
Authentication and authorization for
interoperable IoT architectures

Nikos Fotiou and George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business

Evelpidon 47A, 113 62 Athens, Greece,
{fotiou,polyzos}@aueb.gr

Abstract. Advances in technology have enabled the creation of “smart”
Things, fostering the vision of the Internet of Things (IoT). Smart Things
have connection capabilities, they support Internet protocols and they
even come with operating systems and Application Programming Inter-
faces. The pursuit for a protocol stack that will support the IoT has re-
sulted, so far, in an ecosystem of heterogeneous and non-compatible solu-
tions that satisfy the requirements of particular vertical sectors (“silos”).
For this reason, several research initiatives, driven by both academia and
industry, investigate the potential of an interoperable IoT architecture,
i.e., an architecture that will provide a common and horizontal com-
munication abstraction, which will act as interconnection layer among
all prominent IoT protocols and systems. Securing such an architecture,
which includes many stakeholders with diverse interests and security
requirements, is not a trivial task. In this paper, we present an authen-
tication and authorization solution that facilitates the interoperability
of existing IoT systems. This solution achieves endpoint authentication,
encryption key establishment, and enables third parties to define fine-
grained, domain-specific access control policies. Things store minimal
information, perform only ultra-lightweight computations, and are obliv-
ious about the business logic and processes involved in the authentica-
tion and authorization procedures. Furthermore, the proposed solution
preserves end-user privacy and can be easily incorporated into existing
systems.

1 Introduction

Smart Things support a wide range of connectivity options (for example
6LoWPan, ZigBee, Bluetooth Low Energy, Ethernet), Inter-networking
protocols (like MQTT, CoAP), and even lightweight operating systems
(for example RIoT and Contiki). However, the arms race for an “Inter-
net of Things” (IoT) architecture, has resulted in numerous, diverse, and
competing systems that often satisfy only the requirements of a particu-
lar vertical use case. However, an “interoperable” IoT architecture would

provide significant advantages to society (and data producers or own-
ers), allowing (controlled) data use from all domains by all applications–
through silo boundaries.1 Several research efforts, driven by academia
and industry, have sprung up investigating this potential.
Securing smart Things-based systems is a challenging task by itself,
therefore it comes as no surprise that the security of an interoperable
IoT architecture is a problem that cannot be easily addressed. An inter-
operable IoT architecture should interconnect various stakeholders with
diverse security needs, requirements, and capabilities, it should allow for
flexible user identities and generic access control policies, and it should
enable federation of security providers while facilitating at the same time
compartmentation and isolation of sensitive business processes.
In this paper, we build on our previous work [9] and we present the design,
implementation, and evaluation of a security solution that achieves end-
point authentication, encryption key establishment, and access control
delegation. The proposed solution, which was tailored to the IoT and is
appropriate for constrained devices, enables the interoperability among
various stakeholders without sacrificing end-user privacy and security.
With our solution, user-related information never leaves user manage-
ment systems, while service providers can easily secure their offerings.
In this paper we make the following contributions:

– We improve the performance and the security of our original de-
sign [9]. In particular with the new design Things do not maintain
any state for unauthenticated connections. Furthermore, the new de-
sign is compatible with the (D)TLS handshake with pre-shared keys,
hence significant security properties can be claimed.

– We extend [9] to support multi-stakeholder IoT-based services, fa-
cilitating this way interoperability.

– We implement our solution and we integrate it in the INTER-IoT
interoperable gateway [4], enabling its use from all INTER-IoT sys-
tems and applications/use-cases.

Even though there are many somewhat similar access control solutions
for Internet applications, our solution has been designed for and tailored
to the IoT and has many significant advantages in this domain. Fur-
thermore, compared to existing solutions for the IoT, and as discussed
later in Section 6, our solution is more lightweight, it has better security
and privacy properties, it does not require from Things to be online,
and completely hides business logic, semantics, and processes from the
Things and the end-users. The latter property is of particular importance
when it comes to interoperability and business-to-business services. Fi-
nally, as we detail in Section 3.3, our solution can be integrated into the
(D)TLS handshake–(Datagram) Transport Layer Security–hence exist-
ing (D)TLS-based applications can benefit from our approach without
any modification.
The remainder of this paper is structured as follows. In Section 2 we
give an overview of our system and we present an illustrative use case.
In Section 3 we detail the design of our solution and its integration with

1 Data (and information) is not only a non-rivalrous good, it is anti-rivalrous [1],
providing (potentially) more value the more it is used.

(D)TLS. In Section 4 we evaluate the qualitative and security properties
of our solution. In Section 5 we discuss the integration of our solution
with an existing interoperable IoT platform. We compare our solution
with existing related work in Section 6 and we provide our conclusions
in Section 7.

2 System Overview

In order to give a better overview of our system we present the use case
of a “smart port” (similar to a use case of the INTER-IoT project [4]
not entirely by coincidence). In this use case, illustrated in Figure 1,
port employees want to access resources provided by Things embedded
in containers arriving at the port. Container owners want to make sure
that these resources can be accessed only by the port employees. On the
other hand, the port authority does not want to allow third parties to
access its user management system.

Using our solution this problem can be overcome as follows. The port
authority extends its user management system to support access control
policies, as well as our protocol. Then, it creates an access control policy
that defines who are the port employees and assigns to this policy a
URI. From a high-level perspective, the user management system of the
port authority can now be viewed as an RPC server: whenever a port
employee makes a call to the policy URI, using as input call parameters
a “token” and his identification data, the server generates and responds
back with an encryption key. A policy URI can then be used by container
owners to protect their devices (Steps 1-3).

Each container owner “registers” its devices to the user management sys-
tem of the port authority and receives back a secret key which is installed
in the devices, along with the policy URI (steps 4-6). Suppose now that
a port employee wants to access some information provided by a pro-
tected device. Initially, he sends an “unauthorized request” and receives
back a token and the URI of the policy generated during step 1 (steps
7,8). Then he performs an RPC call to the user management system and
obtains an encryption key (steps 9,10). With our solution, the device can
also calculate the same encryption key, offline, without any communica-
tion with the user management system. Since both entities, i.e, the port
employee and the Thing, now share the same key, they can use it for se-
curely exchanging data using a protocol such as (D)TLS with pre-shared
keys (step 11). The encryption key generation process guarantees user
authentication and authorization, as well as device authentication.

Our system achieves the following goals:

– Transparency. Container owners are oblivious about the imple-
mentation, structure, and content of the port authority user man-
agement system. The application implemented in the Things, does
not contain any port authority specific logic.

– Flexible security management. The port authority can modify
the access control policy stored in its user management system with-
out needing to update policy URIs or notify container owners.

– User privacy preservation. Things learn no user-specific infor-
mation. They only information they can deduce is that a user has
business relationships with a specific user management system.

– Lightweight security. Things have to maintain only a secret key
and a policy URI per resource. Furthermore, Things do not have to
be connected to the Internet, or to any other network.

Port employee

Thing

Port Authority Container owner

(1) Create policy “port employees”

(2) Policy URI

(3) Policy URI

(4) Register device

(5) Secret key

(6) Secret key, Policy URI

(7) unauthorized request

(8) Token, Policy URI

(11) Secure transfer

(9) Credentials, Token (10) Key

Port user management system

Fig. 1. Smart port use case.

3 System Design

3.1 Preliminaries and notation

Our construction relies on a keyed-hash message authentication code
(HMAC). We refer to the digest of a message m using an HMAC func-
tion h and a key k as hk(m). Moreover, we refer to the concatenation of
n messages as m1||m2||...||mn. Entities in our system are uniquely iden-
tified either by an identifier or a URI. We refer to the identifier of an
entity A as IDA. Similarly, we refer to the URI of entity B as URIB .
The core entity of our system is the Access Control Provider (ACP)
(i.e., the “enhanced” user management system of our use case). An ACP
implements the following algorithms:

– storePolicy(policy): Stores an access control policy and returns a
policy unique URIpolicy.

– register(URIpolicy, URIresource): Registers an IoT resource, pro-
tected using URIpolicy, and returns a secret key (sk). This secret
key is URIresource specific. An ACP should check if the entity that
invokes this algorithm is the legitimate owner of URIresource. How-
ever, this process is out of the scope of our work.

– authorize(identificationData, URIpolicy, token, URIresource): Ex-
amines if a user identified by identificationData can be authorized
using URIpolicy. If this is true, it generates a user specific IDuser and
invokes the keyGen() algorithm described below. The IDuser gener-
ation process is ACP specific. Every time the same user invokes the
authorize() algorithm the IDuser may be the same (although this
enables user tracking): the only requirement imposed by our system
is that it must not be possible for two distinct users to receive the
same IDuser.

– keyGen(IDuser, URIpolicy, token): Creates an ephemeral encryp-
tion key by calculating hsk(IDuser||URIpolicy||token), where sk is
the key generated using the register algorithm and token is a ses-
sion specific random number generated by the protected device. It
outputs IDuser and the ephemeral encryption key.

Each Thing implements the keyGen() algorithm as well. Users have some
short of business relationship with an ACP. We assume that users can
securely communicate with their ACP and ACPs implement a secure
method for authenticating users. Finally, users and Things can commu-
nicate with each other. We make no security assumption about the latter
communication channel, i.e., any third party can monitor and tamper
with the messages exchanged between a user and a Thing.
In addition to attackers monitoring the communication channel between
users and Things, our threat model assumes unauthorized users trying
to get access to a protected resource, as well as malicious devices trying
to impersonate legitimate Things.

3.2 Protocols

Our solution is composed of the following protocols: Setup, Unauthorized
request, User authentication and authorization, Authorized request.

Setup: The goal of the setup protocol is to enable resource owners to
“pair” devices that provide a protected resource with one or more ACPs.
Every resource owner that wants protect a resource URIresource using
an access control policy URIpolicy, invokes over a secure communication
channel the register() algorithm, receives a secret key sk, and installs
it in the corresponding Things. It should be noted that resource owners,
Things, and end users do not have to be aware about the implementation
details and the business semantics and logic of an access control policy:
the only information they learn about a policy is its URIpolicy. A resource
owner may register a resource with multiple ACPs. In that case it will
configure the Thing with all URIpolicy and the corresponding secret keys.
Furthermore, sks are only used for generating other keys and they are
never communicated to other entities.

Unauthorized request: The goal of the unauthorized request pro-
tocol is to provide users with the necessary authentication and autho-
rization information. A user wishing to access a protected URIresource
initially sends to the Thing an unauthorized request over an unprotected
communication channel. Then, the Thing responds with a token and a
list of URIpolicy. A token is a public, random variable unique among
all sessions of that specific Thing. The protocol used for making these
requests is application specific, e.g., a user may request a resource over
HTTP, CoAP [15], or any other protocol.

User authentication and authorization: With this protocol,
users authenticate themselves to an ACP and receive an ephemeral en-
cryption key. Upon receiving a response to an unauthorized request, the
user selects a suitable URIpolicy and invokes the authorize() algorithm
over a secure communication channel. If the user can be authorized for
URIpolicy, the ACP invokes the keyGen() algorithm and sends back to
the user, the IDuser and the ephemeral encryption key, over the same
secure communication channel. A Thing can also calculate the same
ephemeral key, offline, using the keyGen() algorithm. However, no third
party, including the user, can calculate this key since the secret key used
by the HMAC calculation is only known to the ACP and the Thing. It
is reminded that the latter secret key is URIresource specific.

Authorized request: The goal of this protocol is to enable Things
to generate offline the ephemeral key that an authorized user received
from the ACP, as well as to provide means for using this key for secur-
ing subsequent communication. In order for the Thing to generate the
ephemeral key (i.e., invoke the keyGen() algorithm) it needs to learn
(i) the token it generated during the unauthorized request, (ii) the se-
lected URIpolicy, and (iii) the IDuser. All these can be provided by the
user over an unprotected communication channel. Using this key to pro-
tect subsequent communication cannot be trivially achieved in a secure
way. For this reason, we rely on (D)TLS–although other protocols can
be considered as well.
Figure 2 updates Figure 1 with the defined algorithms, protocols, and
entities. The authorized request protocol is not illustrates since for that
we consider (D)TLS. In the following we present the integration of our
solution with (D)TLS with pre-shared keys.

3.3 (D)TLS integration

The goal of (D)TLS is to allow two communicating endpoints, a client
and a server, to establish a secure communication channel by executing a
“handshake” protocol over an unprotected channel [13]. The security of
this protocol can be based on public-key cryptography or on a pre-shared
secret key [7] (or in a combination of these two approaches). (D)TLS with
pre-shared secret key (PSK-(D)TLS) is ideal for constrained devices since
it can be implemented using only a few, lightweight operations. With

User

Thing

ACP owner Resource owner

(1) storePolicy(policy)

(2) URIpolicy

(3) Register(URIpolicy, URIresource)

(4) sk

(5)URIpolicy, sk

(6) request

(7) Token, URIpolicy

(8)
authorize(identificationData,

URIpolicy, token, URIresource)

(9) Ephemeral encryption Key

ACP

Setup

User authentication and
authorization

Unauthorized request

Fig. 2. Algorithms, protocols, and entities of the proposed solution.

PSK-(D)TLS the communicating endpoints use their pre-shared secret
key to derive a “pre-master secret key,” and then they use this key as
input to a key derivation function (KDF) to calculate a “master secret
key”. The KDF, in addition to the pre-master secret key, uses as input
two random numbers generated by the communicating endpoints and
exchanged using the handshake protocol.

In a nutshell (and from a really high perspective), in order to collect
the KDF input parameters, a client and a server exchange two “Hello”
messages, that include the random numbers selected by each endpoint,
and two “KeyExchange” messages that include auxilliary information.
Our goal is to use the ephemeral encryption key produced by our solu-
tions as the (D)TLS pre-shared secret key. In particular we implement
the unauthorized request and the authorized request protocols using the
(D)TLS handshake messages.

The unauthorized request protocol requires from a Thing (server) to
send to a user a token and a list of URIpolicy. This information can
be encoded in the “psk identity hint” field of the server KeyExchange
handshake message. This field is a byte array of size up to 216 bytes
and it is used by the server “[...] to help the client in selecting which
identity to use.” Furthermore, the authorized request requires from a
user to send to a Thing the selected URIpolicy, the generated IDuser,
and the token. This information can be encoded in the “psk identity”
field of the client KeyExchange handshake message. This field is a byte
array of size up to 216 bytes and it is used by the client to “ [...] indicate
(to the server) which key to use.” Hence, not only we can transfer our
protocol parameters using the (D)TLS handshake, but also, we do not
violate the semantics of the used fields.

The integrated procedure is illustrated in Figure 3. In the example de-
picted in this figure, a user (acting as (D)TLS client) wishes to access a
protected resource provided by a Thing (acting as the (D)TLS server).
The user initiates the communication by sending a client “Hello” hand-
shake message. The Thing responds with a server “Hello” followed by a
server “KeyExchange” handshake message. The latter message includes
a token and a list of URIpolicy, encoded in the “psk identity hint” field.
The Thing selects an appropriate ACP, executes the user authentication
and authorization protocol and receives the ephemeral encryption key
and its IDuser. Then the user sends a client “KeyExchange” handshake
message and includes the token, the selected URIpolicy, and the IDuser

in the “psk identity” field. With the reception of the latter message, the
Thing can invoke the keyGen() algorithm and generate the ephemeral
encryption key. As a final step, both endpoints execute the (D)TLS KDF
and generate the master secret key. From this point on, all subsequent
messages can be secured this key.

User (Client)

Hello (Random)

Hello (Random)

KeyExhange (psk_identity_hint)

Thing (Server)

ACP

{username, password}

Authorize()

URIResource, URIPolicy, Token

Ephemeral encryption key, IDuser

KeyExhange (psk_identity)

keyGen()

keyGen()

KDF

KDF

Fig. 3. Integration with (D)TLS.

4 Evaluation

In the following we evaluate our solution. We consider the (D)TLS inte-
grated version. Our solution has the following properties:

It facilitates interoperability. Our solution hides the business logic
and semantics of each stakeholder. It defines a simple API that allows

applications to interact with ACPs and at the same time it gives great
flexibility on how an ACP is implemented. ACPs enable compartmen-
tation and isolation of sensitive business processes allowing stakeholders
to modify their (security) policies without affecting the applications that
are using them. Business-to-Business services can be easily implemented:
a company A can offer services to the users of a company B simply by
leveraging a URIpolicy provided by company B.

It facilitates application development. By integrating our so-
lution with (D)TLS we provide a straightforward and transparent way
for application developers to include it in their products. As a matter
of fact, by incorporating our protocol into the DTLS implementation of
the BouncyCastle library2, and by using a single ACP and hardcoded
identificationData it was possible to port existing (example) applica-
tions without any modification.

It is lightweight and it protects users’ privacy. With our
solution, Things have only to perform a single HMAC calculation, in
addition to the operations required by (D)TLS. Furthermore, Things do
not have to be connected to the Internet and do not have to maintain
any state for unauthorized requests. Finally, Things learn no user specific
information apart from the IDclient.

4.1 Security evaluation

Providing that two users (clients) do not share the same pre-shared key
and providing that pre-shared keys have enough entropy, PSK-(D)TLS
has the following security properties:

– Communication integrity. The PSK-(D)TLS handshake protocol
makes sure that any modification to the exchanged messages can be
detected (but it cannot be prevented).

– Confidentiality. The master secret key cannot be guessed and it
can be used to protect the integrity and the confidentiality of the
messages exchanged after the completion of the handshake.

– Server authentication. The PSK-(D)TLS handshake protocol makes
sure that man in the middle attacks can be detected (but not pre-
vented). Hence it is not possible for an attacker to impersonate a
server.

The pre-shared key used in our solution is the ephemeral encryption key
generated by the ACP.

Theorem 1. Two users identified by different identificationData can-
not obtain the same ephemeral key.
Proof. The keyGen() algorithm of an ACP, i.e., the algorithm that gen-
erates the ephemeral key, uses as input the variable IDuser. The latter
variable is produced by the authorize() algorithm. Given two users iden-
tified by identificationData A and B respectively, then by definition

2 https://www.bouncycastle.org/

authorize(A) 6= authorize(B).

PSK-(D)TLS in its simplest form (i.e., without using the Diffie-Hellman
key exchange algorithm) does not provide forward secrecy.
An additional security feature of our solution is that it can immediately
prevent users with revoked access rights to retrieve a resource. This is
achieved by having Things generating a token in every session and by
keeping track of the already used tokens: fresh tokens force users to com-
municate with an ACP in order to retrieve a new ephemeral encryption
key. That way, revoked users can be quickly blocked from obtaining such
a key.
The security properties of our solution depend on the secrecy of the secret
key installed in Things by the resource owners. If this key is breached,
then the setup protocol should be re-executed for all Things sharing the
same key. Nevertheless, no further update is required (e.g., user applica-
tions do not have to be modified)

5 Integration with an existing interoperable
platform

ACP

ACHILLES INTER-IoT Virtual GW API

Virtual GW

Physical GW

Emulated physical device

User

Users

Groups

Policies

Unauthorized request

Measurement

Measurement

Authorized request

Fig. 4. Integration with the INTER-IoT architecture.

As proof of concept, we implemented our solution for the INTER-IoT
interoperable IoT gateway. INTER-IoT gateway is a modular system that

targets to join various IoT platforms and technologies under a common
API. The INTER-IoT gateway is composed of two parts: the virtual
part and the physical part. The physical part provides an abstraction
that can be used for interacting seamlessly with Things using various
link layer technologies and protocols, whereas the virtual part exposes
an API that can be invoked by a user. An API call to the virtual part
can be translated into a call to the physical part or it can be translated
and forwarded to another IoT platform. If necessary, the user will receive
the appropriate response.
In order to accommodate various technologies, the virtual part of the
gateway supports plug-in extensions. We implemented our solution as
a plug-in, code-named ACHILLES (stands for Access Control and au-
tHenticatIon deLegation for interoperabLE IoT applications). Our plug-
in extends the API of the virtual part of the gateway and implements
the protocols described in the previous section.
However, the INTER-IoT API is implemented over HTTP(s), hence our
solution had to be implemented at the layer. For this reason, we im-
plemented the TLS KDF in the application layer and we used HTTP
headers in order to exchange the necessary information. The derived
master secret key is used to encrypt measurements provided by an emu-
lated IoT device. The encrypted measurements are then included in the
payload of the HTTP response, sent from the gateway to the user.
As an ACP we used a custom-made user management system. In this
system users are identified by a pair of a username and a password.
Simple access control policies can be defined using NIST’s core Role-
based Access Control (core-RBAC) model [8], i.e., the ACP owner creates
users, organizes users in groups, and defines access control policies based
on these groups. Furthermore, users can communicate with the ACP and
exchange data securely using HTTPS.

6 Related work

The key characteristics of our solution are the following: it is lightweight,
it preserves user privacy, it can be used even if Things are not connected
to the Internet, Things and applications are business process agnostic,
and it is general purpose.
Various systems try to implement Role-Based Access Control (RBAC),
or Attribute Based Access Control (ABAC), either by storing user cre-
dentials in the Thing or by using a federated identity system, such as
OAuth [11] (e.g., as used in [6]) or OpenID [12] (for example, as described
in [5]). Storing access control policies in Things raises many scalability
and security concerns. For example, updating an access control policy re-
quires communication with all involved Things, whereas with our system,
policy modifications take place only on ACPs. Of course, storing user
management related information in Things creates many privacy riks.
Furthermore, federated identity systems, such as OpenID and OAuth re-
quire digital signature verification, which might be too computationally
heavy for many IoT devices or applications.
The disadvantages of RBAC/ABAC systems can be overcome by using
capabilities tokens. A capabilities token defines the operations that a user

is authorized to perform over an object. Capabilities tokens are issued
and digitally signed by a third trusted entity. Capabilities-based access
control (CBAC) has been studied in the context of the IoT by many
research efforts (for example [10], [14]). The main drawback of these
systems is that Things have to understand the business logic encoded in
a token. With our solution business logic and semantics are transparent
to Things and to users.
Eclipse Keti [3] is a token-based access control system which hides busi-
ness logic from Things. Using Keti, a Thing–or any application–may
query an “access control service” if a user is allowed to perform a partic-
ular operation. The main drawback of Keti is that it requires Things to
be able to communicate with access control services. With our solution
Things can be isolated from the rest of the world. Furthermore, using
Keti, access control services should be aware of the possible operations
that can be executed in a Thing. This creates scalability and privacy
issues. Using our system, ACPs (i.e., the entity that holds the same role
as the access control service) does not learn the operations that a user
wants to perform; it is even possible to hide from an ACP the fact that
a user interacts with a Thing. Finally, with our system it is possible to
create re-usable policies. For example, the policy “port employees” de-
fined in our use case in Section 2 can be used by many systems (not
necessarily IoT specific).
Musquitto auth-plug [2] is a plug-in used for authorizing Musquitto
MQTT broker users. Musquitto auth-plug can be configured to work
with multiple and diverse user management systems and, similarly to our
solution, it can be used as a security add-on to an existing deployment.
However, this plug-in is product and protocol specific. Furthermore, it
operates in a way similar to RBAC/ABAC systems.
We see, therefore, that our proposed approach, while it seems similar
to many existing and proposed solutions, is significantly different, de-
signed specifically for the IoT, and very flexible, allowing its effortless
integration with diverse existing business systems and applications, or
its incorporation into new IoT system or application designs.

7 Conclusions

In this paper we presented a security solution for an interoperable IoT
architecture. The proposed solution achieves endpoint authentication,
user authorization, and key establishment between two endpoints. The
proposed solution relies on a third party referred to as the Access Con-
trol Provider (ACP). The ACP, which can be implemented alongside the
user management system of a company, guarantees that no user spe-
cific information is stored in Things. Moreover, the ACP allows users
to securely communicate with Things without any pre-established secret
information. By storing access control policies in ACPs, our solution fa-
cilitates security management, since a modification to an access control
policy does not have to be propagated to the involved Things. Moreover,
by hiding business logic from Things, Business-to-Business services are
facilitated.

The proposed solution can be seamlessly integrated with (D)TLS. In
particular, we leveraged specific fields of the (D)TLS handshake proto-
col (without breaking their semantics) to transfer our protocol specific
parameters. Then we used the (D)TLS key derivation function to securely
create an encryption key that can be used for protecting the integrity and
the confidentiality of all subsequent messages. This integration is impor-
tant for many reasons: it facilitates application development, since exist-
ing applications based on (D)TLS can be easily ported to our system, it
enhances the security of our approach, and it provides a mechanism for
(D)TLS to create pre-shared keys.
As a proof of concept, we incorporated our solution to the INTER-IoT
interoperable gateway and we extended its API. Our extensions allow
INTER-IoT gateway-based systems to include existing user management
systems with very little effort. Given the security requirements of the
scenarios considered by the INTER-IoT team, this is an important de-
velopment since involved stakeholders do not have to allow third parties
to access their (critical) security systems.

Acknowledgment

This work was funded through INTER-IoT Collaboration Agreement
#52 (ACHILLES), which is administered through AUEB-RC. INTER-
IoT has received funding from the EC through programme H2020. The
paper presents the views of the authors and not necessarily those of the
EC or the INTER-IoT consortium

References

1. Anti-Rivalry definition. URL https://wiki.p2pfoundation.net/Anti-
Rivalry. (last accessed 8 Jul. 2018)

2. Authentication plugin for Mosquitto with multiple back-ends. URL
https://github.com/jpmens/mosquitto-auth-plug. (last accessed 8
Jul. 2018)

3. Eclipse Keti. URL https://projects.eclipse.org/proposals/eclipse-
keti. (last accessed 8 Jul. 2018)

4. INTER-IoT project home page. URL http://www.inter-iot-
project.eu. (last accessed 8 Jul. 2018)

5. Blazquez, A., Tsiatsis, V., Vandikas, K.: Performance evaluation of
openid connect for an iot information marketplace. In: 2015 IEEE
81st Vehicular Technology Conference (VTC Spring), pp. 1–6 (2015)

6. Cirani, S., Picone, M., Gonizzi, P., Veltri, L., Ferrari, G.: IoT-OAS:
An OAuth-based authorization service architecture for secure ser-
vices in IoT scenarios. IEEE Sensors Journal 15(2), 1224–1234
(2015)

7. Eronen, P., Tschofenig, H.: Pre-shared key ciphersuites for transport
layer security (TLS). RFC 4729, IETF (2005)

8. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli,
R.: Proposed NIST standard for role-based access control. ACM
Trans. Inf. Syst. Secur. 4(3), 224–274 (2001)

9. Fotiou, N., Kotsonis, T., Marias, G.F., Polyzos, G.C.: Access control
for the internet of things. In: 2016 ESORICS International Workshop
on Secure Internet of Things (SIoT), pp. 29–38 (2016)

10. Gusmeroli, S., Piccione, S., Rotondi, D.: A capability-based security
approach to manage access control in the internet of things. Math-
ematical and Computer Modelling 58(5), 1189 – 1205 (2013). The
Measurement of Undesirable Outputs: Models Development and Em-
pirical Analyses and Advances in mobile, ubiquitous and cognitive
computing

11. Hardt (ed.), D.: The OAuth 2.0 authorization framework. RFC 6749,
IETF (2012)

12. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric iden-
tity management. In: Proceedings of the second ACM workshop on
Digital Identity Management, DIM ’06, pp. 11–16. New York, NY,
USA (2006)

13. Rescorla, E., Modadugu, N.: Datagram transport layer security ver-
sion 1.2. RFC 6347, IETF (2012)

14. Seitz, L., Selander, G., Gehrmann, C.: Authorization framework for
the internet-of-things. In: World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2013 IEEE 14th International Symposium
and Workshops on a, pp. 1–6. IEEE Computer Society, Los Alamitos,
CA, USA (2013)

15. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application
Protocol (CoAP). RFC 7252, IETF (2014)

