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ABSTRACT
Software-Defined Networking (SDN) promises novel traffic
engineering capabilities transforming every network from a
mere packet forwarding fabric into an intelligent distribution
medium. We extend the functionality of the core SDN com-
ponent, the SDN controller, to perform path computations
over “annotated” topologies. Specifically, we exploit the use
of tags, which describe network node properties and capa-
bilities, enabling a new type of network control applications
and thus connecting user applications and traffic flows with
network decisions and management. Tags can be set and
modified in a number of different ways, supporting context
awareness and cognition in the network in a lightweight and
loosely integrated way. Intelligent applications running at
edge nodes may request unicast, anycast, or multicast paths
among nodes with specific tags or tag properties, realizing
efficiently traffic engineering goals and supporting network
slicing, virtualization, finer resource control, and easier man-
agement. We illustrate this new capability in the IoT domain
by demonstrating how CoAP group communication can be
implemented in a seamless, lightweight, and efficient way,
releasing the constrained endpoints from the requirement
to support IP multicast.

1 INTRODUCTION
Nowadays, it is evident that the Internet has evolved from a
facility that interconnects static end-hosts, into a dynamic
ecosystemwhich extends to our physical world. Smartphones,
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Things and home appliance with interconnection capabili-
ties, portable computing devices, powerful personal worksta-
tions, all compose a powerful toolset that offers to end-users
endless possibilities. Application providers create novel ser-
vices that can be accessed through multiple devices, expand
to multiple network locations, and generate vast amounts
of traffic. Struggling to cope with this vivid environment,
network operators seek to transform the traditionally static
networks into an elastic, intelligent platform, that will not
merely transfer packets from the “dump” edge to the “smart”
core, but it will also provide in-network functions and ser-
vices, making end-user experience even richer. A critical
technology allowing the realization of this goal is Software-
Defined Networking (SDN) [11].
SDN allows the use of centrally managed switches, en-

abling network operators to leverage the full capabilities
of their network. These switches are programmable in the
sense that using a specialized protocol (such as OpenFlow),
they can be configured with rules to forward data “flows”
towards their destinations through specific node and link
paths, facilitating in this way load-balancing, service differen-
tiation, in-network functions, and providing novel network
services [5]. At the heart of an SDN-based network is an
SDN controller, which is responsible for dynamically setting
up switch flow tables based on configurations–usually ex-
pressed using a scripting or programming language–that
capture the requirements and the business processes of the
network operator.
In this paper, we propose an enhanced SDN-based archi-

tecture that extends traditional approaches in the following
way: (i) network nodes are annotated with “tags” describing
their properties and capabilities, (ii) SDN controllers act as
“path computation elements” and are capable of calculating
on-demand paths among or composed of nodes with specific
tags or tag properties, (iii) intelligent applications, running
on edge nodes, are able to request paths from the SDN con-
troller, as well as to set/delete their own application-specific
tags. These enhancements are supported by a Bloom filter-
based forwarding technique that achieves seamless multicast
communication. This technique requires minimum and fixed
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state in the switches, which can be installed during the boot-
strap. Despite that the path requesting applications and the
path computation process can be application aware and act
based on the requirements of a specific application, or even
based on the context of a specific user, our approach does not
require from the SDN components to perform deep packet
inspection (as for example in [3]), neither requires modifica-
tions to already established standards (as for example in [6]).
As a matter of fact, our proof of concept implementation is
based on readily available software switches and the Open-
Flow 1.2 standard. We argue that the extensions proposed in
this paper, combined with the Bloom filter-based forwarding,
although simple, create many opportunities for novel ser-
vices. In particular, our approach facilitates group/anycast
communication paradigms, supports service chaining and
composition, improves network management, and facilitates
new services and applications. In order to demonstrate the
efficiency of our approach, we present how a group commu-
nication protocol designed for the Internet of Things (IoT),
i.e., the Constrained Application Protocol (CoAP) extension
for group communication, can be efficiently implemented
over an SDN network that supports tag-based path com-
putation. Traditional CoAP group communication requires
from CoAP endpoints to support the IP multicast protocol.
Moreover, CoAP group related information is maintained by
the endpoints, hence, the number of groups increases and
managing them becomes hard. With our implementation,
constrained endpoints can benefit from group communica-
tion using vanilla CoAP without the extensions, without
modifications, and without the need to support IP multi-
cast. Moreover, the creation of a new group becomes easier
and the management of existing groups becomes more effi-
cient. Finally, using our approach, service providers can eas-
ily leverage existing IoT deployments and offer new, group
communication-based services.

The structure of the remainder of this paper is as follows.
In Section 2 we present the design of our solution. In Sec-
tion 3 we present our implementation of an Internet Service
Provider’s (ISP) network that interconnects CoAP endpoints,
which we selected as a use case in order to illustrate more
details of our solution, as well as in order to highlight its
advantages. Finally, in Section 4 we provide our conclusions
and plans for future work.

2 DESIGN
Our design assumes the network of a single ISP implemented
using SDN technology. ISP’s clients are connected to the
network through “intelligent” edge-nodes.
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Figure 1: Example of Bloom filter-based forwarding.

2.1 Bloom filter forwarding
For all in-network traffic (i.e., for the portion of the network
surrounded by edge-nodes) Bloom filter-based forwarding
is used. In particular we assume the Bloom filter-based for-
warding approach described by Reed et al. in [9]. To realize
this, each link of the SDN network is assigned a unique iden-
tifier, which is a fixed-size Bloom filter-based vector. Each
link identifier is mapped to an arbitrary bitmask with length
equal to two IPv6 addresses and corresponding OpenFlow [1]
rules are installed at its adjacent switch interfaces. The for-
warding identifier that realizes the communication between
edge-nodes is a Bloom filter encoding the link identifiers of
the path that a packet should follow, by simply ORing these
identifiers. An interesting property of this type of forward-
ing is that by ORing the encodings of two paths A → B and
A → C , the encoding of a multicast path from A to B and C
is derived. The solution in [9] encodes Bloom filters in the
IPv6 source and destination fields of an IPv6 packet and uses
the OpenFlow arbitrary mask match in switches to make
forwarding decisions. Therefore, this forwarding technique
is implemented using standard OpenFlow mechanisms and
without modifying the structure of network packets; to a net-
work monitoring tool, these packets appear to be ordinary
IPv6 packets, but with “strange” addresses. Moreover, the
appropriate OpenFlow rules related to Bloom filter-based
forwarding can be installed when a switch joins the network.
With these rules, the switch will not require any further in-
formation set by the controller in order to forward a packet,
achieving significant gains in terms of network overhead
reduction.
Figure 1 illustrates a simplified example of Bloom filter-

based forwarding. As it can be seen each link is identified
by a (binary) identifier. The path that a packet should fol-
low is encoded in a Bloom filter, constructed by ORing the
identifiers of the links that compose the path. For simplic-
ity reasons we assume that the Bloom filter is stored in the
Source IP field of the packet (padded with zeros to match the
field’s length). Each switch port is configured with a network
mask and a source IP, both of which match the identifier of
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the link connected to that port. For each incoming packet,
every switch performs the following actions:

• It retrieves the Source IP address included in the in-
coming packet

• For each port (except the port from which the packet
arrived) it ANDs the source IP of the packet with the
network mask associated with the port

• If the output of the AND operation matches the source
IP associated with the port, then the packet is for-
warded to the link connected to that port

These actions can be achieved using standard OpenFlow
rules. For more details interested readers are referred to [9].

2.2 Tags
Each node in the network (i.e., both edge and internal nodes)
is associated with a set of tags. These tags may represent
network related attributes (e.g., network address, network
function), physical location (e.g., room number, geolocation
information), application layer functionality or context (e.g.,
service description, security properties) and many other
types of information. Moreover, SDN controllers learn (us-
ing mechanisms which are out of the scope of this paper)
the network topology, all link identifiers, as well as the tags
associated with each node.

Controllers may also recognize types of tags (e.g., integer,
geo-location, video quality) and perform some basic oper-
ations (e.g., arithmetic comparisons, compare dimensions,
ordering, etc).

2.3 Paths
SDN controllers are capable of computing paths (and deter-
mine the appropriate Bloom filter identifier) among nodes
with specific tags or tag properties, as well as paths passing
through or composed of nodes with specific tags. Specific
algorithms are required for this and typically this function-
ality is provided with extra network apps with particular
capabilities. A node in the network can send a packet to a
(set of) node(s) identified by (some) specific tags. The node
may specify that the packet should reach all nodes (multi-
cast), or at least one node in the set or the best available
node (anycast). Moreover, the origin may define whether
the destination node(s) should be associated with all tags or
with some of the tags, or even define an ordered list of tags,
which should be reflected in an ordered list of nodes that
must be part of the composed path (service chaining). For
example, a node may request that a packet should be initially
forwarded to a firewall, then to a compression service, and
finally to a particular edge-node. If the sender node knows
the path towards the destination node(s), then it simply en-
codes it in a Bloom filter and the aforementioned forwarding
procedure is used. If the node does not know the path to

the desired destination(s), it creates a special packet, it sets
the Ethernet source and destination fields of the packet to a
pre-defined constant value and adds the desired tags in the
packet’s payload. The first SDN switch that receives this spe-
cial packet will not have a rule to switch it; hence, it forwards
it to the SDN controller. The SDN controller extracts the tags,
and given its knowledge of the underlying SDN topology, it
calculates the appropriate Bloom filter, as well as a Bloom
filter for the reverse path (if applicable), and returns this
information to the origin switch as an Openflow PacketOut
message. Finally, the switch forwards this message to the
node that originally sent the packet. That node can now use
the provided Bloom filter for all subsequent communications.

3 USE CASE: COAP GROUP
COMMUNICATION

3.1 Background
CoAP [10] is a lightweight protocol, designed to be the
“HTTP of the IoT.” The CoAP interaction model is similar
to the client-server model of HTTP: a CoAP client requests
a resource from a server; if the resource is available, the
server responds, otherwise it simply ACKnowledges (ACK)
the request and responds asynchronously when the resource
becomes available. CoAP resources are identified by a URI,
similar to HTTP URIs. CoAP group communication is a
CoAP extension defined in RFC 7390 [8]. This extension
allows clients to retrieve or set resources from a group of
servers e.g., retrieve the temperature from all sensors of a
building, turn on all the lights of a smart city and so forth.
When CoAP group communication is used, URI-hosts (e.g.,
coap://floor1.building6), are mapped to an IP multicast group
in which all related CoAP endpoints are members. In order to
implement this behavior in a legacy network (a) DNS servers
should be modified, and (b) all CoAP servers should join a
priori all possible IP multicast groups.

3.2 Implementation
As a proof of concept, we used the mininet network emu-
lator [4], the open vswitch programmable switch [7], and
the POX network controller [2] to emulate an SDN-based
network of an ISP that allows tag-based path computation.
The network topology (including link identifiers and node
tags) is included into a JSON-encoded configuration file. A
Topology Manager helper class parses this file and provides
methods for creating a path among nodes with specific tags.
This helper class, implemented using the NetworkX python
library, is used by the SDN controller whenever a path is
requested by a network node. Moreover, this class is also
used by the controller every time a new switch joins the
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Figure 2: Reference architecture.

network in order to install the appropriate rules related to
the Bloom filter-based forwarding.
In addition to the emulated network, we implemented

CoAP clients and servers using the libcoap library. Edge-
nodes of the ISP’s network act as CoAP proxies and CoAP
clients are configured to use an edge-node as a proxy. Hence,
whenever a CoAP client wishes to send a CoAP (group) re-
quest it simply forwards it to an edge-node. Moreover, CoAP
servers are associatedwith “group tags” that have application
specific semantics (e.g., “buiding6”, “floor1”). This associa-
tion is implemented in the corresponding edge-nodes and
CoAP servers are oblivious about it. Hence, tag-server (de-
)association is implemented without communicating with
the respective servers. A group name, included in the URI-
host field of a CoAP group request, is interpreted as a list of
tags and it should be forwarder to all servers associated with
these tags. For example, a request for coap://floor1.building6
should be forwarded to all CoAP servers associated with the
tags “floor1” and “building6”. Edge-nodes that are connected
to a CoAP server maintain mappings of group names to IPv6
addresses. These mappings are used for forwarding CoAP
requests to the appropriate CoAP server. Moreover, and since
CoAP servers cannot handle Bloom filters, edge-nodes re-
place the Bloom filter included in the transmitted packet with
the server’s IPv6 address. The implemented architecture is
illustrated in Figure 2.

Given the above description, a CoAP group communication-
based transaction is implemented by executing the following
procedures.

3.2.1 CoAP request. The CoAP client sends the CoAP
request to its proxy edge-node. This edge-node extracts the
URI-host and splits it into tokens. If this is the first request
for that URI-host the edge node executes the “Path Request”
procedure, otherwise it executes the “Request Forwarding”
procedure.

3.2.2 Path request. The edge node creates a packet with
Ethernet destination 00:00:00:00:00:01 and includes in its
application payload the list of tokens. Then it forwards this
packet to the network. The first programmable switch that
receives this packet forwards it to the SDN controller. The
SDN controller extracts the token list and requests from
the Topology Manager to compute a path from the sender
edge-node to all edge-nodes connected to a CoAP server
associated with all the desired tags. Then, it creates a new
packet that includes in its payload the constructed Bloom
filter and sends it back to the programmable switch; the
switch in return forwards the received packet back to the
sender edge-node.

3.2.3 Request Forwarding. Now the edge-node knows the
Bloom filter of the path towards all destinations. It creates a
new packet and it uses the IPv6 source and destination fields
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to encode the Bloom filter. Moreover, it adds in the applica-
tion payload CoAP request. Finally, it sends this packet in
the network. The packet reaches all destination edge-nodes
using Bloom filter-based forwarding. Each node extracts the
CoAP request and forwards it to the appropriate CoAP server.

3.2.4 Response Forwarding. Each CoAP server generates
a response and forwards it to the corresponding edge-node.
The edge-node selects the appropriate Bloom filter, creates
a new packet, and forwards it in the network. This packet
includes the Bloom filter in the IPv6 address fields and the
CoAP response in the payload. This packet eventually reaches
the edge-node in which the CoAP client is connected. The
latter node extracts the CoAP response and forwards it to
the client.

The above procedure is illustrated in Figure 3.

3.3 Evaluation
From the description of our implementation, it is evident
that our solution provides the following advantages:

CoAP endpoints do not need to support IP multicast.
As mentioned in [10] the recommended approach for imple-
menting CoAP group communication is by using IPmulticast.
However, IP multicast is feared of becoming a barrier for the
adoption of CoAP group communication for many (obvious)
reasons

• CoAP endpoints must be preconfigured with all group
names and the corresponding IP multicast addresses

• IoT devices should be enhanced to support IP multicast
• Network management will become harder in order to
not result in conflicting IP multicast addresses

With the proposed solution, all these drawbacks are over-
come.

DNS does not have to be modified. Similarly, RFC 7390
states that URI hosts should be translated into IP multicast
addresses using DNS servers. This implies that DNS servers
should be configured with all possible group names and
the corresponding IP multicast addresses. Even worse, if
group names are artificially constructed by applications, DNS
servers should implement the application logic used for the
group name computation. With our solution, not only DNS
servers do not have to be modified, but DNS is not used at
all! Indeed, the mapping from a group name to a Bloom filet-
based forwarding identifier is performed by the controller
using the provided configuration file.

Groupmanagement becomes more efficient. By having
all groups centrally managed it becomes easier to create a
new group, as well as to modify existing ones. For instance, a
tag can be assigned to/removed from a CoAP server without

informing it. Hence, a server can be added to or removed
from a group with no additional communication overhead.
Even better, a CoAP server does not have to be aware of
the tags with which it is associated. This results in simpler
applications running in CoAP endpoints.

Service creation and composition becomes easier.With
the proposed solution, a service provider may offer new ser-
vices using existing resources simply by updating the con-
troller’s configuration file. For example, consider the case of
an already deployed IoT network composed of temperature
sensors deployed in multiple buildings of a smart city. A
service provider may provide aggregation services simply
by creating a configuration file that contains groups and
associated sensors.

Network functions can be easily integrated. Supposedly,
a network provider offers add-on network services (e.g. caching).
These services are also associated with tags. A node may
request from the controller to create a path through a service
point.
In the implementation presented in this section, edge-

nodes request paths by simply providing a list of tags. Never-
theless, our implementation allows nodes to specify path cre-
ation criteria using attribute-values pairs (e.g., location=floor1).
This can be extended to richer expressions, for example,
quality >= standard , located in [co-ordinates]. What is more,
our implementation allows the association of tags with links.
In the future this feature can be used to provide, for example,
QoS restrictions.

4 CONCLUSION
In this paper, we proposed an enhancement to SDN-based
architectures that allows tag-based topology management
and traffic engineering. With our approach, each network
node is associated with a set of tags and the SDN controller
holds the role of the path computation element, i.e., it is
responsible for computing paths among (or composed of)
nodes identified by a set of tags. Moreover, the proposed
solution leverages Bloom filter-based forwarding to achieve
seamless traffic engineering. By using tag-based topology
management combined with Bloom filter-based forwarding,
SDN-based architectures achieve significant gains, including
support for multiple communication modes (such as multi-
cast and anycast), service composition, improved manage-
ment, and better support for new applications. As a proof of
concept, we presented our implementation of an emulated
network that supports tag-based path creation in order to
enable CoAP group communication. Our implementation
exhibits significant advantages compared to an approach
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Figure 3: A CoAP group communication transaction.

that follows the implementation recommendations of the
related RFC.

The work presented in this paper can be expanded in vari-
ous directions. Firstly, we assumed that SDN controllers learn
the network topology, as well as the link identifiers, through
a configuration file, but topology discovery solutions can
instead be investigated. Secondly, we left tag management as
future work. Moreover, Bloom filter-based forwarding can
be further improved: future work can consider ephemeral
Bloom filters to counter security attacks (e.g., DoS attacks),
or to handle user mobility. Similarly, Bloom filter techniques
resilient to path failures can be investigated. Finally, our IoT
implementation can be extended to consider incorporating
solutions such as the CoAP resource directory, which can
enhance tag management.
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