency of the RT-SENMOS trans-
port proper. Figure 6 shows the average completion time with
2% loss rate with different bandwidth and user bandwidth
shares, broken down into initial distribution time, i.e. before
losses are repaired, and recovery time, i.e. when data packets
are retransmitted in rounds triggered by NACKs, while Fig-

0

50

100

150

200

250

300

350

400

450

16Mbps/70% 16Mbps/90% 40Mbps/70% 40Mbps/90% 54Mbps/70% 54Mbps/90%

Initial Distribution Time Recovery Time

Fig. 6. Completion time (2% loss, various bandwidths and user shares).

0

50

100

150

200

250

300

350

400

450

500

16Mbps/70% 16Mbps/90% 40Mbps/70% 40Mbps/90% 54Mbps/70% 54Mbps/90%

Initial Distribution Time Recovery Time

Fig. 7. Completion time (5% loss, various bandwidths and user shares).

ure 7 shows the same metric with a 5% loss rate. As expected,
completion time is reduced with higher overall bandwidth
and higher user bandwidth shares. We can also see that the
recovery time is a small fraction of the initial distribution time,
even though it grows with a higher loss rate, indicating that
recovery in RT-SENMOS is very quick.

0

50

100

150

200

250

300

350

400

16Mbps/70% 16Mbps/90% 40Mbps/70% 40Mbps/90% 54Mbps/70% 54Mbps/90%

NACK messages Other control

Fig. 8. Control overhead (2% loss, various bandwidths and user shares).

0

100

200

300

400

500

600

700

800

900

1000

16Mbps/70% 16Mbps/90% 40Mbps/70% 40Mbps/90% 54Mbps/70% 54Mbps/90%

NACK messages Other control

Fig. 9. Control overhead (5% loss, various bandwidths and user shares).



6 PUBLISHED IN: PROCEEDINGS OF THE IEEE DMSS 2015

Figure 8 shows the control overhead for the same set of
experiments with a 2% loss rate, broken down into NACKs
and all other control messages. It is clear from the figure, that
the non recovery related control overhead of RT-SENMOS is
minimal, as most of the control messages are NACKs triggered
by losses. At a 5% loss rate, the control overhead, as shown
in Figure 9, roughly doubles due to the higher loss rates, but
the non recovery related control overhead remains fixed, thus
representing a smaller fraction of the overall control overhead,
indicating the control efficiency of RT-SENMOS.

VII. RELATED WORK

According to the taxonomy in [4], transport protocols can be
classified based on their approach to reliability and congestion
control: a protocol may offer unreliable or reliable service
and a protocol may offer no congestion control, distributed
congestion control or centralized congestion control. Relia-
bility can be further subdivided to hop-by-hop reliability via
retransmissions, as in RMST [5], end-to-end reliability via
retransmissions, as in RCRT [4] and STCP [6], and forward
reliability without retransmissions, as in ReInForM [7]. RT-
SENMOS implements reliable service, achieved via end-to-
end retransmissions, and centralized congestion control.

While the hop-by-hop reliability of RMST is useful for a
wireless environment, most wireless networks can retransmit
lost packets at the link layer [5]. RT-SENMOS therefore con-
centrates on congestion induced losses, as in RCRT and STCP,
which we handle end-to-end. The use of multiple transmissions
without NACKs, as in ReInForM, requires a well-connected
sensor network, which is unlikely in disaster recovery applica-
tions. For congestion control, we chose a centralized approach
as in RCRT for many reasons. First, as data converge at the
sink, packet drops will occur if the sensors are not regulated.
Second, in our target application the sink is mobile, therefore
distributed congestion control would probably not converge.
Third, by concentrating congestion control decisions at the
sink as in [4], we can modify its behavior depending on the
environment and application. Fourth, this approach does not
require sensors to implement any congestion control measures
as in [6].

RT-SENMOS is most similar to RCRT [4], as it is based
on the sink explicitly controlling the transmission rates of the
sensors and sending NACKs to the sensors. The differences
between RCRT and RT-SENMOS are due to the fact that we
explicitly address mobile sinks, as in COSMOS [2], therefore
we have implemented simpler and faster control loops than
RCRT, while avoiding the distributed congestion control of
COSMOS which we expect to be slow to converge. On the
other hand, while both STCP and ReInForM provide limited
reliability, RT-SENMOS allows the sink to dynamically define
and control the reliability level depending on the application,
unlike ReInForM where the reliability goal is fixed when a
packet is generated [7] and STCP where the sink controls
reliability but the sensors set the reliability goals [6].

VIII. CONCLUSION AND RELATED WORK

We have presented a reliable transport protocol for sen-
sor networks, RT-SENMOS, especially suitable for disaster

recovery applications. RT-SENMOS assumes that the sink is
mobile, thus requiring a fast and agile method for congestion
control. RT-SENMOS is purely sink driven and implemented
at the application layer, thus allowing application policies to
be set at the sink without previously configuring the sources.
Furthermore, it allows bandwidth to be split between different
classes of sensors and within each class depending on appli-
cation preferences. Finally, it adjusts the allocated bandwidth
to the current state of the network by taking into account RTT
measurements to detect the onset of congestion and applying
rate changes to individual sensors. Our measurements from a
real RT-SENMOS implementation indicate that the protocol
is effective in enforcing the desired rate allocations, while its
control overheads are low and its completion times reasonable.

Future work includes a performance comparison of RT-
SENMOS against our own implementation of RCRT, using
a multi-hop network and a mobile sink, so as to more closely
emulate an actual disaster recovery scenario. Another direction
is modifying the rate control algorithm to allocate unused
bandwidth from one sensor type to other types.

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALIS - Athens
University of Economics and Business - DISFER.

REFERENCES

[1] C. Stais, G. Xylomenos, and G. F. Marias, “Sink controlled reliable
transport for disaster recovery,” in Proc. of the ACM PETRA, 2014.

[2] K. Karenos and V. Kalogeraki, “Traffic management in sensor networks
with a mobile sink,” IEEE Trans. on Parallel and Distributed Systems,
vol. 21, no. 10, pp. 1515–1530, 2010.

[3] C. Stais, G. Xylomenos, and A. Voulimeneas, “A reliable multicast
transport protocol for information-centric networks,” Journal of Network
and Computer Applications, 2014.

[4] J. Paek and R. Govindan, “RCRT: Rate-controlled reliable transport for
wireless sensor networks,” in Proc. of SenSys ’07, 2007, pp. 305–319.

[5] F. Stann and J. Heidemann, “RMST: reliable data transport in sensor
networks,” in Proc. of the IEEE SNPA Workshop, 2003, pp. 102–112.

[6] Y. G. Iyer, S. Gandham, and S. Venkatesan, “STCP: a generic transport
layer protocol for wireless sensor networks,” in Proc. of ICCCN, 2005,
pp. 449–454.

[7] B. Deb, S. Bhatnagar, and B. Nat, “ReInForM: reliable information
forwarding using multiple paths in sensor networks,” in Proc. of the IEEE
LCN, 2003, pp. 406–415.


