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Abstract—We present our recent work investigating how mo-
bility prediction can be exploited for improving the performance
of mobile users in two directions: proactive caching requested
content close to the network attachment points where a mobile
has a high probability to connect to and DASH (Dynamic
Adaptive Streaming over HTTP) video quality adaptation. For
proactive caching we discuss a new model to proactively cache
content based on both mobility prediction and content popularity.
An important feature of the model is that it dynamically adapts
caching decisions to the relative importance of the two factors.
For DASH adaptation we discuss a procedure that exploits
mobility and throughput prediction to select the quality levels of
video segments requested by a DASH player in order to achieve
improved QoE, in terms of both high video quality and few video
quality switches.

I. INTRODUCTION

Mobile traffic in 2015 grew 74%, continuing a more than
4,000-fold growth over the past 10 years, and is expected to
increase nearly 8-fold from 2015 until 20201. Mobile video
was 55% of the total traffic by the end of 2015 and is expected
to increase 11-fold from 2015 to 2020, becoming 75% of
the total mobile traffic in 2020. Efficient support for video
streaming in future mobile environments, in terms of both
network resource utilization and energy consumption, will
require the integration of heterogeneous wireless technologies
with complementary characteristics; this includes cellular net-
works with macro, femto, and pico cells, Wi-Fi hotspots that
support high throughput and energy efficient data transfer, in
addition to technologies such as device-to-device communica-
tion. Additionally, there is an increasing trend towards HTTP-
based adaptive streaming, where a video is partitioned into
a series of segments which are encoded in multiple quality
levels. This approach is followed by proprietary solutions, such
as Microsoft’s Smooth Streaming and Apple’s HTTP Live
Streaming (HLS), and by the Dynamic Adaptive Streaming
over HTTP (DASH) standard. A DASH client requests each
segment individually, allowing it to change the quality of each
segment depending on the network conditions.

Prior work has provided evidence that mobility and through-
put prediction is possible for both cellular [1] and Wi-Fi [2].

1Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2015-2020, Feb. 3, 2016

Such prediction can improve mobile network functions and
lead to higher network efficiency. The contribution of this pa-
per is to introduce two models for exploiting mobility predic-
tion. The first model considers proactively caching content by
jointly exploiting mobility prediction and content popularity.
Mobility prediction in this case involves knowing the probabil-
ity of a mobile connecting to future network attachment points.
The second model exploits mobility and throughput prediction
to improve the QoE (Quality of Experience) for DASH video
streaming. Mobility and throughput prediction in this case
involves knowledge of the average throughput that a mobile
is expected to have available in different future time periods.
The above two models are discussed separately in the current
paper. However, the two models can be combined, e.g. in the
case of scalable video coding where high quality bitstreams
contain a baseline bitstream, which can be proactively cached
since all video qualities require it.

The continuous reduction of storage costs has made it
possible to increase the capacity of caches in small cell
networks, such as femto/pico cells and Wi-Fi networks. There
are two advantages that can be achieved by pre-fetching
content in caches located in small cells close to the end users.
First, content, such as web content and social networking
notifications, will be immediately available to a mobile once
it connects to the new attachment point, thus reducing the
latency for receiving the content. Second, if the mobile’s
attachment point is in a small cell whose bottleneck is its
backhaul, then pre-fetching content in a cache inside the small
cell can help exploit the higher wireless throughput, thus
overcoming the backhaul’s capacity constraints, e.g. in the
case of video transfer. The advantage of proactively caching
content using mobility prediction, rather than content popular-
ity, is that the heavy-tailed distribution of content popularity
makes it inefficient to increase cache storage to accommodate
less popular content [3]. On the other hand, mobility-based
proactive caching can be effective in caching such less popular
content, since the mobile transition probabilities determine
the caching decisions. Regarding DASH adaptation, mobility
and throughput prediction can allow scheduling the quality
of video segments over a larger time window, which can
potentially improve the overall video quality and reduce the
number of quality switches. For example, knowledge of the978-1-5090-2185-7/16/$31.00 c©2016 IEEE



future throughput can allow a player to download video
segments in advance when the available throughput is high,
thus compensating for periods of low throughput; indeed,
the video segments downloaded in advance can be of higher
quality than the quality that would be possible if they were
downloaded during the low throughput periods.

An important focus of our work is to investigate how
incomplete or inaccurate knowledge influences the gains of
mobility prediction. For proactive caching, mobility prediction
can involve different probabilities of a mobile connecting to
future network attachment points. For DASH adaptation, the
predicted throughput can vary widely or have inaccuracies.

In our previous work we investigated proactive caching
based solely on mobility prediction [4], [5]. The proactive
caching model discussed in this paper considers mobility
prediction together with content popularity. The work in [6],
[7] investigated mobility prediction for improving mobile
video streaming, utilizing proactive caching, multi-source, and
device-to-device video transfer. DASH adaptation was not
considered in [6], [7]. Finally, the work in [8], [9] considered
mobile data offloading for delay tolerant traffic, which requires
transferring a file within a time threshold, and delay sensitive
traffic, which requires minimizing the file transfer time.

The rest of the paper is structured as follows: In Section II
we present related work. In Section III we discuss our model
for proactive caching that jointly considers mobility prediction
and content popularity. In Section III we discuss our procedure
for exploiting mobility and throughput prediction to improve
the QoE for DASH video streaming. Finally, in Section V we
conclude the paper.

II. RELATED WORK

The feasibility of using prediction for prefetching is inves-
tigated in [10], which however does not propose or evaluate
specific prefetching algorithms. Prefetching for improving
video file delivery in femtocell networks is investigated in
[11], and to reduce the peak load of mobile networks by
offloading traffic to Wi-Fi hotspots in [12]. Both these works
consider content popularity to proactively cache content close
to mobile users, before the content is requested. The proactive
model presented in this paper differs from the above by jointly
considering both mobility prediction and content popularity
to proactively cache content. The work in [13] considered
content popularity together with mobility to prefetch content
at buffers located at the edge of a network. However, the
proposed solution separates buffers for caching content based
on popularity and for prefetching content based on mobility.
On the other hand, the proactive caching model discussed in
this paper jointly considers content popularity with mobility
prediction, hence can dynamically adjust the buffer usage for
the two types of caching, rather than pre-allocate buffer space
to the two types as done in [13].

Bandwidth prediction for improving video streaming is
investigated in [14], [15], [16]. The application of Markov
Decision Processes (MDPs) for optimal quality selection is
investigated in [17], [18], while quality adaptation based on

the client buffer is investigated in [19]. The work in [20] in-
vestigated fairness in the case of multiple clients, with support
from in-network mechanisms. The work in [21] also provides
evidence that short-term throughput prediction can improve
the performance of video streaming. From the above works,
only [18], [21] consider exploiting throughput prediction.
These schemes focus on short timescale adaptation strategies,
whereas the work in this paper focuses on long timescale
adaptation, which is appropriate when a mobile encounters
cellular network segments and Wi-Fi hotspots with varying
average throughput; the approach presented in this paper can
be combined with short timescale adaptation strategies to adapt
to fast throughput changes due to fast radio channel quality
fluctuations. Our approach seeks to select a quality switching
strategy across multiple connectivity segments, each providing
a different average throughput. Such long timescale adaptation
can yield significant gains when client-side buffering is readily
available, which is the case with current smartphones and
tablets, since such buffering can be used to download more
video segments when the throughput is high. On the other
hand, the approach in [18] used an MDP to determine an op-
timal video quality for each mobility segment independently.
The work in [22] also considered using throughput prediction
to select the video quality that maximizes the average bit rate,
while trying to reduce the number of quality switches. We
compare the adaptation procedure proposed in this paper with
the procedure in [22]. The work in [23] investigated a DASH
adaptation procedure that seeks to improve the QoE by using
buffering to introduce intermediate quality levels, hence avoid
switching between quality levels that are far apart. Finally,
the work in [24], using crowdsourcing experiments, proposes
a QoE model for quality adaptation that considers the video
quality and quality switches.

III. JOINTLY UTILIZING MOBILITY PREDICTION AND
CONTENT POPULARITY FOR PROACTIVE CACHING

We start by discussing our initial model for exploiting
mobility prediction to proactively cache content requested by
a mobile at caches close to the attachment point where the
mobile will connect to with some probability, which we will
refer to as mobile transition probability. The mobile transition
probability can be estimated based on historical data [10]. The
model presented below extends the one presented in [4], by
considering the case where more than one mobiles request the
same object. The estimated gain from proactively caching a
requested object s is given by

Ql
s(Cmiss − Chit) , (1)

where Ql
s is the aggregate transition probability to the attach-

ment point close to cache l of all mobiles requesting object s,
Cmiss is the cost for obtaining the object from its original remote
server (cache miss), and Chit is the cost for obtaining the object
from the local cache (cache hit). Note that the model is not
restricted to a specific definition of cost. If the cost refers to
delay, then it can be a function of the distance to the remote
server or cache, e.g. in number of hops. Alternatively, the cost



can be related to the network or monetary cost for transferring
the requested object, e.g. when transferring data over a cellular
network or when data transit or CDN costs are involved.

Based on the estimated gain (1), the rule for deciding
whether to cache object s in cache l is

if Ql
s(Cmiss − Chit) ≥ pl proactively cache s

else don’t proactively cache s
(2)

where pl is a congestion price for cache l, which increases
(decreases) when the aggregate demand is above (below) the
cache size. Alternatively, the price can be adjusted based on
the cache utilization: the price increases if the utilization is
above some target and decreases when the utilization is below
the target. The target utilization can be set to a value close to
100%. The introduction of a congestion price in the decision
rule (2) enables the efficient utilization of caches. Specifically,
when the cache is underutilized, i.e. cache space is available,
the congestion price decreases, thus allowing more objects
to be proactively fetched in the cache based on (2). On the
other hand, when the proactive cache demand is larger than
the cache size, then the price increases which in turn, due to
(2), reduces the number of objects that are proactively cached.
It is important to note that using (2) to decide when an object
should be cached has complexity O(1) and is simpler than
maintaining the estimated gains of all objects and, when the
cache is full, evicting the objects with the smallest gain to
make room for new objects with higher gain.

An object satisfying (2) and proactively cached is removed
from the cache when the last mobile that has requested the
specific object completes its handoff. Moreover, proactive
caching requests are active throughout the duration of a
mobile’s handoff period; hence, if a request is at some point
denied, the same request can later be accepted if (2) is satisfied,
e.g. if more mobiles request the same object or the price has
decreased due to cache space becoming available.

The above model has assumed that all objects have the same
size. If the costs Cmiss, Chit are independent of the object size,
then the model can be extended to the case of variable size
objects, by dividing the gain in (2) with the object size [4].
If the cost is a function of the object size and objects can
be partially cached, then the model needs to be modified to
consider the gains from partially cached objects [5].

The decision rule (2) does not explicitly take into account
content popularity. However, popularity is indirectly consid-
ered, since more popular objects s are likely to be requested
by more mobiles, which yields a higher aggregate transition
probability Ql

s to cache l of mobiles requesting object s.
Next we extend the model presented above to jointly con-

sider mobility and popularity-based caching. The estimated
gain considering both the mobile transition probability and
the content popularity can be expressed as(

Ql
s + wl · f l

s

)
(Cmiss − Chit) , (3)

where f l
s is the popularity of object s at cache l and wl is a

weight factor that depicts the gain achieved with popularity-
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Fig. 1. Gains from mobility-based proactive caching and popularity-
based caching.

based caching relative to mobility-based proactive caching.
Specifically, wl is the average number of requests for any
object made to cache l from mobiles connected to the attach-
ment point served by cache l, in the interval from the time an
object is proactively cached until the time that the last mobile
requesting the particular object has completed its handoff.
Both wl and f l

s can be estimated online using measurements.
Hence, wl can capture the (possibly time-varying) demand for
mobility-based proactive caching relative to popularity-based
caching at l. The popularity f l

s of object s at cache l can
be estimated based on the inter-arrival time of consecutive
requests for object s and the inter-arrival time of consecutive
requests for any object, thus capturing spatial and time locality.

Unlike the initial model, which considers only mobility-
based caching, caches now contain objects that are proactively
cached based on mobility and objects that are cached based
on content popularity. Note that the two types of cached
objects are not differentiated. Moreover, since caches are
always full, there is a need for a cache replacement (eviction)
policy to determine, when a new request to proactively cache
content is received, which objects should be evicted from
the cache in order to free space for the new content. We
consider the following eviction policy: all cached objects are
sorted in increasing gain based on (3), which jointly considers
mobility and popularity; this can be implemented with a
priority queue, which has a complexity of insertions O(log n).
Cached objects with the smallest gain are removed first, to
make space for objects with a higher gain. Indeed, a new
proactive caching request is accepted if its expected gain is
higher than the expected gain of the cached objects it would
need to replace. The last condition forms the decision rule of
when to accept proactive caching requests for joint mobility-
based and popularity-based caching, in the place of (2).

An important feature of the proposed model based on (3)
and the cache replacement policy discussed above is that the
cache storage is not a priori partitioned, dedicating a part of
the storage for caching objects requested based on mobility
prediction and a part for caching objects based on content
popularity. Rather, through the online estimation of the weight
wl in (3), the percentage of the available storage used for the
two types of caching is dynamically adjusted, based on the
relative gains from mobility prediction and content popularity.
Also, as in the initial model, proactive caching requests are
active throughout the duration of a mobile’s handoff period.

The anticipated gains from mobility-based proactive caching



and popularity-based caching are shown in Figure 1. The
vertical axis of Figure 1 depends on the number of mobiles,
the accuracy of mobility prediction, and the cache size: a small
number of mobiles or a high accuracy of mobility prediction,
alternatively a large total cache size, yields a small value on
the vertical axis, hence exploiting mobility prediction can lead
to high gains. On the other hand, a small video catalog size
or a large cache size leads to small values on the horizontal
axis, hence exploiting popularity-based caching can have high
gains. Indeed, user context information, such as user interests
or social relations, can be utilized to reduce the video catalog
size, hence increase the gains from popularity-based caching.

A. Evaluation

Next we present simulation results showing the gains of the
model described above for jointly considering mobility and
popularity-based caching, which we will refer to as EMPC
(Efficient Mobility and Popularity-based Caching), compared
to three other schemes: the initial model which only considers
mobility-based proactive caching, which we will refer to
as EMC (Efficient Mobility-based proactive Caching), pure
popularity-based caching (MaxPop) which populates caches
with the most popular items, and a naive scheme where
objects are cached in all neighboring caches that have available
space. The naive scheme implements a blind form of proactive
caching that doesn’t take into account the probability of a
mobile connecting to different network attachment points, but
does consider the current cell where a mobile is located and
knowledge of its neighboring cells.

The simulated network topology contained 25 small cells
randomly distributed over a 700 × 700 m2 area, with 1.000
mobiles each requesting one (25) video file in the case of low
(high) demand, when entering the area and when completing
a handoff. The range of each small cell had average 71 m and
standard deviation 5 m. Mobiles follow a skewed mobility
model according to which 80% of the mobiles move towards
the same direction, while the other 20% of the mobiles move
to a different random direction (uniformly distributed), with
speed 5 Km/hour and standard deviation 1.25. Later we also
consider the case where the mobility has a lower skewness
(60%) and when mobiles move in uniform directions. The
video file size, popularity, and temporal locality was based
on synthetic video requests produced with the GlobeTraff
workload generator [25]. The average video size was 80 MB,
while the local cache storage size was 8 GB. The cost Cmiss

depended on the hop distance and the delay for transferring
data over the access network connecting the small cell to the
core network. Specifically, Cmiss = n+ 5.8, where the number
of hops n was normally distributed with mean 4.2 and standard
deviation 1.05, based on [26] which shows that the inter-AS
path length has remained practically constant and equal to 4.2
for over a period of 12 years, while approximately 95% of
the AS-hop distances fall in the range [2.1, 6.3]. The factor
5.8 reflects the higher delay for transferring data over the
provider’s access network. The above give an the average cost
for a cache miss Cmiss = 10, while the cost of a cache hit was

TABLE I
GAINS OF DIFFERENT CACHING SCHEMES.

Mobility caching Video catalog EMPC EMC MaxPop Naive
demand size

Low Small 89.1% 81.4% 49.0% 62.6%
Low Large 79.0% 49.2% 8.5% 30.1%
High Small 77.2% 46.2% 51.0% 36.7%
High Large 32.5% 11.8% 8.5% 11.6%

Chit = 1. Based on this, an upper bound for the reduction of
the total cost, compared to the total cost when caching is not
used, is 90%.

Table I shows the average gain for 5 runs of each simulation
scenario, for two mobility-based proactive caching demand
over total cache storage ratios, low: 0.4 and high: 10, and two
video catalog over cache size ratios, low: 21.5 and high: 301.
Gain is the reduction of the total cost achieved by a scheme,
relative to the total cost when caching is not used. A summary
of the main conclusions is the following:

• Low demand for mobility-based proactive caching &
small video catalog: This corresponds to the bottom-left
area in Figure 1, hence both mobility and popularity-
based caching yield benefits. For this reason, the gain of
EMPC is highest. The gain of EMC is also high, verifying
that it indeed indirectly captures popularity through the
aggregate mobile transmission probability in the proactive
caching decision (2). The gains of MaxPop and Naive
are high, relative to their gains in the other scenarios,
indicating that they exploit knowledge of popularity and
neighboring caches, respectively.

• Low demand for mobility-based proactive caching &
large video catalog: This case corresponds to the bottom-
right area in Figure 1, hence only mobility-based proac-
tive caching yields benefits. For this reason, the gains for
EMPC and EMC are the highest, significantly higher than
MaxPop and Naive. MaxPop has the lowest gains.

• High demand for mobility-based proactive caching &
small video catalog: This case corresponds to the top-
left area in Figure 1, hence content popularity caching
yields the most benefits. For this reason, the gains for
EMPC and MaxPop are highest, followed by EMC. The
Naive scheme has the lowest gains.

• High demand for mobility-based proactive caching &
large video catalog: This case corresponds to the top-right
area in Figure 1, hence both mobility and popularity-
based caching yield small benefits. Nevertheless, the
gains for the EMPC scheme are the highest, but lower
than its performance in the other cases. The other
schemes have small gains, while the gains of MaxPop
are the smallest.

EMPC, which jointly considers mobility-based proactive
caching and popularity-based caching, achieves the highest
gains in all cases. EMC, which considers mobility-based
proactive caching and only indirectly content popularity, ex-
hibits worst performance compared to MaxPop when the
demand for mobility-based proactive caching is high, due
to the small benefits of mobility-based caching in this case,
Figure 1. MaxPop has its highest gains when the video catalog



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Uniform 50% 80%

G
a

in
 o

v
e

r 
n

o
 c

a
ch

in
g

Mobility transition probability skewness

EMPC

EMC

MaxPop

Naive

Fig. 2. Impact of mobility skewness on gains.

size is small, since in this case caching the most popular
videos is more beneficial compared to the case where the
video catalog is large. Finally, the Naive scheme has its highest
gains when the demand for mobility-based proactive caching
is low, since it considers knowledge of neighboring caches in
its caching decisions; however, these gains are smaller than
those achieved with EMPC and EMC, verifying that using
mobility information can be beneficial.

Figure 2 shows the impact of mobility on the average
gain for different mobility skewness, in the case of a low
demand for mobility-based proactive caching and a large
video catalog. As expected, the results for MaxPop and Naive
are independent of the mobility skewness, whereas a higher
skewness leads to higher gains for EMPC and EMC.

IV. EXPLOITING MOBILITY PREDICTION FOR DASH
ADAPTATION

In this section we present our approach to exploit mobility
and throughput prediction to select the video quality levels
for different video segments that are requested by a DASH
player. We assume that mobility and throughput prediction
provides the set X = {(xi, t

b
i , t

e
i ), i = 1 . . . I}, where xi is the

average throughput available to a mobile in mobility period i
that begins at time tbi and ends at time tei , and I is the total
number of periods. Each mobility period can involve different
access technologies, such as cellular or Wi-Fi. With DASH,
a video file is partitioned into segments that are encoded in
different quality levels, each corresponding to a particular bit
rate. The video QoE is given by a function Q(E), with E =
{(ek, tk), k = 0 . . .K}, where the pair (ek, tk) denotes that the
video quality level is switched to ek at time tk, and K is the
total number of quality switches. In Section IV-A we discuss
in more detail the QoE model we use, which jointly considers
the impact of video quality and video quality switches.

The first step of the proposed procedure is to determine the
maximum quality level for which there are no stalls during
video playback. This can be determined by considering a
buffer which is filled at a rate given by set X and emptied
at the average video playout rate for different quality levels.
A stall will occur if there is a buffer underflow, i.e. the buffer
level becomes zero at some point in time. Let e∗ be the highest
video quality level for which there are no video stalls. The
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Fig. 3. Scenario with a video stall in mobility period i.

corresponding QoE will be Q({(e∗, 0)}), which indicates that
the whole video is played at a single quality e∗ from the start,
i.e. time t = 0, hence there are no video quality switches.

The second step of the proposed procedure involves check-
ing whether switching to a higher quality level e+ > e∗ can
improve the QoE. A higher quality level results in better video
quality, but there is a cost due to switching. Moreover, a
video stall significantly reduces the user’s QoE and should
be avoided. Hence, to estimate the QoE we need to find when
the video quality is switched to a higher level and when it
is switched down back to the level for which there are no
stalls. Assume that the video quality level is increased from
e∗ to e+ at time t+. Because the playout rate for level e+ is
higher than the rate for level e∗, there will be a time ts where
a video buffer underflow will occur, at which the video will
stall, Figure 3. In order to avoid the video stall, at some time
t− < ts the quality level must be reduced to e∗. One case
can be that this stall is avoided if at some point t− satisfying
tbi < t− < ts, the quality is reduced to e∗, where tbi is the
time that the last mobility period, which includes the stall,
begins; this is the case shown in Figure 4(a), where the stall
can be avoided by reducing the video quality in the same
mobility period, at some time prior to the video stall. If this
is not possible, then the quality needs to be reduced when the
mobile is in a previous mobility period; Figure 4(b) shows
the case where the quality can be reduced in the previous
mobility period to avoid the video stall. Based on the above,
the video will be streamed at quality e∗ from time 0 to t+,
at quality e+ from time t+ to time t−, and then again at
quality e∗ from time t−. Hence, the offered QoE is Q(E),
with E = {(e∗, 0), (e+, t+), (e∗, t−)}, which involves two
video quality switches. The actual procedure to find the time
t− would start from ts and move back in time to find the latest
point where the quality needs to be reduced to e∗ in order to
avoid the video stalling.

The approach outlined above can identify the time t− when
it is necessary to switch from the higher quality e+ to e∗. What
remains open is the time t+ to switch from the lower quality
e∗ to the higher quality e+. One approach is to consider all
possible values of t+ in the interval2 [0, T ], where T is the
whole duration of the video.

In summary the steps of the procedure discussed above are
the following:

1) Identify the maximum encoding level e∗ for which no
stalls are expected during video playback. The QoE is

2Due to the video segmentation, the time obtains values that are multiples
of one segment duration.
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Q({(e∗, 0)}).
2) For different times t+ ∈ [0, T ] increase the quality from

e∗ to e+ and estimate the time t− when the quality
should be reduced to e∗ to avoid video stalls. The QoE
is Q({(e∗, 0), (e+, t+), (e∗, t−)})

3) Select from Steps 1 and 2 the quality level sequence that
gives the highest QoE.

4) Considering the part of the video starting from the time
t− found in Step 3, go to Step 1.

The above procedure involves increasing the video encoding
from e∗ for which there are no stalls, to the immediately higher
encoding level. The procedure can be extended to consider
more than one encoding level higher than the baseline level
e∗, increasing linearly the procedure’s runtime.

Figure 5 shows a typical example of a dynamic
(measurement-based) DASH adaptation procedure, which
greedily tries to select the highest video quality for each
segment. Such a greedy approach can end up performing
frequent changes between possibly non-adjacent quality levels,
which impacts a user’s QoE. On the other hand, a smooth
switching approach such as the one performed by the proce-
dure outlined above involves less frequent changes, which are
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Fig. 5. Video quality levels for smooth switching and for the dynamic
adaptation procedure in Sony’s Multimedia for Android library.

TABLE II
AVERAGE THROUGHPUT IN DIFFERENT MOBILITY PERIODS.

Time interval Throughput
(seconds) (Kbps)
0− 12 1500
12− 22 600
22− 31 1400
31− 45 500
45− 60 1000

between adjacent video quality levels.

A. Experimental evaluation

Next we present some indicative results comparing the
proposed mobility-based smooth switching procedure, the
scheme proposed by Miller et al. in [22], which solves an
optimization problem where the target objective is a function
of the difference in bit rates of the video quality levels involved
in each quality switch, and the dynamic adaptation scheme
performed by the default adaptation algorithm of Sony’s
open source Multimedia for Android Library3. We developed
a DASH player based on this library, which can request
video quality levels according to the proposed mobility-based
smooth switching procedure and the procedure in the paper by
Miller et al. [22]; these two procedures preselect the quality
level for each video segment taking as input the throughput
prediction, whereas the adaptation algorithm in Sony’s library
selects the quality level dynamically based on throughput
measurements and the video buffer status. Additionally, our
DASH player can measure the time and duration of video
stalls. The mobile running the DASH player was connected to
a Wi-Fi access point which in turn was connected to a server
through a link on which we applied the wondershaper traffic
shaping tool. The wondershaper tool enforces the throughput
that the mobile can achieve in the periods shown in Table IV-A.
Note that the time and throughput values in Table IV-A are
averages; an important focus of our work is to investigate
the impact of time and throughput estimation inaccuracies or
errors on the user’s QoE.

The video used in our experiments was a 60 seconds Big
Buck Bunny clip, with 1 second video segments at 24 fps.
Five video encoding levels where available, with bit rates 47,
425, 808, 1312, and 1663 Kbps, and frame resolution from
320x240 up to 1280x720.

The QoE model we considere captures the impact on the
user’s QoE of both the video quality and the video quality
switches. The impact of the video encoding quality is captured
through the Video Quality Metric (VQM), which was created
by The National Telecommunications and Information Admin-
istration (NTIA) and measures the distance of a particular
encoding quality from the best quality [27]. An approach to
map the VQM to a Mean Opinion Score (MOS), based on user
crowdsourcing experiments, is presented in [28]. To capture
the impact of video quality switches on a user’s QoE, we used
the Switching Degradation Factor (SDF) from [29]. The SDF

3http://developer.sonymobile.com/2015/02/02/easy-mpeg-dash-streaming-
with-multimedia-for-android-library-open-source/
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captures the influence of three factors on a user’s QoE: the
frequency of the video quality switches, the time at which they
occur, and the quality levels involved in the switch. Hence, the
QoE we consider is given by

QoE = Mq(V QM)−Ms(SDF ) , (4)

where Mq() that maps the VQM to a MOS value is from [28],
the Switching Degradation Factor (SDF) is from [29], and

Ms(SDF ) = eb·SDF − c ,

maps the SDF to a MOS value. The function Ms() assumes an
exponential dependence of the MOS on the SDF, and includes
a parameter b representing a user’s sensitivity to video quality
switches. In the experiments reported in this paper we consid-
ered the values b = 0.01 and c = 0.5; ongoing investigations
are considering additional values that correspond to different
user sensitivities to video quality switches.

Figure 6 shows the average QoE of the three approaches
investigated and the 95% confidence interval, for 10 executions
of each experiment scenario. For each execution the start and
end times of each period were randomly selected from a nor-
mal distribution with the mean values shown in Table IV-A and
standard deviation 4 seconds, whereas the throughput followed
a normal distribution with the mean values in Table IV-A
and standard deviation 0%, 15%, and 30% of the mean.
Figure 6 shows that both our mobility-based smooth switching
procedure and the procedure of Miller et al. achieve a higher
QoE compared to the dynamic scheme, which indicates that
exploiting mobility and throughput prediction can improve the
QoE. Moreover, improvements are achieved even when the
throughput prediction error is large. Additionally, our results
show that the quality switches with the procedure of Miller et
al. and the dynamic procedure in Sony’s library have a higher
impact on the MOS, specifically 1.1 and 1.4 respectively, for
throughput standard deviation error 15%, whereas the impact
of the proposed smooth switching scheme is 0.6.

V. CONCLUSIONS AND FUTURE WORK

We have presented two directions for exploiting mobility
prediction to improve the performance of mobile users. The
first direction involves pre-fetching content requested by a

mobile in caches located in small cells that the mobile has
a high probability to connect to, jointly considering mobil-
ity prediction and content popularity. The second direction
involves exploiting mobility and throughput prediction for
DASH adaptation to improve the QoE in terms of both high
video quality and few video quality switches.

Further work on joint mobility and popularity caching,
in addition to the evaluation for different mobility models
and local (legacy) content request loads, is investigating opti-
mizations for measuring the parameters to estimate the gain.
Further work on the proposed DASH adaptation procedure is
investigating its extension to incorporate short-term adaptation
based on the measured throughput and video buffer, and the
application of the QoE model that considers both video quality
and video quality switches to dynamic (measurement-based)
adaptation approaches. Finally, investigating DASH adaptation
jointly with proactive caching for scalable video coding is
another interesting research direction that combines the two
models presented in this paper.
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