
Interacting with the Internet of Things using
Smart Contracts and Blockchain Technologies

Nikos Fotiou, Vasilios A. Siris, and George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences and Technology
Athens University of Economics and Business

76 Patision, Athens 10434, Greece
{fotiou, vsiris, polyzos}@aueb.gr

Abstract. Despite technological advances, most smart objects in the
Internet of Things (IoT) cannot be accessed using technologies designed
and developed for interacting with powerful Internet servers. IoT use
cases involve devices that not only have limited resources, but also they
are not always connected to the Internet and are physically exposed to
tampering. In this paper, we describe the design, development, and evalu-
ation of a smart contract-based solution that allows end-users to securely
interact with smart devices. Our approach enables access control, Thing
authentication, and payments in a fully decentralized setting, taking at
the same time into consideration the limitations and constraints imposed
by both blockchain technologies and the IoT paradigm. Our prototype
implementation is based on existing technologies, i.e., Ethereum smart
contracts, which makes it realistic and fundamentally secure.

Keywords: IoT; Distributed Ledger Technologies; Ethereum; Interop-
erability; Access Control; Authentication; Payments

1 Introduction

The Internet of Things (IoT) is an emerging paradigm that has already
attracted the attention of both academia and industry. The IoT is ex-
pected to penetrate various aspects of our life, allowing the creation of
cyber-physical applications that will improve our living conditions by en-
abling healthier and cheaper agricultural products, smarter energy pro-
duction and consumption, safer transportation, better entertainment and
wellness activities, and innovative services. The IoT will be composed of
smart devices and protocols that will allow human-to-device and device-
to-device interactions. Nevertheless, these devices–henceforth simply re-
ferred to as Things–as well as the mainstream IoT use cases, present some
limitations and particularities that create the need for new, innovative
interaction protocols. In particular, Things will be far less powerful than
traditional Internet clients and servers. Furthermore, Things will not al-
ways be connected to the Internet, e.g., in order to preserve energy or
because they will be physically located in places where Internet access is
not possible (at times). Finally, it should be easier for a malicious user to



tamper with a Thing, hence Things should not be used for storing “im-
portant” secrets or for processing very sensitive information. To this end,
in this paper we design, implement and evaluate a solution that enables
secure interaction with the IoT by leveraging blockchain technologies and
smart contracts.

A blockchain is an append-only ledger of transactions distributed through-
out a network. Transactions are validated by a number of network nodes
and are added in the ledger upon consensus, assuring this way that no
single entity has control over the ledger. A smart contract is a distributed
application that lives in the blockchain. Users can interact with a smart
contract by sending transactions to its “address” in the blockchain. For
any interaction with a smart contract, all operations are executed by the
blockchain, in a deterministic and reliable way. Smart contracts can ver-
ify blockchain user identities and digital signatures and they can perform
a number of operations. The code of a smart contract is immutable and it
cannot be modified even by its owner/creator. Moreover, all transactions
sent to a contract are recorded in the blockchain.

Although, blockchains and smart contracts–henceforth simply referred
to as Distributed Ledger Technologies (DLTs)–are considered a “demo-
cratic” way for maintaining transactions [2] and are envisioned to pro-
vide novel security mechanisms [7], they have some properties that limit
their (direct) applicability in the context of the IoT. Firstly, interacting
with a DLT involves some computationally intensive security operations
(e.g., the creation of a digital signature). Secondly, DLTs require users to
maintain a private key: this key is an important secret that protects the
assets of the users stored in the blockchain. Thirdly, information stored
in smart contracts is public, hence smart contracts cannot be used for
storing, e.g., user credentials, access control policies, etc. Similarly, infor-
mation stored in smart contracts is immutable and all interactions with
a smart contract are recorded in the blockchain, hence it is trivial for a
third party to deduce, for example, all modifications to an access control
policy. Finally, smart contracts cannot directly interact with the physi-
cal world: the execution of a smart contract relies solely on information
stored in the blockchain.

In this paper, we design and build a solution that allows users to securely
interact with the IoT using DLTs even if Things are not connected to the
Internet continuously or directly. Our solution, which is built using the
Ethereum transaction ledger [10], takes into consideration the limitations
and particularities of the IoT and the DLTs, is secure and realistic. With
our approach we make the following contributions:

– We enable access control, Thing authentication, and payments in a
decentralized, secure, and efficient way.

– We build on existing technologies and do not propose a new blockchain,
neither yet another specification for smart contracts.

– We preserve end-user privacy (to the degree that it is preserved by
the specific blockchain used).

– We assure that Things are oblivious to the existence of the blockchain,
do not store any blockchain-specific secret and the underlay blockchain
technology is completely transparent to the Things.



2 System Overview

Our solution leverages our previous work, published in [5], that allows
a Thing and an authorized user to establish a shared, session specific
secret key; this key can be used for securing (using symmetric encryption)
all message exchanges. This operation is achieved with the help of a
third party, referred to as the Access Control Provider. From a very
high perspective, the solution described in [5] operates as follows. ACPs
maintain a user management system, as well as access control policies,
associated with a (Thing provided) resource. Furthermore, each Thing
shares a unique key with each ACP that handles access to its resources.
Whenever a user requests a protected resource, the Thing generates a
token and sends it back to the user. The token is sent in plaintext over
an unsecured communication channel: mechanisms (not detailed in this
paper) make sure that any message modification, replay and man in
the middle attack can be detected. ACPs and Things can calculate a
new secret key, referred to as the session key using a secure keyed-hash
message authentication code (HMAC) with inputs the shared secret key
and the generated token. ACPs are responsible for authenticating users
and for securely transmitting the session keys to the authorized ones.

The solution described in [5] assures that the session keys calculated by
an ACP and a Thing are the same if (a) the user is interacting with the
real Thing, (b) the user is authorized to access the resource, (c) the user
has not lied about his identity, and (d) no messages have been modified.
Otherwise, the calculated session keys will be different, hence it will not
be possible for the user to communicate with the Thing. In other words,
this solution offers Thing and user authentication, user authorization,
message integrity protection, and session key agreement. Furthermore,
this solution has two notable properties: (a) the Thing does not have to
be able to communicate with the ACP (as a matter of fact the Thing
can be completely disconnected from the rest of the world) and (b) the
ACP does not have to be aware of the services provided by the Things,
i.e., an ACP and the service provider can be two distinct entities.

In this work we consider a similar setup with the addition that users
have to make some form of payment (not necessarily monetary) to the
service providers–henceforth they will be simply referred to as providers–
every time they interact with a protected resource. In order to give a
better overview of our system we present the use case of a “smart coffee
machine.” In this use case, a smart coffee machine is installed in a shared
kitchen of a building where the offices of many companies are located.
Users interact with the coffee machine using their mobile phones and Wi-
Fi direct. The coffee machine operator has come to an agreement with
one of the companies located in that building, Company A, and each
employee of that company is offered 300 free cups of coffee per year. Every
time an employee of Company A wishes to order a coffee the following
process is followed. The employee sends a request to the coffee machine,
the coffee machine sends a token, the employee authenticates with the



ACP of Company A1 and receives the session key, the employee pays the
coffee machine operator (the first 300 times 0.00 EUR and then with the
value of the coffee), the employee sends a coffee request encrypted with
the session key, and finally the coffee machine sends a receipt encrypted
with the session key and disposes the coffee. All interactions among the
user, the ACP, and the coffee operator (but not between the user and
the coffee machine) utilize a smart contract, stored in a blockchain. Our
system achieves the following:

– Low complexity. Coffee machines are oblivious about the existence
of the blockchain and perform only some very lightweight operations.
ACPs are not aware of the services the coffee machine operator of-
fers, neither do they have to handle payments. The coffee machine
operator does not have to be aware of the user management system
of Company A.

– Support for payments. A smart contract makes sure that users
have the necessary amount of money required for an order. Further-
more, the same contract makes sure that all payments are made prior
to placing the order.

– User privacy protection. No user personal information is stored in
the blockchain. Similarly, coffee machines learn nothing about users.

– Endpoint authentication. A smart contract makes sure that a
user is authenticated and that the ACP and the coffee machine in-
deed share a secret key before the user places the order, by utilizing
the session key.

Our system does not provide any guarantees for the interactions that
take place in the physical world, e.g., in our use case, our system does
not guarantee that the coffee machine does deliver the requested coffee.
However, the interaction and payment is recorded in the blockchain (in
an immutable way), which can be used as proof in court, if it comes to
that.

3 System Design

3.1 Preliminaries and notation

In our system, service providers and users own a blockchain specific pub-
lic/private key pair. We refer to the public key of a user as Puser, and
to the encryption of a message m using (the private key corresponding
to) Puser as Euser(m). For simplicity, we assume that an ACP knows
all Puser of its users and all access control policies are based on these
keys. ACPs, access control policies, smart contracts, and resources are
identified by a URI. We refer to a URI of an entity as URIentity. Smart
contracts implement functions, which can be invoked using transactions,
and generate events; f(x, y, z) denotes the invocation of a function f

1 For simple access control policies, e.g., lists of blockchain specific public keys, this
authentication process can take place over the blockchain, otherwise, further infor-
mation has to be exchanged using an off-chain communication channel.



with arguments x, y, z, and E(x, y, z) denotes an event E with argu-
ments x, y, z. Our system uses a keyed-hash message authentication code
(HMAC), as well as a simple hash function. We refer to the digest of a
message m using an HMAC function H and a key k as Hk(m) and to
the hash of a message m as H(m). As already discussed, an ACP and a
Thing end up generating a session key. We refer to this key as sk and
to the encryption of a message m, using sk and a symmetric encryption
algorithm as Csk(m). For each user Puser there is a cost for accessing
a resource URIresource. This cost is known to the smart contract. Sim-
ilarly to users, each ACP owns a blockchain specific public/private key
pair denoted by PACP .

3.2 Protocols

Set up The protocols described in the following assume a setup phase.
During this phase, the smart contract is configured with the available
URIresource and the corresponding URIpolicy and PACP . For simplicity
of presentation it is assumed that each URIresource is protected by a
single URIpolicy provided by a single PACP .

Straw man approach Firstly, we present a simple protocol that
implements our solution. This protocol is illustrated in Figure 1. This
protocol is based on a smart contract that provides the following meth-
ods:
– request(deposit, token, URIresource): Examines if the deposit of the

user suffices for accessing the resource URIresource. If this is true, it
creates a DEPOSIT event with arguments, Puser, token, URIpolicy,
and URIresource.

– authorize(Puser, token, URIresource,Euser(sk)): Transfers the de-
posit that the user Puser made (when she invoked the request method)
to the service provider. Then it creates a KEY event using the
method input parameters as arguments.

With this protocol, initially, a user Puser requests a protected resource
from a Thing and the Thing responds with a token (generated using the
process described in [5]) and the URI of a smart contract that protects
the requested resource. Then, the user invokes the request method of the
smart contract. The DEPOSIT event is broadcast and received by the
appropriate ACP which examines if Puser can be authorized to access
URIresource. If this is true, the ACP generates the session key sk (using
the process described in [5]), encrypts it using Puser, and invokes the
authorize method of the smart contract. The smart contract examines
if the ACP that invoked the authorize method is allowed to do so. This
check is simply implemented by examining if the public key of the entity
that invoked that method is equal to the PACP of the legitimate ACP.
The drawback of the straw man approach is that the payment to the
provider takes place without any check. Note that with the solution de-
scribed in [5], the user is able to perform certain verifications after trying
to use the received sk. However, with the straw man approach, these ver-
ifications can only be used for a dispute resolution.



Pay provider KEY(Puser , token, URIresource ,Euser(sk))

DEPOSIT(Puser, token, 
URIPolicy, URIresource) (3) request(deposit, token, URIresource)

(4) authorize(Puser , token, 
URIresource ,Euser(sk))

ACP Contract User Thing

(1) GET resource

(2) URIContract, token

(5) Csk(request)

Fig. 1. The straw man protocol.

A first construction We now present an improvement to the straw
man approach by allowing an ACP to verify that a user is communicat-
ing with a legitimate Thing (Figure 2). In order to achieve this goal, we
extend the request method of the smart contract to include an additional
field, i.e., Hsk(token). The value for this field is provided by the Thing,
in its response to a user request. Furthermore, we extend the DEPOSIT
event to include this field. Now an ACP, after generating the sk, cal-
culates Hsk(token), and checks if the value of the latter calculation is
equal to the value provided by the Thing. If this is true, then the Thing
is considered legitimate.

(5) Csk(request)

(4) authorize(Puser , token, 
URIresource ,Euser(sk))

DEPOSIT(Puser, token, URIPolicy

URIresource, Hsk(token)) (2) URIContract, token, Hsk(token)(3) request(deposit, token, URIresource, Hsk(token))

ACP Contract User Thing

(1) GET resource

KEY(Puser , token, URIresource ,Euser(sk))Pay provider

Fig. 2. Our first construction.

A second construction We now extend our previous construction
to enable smart contracts to verify the relationship between a Thing
and an ACP, i.e., the contract can verify that the Thing and the ACP
indeed share a secret key. This functionality is achieved by having the
user “challenging” the Thing during her request. The challenge used is
a random number, which the Thing should obfuscate in a way that only
an ACP that shares a secret key with the Thing could read. The smart



contract should therefore learn the challenge from the user and should
expect it from the ACP. In order to “hide” the challenge we leverage a
hash function using the process described below.
The Thing responds to a challenge with H(Hsk(challenge)). Given a
challenge, only an entity that can generate the session key sk can calcu-
late Hsk(challenge). Note that, in addition to the Thing, this key can be
calculated by the ACP that protects the resources stored in that Thing.
Furthermore, given Hsk(challenge) any entity, including the smart con-
tract, can easily calculate H(Hsk(challenge)) (but the reverse process
is not possible due to the properties of the hash functions). Hence, the
request method is extended to include H(Hsk(challenge)) and the au-
thorize method is extended to include Hsk(challenge). Then, the smart
contract can calculate the hash Hsk(challenge), received by the ACP,
and compare the output to the hash value it received from the user. If
both hash outputs are the same, the contract sends the KEY event.

(2) URIContract, token, H(Hsk(challenge))

(4) authorize(Puser , token, URIresource

,Euser(sk)), Hsk(challenge))

(3) request(deposit, token, 
URIresource, challenge, H(Hsk(challenge)))

ACP-Provider Contract User Thing

(1) GET resource, challenge

DEPOSIT(Puser, token, URIPolicy

URIresource, challenge)

(5) Csk(request)
KEY(Puser , token, URIresource ,Euser(sk))

Pay provider

Fig. 3. Our second construction.

4 Implementation and evaluation

We have implemented the presented solution using Ethereum smart con-
tracts.2 This technology has some limitations that have led us to certain
design choices. In particular, although each user in Ethereum owns a
public/private key pair, a smart contract has access only to each user’s
“address”, i.e., the last 20 bytes of the hash of her public key. This means
that users have to explicitly include their public keys with every smart
contract function invocation; in our implementation we have added an
additional field in each function which is used for storing callee’s public
key. Furthermore, Ethereum keys are constructed using the secp256k1
elliptic curve; encrypting content using this curve can be cumbersome
since specialized constructions, such as the elliptic curve integrated en-
cryption scheme [9], are required. For these reasons we have selected to

2 Source code of our implementation can be found at: https://github.com/SOFIE-
project/spiot



not use Ethereum’s keys in our constructions, but instead we are using
keys based on the Curve25519 elliptic curve [1]. Curve25519 is a well
supported, fast curve which is ideal for key establishment, as it allows
a user A to generate a symmetric encryption key that can be used for
communicating with a user B, using only B′s public key.
The main constructions of our smart contract, which is deployed in a
local testbed, are implemented in five functions: requestS(),request1(),
request2(), each implementing the request() method for our three pro-
tocols (straw man, first construction, and second construction), and
authorize1() and authorize2(), that implement the authorize() method
for the first two protocols and for the last protocol respectively. The ta-
ble below illustrates the cost, measured in Ethereum “gas,” for invoking
each function.

Function Cost measured in gas

requestS() 123.186
request1() 128.218
request2() 253.488
authorize1() 57.950
authorize2() 63.746

Table 1. Cost for invoking smart contract functions

Endpoints are implemented using JavaScript. Interactions with the Ethereum
blockchain are implemented using the Ethereum JavaScript API,3 whereas
cryptographic operations are implemented using the TweetNaCl library.4

5 Related work

Prior work on blockchain-assisted access control has proposed schemes
that store access control policies in the blockchain. For example, Maesa et
al. [3] use the Bitcoin blockchain to store “Right Transfer Transactions”,
i.e., a transaction that indicates that a user is allowed to access a partic-
ular resource. These transactions are then used by “Policy Enforcement
Points.” Zyskind et al. [11] use the Bitcoin blockchain to store access con-
trol polices to protect personal data. Similarly, Shafagh et al. [8] store
access control policies in the Bitcoin blockchain for controlling access
to data produced by IoT devices. However, storing so sensitive informa-
tion in the blockchain clearly constitutes a privacy and security threat.
Even if we ignore the fact that blockchain should not be used for stor-
ing “secrets”, the immutability of the blockchain may allow 3rd parties
to deduce information about the access patterns of a particular user, or
even about the security policies of a content owner.
A growing body of work propose the use of custom blockhains in order
to overcome similar challenges. For example, Dorri et al. [4] implement

3 https://github.com/ethereum/web3.js/
4 https://tweetnacl.js.or



a custom made blockchain for a smart home application and consider
per-home miners, which also act as trusted proxies for the home devices.
Similarly, Ouaddah et al. [6] propose a blockchain solution that can be
used for providing access control for IoT applications. Such approaches
however, provided they are secure, require a critical mass of users that
will adopt the proposed technology.

6 Conclusions and Future work

In this paper we presented a solution that allows end-users to interact
with IoT devices. The proposed design, which is based on DLTs, en-
ables access control, Thing authentication, and payments, protecting at
the same time end-users’ privacy. These properties are achieved without
requiring Things to be capable of interacting with DLTs; instead end-
users seamlessly and transparently bridge smart contracts with Things
and the physical world. Our construction protects end-users from mali-
cious Things, since it withholds payments until the relationship between
a Thing and its owner is verified. Furthermore, by recording all critical
information in the blockchain, our solution facilitates dispute resolution.
Finally, our Ethereum-based implementation proves that our solution
can be realized with existing technologies.
In our implementation, each user is using two pairs of public/private
keys, one for the blockchain operations and one for encrypting the secret
information of our protocol. Furthermore, these pairs are decoupled. The
use of multiple, decoupled key pairs enable some interesting extensions
to our system. For example, a user may use different blockchain-specific
keys in each transaction avoiding this way tracking by 3rd parties. Fur-
thermore, a user may include in a request() transaction the pubic key of
another user or back-end service, e.g, an additional access control service
that will forward the session key to the user only if certain conditions
are met.
The use of the blockchain technology adds a layer of protection to our
system against (D)DoS attacks. With our solution attackers would re-
quire to pay a fiscal cost in order to attack an ACP. Furthermore, smart
contracts are replicated to multiple nodes (miners) which execute them
simultaneously, providing this way redundancy to our system. Finally,
since all events are broadcasted, an ACP can be easily moved (or repli-
cated) to a new network location. It is in our future work plans to further
analyze and measure this feature of the blockchain technology.
Compared to traditional Internet applications, IoT applications have a
unique property: they involve interactions with the physical world. The
outcomes of these interactions cannot be easily verified by the cyber
world. This can be easily understood when our solution is considered:
it is not easy to verify that the key provided by the Thing owner is the
correct one and, even more obvious, it is not easy to verify that Things
respond with a correct answer to user requests. Although blockchain
technologies are a useful tool that can be used by humans to verify that
all physical activities took place correctly, the interweaving of the phys-
ical and the cyber world creates challenges that cannot yet be overcome
in a guaranteed secure manner using only technological means.



Acknowledgments

The research reported here has been undertaken in the context of project
SOFIE (Secure Open Federation for Internet Everywhere), which has re-
ceived funding from EU’s Horizon 2020 programme, under grant agree-
ment No. 779984 (and at AUEB it is managed through AUEB-RC). The
authors thank Dmitrij Lagutin for his valuable comments.

References

1. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In:
M. Yung, Y. Dodis, A. Kiayias, T. Malkin (eds.) Public Key Cryptog-
raphy - PKC 2006, pp. 207–228. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

2. Cohn, J., Finn, P., Nair, S., Sanjai, P.: Device democracy: Sav-
ing the future of the Internet of Things. IBM Institute for Busi-
ness Value (2014). URL http://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?htmlfid=GBE03620USEN. (last accessed 30 Aug. 2018)

3. Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access
control. In: L.Y. Chen, H.P. Reiser (eds.) Distributed Applications
and Interoperable Systems, pp. 206–220. Springer International Pub-
lishing (2017)

4. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for
IoT security and privacy: The case study of a smart home. In: 2017
IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops), pp. 618–623 (2017)

5. Fotiou, N., Kotsonis, T., Marias, G.F., Polyzos, G.C.: Access con-
trol for the Internet of Things. In: 2016 ESORICS International
Workshop on Secure Internet of Things (SIoT), pp. 29–38 (2016)

6. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: Fairaccess: a
new blockchain-based access control framework for the Internet of
Things. Security and Communication Networks 9(18), 5943–5964
(2015)

7. Polyzos, G.C., Fotiou, N.: Blockchain-assisted information distribu-
tion for the Internet of Things. In: Proceedings of the 2017 IEEE
International Conference on Information Reuse and Integration, pp.
75–78 (2017)

8. Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.: Towards
blockchain-based auditable storage and sharing of IoT data. In:
Proceedings of the 2017 on Cloud Computing Security Workshop,
CCSW ’17, pp. 45–50. ACM, New York, NY, USA (2017)

9. Shoup, V.: A proposal for an ISO standard for public key en-
cryption. Cryptology ePrint Archive, Report 2001/112 (2001).
https://eprint.iacr.org/2001/112

10. Wood, G.: Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014)

11. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: Using
blockchain to protect personal data. In: 2015 IEEE Security and
Privacy Workshops, pp. 180–184 (2015)


