
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
School of Information Sciences and Technology

Department of Computer Science

Multipath Internet Transport

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yannis Thomas

Athens
July 2018

Copyright

Yannis Thomas, 2018

All rights reserved.

TABLE OF CONTENTS

Table of Contents . iii

List of Figures . v

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Motivation for this work 3
1.2 Contributions . 5
1.3 Dissertation outline . 6

Chapter 2 Information-centric Networking (ICN) 8
2.1 Publish Subscribe Internetworking (PSI) 9

Chapter 3 Multipath transport . 12
3.1 Introduction . 12
3.2 Multipath solutions . 14

3.2.1 Multipath in TCP/IP 14
3.2.2 Multipath in ICN 27

3.3 Multipath congestion control 29
3.3.1 Multipath congestion control in TCP/IP 33
3.3.2 Multipath congestion control in ICN 37

Chapter 4 Proposed multipath solution 40
4.1 Multisource and Multipath Transport Protocol (mmTP) 40

4.1.1 Protocol overview 41
4.1.2 Protocol description 43
4.1.3 Implementation and experimentation 49

4.2 Hybrid multi-flow congestion control 53
4.2.1 Topological assistance module 54
4.2.2 Normalized Multiflow Congestion Control (NMCC) 57
4.2.3 Implementation and experimentation 70

iii

Chapter 5 Integration of hybrid multi-flow congestion control in IP Net-
works . 88
5.1 Topological assistance module in TCP/IP 88

5.1.1 Topological assistance in MPLS 89
5.1.2 Topological assistance in SDN 90

5.2 Normalized Multiflow Congestion Control in TCP/IP . . 93
5.2.1 Design and implementation in Linux MPTCP . . 94
5.2.2 Evaluation of MPTCP convergence with NMCC . 95

Chapter 6 Discussion and future work . 103
6.1 Multisource and multipath made easy in PSI 103
6.2 Delay-based end-to-end congestion detection in ICN . . . 105
6.3 mmTP design for NDN 106

Chapter 7 Conclusions . 109

Appendix A Acronyms . 111

Bibliography . 113

iv

LIST OF FIGURES

Figure 2.1: A PSI network consisting of Forwarding Nodes (FN), Rendezvous
Nodes (RN), a Topology Manager Node (TM) and hosts. 9

Figure 3.1: An example of multiflow transfer where two paths (multipath)
are established to two content sources (multisource), thus de-
ploying four paths in total. 13

Figure 3.2: An example of multipath transfer in the TCP/IP architecture
based on multisource. The single-homed receiver associates
its address with the addresses of many single-homed content
sources, in order to deploy multiple end-to-end connections. . . 15

Figure 3.3: An example of multipath transfer in the TCP/IP architecture
based on multihoming. The multihomed receiver uses two IP
addresses to deploy two end-to-end subflows with the multi-
homed content source. 17

Figure 3.4: The two handshakes required for establishing two MPTCP sub-
flows. “R-A/B” are random numbers selected by the hosts to
avoid replay attackes. “Token-B”, which is generated from Key-
B, is used for authenticating the new subflow. “HMAC-A/B”
are the Hash-based Message Authentication Codes (HMACs) of
the hosts. 19

Figure 3.5: An example of multipath transfer in the TCP/IP architecture
based on the MPLS source routing technique. IP traffic enters
the source-routed network via the ingress router that shares the
traffic volume among different explicitly defined paths until the
egress router. The same approach is followed by most source
routing techniques [1, Sect.II.A]. 21

Figure 3.6: An example of multipath transfer in the TCP/IP architecture
based on overlay routing. The single-homed endpoints com-
municate through two intermediate relay points, thus forcing
multipath delivery with enhanced path diversity. Often overlay
networks are combined with other techniques, such as multi-
homing with SOCKS servers [2] and multisource, as presented
in this figure. 24

Figure 3.7: An example of the TCP-friendliness issue. The single-path con-
nection (red dashed line) gets 1/(N +1) MB/s when competing
in the same bottleneck (yellow link) with a multiflow connec-
tion of N subflows (green lines). Notice, that the issue is in-
dependent of the number of exploited sources, thus concerning
multisource and multipath in general. 31

v

Figure 4.1: mmTP operation phases: (a-b) slow-path rendezvous, where
connection is established, and (c) fast-path rendezvous, where
data transfer takes place. 44

Figure 4.2: mmTP operation during fast-path rendezvous. FIDs correspond
to different paths to the stateless content sources. Data chunks
are self-identified through algorithmic identifiers in the form of
“/content name/chunk ranking”, i.e. “/a/1” is the 1st chunk
of content “a”. The pull transfer model and the named data
chunks allow distributed on-path chunk-level caching. 45

Figure 4.3: An example of the packet state array. Ri denotes a packet re-
quested by subflow i and D marks a downloaded packet. IDLE
denotes that packet remains to be requested. 49

Figure 4.4: PlanetLab overlay topologies that allow (a) multisource with
three content sources and (b) multiflow with two content sources
and two paths to each source. 49

Figure 4.5: mmTP performance over PlanetLab with three single-source
transfers and a multisource with three sources in 30 experiments. 50

Figure 4.6: mmTP performance over PlanetLab with multisource in normal
mode, where no sources fail, and failure mode, where Publisher 2
fails for 7 s. Each plot depicts the size of the congestion window
(of a subflow) to a specific source. 51

Figure 4.7: mmTP multisource performance over PlanetLab with and with-
out multipath in 4 experiment sets of 10 runs each. 52

Figure 4.8: An example of TM assistance in three different cases of path
composition: (a) Disjoint paths, (b) two paths sharing one link,
(c) three paths sharing two links. 55

Figure 4.9: NMCC (MP) and single-path (SP) window sizes in case of only
“partial” (column a) and “partial and global” congestion events
(column b); row 1 depicts performance without the extension,
row 2 depicts performance with the extension. 66

Figure 4.10: LAN testbed topologies for assessing performance in (a) disjoint
paths and (b) paths with shared bottlenecks. 71

Figure 4.11: mmTP performance in LAN topology with disjoint paths, ex-
ploring friendliness with and without TM assistance. 73

Figure 4.12: NMCC performance in LAN topology with shared bottleneck,
exploring multipath friendliness against (a) all single-flow con-
nections and (b) the average single-flow connection. 74

Figure 4.13: NMCC performance in LAN topology with shared bottleneck,
exploring friendliness in short transfers with and without friendly
SS. 74

vi

Figure 4.14: LIA and NMCC performance comparison (left column) in the
benchmark topologies of [3] (right column). Figures illustrate
the instant bandwidth share of multipath (MP) and single-path
(SP) connections normalized to the overall network capacity
unless otherwise stated. Figure (a) examines NMCC’s efficiency
in terms of TCP-friendliness, (b)-(c) resource utilization and
(e)-(d) load balancing. 76

Figure 4.15: AS-scale topologies: client attachment to the Access Nodes
(AN) of the AS with two access links. The testbed allows config-
uring different access links’ latencies (per user) and in-network
link capacities (per experiment). 81

Figure 4.16: NMCC performance in the domain-scale topologies compared
to LIA under different (a) in-network link capacities and (b)
access link delay ranges. 82

Figure 4.17: mmTP performance in the domain-scale topologies with and
without TM assistance under different path formation policies
and in-network link capacities: (a-c) Yen’s path formation al-
gorithm and (d) Bhandari’s disjoint path formation algorithm.
Topologies are plotted in ascending order by density from the
left to the right. 87

Figure 5.1: LAN testbed topology for evaluating MPTCP in Linux. Two
client VMs are co-hosted in the same client node. 96

Figure 5.2: MPTCP performance in the LAN testbed with two disjoint
paths, different congestion algorithms (rows 1-5) and different
path latencies (columns a-c). 97

Figure 5.3: MPTCP performance in the LAN testbed with two disjoint
paths, different congestion algorithms (rows 1-5) and different
transfer rates (columns a,b). 98

Figure 5.4: MPTCP performance in the LAN testbed with two disjoint
paths, different congestion algorithms (rows 1-5) and different
packet drop rates (columns a,b). 100

Figure 5.5: MPTCP performance in the LAN testbed with two disjoint
paths, different congestion algorithms (rows 1-5) and mismatched
paths in terms of error-rate (column a) and RTT (column b). . 101

vii

LIST OF TABLES

Table 4.1: Average transfer rates with disjoint paths. 72
Table 4.2: Characteristics of the AS topologies used in the domain-scale

experiments. 79

viii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor Prof. George C.

Polyzos and to Associate Professor George Xylomenos for their patient guidance

and enthusiastic support. It has been a great honor working with them. I am

also particularly grateful for the assistance given by Associate Professor Vasilios

A. Siris. His useful and valuable comments helped me progress.

I had the privilege of working at the Mobile Multimedia Lab, with great

colleagues and friends. Christoforos Ververidis, Nikos Fotiou, Pantelis Fragoudis,

Christos Tsilopoulos, Haris Stais, Vaggelis Douros and Xenofon Vasilakos were

the first persons I met there. They were very supportive and working with them

was always educating for me. I was also quite lucky to work with Merkourios

Karaliopoulos, whose comments and suggestions were particularly helpful for ful-

filling this dissertation. Livia Chatzieleftheriou and Kostas Tsioutas belong to the

new generation of the lab and I wish them the best. I would also like to thank

Nikos Zacheilas and George Darzanos for sharing the T.A. burden with me, they

are good friends and I wish them the best. Furthermore, I would like to thank

Nausika Kokkini, Lina Kanellopoulou, Kostas Makedos and Joanna Lellou for shar-

ing everyday life in the lab, making it bearable on bad days and exciting on good

ones.

Finally, I would like to deeply thank my parents, Kostas and Evangelia, and

my sister, Theodosia, for their invaluable support throughout the years. Last, but

surely not least, I have to thank my friends, who are too many to mention here but

in general fall into three categories: beer-buddies, music-mates and surf-brothers.

You know who you are!

ix

VITA

2009 Diploma in Informatics, Athens University of Economics and
Business, Greece

2012 M.Sc. in Information Systems, Athens University of Eco-
nomics and Business, Greece

2018 Ph.D. in Computer Science, Athens University of Economics
and Business, Greece

PUBLICATIONS

Journal Publications

Y. Thomas, G. Xylomenos, and G. C. Polyzos, “Network-Assisted Multipath Con-
gestion Control,” Open Transactions on Communication Systems (OTCS), IFIP,
accepted for publication, 2018.

T. de Cola, A. Ginesi, G. Giambene, G. C. Polyzos, V. A. Siris, N. Fotiou, and
Y. Thomas, “Network and Protocol Architectures for Future Satellite Systems,”
Foundations and Trends in Networking, Vol. 12, No. 1-2, 2017.

Refereed International Conference and Workshop Papers

V. A. Siris, Y. Thomas, and G. C. Polyzos, “Supporting the IoT over Inte-
grated Satellite-Terrestrial Networks Using Information-Centric Networking,” in
Proc. IFIP International Conference on New Technologies, Mobility and Security
(NTMS), Larnaca, Cyprus, November 2016.

Y. Thomas, G. Xylomenos, and G. C. Polyzos, “Multi-flow Congestion Control
with Network Assistance,” in Proc. IFIP Networking, Vienna, Austria, May 2016.

Y. Thomas, G. Xylomenos, C. Tsilopoulos, and G. C. Polyzos, “Object-Oriented
Packet Caching for ICN,” in Proc. ACM Conference on Information-Centric Net-
working (ICN), San Francisco, CA, USA, September 2015

Y. Thomas, P. A. Frnafoudis, and G. C. Polyzos, “QoS-driven Multipath Routing
for On-demand Video Streaming in a Publish-Subscribe Internet,” in Proc. IEEE
International Conference on Multimedia & Expo (ICME) Workshop on Multimedia
Streaming in information-Centric networks (MuSiC), Turin, Italy, June 2015.

Y. Thomas, G. Xylomenos, and G. C. Polyzos, “Exploiting Path Diversity for Net-
worked Music Performance in the Publish Subscribe Internet,” in Proc. Interna-
tional Conference on Information, Intelligence, Systems and Applications (IISA),
Corfu, Greece, July 2015.

x

N. Fotiou, Y. Thomas, V. A. Siris, and G. C. Polyzos, “Security Requirements
and Solutions for Integrated Satellite-Terrestrial Information-Centric Networks,”
in Proc. IEEE Advanced Satellite Multimedia Systems (ASMS) Workshop on Sig-
nal Processing for Space Communications (SPSC), San Diego, CA, USA, June
2014.

Y. Thomas, and G. Xylomenos, “Towards Improving the Efficiency of ICN Packet-
Caches,” in Proc. IEEE International Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness (QShine), Rhodes, Greece, Au-
gust 2014.

Y. Thomas, C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos, “Accelerating File
Downloads in Publish Subscribe Internetworking with Multisource and Multipath
Transfers,” in Proc. World Telecommunications Congress (WTC), Berlin, Ger-
many, June 2014.

C. Tsilopoulos, G. Xylomenos, and Y. Thomas, “Reducing Forwarding State in
Content-Centric Networks with Semi-stateless Forwarding,” in Proc. IEEE INFO-
COM, Toronto, ON, Canada, May 2014.

Y. Thomas, C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos, “Multisource and
Multipath File Transfers through Publish-Subscribe Internetworking,” in Proc.
ACM SIGCOMM Workshop on Information-Centric Networking (extended ab-
stract), Hong Kong, China, August 2013.

C. N. Ververidis et al. “Experimenting with Services over an Information-Centric
Integrated Satellite-Terrestrial Network,” in Proc. of the IEEE Future Network
and Mobile Summit (FutureNetworkSummit), Lisbon, Portugal, July 2013.

C. Stais, Y. Thomas, and G. Xylomenos, “Networked Music Performance over
Information-Centric Networks,” in Proc. of the IEEE International Conference on
Communications (ICC) Workshops, Budapest, Hungary, June 2013.

G. Parisis et al. “Demonstrating Usage Diversity over an Information-Centric
Network,” in Proc. of the IEEE INFOCOM Workshops, Turin, Italy, April 2013.

G. Xylomenos, C. Tsilopoulos, Y. Thomas, and G. C. Polyzos, “Reduced Switching
Delay for Networked Music Performance,” in International Packet Video Workshop
(Poster Session), San Jose, CA, USA, December 2013.

xi

ABSTRACT OF THE DISSERTATION

Multipath Internet Transport

by

Yannis Thomas

Doctor of Philosophy in Computer Science

Athens University of Economics and Business, Athens, 2018

Professor George C. Polyzos, Chair

The proliferation of smartphones, with their multiple interfaces, and data

servers, with their high-performance interconnection networks, has revived interest

in multipath transport protocols. Multipath-TCP (MPTCP), the multipath exten-

sion of TCP, is currently available in the Apple iOS and Linux operating systems,

enabling bandwidth aggregation, load balancing, and resilience to failures and dis-

connections due to mobility. However, the deployment of multipath transport is

challenged by the address-based TCP/IP communication, which does not facilitate

the seamless establishment of multiple paths among two end-points, and by the

distributed hop-by-hop TCP/IP routing, which does not ensure the disjointness of

the paths. Even when multiple paths are deployed, the use of many subflows is

both a blessing and a curse for multipath TCP/IP protocols, as they tend to grasp

xii

an unfair share of bandwidth, thus becoming unfriendly to single-path TCP flows.

The latest congestion control algorithms for MPTCP attempt to equalize the cu-

mulative subflow throughput with the throughput of the fastest single-path flow

in the same link, thus exchanging performance for TCP-friendliness. While TCP-

friendly in the long run, these approaches exhibit high throughput convergence

latency, thus being effective only for long-lived flows.

Our contribution to multipath transport is two fold. First, we introduce the

multipath multisource Transport Protocol (mmTP), a transport-layer protocol that

offers reliable multipath and multisource content delivery in the Publish-Subscribe

Internet (PSI) architecture. mmTP increases the utilization of network processing

resources, exploits on-path and off-path caching and does not require additional

state at routers, or complex signaling during connection establishment. Second,

we propose a novel hybrid multipath congestion control algorithm that enhances

resource utilization through greedy friendliness, a design that meets the TCP-

friendliness constraint only when is needed. The hybrid congestion control scheme

consists of the novel end-to-end Normalized Multiflow Congestion Control (NMCC)

algorithm, which offers accurate and instant convergence to TCP-Friendliness, and

an in-network topology management module, that provides disjoint paths when

possible and notifies end-users about shared bottlenecks otherwise. We finally

discuss the integration of the proposed designs with the TCP/IP architecture:

mmTP through Software Defined Networking (SDN) and NMCC through MPTCP

.

xiii

Chapter 1

Introduction

Experience with content distribution applications and protocols indicates

that multisource and multipath [4], i.e. the use of multiple sources and multi-

ple paths to each source, respectively, can benefit both network operators and

end-users. The exploitation of multiple paths offers bandwidth aggregation, net-

work load balancing and resilience to link failures, while the use of multiple sources

can further enhance throughput and offer resiliency to source failures. As a result,

multisource and multipath, collectively referred to as multiflow, provide load bal-

ancing, higher resource utilization and fault tolerance.

Multiflow is flourishing in the constantly shifting Internet where end-users

evolve to content providers and their devices increase in numbers, as well as pro-

cessing, storage and networking capabilities. By acknowledging that popular con-

tent resides at numerous locations, a case emphasized by the Content Delivery

Networks (CDNs) [5], multisource transport constitutes a timely solution that

suits better to current networking needs and opportunities. In addition, multi-

path lately has gained much attention since multihomed devices, such as servers

in data centers and smartphones with Wi-Fi, Bluetooth and Cellular connectivity,

are responsible for a large portion of Internet traffic [6, 7].

Nevertheless, multiflow is smothered by the singlepath sender-driven TCP/IP

architecture for two reasons: first, the networking model does not endorse the es-

tablishment of multiple paths among two communication endpoints and, second,

the distributed hop-by-hop routing does not assure the disjointness of the routes.

1

2

Therefore, multiflow solutions in the TCP/IP architecture require complicated

techniques with apparent infrastructural and operation overhead in order to, first,

allow the deployment of multiple dissemination flows (i.e. multihoming, CDN and

SOCKS servers [8]) and, second, enhance paths’ disjointness (i.e. Multi-Protocol

Label Switching (MPLS) and Software Defined Networking (SDN) [9, 10]). These

solutions present sensible concerns with regard to performance efficiency, cost or

scalability. For example, the BitTorrent [11] multisource application-level protocol

requires an external mechanism to discover the multiple sources and does not allow

fine-grained congestion control, thus compromising network fairness. The Multi-

path TCP (MPTCP) [12] protocol, which is the flagship of multipath in TCP/IP,

being available in iOS (since iOS7) and the Linux Kernel, typically requires mul-

tiple network addresses in order to establish multiple subflows, thus reducing the

range of supported devices. Finally, MPLS and SDN enhance path diversity, but

present serious scalability problems, due to the induced forwarding state at the

on-path routers.

Multiflow congestion control is also a challenging topic for the TCP/IP

architecture that primarily endorses end-to-end singlepath connectivity. Conges-

tion control for multiflow protocols is more challenging than for single-path ones,

needing to address multipath-specific issues, such as bandwidth aggregation, TCP-

friendliness, stability and responsiveness [13]. A significant body of research has

focused on the TCP-friendliness issue [14], where a multiflow connection of N flows

grasps N times more bandwidth than a single-path flow that competes in the same

bottleneck. To avoid this issue, the IP-based TCP-friendly multiflow protocols typ-

ically reduce their overall aggressiveness so as to grasp about the same bandwidth

with the singlepath TCP connections. However, blindly restricting multipath flows

leads to poor responsiveness and degraded resource utilization when friendliness

to single flows is not necessary, for example, when subflows perform over disjoint

paths. Unfortunately, in the TCP/IP architecture each node is only aware of its

own routing decisions, hence it always assumes that shared bottlenecks exist in

order to prevent unfair resource sharing. Although the friendliness constraint is

vital in theory, the “always-friendly” policy is inefficient in practice, leading to

3

underutilization of network resources in realistic AS-scale scenarios.

A second weakness of existing IP-based multiflow congestion control algo-

rithms is their slow convergence to TCP-friendliness. The majority of proposed

solutions are based on the fluid model analysis of Kelly et al. [15], a well es-

tablished method for deriving congestion control algorithms. The Linked Increase

Algorithm (LIA) [3], the Opportunistic Linked Increase Algorithm (OLIA) [16] and

the Balanced Link Adaptation (Balia or BALIA) algorithm [17], three of the most

popular congestion control options for MPTCP, use the model to deduce a sufficient

(equilibrium) condition that dynamically defines the amount of window increase,

upon receipt of an ACK, and the amount of window decrease, upon receipt of a

congestion event, so as to achieve high resource utilization, stability, responsiveness

and TCP-friendliness. While accurate in the long run, as they manage to equalize

the transfer rates in “steady state”, they can exhibit poor convergence, requiring

long time periods until connections grasp their friendly share of bandwidth, thus

offering TCP-friendliness only to long-lived flows.

1.1 Motivation for this work

Information-Centric Networking (ICN) [18] is a novel networking approach,

that evolves the Internet architecture away from the host-centric end-to-end model,

towards a content-centric or information-centric model. One of the driving forces

in ICN research is the design of architectures and protocols that efficiently utilize

network resources. In addition to communication, ICN brings data storage and

computation into the spotlight of available network resources. Therefore, most

ICN-inspired data delivery mechanisms exploit caching, either on-path for packets

cached in routers (short-term memory) or off-path when entire content-objects

reside in dedicated caching servers (long-term memory). On-path caching is an

instance of the multisource delivery, since the content is delivered by the original

content source and by the caches that are located on the dissemination paths.

Additionally, off-path caching is a form of multisource and multipath, since the

requests for content can be redirected by the network to remote caches, that are not

4

located on the dissemination path. Both transfer techniques are offered natively

in ICN networks.

The Publish Subscribe Internet (PSI) architecture [18] is an instantiation

of the ICN concept based on the publish/subscribe paradigm. Besides in-network

caching, PSI offers name-based content resolution via a dedicated network func-

tionality, the Rendezvous, which allows seamlessly many-to-many communication

among content sources, thus supporting multisource. Additionally, PSI supports

centralized path selection via a special network entity, the Topology Manager, and

source routing via LIPSIN forwarding [19], which allow natively the establishment

of multiple dissemination paths among two communication endpoints, thus deliv-

ering multipath.

We exploit these features to present the Multisource and Multipath Trans-

fer Protocol (mmTP), the first multiflow transport protocol for PSI. mmTP is

designed to utilize all types of network resources by combining well-known content-

distribution techniques into a single protocol. mmTP is receiver-driven and sup-

ports on-path caching, thus utilizing the network’s short-term memory. It supports

downloading files from multiple sources, thus utilizing the network’s long-term

memory. Furthermore, mmTP supports multiflow, i.e. an mmTP transfer can

fetch content from multiple sources and use multiple paths to transfer content

from each source. Last, but not least, mmTP supports all these features without

complicating network operation as it does not require extending PSI with complex

signaling or router operation.

A significant contribution of mmTP is the introduction of a novel multi-

flow congestion control design that can exploit the topological knowledge of the

network in order to better balance performance and TCP-friendliness. The hybrid

congestion control scheme consists of two independent modules: (i) Normalized

Multiflow Congestion Control (NMCC), an end-to-end multiflow-aware algorithm,

and (ii) an in-network topological information mechanism that assists NMCC.

NMCC is a simple yet effective algorithm that manages bandwidth aggregation

under the friendliness constraint, offering accurate and instant TCP-friendliness,

even in the face of difficult conditions, such as mismatched paths and sudden

5

changes in congestion levels. The in-network mechanism participates directly to

congestion control by selecting paths, e.g., only disjoint paths, or indirectly by

providing information about shared bottlenecks, thus allowing NMCC to practice

greedy friendliness, i.e, ignoring the friendliness constraint when paths are disjoint.

Although our design is inspired by the PSI architecture, IP networks that operate

over technologies that utilize centralized path computation components, including

MPLS and SDN, are in principle capable of providing path overlap information to

the end-to-end congestion controllers, thus being compatible with our solution.

Finally, the NMCC algorithm presents a novel approach to end-to-end mul-

tipath congestion control that combines instant TCP-friendliness and high resource

utilization. NMCC converges instantly by exploiting a deterministic scheme that

equalizes the throughput growth rate of the subflows, rather than the throughput

rate itself. While this approach constitutes a minor modification to the exist-

ing models of multiflow congestion control, it results in significant gains, such as,

instant convergence to friendliness. In addition, NMCC is compatible with the

MPTCP congestion control handlers of the Linux Kernel, hence it is seamlessly

integrated with the Linux implementation of MPTCP which is used in several of

our experiments in order to verify the gains of NMCC.

1.2 Contributions

Our contributions, which we describe in this dissertation are:

• We review the PSI ICN architecture and present its main design choices with

respect to multipath transport.

• We review the challenges of multipath transport in the TCP/IP architecture,

as well as related solutions. Our discussion focuses on existing protocols

and algorithms for establishing multiple dissemination paths and performing

congestion control.

• We present the multisource and multipath Transfer Protocol (mmTP), a mul-

tiflow transport protocol for the PSI architecture. mmTP offers multipath

6

and multisource content delivery without requiring complex signaling during

path establishment or additional routing state in the routers.

• We present a hybrid multipath congestion control that combines end-to-

end and in-network operation. Our technique introduces the discovery and

exploitation of topological information so as to enhance resource utiliza-

tion, thus constituting the first solution to offer a deterministic and com-

plete implementation of the greedy friendliness concept. Through network

domain-scale simulations, we estimate that greedy friendliness can enhance

the average network resource utilization by up to 160% compared to single-

path and by up to 15% compared to standard multipath.

• We present and evaluate the Normalized Multiflow Congestion Control (NMCC)

algorithm, a novel end-to-end multipath congestion control algorithm that

offers high resource utilization and instant convergence to TCP-friendliness.

Through experiments with the Linux MPTCP implementation, we verify

that NMCC offers friendliness to single-path connections regradless of trans-

fer duration, while LIA, OLIA and BALIA can require hundreds of seconds

before they are effective.

• We discuss the application of mmTP’s hybrid congestion control in the

TCP/IP architecture through the MPLS or SDN techniques, as well as the

integration of NMCC with the Linux implementation of MPTCP.

1.3 Dissertation outline

The remainder of the dissertation is organized as follows. Chapter 2 pro-

vides a review of the Publish-Subscribe Internetworking (PSI) architecture, as well

as the ICN fundamental concepts. Chapter 3 discusses multipath requirements

and presents existing multipath solutions specifically designed to cope with these

requirements. Chapter 4 details our multipath solution, which basically consists

of the mmTP multiflow protocol and the NMCC end-to-end congestion control

algorithm. Chapter 5 discusses the application of our solutions to the current

7

Internet through the SDN technology and the MPTCP protocol. Chapter 6 dis-

cusses topics that are related to multipath transport in ICN, such as delay-based

end-to-end congestion detection, and our future work. Finally, the conclusions of

this dissertation are presented in Chapter 7.

Chapter 2

Information-centric Networking

(ICN)

The Internet was created at a time when the main goal was to support

military and research purposes. Since then, it has evolved significantly, making it

an important component of mainstream modern society and increasing the number

of stakeholders. As a result we have moved from the point where the common goal

was to provide interconnection between existing networks, to another where access

to content is the major use case.

Inevitably, through the years, the question has changed from where to what.

This transition revealed that host-to-host communication, as a networking abstrac-

tion chosen to fit a problem of the ’60s, is insufficient for the purposes of the mod-

ern Internet which include content availability, security and network performance.

Thereupon, a new network technology was progressively developed, attempting to

place content in the center of all networking functions. The result of such efforts

is the birth of a fundamental shift in communications and networking presented

by Information-Centric Networking (ICN).

ICN, also known as content-aware, content-centric or data-oriented net-

working, focuses on finding and transmitting information to end-users instead of

connecting end hosts for communication. In contrast to current networks’ lack of

awareness about the type of content they are transporting and their consequent

inability to adapt and offer the appropriate Quality of Experience (QoE) to the

8

9

Figure 2.1: A PSI network consisting of Forwarding Nodes (FN), Rendezvous
Nodes (RN), a Topology Manager Node (TM) and hosts.

end-users, ICN treats information as a primitive. The main objective of ICN is to

make information consumption a core service of the network besides facilitating

dissemination of content between providers and consumers.

2.1 Publish Subscribe Internetworking (PSI)

The Publish Subscribe Internetworking (PSI) [18] architecture follows the

ICN paradigm and completely replaces the TCP/IP protocol stack with a publish-

subscribe protocol stack. PSI treats information or content objects as publications,

content sources as publishers and content consumers as subscribers. Publishers

and subscribers are provided with a publish/subscribe API for advertising and

requesting information, respectively. A fundamental design tenet in PSI is the

clear separation of its core functions: (a) the Rendezvous function tracks available

publications and resolves subscriptions to publishers, (b) the Topology Manage-

ment function monitors the network topology and forms forwarding paths and

(c) the Forwarding function undertakes packet forwarding. Thereafter, network

nodes in a PSI network are classified into Rendezvous Nodes (RNs), Topology

Managers (TMs) and Forwarding Nodes (FNs), as shown in Fig. 2.1.

The information objects are named with a (statistically) unique pair of IDs,

the scope ID and the rendezvous ID. The rendezvous ID is the actual identity for a

particular object that needs to belong to at least one information scope, while the

scope ID groups related content items. Content names in PSI are flat but scopes

10

can be organized in scope graphs of various forms, including hierarchies, therefore

a complete name consists of a sequence of scope IDs and a single rendezvous ID.

Scopes serve as a means of defining the relevance of content items within a given

context and enforcing “boundaries” based on some dissemination strategy for the

scope. For example, a publisher may place content under a “single-path” scope or

a “multipath” scope, with each scope having different content delivery patterns.

To deliver information in PSI, a publisher first advertises a content object

by publishing it to the Rendezvous function. Subscriptions are also handled by the

Rendezvous function, which locates available publishers for the requested content.

The Rendezvous function is jointly performed by several RNs possible organized as

a Distributed Hash Table (DHT), thus distributing the load of tracking publications

and serving subscriptions. When publishers and subscribers of the same content

are found, the Rendezvous function asks the Topology Management function to

compute suitable paths in order to deliver the requested information. The Topology

Management function is carried by one or more TM nodes that maintain an up-to-

date view of the network topology by gathering link-state information directly from

the FNs. Typically, the TM shapes the forwarding path between the publisher(s)

and the subscriber(s) and creates the corresponding Forwarding Identifier (FID).

For packet forwarding, PSI employs LIPSIN, an efficient explicit-routing scheme

based on Bloom filters [19], that allows source routing without inducing state

overhead at the in-network routers. Specifically, each network node assigns a tag,

i.e., a long bit string produced by a set of hash functions, to each of its outgoing

links, and advertises these tags via the routing protocol. A path through the

network is then encoded by ORing the tags of its constituent links and the resulting

Bloom filter is included in each data packet. When a data packet arrives at a FN,

the FN simply ANDs the tags of its outgoing links with the Bloom filter in the

packet; if any tag matches, then the packet is forwarded over the corresponding

link. In this manner, the only state maintained at the FNs is the list of link tags.

Multicast transmission can be achieved by simply encoding the entire multicast

tree into a single Bloom filter, but multisource and multipath are also favored by

this stateless source-routing technique. After the LIPSIN FID is formed, the TM

11

hands it to the publisher, which uses it to transmit the requested publication over

the encoded path.

Chapter 3

Multipath transport

3.1 Introduction

In computer networks, the term multipath describes an efficient content de-

livery pattern that is associated with the establishment of multiple dissemination

routes, also known as paths, for delivering an individual content item to a receiv-

ing host. Multipath is a generic term that may refer to different path exploitation

patterns with distinct gains, thus constituting an agile solution. In detail, the path

exploitation can be concurrent or sequential, redundant or complementary, thus

exhibiting different advantages and satisfying a wide variety of requirements. For

instance, a transfer scheme that delivers content concurrently via multiple paths

is more likely to avoid performance bottlenecks, thus offering higher throughput.

Oppositely, a transfer scheme that exploits paths in sequence exhibits enhanced

resilience to network failures as connectivity is strengthened by the exploitation of

alternative paths [20]. A connection that proceeds to redundant content transmis-

sions, where information is replicated over multiple paths, exhibits timely resilience

to network errors since corrupted or lost packets can be recovered over the backup

path without temporal cost. On the other hand, a connection that distributes the

content delivery over multiple paths increases the resource utilization of the net-

work, thus realizing load balancing and congestion avoidance. All in all, multipath

constitutes an efficient communication pattern that network operators and end-

users exploit “a la cart” in order to attain valuable performance advantages, such

12

13

as increased transfer rate, better utilization of network resources and improved

resilience to network failures.

A second criterion for specializing multipath, besides path exploitation

schemes, is the number of content sources participating in the transmission. While

the traditional IP networking assumes a single source per communication, expe-

rience from CDNs and peer-to-peer networks suggests that popular information

pieces are stored in multiple locations [4, 5], thus emphasizing the potential of

multisource. Multisource is a transfer pattern where a receiver fetches an individ-

ual content item from multiple content sources. Being a specialization of multi-

path, multisource preserves all the aforementioned performance advantages, but

also introduces two substantial differences: first, it is supported by the address-

based TCP/IP networking model and, second, it is harder to be managed by the

sender-driven TCP/IP model. The differences between multipath and multisource,

which are emphasized by the TCP/IP architecture, are diminished by the ICN ar-

chitectures, where internetworking is information-based and the receiver-driven

paradigm is dominant. Consequently, our discussion, analysis and evaluation of

multipath transport in the context of ICN handles multisource and multipath in-

discriminately; collectively mentioned as multiflow, it indicates the establishment

of multiple paths to multiple content sources.

Figure 3.1: An example of multiflow transfer where two paths (multipath) are
established to two content sources (multisource), thus deploying four paths in total.

14

3.2 Multipath solutions

3.2.1 Multipath in TCP/IP

Multipath is challenged by the singlepath sender-driven TCP/IP architec-

ture mainly for two reasons: first, the address-based networking model does not

facilitate the establishment of multiple paths among two communication endpoints

and, second, the distributed hop-by-hop routing does not ensure the disjointness

of the routes, thus reducing the potential gains. We hereby present four categories

of multipath solutions that offer multipath in the TCP/IP architecture with ap-

parent costs and gains. Although the list of protocols that are discussed in each

category is not exhaustive, we select some indicative solutions that highlight the

strengths and weaknesses of each category. Readers are referred to [1] for a thor-

ough survey on the proposed network-level solutions for building multiple routes

in IP networks.

Multisource

Multisource constitutes a special case of multipath where a receiver fetches

an individual content item from multiple content sources, thus shaping a many-to-

one transfer pattern. Each content source is identified by a different IP address that

can be used for establishing an individual connection, thus allowing the creation of

multiple transmission flows from the many sources to the single receiver. Despite

many-to-one connections not being supported by the transport-layer protocols of

the TCP/IP architecture, multisource solutions can be seamlessly deployed at the

application layer. However, the many-to-one communication model is incompati-

ble with TCP-like sender-driven transfer control, since the cooperated congestion

control or path scheduling of multiple sources is rather complex and process in-

tensive, e.g., using fountain coding [21]. Consequently, multisource transfers are

usually realized by receiver-driven application-level protocols.

BitTorrent The BitTorrent [11] protocol is a peer-to-peer multisource application-

level protocol for TCP/IP networks with increased penetration in file sharing ser-

15

Figure 3.2: An example of multipath transfer in the TCP/IP architecture based
on multisource. The single-homed receiver associates its address with the ad-
dresses of many single-homed content sources, in order to deploy multiple end-to-
end connections.

vices. BitTorrent exploits the fact that popular items reside at multiple locations

and establishes multiple connections to many locations in a receiver-driven man-

ner, thus offering enhanced throughput, loose coupling of end-users and, in turn,

resilience to sender failures. In order to discover multiple sources, BitTorrent ex-

ploits a meta-file that lists the IP addresses of locations delivering that content.

The meta-file is necessary for realizing multisource and is acquired through out-

of-band mechanisms, such as e-mail or Web Servers. The detailed description of

BitTorrent is beyond the scope of this Dissertation, however it is worth noting that

the content is fragmented into data chunks and the receiver utilizes an indexing

data structure that maps chunks to senders. Thereupon, the receiver starts fetch-

ing simultaneously multiple chunks from multiple stateless senders, thus avoiding

potential bottlenecks at the senders’ side and enhancing transfer rate. In case a

sender is unreachable or irregularly slow, the receiver can choose to download the

chunk from different source, achieving resiliency against failures. The transfer fin-

ishes when all data chunks are downloaded and the fragmented information item

is reconstructed.

BitTorrent is a rather effective multipath tool that offers seamless establish-

ment of multiple physically-divergent paths. The deployment of multiple single-

path connections that independently fetch complementary data chunks does not

require any modifications to the network or the end-hosts. Furthermore, the phys-

ical distance of the sources combined with IP/TCP topology-based routing is most

16

likely to enhance the divergence of paths, thus enhancing the probability of avoid-

ing performance bottlenecks. On the other hand, BitTorrent requires the out-of-

bound mechanism for acquiring the meta-file information, which is not computa-

tionally intense for the network, but reduces the application range of the protocol

to mainly file-sharing services. Moreover, BitTorrent uses multiple parallel TCP

connections for downloading simultaneously many data chunks, thus presenting

rather coarse-grained traffic management.1 The exploitation of TCP at chunk-

level penalizes the efficiency of BitTorrent in terms of congestion and flow control,

since it presents over-aggressiveness and harms network fairness, as discussed in

detail in Section 3.3.

DASH The Dynamic Adaptive Streaming over HTTP (DASH) [22] protocol is

a streaming technique that dynamically adapts video quality to the end-user’s

capabilities and network conditions, e.g., shift from high to low resolution video

when a device moves from a fast to a slower connection, thus avoiding playback

interruptions and using network resources more efficiently. Although DASH is

not famous for its multisource capabilities, it can download content from many

locations-sources, e.g., exploiting that replication of information is spread physi-

cally through Content Delivery Networks (CDNs) [5], a network of cache servers

that are located closer to the users so as to offload origin servers and reduce the

download latency. Acknowledging that each user-device has different processing,

downloading and preview capabilities and that the video content can be represented

in different quality levels that can be stored in multiple servers, DASH proposes

a receiver-driven chunk-based multisource-compatible streaming technique where

the end-devices dynamically shift between different quality levels and, possibly,

sources in order to adapt the quality of the service to their current requirements.

Similarly to BitTorrent, DASH requires content fragmentation into data chunks

and a meta-file that maps “chunk, quality of representation” tuples to URLs. Dif-

ferently to BitTorrent, each tuple is mapped to only one URL and data chunks

are fetched in sequence thus disallowing simultaneous source exploitation. Con-

1Although TCP is used at chunk-level, we consider BitTorrent receiver-driven due to the small
granularity of data chunks.

17

sequently, the multipath gains presented by DASH include bottleneck avoidance,

resilience to network failures and seamless user mobility, but exclude bandwidth

aggregation. Finally, in video streaming services, some form of source-probing

is required to detect the quality of the available paths, in order to shift timely

between different sources and enhance resilience. Nevertheless, such a feature is

not provided by DASH for minimizing the bandwidth requirements of the service,

therefore a single source usually delivers the different representations of the video.

Multihoming

Multihoming describes the simultaneous connection of a host to multiple

networks. Each network assigns a different IP address that can be used to estab-

lish a different transmission flow, hence the creation of the individual connections

in the TCP/IP architecture is offered to multihomed peers seamlessly. Although,

the requirement of an additional physical network interface has discouraged the

wide exploitation of multihoming in the past, the current proliferation of smart-

phones and datacenters, where devices are usually equipped with multiple network

interfaces, revived the attention to multipath via multihoming.

Figure 3.3: An example of multipath transfer in the TCP/IP architecture based
on multihoming. The multihomed receiver uses two IP addresses to deploy two
end-to-end subflows with the multihomed content source.

MPTCP The Multipath-TCP (MPTCP) protocol [12, 23], the multipath exten-

sion of TCP, is proposed for transmitting content over multiple paths among hosts

with multiple addresses. The protocol offers the same type of service to applica-

18

tions as the single-path TCP protocol, but also provides the necessary components

to establish and manage multiple TCP flows across potentially disjoint paths. An

MPTCP connection begins similarly to a regular TCP connection, thus deliver-

ing backwards compatibility, but enriches the semantics of the TCP handshake

in order to establish additional flows. We detect two types of extended TCP

handshakes that take place sequentially: the advertising and the joining. The

design of the two extended handshakes is rather sophisticated and complex allow-

ing two methods (explicit and implicit) for adding and removing a flow [23]; we

hereby present a simplified overview of the procedure. At first, users proceed to

the advertising handshake that includes two important information pieces: (i) the

MP CAPABLE option, that marks the initial MPTCP flow, and (ii) some iden-

tifiers/keys for authenticating the subsequent flows of the same MPTCP session.

Both hosts are required to include the MP CAPABLE option during the joining

handshake, otherwise MPTCP falls back to single-path TCP. Second, users pro-

ceed to the joining MPTCP handshake that includes three essential information

pieces: (i) the MP JOIN option, that marks a subsequent MPTCP flow, (ii) the

authentication keys of the advertising handshake in order to associate the subse-

quent with the initial flow, and (iii) the addresses that the subsequent flow will

be build upon. Interestingly, the identifier of an MPTCP flow is akin to the TCP

5-tuple (protocol, local address, local port, remote address, remote port), thus al-

lowing multiple MPTCP flows per IP address via port multiplexing. This feature

enables multipath transfers for single-homed devices, albeit the different flows will

be typically routed over the same path thus nullifying the multipath gains.2 After

the MP JOIN handshake takes place, the subsequent flow is combined with the

existing session and, thereon, is called subflow because the session continues to

appear as a single connection to the applications at both ends.

The main advantage of MPTPC is not requiring any modification to the

network operation, thus allowing instant and partial protocol adoption. MPTCP

is currently available in the Linux kernel3, as well as in Apple’s iOS7 and later ver-

2In this case Equal Cost MultiPath (ECMP) can be considered at the network routers in order
to split the MPTCP stream over different paths based on the hash of the MPTCP header [24].

3https://www.multipath-tcp.org/

19

Figure 3.4: The two handshakes required for establishing two MPTCP subflows.
“R-A/B” are random numbers selected by the hosts to avoid replay attackes.
“Token-B”, which is generated from Key-B, is used for authenticating the new sub-
flow. “HMAC-A/B” are the Hash-based Message Authentication Codes (HMACs)
of the hosts.

sions. On the other hand, we detect three important weaknesses of MPTCP in the

TCP/IP architecture. First, the requirement for multihoming reduces significantly

the scope of support, offering multipath mainly to smartphone users and data cen-

ters; in [2] the authors enumerate the network setups that currently allow MPTCP,

unveiling the deployment overhead of multipath in the TCP/IP architecture. Sec-

ond, (sub)flows that carry topologically proximate IP addresses are most likely

to be forwarded over the same paths due to the topology-based TCP/IP routing.

Third, studies have shown that four and six paths are required to effectively utilize

network resources in Internet and data center topologies respectively [1, 25], hence

the “2-homed” smartphone devices can not deliver the promised gains. Later in

this section we discuss the integration of MPTCP with Software Defined Network-

ing (SDN) in order to address these weaknesses, providing broader device support

and enhanced performance due to increased path diversity.

SCTP The Stream Control Transmission Protocol (SCTP) [26] is a transport-

layer protocol for the TCP/IP architecture that exploits multihoming so as to

20

enhance the connectivity of the session and, in turn, the availability of the infor-

mation. Similarly to MPTCP, SCTP is connection-oriented, providing a list of

IP addresses to each endpoint in order to establish multiple flows. Oppositely to

MPTCP, SCTP is chunk-based and receiver-driven, thus allowing the receiver to

explicitly pull pieces of content from the multihomed sender, and exploits paths

sequentially, thus enhancing resilience to network failures. A Concurrent Multi-

path Transfer (CMT) extension for SCTP [27] has also been proposed, but is not

included in the corresponding RFC [26].

Typically a special function, called path management, chooses the destina-

tion address for each outgoing SCTP packet based on the perceived reachability

status of the subflows. In case other packet traffic is inadequate, heartbeats are

used to monitor the reachability. The path management function is also respon-

sible for reporting the set of local addresses during the association/startup of the

SCTP end-users. An SCTP association between two endpoints is initiated with an

INIT message, which is sent by the SCTP receiver to the sender, and is followed by

an INIT ACK message, that is sent by the sender to the receiver in order to verify

the connection establishment. Both messages can carry a set of local addresses

that are used for establishing multiple subflows.

SCTP is an effective multipath protocol that was among the first to open

up the exploitation of multihoming. Nevertheless, the requirement of additional

network interfaces lessened its market penetration, since the rise of multihomed

devices is quite recent. In addition, the concurrent exploitation of paths has not

been explored sufficiently yet, since no studies elaborate on the CMT-SCTP real-

ization over the Internet (e.g., traversing middle-boxes [28]), and experience from

MPTCP’s deployment in the Internet shows that multipath transmission in the

TCP/IP architecture is rather complicated [29]. Therefore, SCTP is a multipath

solution that effectively enhances information availability, however CMT-SCTP

is not studied in depth and SCTP is generally smothered by Internet’s ossifica-

tion [30].

21

Source routing

According to the source routing paradigm, the source of a network packet

specifies the complete route until the destination [31]. In this way, path formation

can meet distinct requirements, such as guaranteed paths’ disjointness. Typically

a source routing mechanism includes two steps: first, discovering routes and encod-

ing the forwarding information and, second, embedding the discovered forwarding

information in the packet’s header. Then, the on-path routers use the forwarding

information to select the next destination of the packet, being usually unaware of

the entire path. The main advantage of source routing is supporting the imple-

mentation of effective traffic engineering mechanisms that map explicitly flows to

dissemination paths, such as Differentiated Services (DiffServ) [32]. Oppositely,

the main weakness of most source routing techniques compared to hop-by-hop

routing is the induced forwarding state, that is either placed at the packets or the

in-network routers, thus lessening the scalability of the mechanisms.

Figure 3.5: An example of multipath transfer in the TCP/IP architecture based
on the MPLS source routing technique. IP traffic enters the source-routed network
via the ingress router that shares the traffic volume among different explicitly
defined paths until the egress router. The same approach is followed by most
source routing techniques [1, Sect.II.A].

MPLS Multiprotocol Label Switching (MPLS) [9] is a network-layer routing tech-

nique that offers source routing in IP networks via label-stacking. MPLS is ubiq-

uitously implemented in backbone-networks of ISPs in order to apply QoS-based

traffic control based on the DiffServ approach; it classifies the incoming IP flows in

22

different classes and routes them via predefined unidirectional paths, called Label-

Switched Paths (LSPs) or MPLS tunnels. The LSPs are materialized by the three

different types of MPLS routers: one ingress MPLS router, that interfaces the

MPLS network with the IP senders, multiple transit label switched routers, that

forward packets along the LSP, and one egress MPLS router, which interfaces the

MPLS network with the IP receivers. The ingress router receives IP traffic and

prepares it for traversing the MPLS tunnel which includes mapping packets to a

class, inserting the stack of labels that encodes the LSP of that class and forward-

ing them to the next transit router. When a labeled packet is received by a transit

label-switched router, then the top label is examined and, typically, popped. If the

label is found in the local lookup table that maps labels onto outgoing ports, then

the packet is forwarded accordingly. Finally, when the packet reaches the egress

router then the last label has been removed, hence the initial IP packet is for-

warded to its IP destination. Consequently, besides MPLS-specific functionality,

the egress router requires IP routing capabilities.

MPLS comes with apparent weaknesses such as additional infrastructure

requirements and coarse-grained classification. The infrastructural requirements

limit the application of MPLS to backbone networks, and, in turn, reduce the

exploitation of topological richness. Furthermore, MPLS is designed for traffic

engineering in Backbone networks, hence source routing relies on traffic trunks,

which constitute aggregates of traffic flows belonging to the same class. This

approach is too coarse-grained to apply multipath delivery of a single information

item.

SDN Software Defined Networking (SDN) constitutes a new architectural paradigm

for realizing network functions, such as routing and load balancing [10]. SDN

decouples the control and user planes of the networking equipment similarly to

MPLS, but offers more flexible and fine-grained source routing. It logically cen-

tralizes the network intelligence (i.e. the control plane) by introducing a special

network actor, named SDN controller, which discovers on-the-fly the dissemination

paths and “encodes” them as rules to the forwarding nodes, named SDN switches.

The controller sends to the switches explicit rules that bind certain flows to their

23

next-hops, thus creating virtual paths and allowing source routing. When a packet

arrives at a switch, the rules indicate the outgoing port that the packet must be

forwarded on. If such rule does not exist then the packet is redirected to the con-

troller that determines the dissemination flow and installs the corresponding rules

to the on-path switches. Subsequent packets of the same flow traverse the same

path and avoid redirection to the controller. The “flow-to-rule” matching follows

a rather flexible approach where any field on the packet header can be used as

routing identifier, hence the IP address or the TCP port of a (sub)flow can be used

to route individual connections over specific paths.4

SDN can be used to increase or even create divergence of the MPTCP

paths, albeit connection-level traffic engineering is not its prime objective. In [33]

the authors exploit SDN and MPLS in oder to build WAN-level testbeds that

route the MPTCP traffic of multihomed end-users over different paths. Simi-

larly, in [34] the authors present an MPTCP-aware SDN control plane module

that detects MPTCP subflows and allocates deterministically paths to them. The

module offers increased flexibility in path selection allowing shortest, k-shortest

and k-disjoint paths routing, thus delivering measurable performance gains com-

pared to the stochastic Equal Cost Multipath (ECMP) approach [24]. Similarly,

in [35] the authors present a mechanism that enhances path diversity of MPTCP

subflows in order to avoid performance bottlenecks, also supporting the creation of

multiple paths for single-homed MPTCP users. MPTCP allows the establishment

of multiple subflows between the same IP source-destination pairs via port multi-

plexing. The novelty lays in constructing different SDN routes by “sniffing” the

special MPTCP message for establishing a new path (MP JOIN), thus supporting

multipath communication to single-homed users that multiplex subflows based on

port numbers.

Overall, these studies provide interesting results that promote the integra-

tion of SDN and MPTCP in LANs, WANs and data center networks. Nevertheless,

the number of rules on the SDN switches in large-scale networks is considered too

large to perform at subflow level, hence stateful forwarding of SDN switches and

4The header fields that can be used as forwarding identifiers are specified by the individual
SDN implementation.

24

MPTCP raises substantial scalability concerns. On the contrary, the processing

overhead of the control plane, which includes detecting and encoding paths, is

found to be acceptable, since multiple co-existing SDN controllers can be installed

in large scale networks.

Overlay routing

An overlay network is a “virtual” network created on top of a physical

network. The overlay network offers services that are not supported by the un-

derlaying infrastructure, such as source routing over a hop-by-hop forwarding net-

work. In order to force a specific end-to-end packet route, the overlay nodes act

as routers that are logically connected with symbolic overlay links, thus forming a

self-managed overlay topology. The symbolic links, which are carried by the under-

lying network, can include multiple physical links, thus increasing the scalability

(global-scale overlay networks can be build upon few overlay links) but, also, re-

ducing the effectiveness of the solution (overlay links that consist of many physical

links are less managed). For instance, a low-cost wide-area overlay network can be

build by few overlay nodes with symbolic links that conceal long and, most likely,

overlapping paths.

Figure 3.6: An example of multipath transfer in the TCP/IP architecture based
on overlay routing. The single-homed endpoints communicate through two inter-
mediate relay points, thus forcing multipath delivery with enhanced path diversity.
Often overlay networks are combined with other techniques, such as multihoming
with SOCKS servers [2] and multisource, as presented in this figure.

In application-level overlay networks, a relay node is used for receiving the

user requests instead of the original destination node, either implicitly (on-path

25

relay node similar to the MPLS ingress node) or explicitly (potentially off-path

relay node, similar to a Web proxy). The relay node applies the multipath routing

policy of the overlay network by distributing the incoming requests over multiple

overlay paths that correspond to potentially different physical dissemination paths.

The number and placement of the overlay nodes highly affect the performance of

multipath.

MONET The Multi-homed Overlay Network (MONET) [36] introduces a coop-

erative overlay network of peer proxies that improves the availability of Web sites

across the Internet. MONET builds multiple overlay paths among the clients and

the sites so as to mask failures of network routers or Web servers. A custom pro-

tocol is designed to query peers about content reachability, thus creating a list of

different dissemination paths per content. This list is exploited by the way point

selection algorithm that is used to dynamically determine the current “best” path

per content based on statistics, such as path success rate and propagation delay

through different peers. By pruning the large space of possible paths to a handful

of the most promising ones, the complexity and, in turn, the overhead of MONET

is reduced to tolerable levels.

MONET exploits application-level overlay networks to discover and realize

backup paths, thus greatly enhancing service availability. The most impressive part

of MONET is offering fine-grained multipath control, allowing the establishment

of multiple paths based on the requirements of each specific transfer. On the

other hand, the fine-grained multipath control introduces substantial scalability

concerns thus limiting the application range of MONET to few Web services where

availability is critical.

RON A Resilient Overlay Network (RON) [37] is an application-layer overlay on

top of the existing Internet routing substrate that allows end-to-end communica-

tion in wide-area networks. RON acknowledges the vulnerability of the Internet

to link failures and router faults and exploits multipath routing to accelerate the

detection and recovery from path outages and performance degradation [37]. In

a RON, the overlay nodes-routers regularly monitor the liveness and quality of

26

the Internet paths among themselves and use this information to decide whether

to route packets directly over the Internet or over alternative overlay paths, thus

optimizing application-specific routing metrics.

Although RON enhances resilience to network failures, availability and

throughput to end-to-end wide-area connections, apparent weaknesses are also

present. Besides the known issues of application-overlay networks, such as infras-

tructural overhead, reduced scalability and increased connection latency, multi-

path concurrent transfers are not supported in a RON, hence throughput increase

is solely a result of the improved load balancing in the network. While RON can

deliver multipath transport at domain-level, as singlepath transfers with the same

overlay source and destination nodes can be routed over different overlay paths,

concurrent multipath transport at the connection-level is not supported, thus of-

fering only a coarse-grained multipath transport solution.

Discussion

We presented four distinct categories of solutions that address the multipath

challenges posed by the TCP/IP architecture. Individually the discussed solutions

either solve the establishment of multiple subflows in the singlepath TCP/IP In-

ternet or enhance the topological diversity of the dissemination routes that is

penalized by the distributed hop-by-hop IP routing. Therefore, a combination of

techniques is required in order to produce a complete solution with wide scope of

support and strong performance advantages, such as the integration of MPTCP

and SDN. MPTCP over SDN delivers multipath connectivity to both multihomed

devices, that are increasingly popular and represent a significant fraction of IP

traffic [6], and singlehomed, that are the legacy IP devices, via port multiplex-

ing, thus offering multipath to everyone. In addition, an MPTCP-aware SDN

control plane amplifies the gains of multipath transport by deterministically as-

signing disjoint paths to MPTCP subflows, thus exploiting path richness. The

only concerning weakness of this design is its questionable scalability due to the

overwhelming forwarding state at the SDN switches in large-scale networks. This

realization constitutes the foundation of our proposed solution that is introduced

27

in Section 4.

3.2.2 Multipath in ICN

Most ICN architectures come with native multipath support, thus acquiring

a great advantage compared to IP networking [18]. We hereby discuss routing

and forwarding mechanisms of the PSI and the Named Data Networking (NDN)

architectures that offer inherently efficient multipath solutions [38].

In the NDN architecture the dissemination routes are instantiated by the

in-network routers through the Pending Interest Table (PIT) and the Forward-

ing Interest Base (FIB) data structures. Following the receiver-driven paradigm,

receivers emit requests for self-identified data chunks, the Interests, and senders

respond with Data packets. The routing information of an NDN packet is the

content name itself and forwarding is applied distributively by the on-path routers

in a hop-by-hop manner, leaving the end-hosts oblivious of the formation and the

number of the deployed paths. Specifically, when an NDN router receives an In-

terest packet, then the Interest’s name is compared against a list of entries in

the FIB structure that maps content names to outgoing ports, similarly to SDN

yet using names as forwarding identifiers. The router will forward the Interest

to the appropriate port and will insert an entry in the PIT structure that maps

the content’s name with the received port of the Interest, thus forming distribu-

tively the reverse dissemination path. Then, when the same router receives the

corresponding Data packet, it will be able to forward it back to the requesting

host using the forwarding state in the PIT table. Given that the FIB may contain

multiple outgoing ports for the same content name, on-path routers can select to

distribute the Interests of a single data flow among different ports, thus offering

natively multipath content delivery [39]. Interestingly, the multipath transmission

is concealed from the end-hosts that simply insert Interests and/or Data packets

to the network, hence the on-path routers handle flow and congestion control. The

efficiency of content delivery is finally enhanced by the support of on-path caching

by the NDN routers, therefore exploiting the network storage resources, offloading

the servers and reducing the communication delay. Overall, NDN networks offer

28

inherently multipath and multisource to end-users, that do not participate in the

formation, the establishment or the utilization process of the routes.

The PSI architecture offers centralized path selection, source routing and

on-path caching of self-identified data chunks. The communication model that is

primarily advertised by the PSI architecture adopts the “channel” approach where

a single source sends a stream of data to multiple receivers via a stateless mul-

ticast dissemination tree [40]. Nevertheless, different communication models that

offer seamless receiver-driven multiflow transport are also supported by the net-

work [41, 42]. PSI offers modular RV and TM operation where services exploit

different strategies of content resolution and path formation [43, 44]. For instance,

a multiflow-aware RV can match multiple publishers with one subscriber and the

TM can discover k paths to n content sources, encode them into kn FIDs and de-

liver them to end-hosts, thus offering them kn distinct “manners” of transmitting

data. Notice, that, the FIDs conceal the actual dissemination paths, hence the

end-users are not aware of the details of the encoded path, such as the interme-

diate routers or the end-users. Therefore, the semantics of the FIDs are defined

by the service and the end-users, thus offering a variety of content delivery pat-

terns. For instance, in case multipath is required, then the RV allows one-to-one

publisher-subscriber matching, the TM discovers multiple paths among the two

hosts and delivers multiple FIDs. The applications interpret the number of FIDs

as the number of different paths that can be used to reach the same destination.

In case of multisource, the RV allows many-to-one publisher-subscriber matching,

the TM discovers one path among the receiver and each sender and delivers mul-

tiple FIDs. However, in this case the applications interpret the number of FIDs as

the number of different sources for that content. Consequently, while in-network

entities undertake the discovery and realization of the multiple paths, the PSI

endpoints do “read” the semantics of the FIDs and exploit the different commu-

nication paths accordingly. This scheme allows the design and implementation of

traffic control policies that combine the scalability of end-to-end congestion con-

trol with the efficiency of in-network mechanisms, thus supporting effective hybrid

transport solutions for the Future Internet.

29

3.3 Multipath congestion control

Multipath congestion control is the network operation that defines the

amount of traffic that a connection can insert into the network through multiple

paths. Similarly to single-path congestion control, the prime objective of multi-

path congestion control is to maximize the utilization of network resources, which

is accomplished by filling the network links without overwhelming their capacity.

Nevertheless, maximizing the utilization of network resources is more complicated

with multipath transmissions since several contradictory goals must be pursued,

such as maximize the aggregated throughput over multiple paths while not harm-

ing competitive single-flow transfers. Currently, multipath congestion control is an

active research topic for both traditional IP networks and ICN clean-slate architec-

tures; hence numerous studies tackle the problem from diverse perspectives [13, 45].

In the following, we present the most frequent performance requirements that are

met in the bibliography:

Bandwidth aggregation: The most impressive gain of multipath is the end-to-

end throughput increase. The increase presupposes that paths are exploited

concurrently and complementarily, thus delivering different parts of the con-

tent in parallel. Ideally, the paths are edge-disjoint, so that the utilization

of network resources is maximized, or overlapping but without a shared per-

formance bottleneck, so that the transfer rate on each path can be summed.

The bandwidth aggregation requirement motivates the adoption of multipath

transport protocols as defined in [25]:

The aggregated throughput provided by a multipath connection must not be

less that the throughput of a single-path connection performing on the fastest

available path.

Load balancing: The exploitation of many paths must balance the traffic load

across the network by allocating more traffic in the less congested paths.

Assuming that the congestion level across the network is equalized, then

the performance bottlenecks due to link saturation are less likely to appear,

thus increasing the efficient resource utilization of the network and delivering

30

higher throughput to end-users [3].

Stability: Stability describes the system‘s response to dynamic traffic and sta-

tus information. When path conditions change, then multipath congestion

control must identify the new parameters and re-allocate the appropriate

amount of traffic on each path in order to maintain high resource utilization.

Kelly et al. determine an equilibrium that assures stability of multipath

congestion control based on the fluid model [15].

Responsiveness: Responsiveness defines the fastness of responding to dynamic

changes in the network. Although timely adaptation is critical for maintain-

ing high performance under variable conditions, over-sensitivity can penalize

the stability requirement: routing needs to respond quickly to achieve the

potential benefits, but not so quickly that the network is destabilized [15].

Pareto Optimality: Pareto optimality refers to the state in which a (multipath)

connection can not increase its throughput without decreasing the through-

put of other coexisting (single-path) connections [16].

TCP-Friendliness: TCP-Friendliness is associated with the fair sharing of net-

work resources among multipath and single-path flows. When a multiflow

connection with N independently controlled subflows competes against a

single-flow connection for the same bottleneck link, the multiflow connection

can be up to N times as aggressive as the single-flow one [14]. While we

usually say that the multiflow connection is not TCP-friendly, we will also

use the term friendly to imply single-flow friendly, defined as follows:

When a multiflow connection competes with a single-flow connection for the

same network resource, the former must not acquire a larger share of that

resource than the latter.

Latency of converging to TCP-Friendliness: This term refers to the time needed

to enter the state of TCP-friendliness while being TCP-unfriendly. Minimiz-

ing that period of imbalance is critical for network performance, as it ampli-

31

fies the effectiveness of a multipath congestion control; below this temporal

boundary, the multipath connections are unfriendly.

Figure 3.7: An example of the TCP-friendliness issue. The single-path connection
(red dashed line) gets 1/(N + 1) MB/s when competing in the same bottleneck
(yellow link) with a multiflow connection of N subflows (green lines). Notice,
that the issue is independent of the number of exploited sources, thus concerning
multisource and multipath in general.

Single-path congestion control in TCP/IP

The Internet depends on transport-layer protocols such as the Transmis-

sion Control Protocol (TCP) [46] to provide reliable end-to-end transmission while

efficiently utilizing network resources and preventing congestion collapse. Among

the many transport protocols proposed since the inception of the Internet, TCP

has prevailed due to it its simplicity, its low overhead and its ability to adapt to

diverse network conditions.

TCP applies end-to-end acknowledgment-based congestion control that is

primarily controlled by the sender. The TCP sender estimates the congestion

level of the path by monitoring the evolution of the connection’s Round Trip

Time (RTT), which, in turn, is assessed by measuring the temporal difference

between the transmission of a data packet and the reception of the correspond-

ing acknowledgment (ACK). Congestion is detected through the loss of a packet,

which is presumed through the lack of the reception of an ACK within the set

timeout interval, which is dynamically estimated based on the RTT. Therefore,

the transfer rate is increased to enhance resource utilization as far as ACKs are

received in time and is reduced to handle congestion when an ACK is not received

32

within the timeout. The amount of data entering the network is also controlled by

the TCP sender via the congestion window of the connection, which is the corner-

stone of TCP’s congestion control. Numerous congestion control flavors have been

proposed for TCP so far [47], each one introducing novel approaches to manage the

size of the congestion window. Here, we only discuss the standardized TCP flavor

that is presented in [48] for it constitutes the basis of most multipath congestion

control proposals. This flavor includes three distinct congestion states that differ-

entiate the management of the congestion window, namely, the Slow Start (SS),

the Congestion Avoidance (CA) and the Fast Recovery (FR) states.

Slow Start: The SS state is used to quickly explore the amount of available net-

work resources. It introduces a rapid throughput increase pattern which

doubles the amount of data entering the network each RTT. In order to con-

trol the aggressiveness of SS a special variable is introduced as a Slow Start

Threshold (ssthresh), hence a TCP connection is in SS if and only if the

congestion window is smaller than the ssthresh. The ssthresh variable is

re-estimated after each timeout when it is set to half the size of the conges-

tion window before the congestion event, thus allowing faster recovery from

congestion collapses. During SS, the growth of the congestion window (w)

upon the receipt of an ACK is:

wn+1 = wn + s (3.1)

where s is the Maxiumum Segment Size (MSS) of the network.

Congestion Avoidance: The CA state aims at providing high throughput by

performing longer near the link saturation point. Therefore, it introduces a

slow yet diligent throughput growth scheme which increases the amount of

data entering the network by one MSS per RTT. A TCP connection is in CA

when the congestion window is at least ssthresh. During CA, the congestion

window growth upon the receipt of an ACK is:

wn+1 = wn + s/w (3.2)

33

Fast Recovery: The FR state aims at generating timely information that allows

faster recovery from losses. In addition to timeouts, which can be time

consuming, individual packet losses are used as congestion events, assuming

that packets are dropped by the on-path routers due to overflown buffers.

Therefore, the transfer rate is also reduced when a packet delivery is pending

but the delivery of the latter three packets is verified, an event called Triple

Dublicate (3DUP). After a 3DUP event the congestion window is configured

as follows:

wn+1 = wn/2 + 3 ∗ s (3.3)

In addition to window reduction, a Fast Retransmission is emitted, which is

a second request for the missing packet, thus allowing the TCP connection

to recover timely and effectively from individual packet losses.

3.3.1 Multipath congestion control in TCP/IP

The widespread availability of path diversity on the Internet, along with the

proliferation of multihomed mobile devices and datacenter servers, argue for the

extension of TCP with multipath features, so as to improve throughput, resource

pooling, load balancing and resilience to network failures. This issue is addressed

at the transport layer by Multipath TCP (MPTCP) [12, 23], an extension of TCP

that allows the deployment and management of multiple TCP-like subflows among

two end-hosts. Being aware of the available set of subflows, MPTCP can control the

cumulative transfer rate and jointly tackle performance and TCP-friendliness. Sev-

eral congestion control algorithms have been proposed so far [3, 16, 49, 50, 17, 51].

Representing an evolution of single-path TCP, the majority of these approaches

rely on the well-known TCP building blocks [48], but also address some multipath-

specific issues, such as TCP-friendliness [52], responsiveness and stability [15], load

balancing [3] and pareto optimality [16].

The simplest multipath congestion control algorithm for MPTCP, known as

Uncoupled, introduces subflows with individual congestion windows and indepen-

dent window management. As expected, this design offers enhanced throughput

and fast adaptation to network conditions, but tends to be overly aggressive to-

34

wards singlepath connections, thus presenting serious TCP-friendliness issues. To

avoid these problems, EWTCP [49] splits traffic “evenly” among subflows so as to

cumulatively grasp the same share of resources as a regular TCP connection. As a

result, EWTCP often does not fully utilize the available network resources, since

the proportional management of the subflows disregards the particular properties

of the dissemination paths.

The Coupled algorithm [50] was the first design that emphasized the im-

portance of being TCP-friendly while shifting traffic towards the least congested

path. It handles the available paths as a pool of resources where the congestion

level is balanced and utilization is increased. However, pushing all traffic to the

least congested path has other shortcomings, such as performance degradation

with mismatched paths and poor responsiveness to network changes. The Linked

Increase Algorithm (LIA) [3] was developed to tackle both TCP-friendliness and

responsiveness. LIA pushes traffic to the least congested path so as to enhance load

balancing similarly to Coupled, but also introduces an aggressiveness parameter

that attempts to keep a moderate amount of traffic in the more congested paths

in order to be responsive. This parameter is based on two equilibrium conditions:

first, LIA balances the congestion window increases and decreases at steady state

in order to be stable and, second, it equalizes the resource shares of MPTCP and

TCP in the bottleneck link in order to be TCP-friendly. Presenting sufficient

friendliness and resource utilization, LIA soon became the point of reference for

congestion control of MPTCP.

While favoring the least congested path, LIA does not push traffic exclu-

sively there, thus penalizing the overall network resource utilization under certain

conditions. The Opportunistic Linked Increase Algorithm (OLIA) [16] extended

LIA in order to enhance resource pooling, while maintaining high responsiveness.

Specifically, OLIA increases faster the congestion window of subflows with a high

transfer rate but relatively small windows. Moreover, OLIA introduces minimal

probing traffic over the worst paths to achieve sufficient responsiveness. Neverthe-

less, recent studies [17] show that OLIA does not respond well in case of abrupt

load changes. In the same paper, the authors present the Balanced Link Adapta-

35

tion (Balia) algorithm, a generalization of existing algorithms that strikes a good

balance between friendliness, responsiveness and window oscillation.

Finally, weighted Vegas (wVegas) [51], a delay-based congestion control al-

gorithm inspired by TCP Vegas, uses queuing packet delay to detect congestion,

unlike other proposals which exploit time-out timers. The main benefit of wVegas

is quick traffic shifting, as it can be more sensitive to changes in network load.

However, tuning the algorithm’s sensitivity is not trivial and the investigation of

its behavior is not complete, for example, the handling of RTT variation in case

of rerouting is questionable.

Greedy Friendliness

The TCP-friendliness constraint is roughly inversely proportional to re-

sponsiveness and, in turn, resource utilization [17], therefore generating a friendly

algorithm that optimizes all constraints is out of the question. However, we can

simultaneously enhance responsiveness, resource utilization and TCP-friendliness

through greedy friendliness, a concept where a multipath considers TCP-friendliness

only when fairness towards singlepath flows is jeopardized. By definition, TCP-

friendliness is an issue in shared bottlenecks, where more than one subflows com-

pete with a singlepath connection, therefore greedy friendliness can rely on the

verified detection of shared links, allowing the multipath connections to disregard

the TCP-friendliness constraint in disjoint paths.

MPTCP’s conservative approach to friendliness is imposed by the IP rout-

ing architecture. Due to the distributed, hop-by-hop routing of IP networks, a

transport protocol cannot reliably conclude whether the dissemination paths are

overlapping or not, therefore its congestion control module cannot detect whether

friendliness is an issue or not. There are some solutions for end-to-end detection

of shared bottlenecks in the literature [53, 54], but their efficiency is debatable.

In [53] the authors detect shared bottlenecks based on the temporal correlation

of fast-retransmit packets, while in [54] the authors evaluate both loss-based and

delay-based correlation techniques, arguing that the loss-based technique is unre-

liable, while the delay-based methods require considerably more time for accurate

36

results; even the loss-based method requires roughly 15 s to converge, which is

significantly high for a general purpose multiflow protocol.

A recent proposal [55] exploits the propagation delay of subflows to detect

shared bottlenecks, specifically for enhancing MPTCP performance. In this work,

the authors measure the path propagation delay instead of the RTT, in order to

avoid the noise of the return path and identify bottlenecks more accurately. They

argue that a sampling period of 3.5 s is adequate for detecting bottlenecks with 97%

mean accuracy. Interestingly, they conclude that the adaptation of aggressiveness

to the path formation can deliver up to 40% higher throughput to end-users.

Modeling multipath rate control

One of the key principles in modeling MPTCP is the exploitation of the

fluid model analysis by Kelly and Voice [15]. The fluid model directs the transfer

rate adaptation of a TCP-sender during the CA phase to ensure system stabil-

ity, protocol responsiveness and fairness. It can be adapted to the window-based

congestion control design to deduce a sufficient condition (or equilibrium) for the

desired amount of window increase and decrease upon the receipt of an ACK and

a congestion event, respectively.

LIA tries to balance the “overall” window increase and decrease in the long-

run, by modeling them as the product: event probability × window modification;

for example, the total window decrease equals the product of the segment loss

probability and the size of the window reduction. To solve the equation, authors

assume that segment loss probability is statistically negligible - a simplification

that can be responsible for LIA’s poor performance in paths with error and de-

lay mismatch. Consequently, the algorithm offers stability, friendliness and high

resource utilization in steady steady as far as the error rate is low.

A second common feature adopted by the fluid model is the omission of

the SS phase from the model, as it is considered a transient state with no measur-

able effect on the long-term performance of the protocol. Consequently, multipath

connections are not TCP-friendly for a “brief” period after they are launched,

gradually converging to the desired fair equilibrium. To the best of our knowl-

37

edge, the friendliness of MPTCP congestion control algorithms has been evaluated

only in long-term performance (usually mentioned as “long-lived flows”), but the

efficiency of reaching it and its correlation with network conditions has not been

explored yet.

We should highlight here that responsiveness and convergence to friendliness

are different concepts: the former refers to the efficiency of shifting traffic among

subflows while being TCP-friendly; the latter refers to the time needed to enter the

state of TCP-friendliness (while being TCP-unfriendly). Estimating that “brief”

period of imbalance is critical for network stability, as it defines the range of

MPTCP’s TCP-friendliness; below this temporal boundary, MPTCP connections

are unfriendly.

3.3.2 Multipath congestion control in ICN

In ICN networks the IP paradigm is replaced with information-based rout-

ing and forwarding mechanisms that support natively multipath, multisource and

multicast. The in-network entities, such as routers and PSI’s TM, are important

actors in the ICN paradigm that attempts to exploit the storage and computational

resources of the network too. Therefore, it is often proposed that network actors,

that are aware of both transport flows (indicated by unique content names) and

adjacent links, should assist in the realization of congestion control. For a com-

plete presentation of the proposed solutions in ICN readers are referred to [38, 45].

Hereby, we discuss some indicative multiflow designs, exploring the extent of net-

work participation in congestion control.

We detect three categories of congestion control designs in ICN architectures

with regard to their placement: end-to-end, in-network and hybrid. In the first

category, the end-points, usually the receivers, undertake the task of detecting

the congestion level of the exploited paths and accordingly control the rate of

data that enters the network. The congestion control mechanism is rather similar

to the end-to-end TCP approach, introducing RTT-based congestion detection

and window-based flow control. Nevertheless, this design is not compatible with

the on-path ubiquitous caching of ICN, where the performance of the end-to-end

38

solutions is penalized by the RTT variance due to cached responses. Specifically,

packets arriving from on-path caches exhibit lower delays than packets arriving

from the content source, thus causing trouble to traffic control protocols that use

RTTs as congestion indicators. We discuss this problem in detail in Section 6.2.

In-network operation is considered to strengthen congestion detection, thus

introducing a hybrid design that consists of end-to-end flow control and in-network

congestion detection. A basic instance of this design suggests that in-network

routers emit explicit congestion reports, or Explicit Congestion Notifications (ECNs),

to the end-hosts that adjust their sending rate accordingly [39]. A more devel-

oped solution in [56] exploits the enhanced role of NDN routers and proposes that

in-network routers also participate in flow control, thus undertaking congestion

detection and flow control duties. Although flow control and part of congestion

control is still managed by the receiver, in-network congestion control is present in

the form of dynamic request forwarding; intermediate routers choose on-the-fly the

most appropriate interface to forward each packet, shifting flows to less congested

parts of the network.

Finally, pure in-network congestion control solutions are proposed in an

effort to maximize the exploitation of the network’s computational resources and

knowledge. For instance, the Hop-by-hop interest shaping approach suggests that

each NDN router can detect and adjust the forwarding rate of Interest packets

and, in turn, the transfer rate of returning Data, thus realizing (in-)network con-

gestion control. In [57], traffic control is exclusively assigned to in-network nodes

that have the authority to drop packets and even reject the establishment of new

connections, based on link utilization and fairness constraints. In particular, each

in-network router maintains a per-flow queue with the Deficit Round Robin (DRR)

scheduling policy to determine which packets must be dropped and/or connections

must be rejected. According to link conditions, the routers direct the rate of data

entering the network by sending notifications to the “uncomplicated” end-users,

that conform to explicit congestion signals, such as ECNs, albeit maintaining the

control of the congestion window.

While introducing powerful tools that enhance the performance of the net-

39

work and the users, the aforementioned approaches also exhibit apparent weak-

nesses. First, the end-to-end congestion detection is challenged by the inherent

multisource of ICN networks, where the communication “end” is not directly de-

fined. The problem is emphasized by the NDN architecture where source selection

is dynamic; typically, the routers apply dynamic routing policies, hence the num-

ber and location of the sources is not fixed throughout the transmission. Second,

the end-to-end designs in NDN can be inefficient since the endpoints are unaware

of the actual dissemination routes; the realization of paths is a distributed in-

network operation, hence endpoints can not control the paths individually. Over-

all, the end-to-end congestion control model is considered inappropriate for the

NDN architecture where multipath is coordinated and carried by in-network en-

tities. In theory, the in-network operation constitutes the best option, but, in

practice, poses an undeniable weakness: scalability. The state-full NDN routers

face significant overheads, such as the estimation of link utilization for congestion

detection in [56, 57] and the additional per packet state for fair queuing in [57],

thus questioning wire speed operation [58, 59].

Experience from existing protocols and designs, such as SDN, CDNs and

MPTCP, indicates that the Future Internet must consider hybrid solutions that

combine the end-to-end scalability with essential yet lightweight network operation.

Thereupon arises a PSI-based approach that enriches end-to-end congestion control

with topological information via a scalable in-network notification service. The

notification service, which is aware of network topology and participates in the

path discovery process, can implement special path formation policies and deliver

essential information to the endpoints, thus allowing them to practice congestion

control more effectively. This design can provide accurate information (without

convergence delay) to the end-users and does not stress the in-network routers,

which are the weaknesses of the IP and NDN solutions, respectively. We elaborate

on this perspective in the next section, where we present the first complete solution

of network-assisted multiflow congestion control in the PSI architecture.

Chapter 4

Proposed multipath solution

In this section we present our proposal for multipath transport which con-

sists of a multipath transport protocol and a multipath congestion control algo-

rithm. The transport protocol allows the seamless establishment of multiple dis-

semination flows, while the congestion control algorithm offers efficient exploitation

of those flows.

4.1 Multisource and Multipath Transport Pro-

tocol (mmTP)

The PSI architecture is an instantiation of the ICN paradigm that pushes

the network layer higher in the stack, allowing it to understand what it trans-

ports and what the transport context is. PSI supports data multihoming, as

well as path selection at the granularity of transfer sessions. We exploit these

architectural features to design the multipath and multisource Transport Proto-

col (mmTP) [60, 61, 62], a sophisticated reliable transport protocol for PSI which

(a) enables multisource and multipath transfers, (b) does not require complicated

network operation or signaling, (b) provides modular path management (exploits

paths in parallel or sequentially, redundantly or complementarily), (c) offers mod-

ular end-to-end congestion control, and (d) supports hybrid congestion control, a

scheme where end-to-end congestion control exploits an in-network mechanism to

40

41

support TCP-friendliness efficiently.1

4.1.1 Protocol overview

Our primary goal in mmTP is to utilize all available network resources

in the PSI context, i.e. communication, data storage and computation. mmTP

achieves this goal via the following design choices:

Self-identified data packets: Content that goes beyond the Maximum Trans-

fer Unit (MTU) of the network is fragmented into data packets, or chunks,

that are assigned a statistically unique identifier, so as to allow packet-level

caching and simplify content delivery and reconstruction. mmTP uses algo-

rithmic identifiers, that indicate the order of the packet in the content, thus

enriching the semantics of the naming scheme and, in turn, supporting simple

loss detection, efficient caching designs [63], Out-of-Order Delivery (OODs)

and more.

Receiver-driven operation: The receiver (subscriber) coordinates data trans-

mission by sending explicit requests for self-identified data packets to the

stateless sender (publisher) that simply responds to incoming requests. The

receiver-driven approach of mmTP together with the self-identified pack-

ets exploits on-path caching and allows the implementation of various path

scheduling policies in case of multipath and multisource.

Multisource & Multipath delivery: Content is retrieved from multiple loca-

tions simultaneously by sending requests to multiple publishers. This in-

creases the utilization of the network’s available bandwidth and enhances

mmTP’s resilience to node and path failures. Additionally, if there are mul-

tiple paths between the receiver and a specific source, mmTP further utilizes

available resources by transmitting data via all those paths.

1Even though TCP is not central in such an environment (and may not even exist at all, e.g.,
no PSI TCP implementations exist or are planned as fas as we know), it is important to provide
the behavior, which seems a very good property for networks to support.

42

Centralized path selection: mmTP relies on PSI’s Rendezvous function for lo-

cating multiple sources and on its Topology Management function for com-

puting available paths, thus utilizing in-network computation resources. In

addition, centralized path selection allows the implementation of advanced

traffic engineering techniques, such as Differentiated Services (DiffServ) and

mmTP’s hybrid congestion control approach.

Hybrid multiflow congestion control: The congestion control scheme of mmTP

combines the strong features of end-to-end and in-network congestion control

designs, thus constituting a hybrid solution. First, mmTP provides modu-

lar end-to-end mechanisms that monitor the level of congestion, adjust the

transfer rate on each path and offer reliability. These mechanisms aim at

maximizing link utilization, while avoiding congestion collapse and starva-

tion of single-flow traffic. Placing this functionality at the network edges,

similarly to the TCP/IP architecture, provides enhanced resilience and scal-

ability, since the computational cost is distributed to the numerous end-users

instead of the few in-network nodes.

Second, mmTP introduces an in-network mechanism that helps handling

the TCP-Friendliness constraint. Specifically, the network service, that is

embedded in the Topology Management service, can participate actively in

congestion control by selecting paths, e.g., only disjoint paths, or passively

by informing the mmTP users about the existence of shared bottlenecks that

can impair TCP-Friendliness, hence the users can adjust their aggressiveness

accordingly, a scheme that we call greedy friendliness. Although the support

of the hybrid congestion control pattern is purely a feature of mmTP, we dis-

cuss its design and performance advantages in depth in the following section

where we elaborate on our congestion control design.

Out-of-order delivery: Experience with MPTCP shows that requiring in-order

delivery of data packets can penalize performance when paths are RTT-

mismatched due to the head-of-line blocking issue [64, 65]. We allow mmTP

to transmit out-of-order packets in order to simplify path scheduling even

43

though data chunks are requested in ascending order. The relaxation of

the in-order requirement does not penalize the efficiency of the protocol,

since mmTP exploits algorithmic packet identifiers to deduce the position of

each packet in the object, thus supporting inexpensive packet reordering and

object reconstruction.

4.1.2 Protocol description

mmTP operation is split in two phases, as shown in Fig. 4.1: the slow-

path rendezvous, which deals with service establishment, and the fast-path ren-

dezvous, which deals with the immediate host interaction for content delivery. In

the slow-path rendezvous, content sources and receivers emit publications and sub-

scriptions, respectively, about the desired information item. The publications are

first routed to the network’s RN (Fig. 4.1(a)) and then the subscriptions are sim-

ilarly routed to the RN (step 1 in Fig. 4.1(b)) where they are matched with the

publications. When a match occurs, the RN requests the TM to compute paths

between the aforementioned publishers and the subscriber (step 2 in Fig. 4.1(b)).

The TM, having a complete view of the network, computes multiple paths for each

source-receiver pair and constructs the LIPSIN FIDs for both the reverse direc-

tion, i.e. subscriber-to-publisher(s), and the forward direction, i.e. publisher(s)-to-

subscriber, since LIPSIN FIDs are unidirectional. Finally, the TM sends the FIDs

to the subscriber (step 3 in Fig. 4.1(b)). At this point, the subscriber has obtained

two sets of source-routes. One points to publishers holding the requested informa-

tion item (reverse FIDs) and the other can route data from the publishers to the

requesting host (forward FIDs). Note that there is no strict one-to-one mapping

between source-routes and publishers; some FIDs may point to the same source if

the TM decided to use the multipath capability for that particular source.

In the fast-path rendezvous, the receiver starts sending subscriptions for

individual data packets to the publisher(s) using the reverse FIDs (Fig. 4.1(c)).

These are fast-path subscriptions, that is, they are sent directly to the sources,

bypassing the rendezvous system. Each request also carries the forward FID that

encodes the path that should be taken by the response. When these subscriptions

44

Figure 4.1: mmTP operation phases: (a-b) slow-path rendezvous, where connec-
tion is established, and (c) fast-path rendezvous, where data transfer takes place.

reach the publisher(s), the requested data packets are transmitted back to the

subscriber using that forward FID.

Following ICN principles, a statistically unique identifier is assigned to each

data packet. This identifier is a combination of the content’s name and a counter

denoting the packet’s position in the content. mmTP receivers use this identifier

for issuing requests that concern a specific data packet. Sources do not need

to maintain transport state, since each request is self-contained: it includes an

identifier for the desired data and the FID needed to return these data. Fast-

path subscriptions can also be satisfied by on-path caches; an on-path router that

opportunistically caches packets can inspect fast-path subscriptions and respond

immediately if the requested packet is locally stored.

The first fast-path subscription in mmTP always concerns a metadata

packet. This packet provides a simple description of the content, along with in-

formation such as the content’s size, the number of packets in it and a hashcoded

string for integrity validation. These metadata easily fit into a single Ethernet

packet, being less than 1 KByte. The metadata packet is named after the content,

with the reserved mm suffix, inherently declaring that multiflow transmissions are

supported. Given that mmTP sources are stateless, the information carried by the

metadata packet is utilized by the subscriber for managing the communication.

Although the actual data transfer begins after the metadata packet is fetched,

simultaneous transmission of the first chunk is supported to reduce the temporal

overhead during connection establishment.

45

Figure 4.2: mmTP operation during fast-path rendezvous. FIDs correspond to
different paths to the stateless content sources. Data chunks are self-identified
through algorithmic identifiers in the form of “/content name/chunk ranking”,
i.e. “/a/1” is the 1st chunk of content “a”. The pull transfer model and the named
data chunks allow distributed on-path chunk-level caching.

Flow, error and congestion control

In mmTP, all control mechanisms are applied by the subscriber. Upon

the receipt of the LIPSIN FIDs, the subscriber creates a distinct subflow for each

supplied path and initializes a congestion loop per path, including a congestion

window (w) and a retransmission timer. Subflows request packets in ascending

order: a subflow requests the next idle packet, i.e. a packet not already requested

by another subflow.

Using fast-path subscriptions, the receiver requests one packet per subflow

and maintains a timer from the time the subscription was sent until the time the

publication arrives.2 If the requested data packet does not arrive on time, suggest-

ing that either the request or the data packet was lost, the subscriber re-issues the

fast-path subscription. Since fast-path subscriptions are self-contained, the lost

subscription can be sent over a different path if two subscriptions for the same

data packet expire. Loss detection is RTT-based, estimating a Retransmission

Timeout (RTO) per subflow, similar to that in TCP [66]. We ignore requests re-

transmitted over the same path when updating the RTT estimator, as in TCP,

since it is unclear which packet corresponds to each request. Contrary to TCP, we

do not drop the delivered packets that follow a loss thus gaining a slight perfor-

mance advantage, albeit we do not increase w to maintain accurate estimation of

the on-the-fly data. Finally, we do not overlook that RTO estimation can be “poi-

2The actual implementation of mmTP uses one timer per subflow, similarly to TCP [48].

46

soned” by on-path packet-level caching. The ICN end-users, who are not aware of

the packet source, misinterpret the quick responses of on-path routers as congestion

withdrawal, thus estimating mistakenly low RTOs. Even though studies argue that

on-path packet-level caching in ICN is mostly used for error recovery [67], thus hav-

ing insignificant impact on congestion control, in Section 6.2 we discuss solutions

that prevent RTO-poisoning in the presence of on-path packet-level caching.

Finally, the congestion control algorithm of mmTP is modular, hence nu-

merous end-to-end congestion control algorithms, such as the LIA, OLIA or BALIA,

can be seamlessly integrated to mmTP. Currently the management of the conges-

tion window follows the Uncoupled congestion control policy, including TCP’s basic

blocks, namely, the SS and CA states.

Path scheduling

When paths are concurrently exploited, the distribution of packet requests

among sources and/or subflows, also known as path scheduling, can be critical to

protocol’s performance. For instance, MPTCP can loose efficiency when perform-

ing in paths with RTT-mismatch due to the head-of-line blocking issue, hence sev-

eral studies propose sophisticated path schedulers with apparent gains and weak-

nesses [68, 65]. On the other hand, mmTP relaxes the in-order delivery require-

ment without apparent costs, since data chunks (and requests) are self-identified

via algorithmic identifiers that determine explicitly their position in the object.

The algorithmic identifiers are exploited during error recovery for detecting and

retransmitting lost packets, as well as during object reconstructure. Thereafter,

mmTP does not require a centralized path scheduler module, allowing distributed

path and source selection as described in sequence. A similar solution is presented

by the authors of MP-RDMA [69], that endorse the exploitation of packet sequence

numbers and allow OODs. However, their approach also tries to eliminate OODs

(by pruning slower paths) so as to minimize the memory footprint of the protocol

that is stored in the tiny NIC memory, therefore solving a more complex problem

and slightly compromising throughput for saving space.

47

When the connection starts, the receiver requests one packet per subflow,3

since the individual path characteristics are unknown. The next packet is always

requested by the first subflow to deliver a packet, provided its congestion window

allows it. To achieve this, we construct an array where we project the congestion

windows of all subflows. Each position in this array contains the state of the

corresponding packet: IDLE for not yet requested packets, DOWNLDED for

already delivered packets and REQUESTED i for a packet requested by subflow

i but not delivered yet. A subflow executes Algorithm 1, given below, upon each

packet delivery to determine the next packet to request.

Algorithm 1 Path selection.

1: procedure request packets

2: i← win start

3: other reqs← 0

4: while i < (win start + w + other reqs) do

5: if (pkt state[i] == IDLE) then

6: request packet(i)

7: pkt state[i]← REQUESTED as

8: else if (pkt state[i] == DOWNLDED) then

9: if (i == win start) then

10: win start← win start + 1

11: else

12: other reqs← other reqs + 1

13: end if

14: else if (pkt state[i] 6= REQUESTED as) then

15: other reqs← other reqs + 1

16: end if

17: i← i + 1

18: end while

19: end procedure

3In the mmTP implementation the number of transmitted paths is equal to the minimum
allowed size of the congestion window.

48

In this algorithm, the win start variable marks the position of the first

packet in the sliding window, the other reqs indicates the number of packets in the

window that have been requested by other subflows and the mark REQUESTED as

is the identifier of the current subflow. The first two variables are used to calcu-

late the actual size of the sliding window, while the third is the instantiation of

REQUESTED i for that particular subflow. An example is presented in Fig. 4.3,

which displays a fraction of the state array when subflow 1 has just received a

packet and has inflated its window to 4 MSS. Initially win start is 13 so, in the

absence of other flows, flow 1 would request packets 13 to 16. As the array is

scanned, the other reqs variable is incremented due to packets downloaded or re-

quested by other flows. The algorithm stops when i = win start+w+other reqs =

14 + 4 + 3 = 22, therefore flow 1 requests packets 20 and 21, in addition to the

already requested 16 and 17.

The distributed path scheduling of mmTP is rather simple and effective,

since each subflow explicitly acquires a packet request when it can carry an ad-

ditional packet. The exploitation of a single packet state array also facilitates

the retransmissions over different paths without the need for a dedicated sched-

uler, which is the case of the MPTCP implementation in Linux. Nevertheless, our

design can become a performance bottleneck in case of paths with high bandwidth-

delay product, where the congestion windows grow large and, in turn, the number

of slots that need to be checked in the packet state array increases immensely.

Several fixes can alleviate the impact of this performance bottleneck, the most

light-weight and transparent solution is to use a global variable, namely, next idle

that holds the smallest id of an IDLE packet, and a subflow local variable, namely,

pending that indicates the number of on-the-fly packets of the subflow. The vari-

ables are used to directly access the packet state array, thus significantly lessening

the processing overhead of path scheduling. For instance, when a subflow receives

a packet it subtracts the pending variable from the w variable in order to infer the

number of packets that can be requested. In case the result is positive, hence a new

packet needs to be requested, it requests the packet at next idle position, instead

of parsing the cells sequentially, and then recomputes the next idle variable. In

49

Figure 4.3: An example of the packet state array. Ri denotes a packet requested
by subflow i and D marks a downloaded packet. IDLE denotes that packet
remains to be requested.

Figure 4.4: PlanetLab overlay topologies that allow (a) multisource with three
content sources and (b) multiflow with two content sources and two paths to each
source.

our experiments we found that this modification enables high performance under

various path conditions, albeit sequential parsing of cells is not always avoided.

4.1.3 Implementation and experimentation

We implemented mmTP over Blackadder, the PSI prototype implementa-

tion [70]. Our implementation includes the mmTP sender and receiver applica-

tions, as well as a TM that can compute multiple paths between two nodes. Our

TM computes the k-shortest paths from every publisher towards the subscriber,

using the algorithm by Yen [71] with hop count as the metric.

For experimental purposes, we deployed Blackadder with mmTP on the

PlanetLab testbed that spreads throughout Europe. We chose PlanetLab in or-

der to evaluate our design in a realistic environment with actual propagation de-

lays, forwarding overhead and competing traffic. The deployment is realized as

an overlay network: a set of Blackadder nodes scattered across Europe (Fig. 4.4),

50

Figure 4.5: mmTP performance over PlanetLab with three single-source transfers
and a multisource with three sources in 30 experiments.

communicating via UDP tunnels. We examined two network topologies and sev-

eral transfer schemes (single-path, multisource and multiflow), so as to assess the

gains from multipath and multisource content delivery in terms of performance,

resilience, and load balancing.

Performance gains with multisource

Our first scenario examines the bandwidth gains that can be achieved when

a subscriber downloads a 12 MB file from 3 publishers, using the topology in

Fig. 4.4(a). The experiment consists of four phases: the subscriber (located in

Greece) first downloads the file in single-source mode from each publisher (three

separate downloads) and then it downloads the file from all three publishers in

multisource mode. As congestion in the PlanetLab testbed is unpredictable, we

performed 30 iterations of the experiment, resulting in 120 transfers. Figure 4.5

shows the transfer time for each iteration of the experiment. The best perfor-

mance corresponds to the multisource case, with an average download time of

3.07 s (equivalent to 3.9 MB/s). The best single-source performance is achieved

with Publisher 2 (located in France), where the average download time is 4.8 s

(equivalent to 2.5 MB/s).

As evidenced by the spikes in Fig. 4.5, mmTP is much more stable in

51

Figure 4.6: mmTP performance over PlanetLab with multisource in normal
mode, where no sources fail, and failure mode, where Publisher 2 fails for 7 s.
Each plot depicts the size of the congestion window (of a subflow) to a specific
source.

multisource mode: the variance of the download times for our 30 iterations was

only 0.1 in multisource mode, while in single-source mode the variances were 1.13,

15.75 and 4.16 for Publishers 1, 2 and 3 respectively. This is due to the adaptation

of the receiver to the prevailing network conditions: mmTP dynamically avoids

the paths that exhibit congestion, a situation that we often met in the PlanetLab

testbed.

Resiliency to node/path failures

Our second scenario investigates mmTP’s robustness to path failures. We

downloaded a 50 MB file in multisource mode using the topology of Fig. 4.4(a) and

emulated path failure by shutting down Publisher 2 during the file transfer. Specif-

52

Figure 4.7: mmTP multisource performance over PlanetLab with and without
multipath in 4 experiment sets of 10 runs each.

ically, Publisher 2 was programmed to stop responding to all packet requests at a

certain time, remain idle for a period of 7 s and then return to normal operation.

To assess the impact of path failure to mmTP, each iteration of the experiment

consisted of one download with path failure and one without, and we performed

20 iterations.

Figure 4.6 shows the average size of the congestion window of each subflow

over time in the normal and failure mode. In normal mode, the file is downloaded

from all three sources in 12.2 s (equivalent to 4.09 MB/s). In failure mode, Pub-

lisher 2 fails at approximately 20% of the transfer duration and resumes at 60%.

During that time interval, he mmTP receiver automatically switches to Publishers

1 and 3, increasing their download rates according to their path capacities: the

download rate of Publisher 1 is increased by 76.5%, while the increase observed at

Publisher 3 is approximately 30%. As a result, the average download time in the

failure mode increases by only 2.1 s to 14.3 s (equivalent to a 0.6 MB/s drop to

3.49 MB/s), despite a failure in the highest capacity path (to Publisher 2) during

half of the transfer. Even though the efficiency of exploiting the dissemination

paths is primarily a property of the protocol’s congestion control algorithm, we

validate that the mmTP protocol provides the necessary context for enhancing

resilience to node/path failures via multiflow.

53

Additional performance gains with multipath

Our third scenario investigates the additional performance gains due to mul-

tipath transmission. For this scenario we used the topology shown in Fig. 4.4(b),

where the receiver can use two disjoint (overlay) paths towards each of the two

available sources. In each experiment the receiver first downloaded a 50 MB file in

multisource mode using a single path per source (paths 1 and 3 in the figure), and

then it downloaded the same file in multisource and multipath mode, exploiting

all four paths, repeating this pattern 40 times (80 downloads).

In this scenario we highlight that throughput and performance stability

is enhanced by the additional subflows. Therefore, we split the experiment set

into 4 (sub)sets based on the order of execution (1st set contains runs 1-10, 2nd

set contains runs 11-20 and so on) and we plot 4 average scores, thus unveiling

the performance deviation of each transfer mode due to the unpredictability of

PlanetLab testbed. Figure 4.7 shows the average download times for each subset.

The average download time when using multipath was reduced in each repetition

by 31.5%, 10.4%, 19.9% and 11.6%, respectively, for an overall gain of 17%. This

is due to mmTP’s ability to effectively avoid bottleneck links, utilizing the least

congested paths. From our experience with the PlanetLab testbed, which suffers

from large bursts of congestion, the exploitation of backup paths allows traffic to

be switched as needed, hence multipath transfers lead to better download rates.

In addition, multipath transfers exhibit less variation than single-source ones, a

pattern also observed in the single-source vs. multisource comparison, further

increasing the stability of mmTP.

4.2 Hybrid multi-flow congestion control

Traditional transport protocols for IP networks, such as TCP and SCTP,

place the congestion control management at the communication endpoints. ICN

brings to the table another possibility: in-network congestion control. There is an

on-going discussion in the ICN research community on whether congestion con-

trol should be applied solely at the endpoints or whether network routers should

54

also play a role (see Section 3.3). We hereby introduce a novel congestion control

scheme which combines the strong features of end-to-end and in-network designs,

thus constituting a hybrid solution. First, we employ end-to-end congestion con-

trol, deriving its design from a well-established background that offers stability,

high performance and scalability. Second, we exploit an in-network mechanism

that assists congestion control, thus increasing the utilization of network’s compu-

tational resources and supporting more sophisticated end-to-end congestion control

designs.

The proposed scheme consists of two independent modules: (i) Normalized

Multiflow Congestion Control (NMCC), a novel end-to-end multiflow-aware algo-

rithm, and (ii) a network assistance module that undertakes path formation and

provides topological information to the endpoints. NMCC is simple yet effective,

offering instant convergence to TCP-Friendliness and high bandwidth aggregation

under various conditions. The core novelties of NMCC are presented in the method

to achieve friendliness, where a deterministic algorithm equalizes throughput of

multipath and single-path since the beginning of the transfer (including also the

SS state), and the method to implement friendliness, where we exploit an inherent

issue of TCP, called TCP fairness [52]. In addition, the in-network mechanism sup-

ports advanced path formation strategies, such as selecting k-disjoint paths, and

delivers knowledge of shared bottlenecks to the end-users so as to support greedy

friendliness, a technique where end-users consider the TCP-Friendliness constraint

only when subflows compete with unfriendly for resources.

4.2.1 Topological assistance module

The best case scenario for multiflow communication arises when all commu-

nication paths are physically edge-disjoint, or just disjoint for brevity, not sharing

any links. In this case, each multiflow connection can use the same congestion con-

trol algorithm as single-flow connections without any friendliness constraints; this

approach is named Uncoupled after the related congestion control of MPTCP (Sec-

tion 3.3.1). In contrast, when some subflows use paths which are not disjoint, their

aggressiveness needs to be limited in order for them to remain friendly, by consider-

55

Figure 4.8: An example of TM assistance in three different cases of path compo-
sition: (a) Disjoint paths, (b) two paths sharing one link, (c) three paths sharing
two links.

ing all flows together. Our congestion control scheme practices greedy friendliness

by limiting the aggressiveness of the subflows only when needed, namely, in the

second case.

Path selection in PSI is performed by the TM, whose operation details

extend beyond the scope of this dissertation. An efficient yet simple solution in

PSI is to direct the TM so as to discover only disjoint paths, thus eliminating the

TCP-friendliness issue. Nevertheless, there are services where the k-shortest paths

are preferable to the k-shortest-disjoint paths, hence our only requirement is that

when the TM returns a set of paths encoded as LIPSIN identifiers, a group id code

should be added to each identifier so as to indicate non-disjoint paths. Specifically,

all paths that share at least one link with some other (not necessarily the same

link) are marked with the same group id. In general, for any given underlying

routing mechanism, the in-network assistance mechanism must be able to signal

how the available paths are grouped by group id.

For instance, Fig. 4.8 shows three examples of path composition along with

the corresponding group id codes. In Fig. 4.8(a) the three paths are disjoint, thus

each path is marked with a distinct group id, whereas in Fig. 4.8(b) paths A and

B share a link, thus they have the same group id. In 4.8(c) Paths A and B share

a link and paths B and C share a different link; they still get the same group id,

to ensure that each path belongs to a single group. This simplifies operation, at

56

the cost of losing some efficiency, since a congested link may only affect some of

the paths in a group.

We have also considered identifying bottlenecks with link-level granularity

to further enhance the accuracy of friendliness adaptation. In this case, each group

would only consist of paths sharing the same links, hence a path could belong to

several groups. For example, in Fig. 4.8(c) path B would belong to a group with

path A and another with path C. This complicates controlling the aggressiveness

of each group, since congestion events in path B can affect path A, path C, or even

both.

Operational overhead

Our notification service comes with apparent operational overhead since it

requires finding the best k-paths and identifying common links between them. We

use the TM operation that is presented in [72] as a performance baseline in order

to asses the extra costs. Finding the k-shortest paths in a topology of n nodes

and e edges has O(e + nlogn + k) complexity [73], which is similar to Dijkstra’s

shortest path algorithm. However, finding the common links among these paths

can be computationally expensive. If the k disjoint paths are up to h hops each,

h2k(k − 1)2−1 comparisons are required to compare them, hence O(h2k2), as the

h links of the kth path must be compared with each of the h links of the k − 1

previous paths. For example, in a datacenter network where multipath can provide

gains with up to 6 paths (k ≤ 6) [25] and the dissemination paths can consist of

6-8 hops, the inflicted computational overhead can be considerable.

We propose an alternative method that introduces slightly more state but

reduces computational complexity to O(kh). We exploit a Hash Table with O(1)

retrieval complexity, where the keys are link identifiers and the values are the sets

of path identifiers containing the corresponding link. First, all k paths are parsed

and the identifier of each path is entered in the corresponding link entries (kh

writes), thus creating a collection of paths for each link. Then, all table entries

are parsed (kh reads) to derive the path groups: initially, all paths associated

with the same link form a group, and then we recursively merge any groups that

57

happen to share any entries (that is, common path identifiers). Referring again to

Fig. 4.8(c), we would initially create one group for paths A and B and another for

paths B and C, due to their shared links. Then, we would merge the two groups

due to their shared path. Although this design requires storing the entire path

information, assuming 4-byte integers for link and path identifiers, the storage

cost is negligible.

4.2.2 Normalized Multiflow Congestion Control (NMCC)

When the available paths have different group ids (i.e., they do not share

any links), window management does not consider TCP-friendliness: our algorithm

creates a distinct subflow for each path with an individual congestion window vari-

able, RTT-based loss detection timer and retransmission mechanism, and subflows

operate independently the SS and CA algorithms, similarly to MPTCP’s Uncou-

pled congestion control scheme.

In contrast, when some paths have the same group id (i.e., they share some

links) the Normalized Multiflow Congestion Control (NMCC) algorithm is used

to manage them as a group. NMCC is a novel congestion control algorithm for

multipath connections that offers TCP-friendliness and high resource utilization

under various path setups, including disjoint, overlapping and mis-matched paths.

It differs from existing designs, such as LIA, OLIA and BALIA, in two distinct

ways: first, it introduces a new approach for pursuing friendliness and, second, it

introduces a new approach for implementing friendliness.

Pursuing TCP-friendliness The gains of NMCC compared to the existing

algorithms arise from the way it approaches TCP-friendliness. NMCC achieves

friendliness by normalizing the growth of the transfer rate of each flow, rather than

the transfer rate itself. NMCC exploits the fact that all connections start at the

same state, that is, they begin with the minimum allowed congestion window, and

remain friendly as long as their throughput increase rates are equal. NMCC thus

focuses on distributing the throughput increase rate of the fastest subflow among

its pool of available subflows. The friendliness requirement is deterministically

58

met at each window increase, hence NMCC is instantly friendly and remains so

throughout the entire connections lifespan.

Implementing TCP-friendliness NMCC exploits inherent properties of TCP

to control over-aggressiveness. Specifically, NMCC is based on a well-known TCP-

fairness characteristic, the fact that connections with higher RTTs are less aggres-

sive [74]. Instead of restraining the growth of the congestion window per RTT

like previous solutions, NMCC indirectly controls congestion window growth by

inflating the RTTs used in the calculations; this simplifies friendliness in the SS

phase and avoids multiflow-related issues due to RTT-mismatch, sudden load and

congestion shifts.

In the following we elaborate on the mechanics of NMCC in greater depth.

For clarity, we first discuss the operation of NMCC in the CA phase and then

extend our discussion to the SS phase in order to provide a complete solution.

TCP-friendliness during Congestion Avoidance

In the CA phase, NMCC uses an inflated RTT, r′i, for each subflow i to

control window growth; the inflated RTT slows down the rate of increasing the

congestion window since r′i ≥ ri. In order to estimate the amount of inflation, we

introduce the friendliness factor in congestion avoidance, mca, where

r′i = mcari (4.1)

The calculation of mca is derived based on two fairness goals: (i) the growth rate

of all subflows sharing a link should be no more than that of the fastest single-flow

connection and (ii) the overall growth rate should not be less than that of the

fastest single-flow connection.

We assume that the growth rate of the most aggressive single-flow connec-

tion, is equal to growth rate of the subflow with the minimum RTT, rmin, among

our pool of subflows. During this phase, subflow i increases its congestion window

by one MSS, s, every RTT, so its window growth rate is s/ri and its throughput

growth rate is s/r2i . Therefore the throughput growth rate of subflows in this phase

must satisfy the following equation:

59

s

r2min

=
N∑
i=1

s

r′2i
=

N∑
i=1

s

m2
car

2
i

where N is the set of jointly controlled subflows. We can therefore estimate mca

using the following equation:

m2
ca =

r2min

s

N∑
i=1

s

r2i
= r2min

N∑
i=1

1

r2i
(4.2)

To understand the friendliness factor mca, consider a simple example. Assume

that the TM offers two paths marked with the same group id, with rA = 5 ms and

rB = 10 ms. The operation of NMCC includes three simple steps to offer instant

TCP-friendliness:

Step 1. Initiliazation: We initially set mca equal to the number of jointly con-

trolled paths,4 hence: mca = 2.

Step 2. Estimation of mca: Upon every packet receipt,5 we can calculate the

friendliness factor using (4.2), hence in our example:

mca = 5
√

(1/52 + 1/102) ' 1.118.

Step 3. Estimation of r′i: Using (4.1), we calculate the inflated RTTs, therefore

r′A = 5.59 ms and r′B = 11.18 ms.

The inflated RTTs allow NMCC to increase its overall congestion window by

1/5.59 + 1/11.18 = 0.268 MSS/ms, while the fastest single-flow connection will

inflate its window by 1/5 = 0.2 MSS/ms. However, the throughput increase rates

are equalized: NMCC increases the overall throughput by 1/(5.59)2+1/(11.18)2 =

0.04 MSS/ms2 while the fastest single-flow connection by 1/52 = 0.04 MSS/ms2.

Consequently, both connections extend their portion of network resources evenly,

thus fairly sharing the available bandwidth.

By applying mca to the RTT s of all subflows, we adapt the growth rate of

all paths, which means that, although we favor the subflow which operates over

4This is equivalent to assuming that all RTT s are equal in 4.2.
5Although the computation is not expensive, mca can be updated less frequently (e.g., every

RTT) for resource constraint devices.

60

the fastest path, we do not neglect the other paths. Therefore, NMCC does not

require probing to detect load changes on unused paths, unlike LIA that introduces

a special parameter to keep a moderate amount of traffic on slow paths and OLIA

that requires probing. NMCC can therefore perform efficiently in heterogeneous

environments, adapting fast to path failures and congestion bursts. For instance,

consider an integrated terrestrial-satellite network where the terrestrial link has

10 ms delay and the satellite one has a 250 ms delay. In this case mca = 1.00079,

which causes a tiny adjustment to the RTT of each flow that does not constrain

subflow growth, allowing NMCC to effectively grasp the available resources.

Converting RTT inflation to window reduction Rather than radically mod-

ifying the existing implementations of window-based congestion control to rely on

modified RTTs, we convert the inflated RTT algorithm to an equivalent one that

controls the window growth per ACK. The throughput increase rate of a subflow

with NMCC is:
s

r′2
=

s

(mcar)2
=

s/m2
ca

r2
(4.3)

hence the increase of a friendly congestion window is s/m2
ca over the unmodified

RTT. Measuring congestion window, w, in bytes, TCP increases its window by

s2/w bytes, w/s times within an RTT, for an overall growth of 1 MSS. By reduc-

ing the amount of per-ACK increase of a subflow to s2/(m2
caw) bytes, the cumu-

lative increase of NMCC within an RTT is s/m2
ca, thus satisfying the friendliness

requirement. In this case, the friendliness factor mca directly controls the growth

of the congestion window upon the receipt of an ACK, thus allowing NMCC to be

integrated with TCP-like transport protocols.

TCP-friendliness during Slow Start

Most work on multiflow transport deals only with the CA phase, since SS

is considered a transient state with no measurable impact on the long-term perfor-

mance. Nevertheless, during the evaluation of NMCC we noticed that friendliness

was compromised when (i) the content was relatively small and (ii) the path was

very congested. An analysis of the evolution of the congestion windows showed that

61

NMCC with N subflows gained bandwidth almost N -times faster than a single-

flow connection during SS. Since short and very congested connections spend a

measurable fraction of their lifetimes in SS, meeting the friendliness goals in CA

was not enough to amortize NMCC’s aggressive behavior during SS. Interestingly,

in [75] the authors indicate that MPTCP suffers from the same fairness problem

and show that the over-aggressiveness during SS often results in a large number of

retransmissions that deteriorate flow performance.

One way to reduce aggressiveness during SS is to reduce the ssthresh pa-

rameter, so as to make the algorithm switch from SS to CA sooner. Unfortu-

nately, this has two disadvantages. First, when a connection starts, the available

bandwidth of the communication path is unknown, hence ssthresh should be set

high enough to probe it. Second, reducing ssthresh only limits the amount of

bandwidth that the protocol will re-acquire before it slows down, not the rate of

acquisition. In [75] the authors present a design that reduces the growth rate but

overlooks the reduction of the ssthresh parameter. Such a solution is incomplete

because the subflows are allowed to perform longer in the SS.

NMCC controls the amount of bandwidth gained during SS, as well as

its rate of growth. The NMCC friendliness approach for CA can be seamlessly

adapted to the SS phase for controlling aggressiveness. Specifically, in SS, when

a subflow i doubles its congestion window every ri, its instant throughput growth

rate is wi/r
2
i , where wi is the congestion window of subflow i. We introduce mss

the friendliness factor for SS where r′i = mssri. Similarly to the CA phase, mss

must equalize the throughput growth rate of all multipath flows with the fastest

increasing single-path, hence:

wk

r2k
=

N∑
i=1

wi

r′2i
=

N∑
i=1

wi

m2
ssr

2
i

where k is the subflow with the highest growth rate. We can therefore estimate

mss as follows:

m2
ss =

r2k
wk

N∑
i=1

wi

r2i
(4.4)

The similarity of (4.2) and (4.4) allows the creation of a unified method

for estimating the friendliness factor when subflows are in different states. We

62

introduce Ωi and Ω′i, the regular and the friendly throughput growth rate of subflow

i, respectively. The estimation of Ωi and Ω′i depends on the apparent congestion

phase of the subflow, therefore:

Ωi =

s/r2i , in cong. avoidance

wi/r
2
i , in slow start

 (4.5)

Ω′i =

s/r′2i = s/m2

car
2
i , in cong. avoidance

wi/r
′2
i = wi/m

2
ssr

2
i , in slow start

 (4.6)

The combination of (4.2), (4.4) and (4.6) provides a unified formula for estimating

m, the friendliness factor of NMCC, taking into account subflows in both the CA

and the SS phase:

m2 = m2
ca = m2

ss =

∑N
i=1 Ωi

Ωmax

(4.7)

To better understand the operation of NMCC with subflows in different

congestion phases, assume that NMCC exploits three subflows, A, B and C, but

only subflow C is in CA. The algorithm only requires estimating m based on (4.6)

and, then, calculating the inflated RTT based on (4.1). Assume that initially the

RTT s are 10, 5 and 5 ms and the windows are 100, 20 and 10 MSS for subflows

A, B and C, respectively.

Step 1. Initiliazation: We initially set mca equally to the number of jointly con-

trolled paths, hence: m = 3.

Step 2. Estimation of m: From (4.5), the unfriendly throughput increase rates,

Ωi, for paths A, B and C are 100/102 = 1, 20/52 = 0.8 and 1/52 =

0.04 MSS/ms2, respectively, hence from (4.7) we can calculate that m = 1.356.

Step 3. Estimation of r′i: From (4.1), the inflated RTT’s are 13.56, 6.78 and

6.78 ms.

Thereafter, the throughput increase rates, Ω′i, are 0.543, 0.435 and 0.022 MSS/ms2

for paths A, B and C, respectively, and the aggregate throughput growth rate is

equal to that of the fastest single-path, or 1 MSS/ms2.

63

A final issue that needs to be addressed during the SS state is the state-

ful window increases that can penalize the aggressiveness of NMCC. Specifically,

during SS the congestion window of a NMCC subflow on the jth RTT is set to:

wj = wj−1 + wj−1/m
2 = wj−1((m

2 + 1)/m2) (4.8)

while a single-path flow would set it to wj = 2wj−1. At the next RTT , NMCC

would apply the friendliness factor to an already reduced window, thus increasing

its lag behind the single-path flow. NMCC thus exhibits a “leak”, l, in the growth

of the congestion window, which is equal to:

lj = ((m2 − 1)/m2)wj−1 (4.9)

The growth leak exhibits two properties: first, a new leak is introduced each

RTT due to the application of m2, and, second, old leaks grow every RTT as

m2 is applied to wj−1. The first property is important for NMCC as it assures

friendliness, but the second falsely penalizes performance. The total amount of lag

produced is equal to the summation of old leaks which is

j−1∑
i=1

lim
2(j−1−i) (4.10)

on the jth RTT . To avoid this problem, NMCC uses the window size of an

equivalent single-path flow as the basis of increase. Specifically, the new window

size is estimated as:

wj = wj−1 + wsp
j /m2 (4.11)

where wsp
j is the window size of a single-path flow running in the same path on the

jth RTT . The combined SS and CA algorithm is presented in Algorithm 2.

TCP-friendliness during throughput reduction

Having modeled the friendliness rules for throughput increase, we need to

specify and model the rules for throughput decrease too. We hereby demonstrate

that, even if the throughput increase is TCP-friendly, the TCP-friendliness equi-

librium can be unbalanced in case of a special scenario, namely, when congestion

64

Algorithm 2 Window adjustment and estimation of m.

1: procedure increase window

2: if (w < ssthresh/m2) then

3: w ← w + wsp ∗ s/(w ∗m2)

4: wsp ← wsp + wsp

5: else

6: w ← w + s ∗ s/(w ∗m2)

7: wsp ← wsp + s

8: end if

9: end procedure

1: procedure estimate m

2: max rate← 0

3: total rate← 0

4: for (i ∈ subflows) do

5: if (wi < ssthreshi/m
2) then

6: rate← wi/r
2
i

7: else

8: rate← s/r2i

9: end if

10: total rate← total rate + rate

11: if (rate > max rate) then

12: max rate← rate

13: end if

14: end for

15: m← sqrt(total rate/max rate)

16: end procedure

65

events are triggered for a subset of the subflows. In this section, we model the

problem and, then, we elaborate on the solution.

To clarify the issue, consider a friendly multipath connection with two sub-

flows and a single-path competing in a bottleneck. During a congestion escalation

period, the single-path and only one subflow receive a congestion event, thus reduc-

ing their transfer rate to roughly one-half their previous rate. The single-path and

the multipath commit a reduction of 50% and 25% of their (cumulative) through-

put, respectively, thus throwing friendliness out of balance. This effect grows with

the frequency of congestion events that affect a subset of subflows. The worst

case scenario is for only one subflow to receive a congestion event and the best

case scenario is for all subflows to get the same feedback; we call these partial and

global congestion events, respectively.

In order to provide some performance bounds, we simulate three congestion

event scenarios: the worst case, the realistic and the best case. In all cases, we

assume a multipath connection (MP) with two subflows and a single-path (SP)

connection competing for the same link. Both connections increase their trans-

fer rate in a friendly manner and, when the link is full, flows receive congestion

events that reduce their throughput. Figure 4.9(1.a) plots the results of the worst

case scenario, where only the (sub-)flow with the largest congestion window gets

a packet loss, resulting in MP grasping 67% of the resources. Figure 4.9(1.b) il-

lustrates the results of the realistic scenario, where global congestion events can

occur, but faster connections are more likely to experience loss.6 Again, MP shows

measurable over-aggressiveness by grasping 58% of the bottleneck resources. Fi-

nally, in the best case scenario, where global congestion events take place, the

performance of MP and SP are identical, thus sharing the medium equally.

Modeling throughput reduction NMCC shows measurable over-aggressiveness

during partial congestion events, thus motivating an algorithm extension that reg-

ulates the throughput decrease under general conditions (partial and global con-

6When a link is full, a random sample per (sub-)flow is drawn from a uniform distribution
[0,100) and a congestion event is sent if the sample is larger than the bandwidth share of the
(sub-)flow.

66

Figure 4.9: NMCC (MP) and single-path (SP) window sizes in case of only
“partial” (column a) and “partial and global” congestion events (column b); row
1 depicts performance without the extension, row 2 depicts performance with the
extension.

gestion events). We choose not to change the NMCC part that controls throughput

growth, since it offers instant convergence to TCP-friendliness, but we propose to

add the following friendliness rule that regulates the throughput reduction:

The cumulative throughput reduction of multipath subflows after any number of

contemporaneous window reductions due to congestion, should be equal to the re-

duction of a single-path flow over the “best” path.

The path with the highest throughput increase rate, Ωmax, is considered “best”,

thus using the same benchmark path during throughput growth and throughput

reduction.

Oppositely to the deterministic7 throughput increase per ACK, a determin-

7NMCC algorithm does not include any random variables, such as packet loss probability; it
enters TCP-friendliness “steady-state” since the first iteration.

67

istic throughput reduction per congestion event is not trivial. We do not a priori

know the number of (sub-)flows that will be affected by the same congestion event,

hence we can not estimate the cumulative throughput decrease per congestion event

in order to equalize the performance of multipath and singlepath instantly. How-

ever, we can estimate the overall reduction over a period of time by assuming that

the bandwidth share and the error rate of the flows is stabilized in steady state,

thus experiencing an invariant number of losses in time. We hereby define fsp and

fi the frequency that the single-path and the ith subflow of the multipath receive

a congestion event, respectively. Similarly, we define dsp and di the throughput

reduction after a congestion event for the fastest single-path and the ith multi-

path subflow, respectively. Thereupon, our problem is expressed by the following

equilibrium:

fspdsp =
∑
i∈S

fidi (4.12)

where S is the set of subflows.

According to RFC 5681 [48], a congestion event leads TCP into Slow Start

or Fast Recovery state, thus causing approximately 50% reduction of transfer

throughput; in the first case, the congestion window grows exponentially, reaching

the Slow Start threshold very quickly, while, in the second case, the window is

directly set to the Slow Start threshold plus 3 MSS, where MSS is the Maximum

Segment Size.8 Therefore, we approximate the throughput reduction of singlepath

through the following equation:

dsp =
wsp − wsp/2

rsp
=

1

2

wsp

rsp
(4.13)

Furthermore, we can model f , the frequency of loss, as the product of throughput

and packet error rate, p, hence:

f = p
w

r
(4.14)

8In both cases we assume that the RTT remains relatively unchanged, since the congestion
level of the bottleneck is affected by numerous competing flows.

68

Now, we can formally demonstrate the friendliness issue by assuming that di, the

throughput decrease of subflow i, is unregulated, thus following (4.13). Then, we

can rewrite (4.12) as follows:

psp
wsp

rsp

wsp

2rsp
=

∑
i∈S

pi
wi

ri

wi

2ri

⇔
pspw

2
sp

r2sp
=

∑
i∈S

piw
2
i

r2i
(4.15)

Now consider the simple case where two subflows, that are in congestion avoidance,

perform in similar paths, with equal bandwidth, latency and error rate. Then,

according to (4.7), m2 = 2, thus halving the growth rate of the subflows’ windows,

hence:

ri = rsp, pi = psp, wi =
wsp

2

One can easily see that (4.15) is not satisfied under these conditions, thus verifying

the unfriendliness issue that needs to be addressed.

TCP-Friendly Throughput reduction In order to maintain TCP-friendliness

under various types of congestion events, we introduce the threshold factor, mt, a

positive real number (|S| ≥ mt ≥ 1), that regulates the throughput reduction of a

subflow during a congestion event, as shown in (4.16).

di = dspmt =
wi − wi/2

ri
mt =

wi

2ri
mt (4.16)

We rewrite (4.12), using (4.16) to express di, and estimate the threshold factor,

mt, as follows:
pspw

2
sp

r2sp
=

∑
i∈S

piw
2
i

r2i
mt

⇔ mt =
pspw

2
sp/r

2
sp∑

i∈S piw
2
i /r

2
i

The estimation of mt by a multipath subflow, requires the knowledge of wsp,

rsp and psp, which express the performance of a TCP-like flow on the best available

path; the best path is the one with the highest throughput increase rate, Ωmax. By

69

definition, the packet drop rate of the path, being a feature of the medium, is not

affected by NMCC, hence psp = pmax. The throughput of the singlepath is equal to

the cumulative throughput of the multipath, as a result of meeting the friendliness

constraint during window increase, hence wsp/rsp =
∑

i∈S wi/ri. Consequently,

any subflow can estimate mt via the following formula:

mt =
pmax(

∑
i∈S wi/ri)

2∑
i∈S piw

2
i /r

2
i

(4.17)

The proposed extension behaves similarly to the proportional throughput

growth scheme of NMCC, thus maximizing aggressiveness reduction when paths

are equally fast. Specifically, when the connection deploys one subflow, then

mth = 1, thus falling back to singlepath behavior. When |S| identical subflows (in

identical paths) are deployed, then mth = |S|, thus offering the maximum through-

put reduction. Finally, as paths get more diverse and a subset of subflows grasps

the most resources, then m→ 1, thus not affecting the throughput reduction.

We repeated the simulations of Fig. 4.9, but this time including the thresh-

old modification factor, mt, in the congestion control scheme. In the worst case

scenario, multipath (MP) gains 54% of resources (Fig. 4.9(2.a)), thus improv-

ing friendliness by 13% (Fig. 4.9(1.a)). In the more realistic scenario, MP gets

49% of resources, thus achieving friendliness and preliminary validating our solu-

tion (Fig. 4.9(2.b)).

Finally, the convergence to TCP-friendliness is not expected to be delayed

by this extension. The NMCC connection is friendly instantly, since the through-

put reduction mechanism is enabled only after the first packet loss. Then on, the

algorithm requires that the (sub-)flows converge to their fair share of resources, in

order to estimate the packet drop probability of the paths; TCP flows converge af-

ter few congestion rounds [76]. Consequently, our extension is expected to converge

to TCP-friendliness by the time the last subflow converges to its share of resources.

This argument is validated through experiments with the Linux implementation

of MPTCP in Section 5.2.

The NMCC algorithm is presented below:

Algorithm: NMCC

70

• For each ACK on path i,

wi ← wi +
1

wi

Ωmax∑
i∈S Ωi

• For each loss on path i,

wi ← wi −
wi

2
∗
pmax(

∑
i∈S wi/ri)

2∑
i∈S piw

2
i /r

2
i

4.2.3 Implementation and experimentation

In this section, we evaluate the performance of our hybrid congestion con-

trol algorithm. We start by first examining NMCC in simple LAN topologies using

the prototype implementation of mmTP in order to assess TCP-friendliness and

bandwidth aggregation. Later, we examine more sophisticated benchmark sce-

narios in LAN topologies using the htsim simulator9 to estimate load balancing,

resource utilization and TCP-friendliness throughout long transmissions. Finally,

we explore realistic domain-scale scenarios using the NS-3 simulator10 in order to

estimate the effect of NMCC and TM’s assistance on the overall network resource

utilization.

LAN emulation with mmTP

We have implemented our hybrid congestion control algorithm as part of the

mmTP protocol that runs over Blackadder, the PSI prototype implementation [70].

Our implementation includes the mmTP sender and receiver applications with

NMCC enabled, as well as a TM that computes the k-shortest paths from every

publisher to a subscriber, using the algorithm by Yen [71] with hop count as the

metric.

We deployed Blackadder with mmTP in LAN topologies in our laboratory,

using 100 Mbps switches and workstations as network nodes. In this environment

we have full control of the communication paths, we can avoid unwanted traffic

that could influence the results and we can monitor link capacities and delays, as

well as node and router status. Our experiments examine (i) TM’s assistance effect

9http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
10https://www.nsnam.org

71

Figure 4.10: LAN testbed topologies for assessing performance in (a) disjoint
paths and (b) paths with shared bottlenecks.

with disjoint paths, (ii) NMCC’s behavior with overlapping paths, (iii) NMCC’s

behavior in short transfers and (iv) NMCC’s behavior in heterogeneous networks.

In our testbed, the transmission latency among publishers and subscribers

is set to 100 ms and the bandwidth of each link is 11.7 MBps, as estimated using

iperf.11 The duration of transfers during all experiments is 300 s, but we consider

only the final 60 s where the system has been stabilized, except when mentioned

otherwise. In order to enhance the reliability of our conclusions, we repeated each

experiment until the margin of error was less than 2%, so as to achieve a confidence

level of 95%.

Disjoint paths We first deployed mmTP in the topology of Fig. 4.10(a), in order

to investigate the performance gains of our approach when paths are known to be

disjoint. Figure 4.10(a) supports one multisource path from publishers P1 and P2

to subscriber S1 and two disjoint paths from publishers P1 and P2 to subscribers

S1 and S2, respectively. We first executed some experiments with no contending

traffic, so as to establish a performance baseline, leading to the average transfer

rates shown in Table 4.1; each line depicts results from a different experiment. The

first two experiments involve running mmTP in multisource mode to both pub-

lishers, with and without TM assistance, while the next three experiments involve

running single-flow mmTP connections to each publisher, first independently and

then together. We notice that each path offers roughly 10.6 MBps throughput and

multiflow mmTP achieves 21.3 and 20.7 MBps with and without TM assistance,

respectively. These preliminary results validate that mmTP fully exploits available

11Available at http://iperf.sourceforge.net/.

72

Transmission mode Transfer rate (MBps)
Multisource with TM assistance 21.3
Multisource with no TM assistance 20.7
Single-flow from P1 to S1 10.6
Single-flow from P2 to S2 10.7
Single-flows on both paths 21.1

Table 4.1: Average transfer rates with disjoint paths.

capacity and imply that TM assistance slightly enhances performance, even in the

absence of competing flows, since with TM assistance the window growth in each

path is not throttled in any way.

We then deployed mmTP in multisource mode over the same topology (S1

requests data from both P1 and P2), with one or two single-flow connections

competing over one or both disjoint paths (S1 to P1 and S2 to P2). In Fig. 4.11 we

show the average share of the total bandwidth that mmTP achieved in each case,

depending on whether TM assistance was turned on or off. The results validate

the performance gains and the friendliness of NMCC. Ideally, with one contending

single-flow connection NMCC should use half of the bandwidth over one path

and the entire bandwidth over the other, or 75% of the total bandwidth. With

two contending single-flow connections NMCC should use half of the bandwidth

over each path, or 50% of the total bandwidth. In our experiments, mmTP with

TM assistance acquires 67.5% and 49.2% of the overall bandwidth, respectively.

On the other hand, without TM assistance the bandwidth shares of mmTP are

significantly lower, namely 54.6% and 38.5%, respectively, reflecting a far more

conservative sharing of the available bandwidth. However, these connections do not

all share the same bottleneck link, hence aggressiveness mitigation is unnecessary.

Shared paths To investigate the case where paths share some links, mandating

a less aggressive behavior to ensure friendliness, we used the topology shown in

Fig. 4.10(b), where the endpoints are connected by overlapping paths. We deployed

a multisource connection from subscriber S1 to publishers P1 and P2, in parallel

with 1, 2, 4 and 9 single-flow connections from subscriber S1 to publisher P1 and

73

Figure 4.11: mmTP performance in LAN topology with disjoint paths, exploring
friendliness with and without TM assistance.

from subscriber S2 to publisher P2; these connections are distributed uniformly

between the two paths.

Figure 4.12(a) demonstrates the average bandwidth percentage acquired

by NMCC and all single-flow connections, while Fig. 4.12(b) displays the average

transfer rate achieved by NMCC and the average singlepath connection. NMCC

acquires 53%, 37%, 22% and 12% of the bottleneck link’s bandwidth when com-

peting with 1, 2, 4 and 9 single-flow connections, respectively, marginally over the

“perfect” sharing ratios of 50%, 33.3%, 20% and 10%, respectively, thus satisfying

the friendliness goal. The slight performance advantage of NMCC, also evident

in the transfer rates, arises from NMCC’s goal to match the fastest single-path

available. With multiple similar paths, the fastest available path over a prolonged

period is not fixed, as congestion levels fluctuate. NMCC chooses the best path

based on current RTT, hence it performs similarly to a multipath congestion con-

trol algorithm that exploits only the best path from a pool, thus gaining a slight

performance advantage. The mean friendliness factor, m, of NMCC in these ex-

periments was roughly 1.4, while the optimal would be 1.41, indicating a slight

over-aggressiveness.

We also examined NMCC’s response to a sudden change in the congestion

level, by repeating the previous experiment, but this time starting the multiflow

connection either 30 s after or 30 s before the start of the single-flow connections.

74

Figure 4.12: NMCC performance in LAN topology with shared bottleneck, ex-
ploring multipath friendliness against (a) all single-flow connections and (b) the
average single-flow connection.

Figure 4.13: NMCC performance in LAN topology with shared bottleneck, ex-
ploring friendliness in short transfers with and without friendly SS.

The results of these experiments are nearly identical to the previous ones, as NMCC

acquires 54%, 36%, 23% and 12% of the bandwidth when competing with 1, 2,

4 and 9 single-flow connections, respectively. Consequently, NMCC manages to

efficiently share bandwidth with newly established connections, as well as to obtain

a fair share of bandwidth when launched in an already congested path.

Short transfers NMCC is friendly during the SS phase, unlike the majority of

existing multipath algorithms that are only concerned with the CA phase. This

is particularly important for short transfers, where friendliness during CA cannot

compensate for an unfriendly SS. To evaluate this aspect of NMCC, we reused the

75

shared link topology of Fig. 4.10(b), deploying one multisource NMCC connection

and either 1 or 2 contending single-flow connections. Each connection transfers a

10 MB object, which would require less than 1.1 s to complete in the absence of

contention. Figure 4.13 presents the percentage of overall bandwidth acquired by

NMCC when friendly SS is turned on or off.

With unfriendly SS, NMCC grabs a disproportionate amount of bandwidth

from the competing connections, compared to the ideal shares of 50% and 33%. In

the first case, NMCC gets 61% of the bandwidth; while in the second case it gets

44%, or 11% more than the fair share in both cases. On the other hand, NMCC

with friendly SS gains 52% and 36% of the total bandwidth. Consequently, NMCC

is friendly even with short transfers.

Discussion of results We have preliminary evaluated NMCC and the network-

assistance module in toy-topologies using the PSI prototype implementation. Our

results validate that the TCP-friendliness requirement is met regardless of the

number of competing flows (Fig. 4.12) or the connection duration (Fig. 4.13). We

also validate that the TM assistance can effectively notify mmTP, so as to realize

the greedy friendliness concept (Fig. 4.11).

LAN simulations with htsim

In this section, we explore the behavior of NMCC, LIA and Uncoupled12

by replicating the five benchmark scenarios used in the evaluation of LIA in [3]

using the same simulator, htsim. The scenarios investigate the performance of

multipath in terms of TCP-friendliness, resource utilization and load balancing.

Each scenario was repeated 500 times and each run lasted 1000 seconds, but we

take into account only the last 200 seconds when the performance is stabilized.

Notice that htsim has a coarse grained Retransmission TimeOut (RTO) estimation,

therefore we consider the long run behavior of flows with non-frequent timeouts, as

otherwise timeouts would be incorrectly grouped in time. Finally, we observe that

the congestion events reported by htsim are 99% triple duplicates and 1% timeouts,

12OLIA and Balia are not implemented in htsim.

76

Figure 4.14: LIA and NMCC performance comparison (left column) in the bench-
mark topologies of [3] (right column). Figures illustrate the instant bandwidth
share of multipath (MP) and single-path (SP) connections normalized to the over-
all network capacity unless otherwise stated. Figure (a) examines NMCC’s effi-
ciency in terms of TCP-friendliness, (b)-(c) resource utilization and (e)-(d) load
balancing.

77

even though timeouts typically outnumber triple duplicates in the Internet [76].

This behavior is expected to emphasize on the NMCC friendliness issue, which

is caused by partial congestion events, since Fast Retransmit controls congestion

more timely, preventing global congestion events.

TCP-friendliness In [3, Fig. 1] a bottleneck topology is used to investigate

resource sharing between a multipath (with two subflows) and a single-path con-

nection. We replicated the experiment and found that NMCC exhibits perfect

sharing, getting 50% of the available resources, while LIA is slightly more aggres-

sive grasping 53%, as shown in Fig. 4.14(a). We repeated the same experiment

for different link throughputs (200-1000 packets/s), without observing measurable

differences. Therefore, we argue that NMCC is TCP-friendly when sharing a bot-

tleneck.

Resource Utilization In [3, Fig. 4] a two-links topology with RTT and error-

rate mismatch is used to explore resource utilization by the multipath connection.

We replicated the experiment, where multipath competes a single path on each

path. All algorithms achieve 100% resource utilization but offer different levels of

friendliness: NMCC gets 53% of resources on the widest path, LIA gets 52% and

Uncoupled 59%. The results are presented in Fig. 4.14(b), where flow throughput

is normalized to the bandwidth of the widest path.

In [3, Fig. 2] a topology with three links of capacity C is used to evaluate

resource utilization as a result of choosing the least-congested path. Specifically,

three multipath sessions are deployed, each having one subflow through one link

and a second one through the other two links, so that each link is used by three

subflows. Each multipath session should use only the least congested path (the

single link) and get a cumulative transfer rate of C, instead of using the two links

shared by the other subflows, which would lead to a transfer rate of only 2C/3.

Figure 4.14(c) shows the throughput of each subflow normalized to C, the resource

share of the fastest single path. Results yield that the algorithms do not maximize

resource utilization, but LIA performs slightly better than NMCC, that performs

sightly better than Uncoupled, scoring 81%, 79% and 77%, respectively. While this

78

under-utilization is considered a weakness and is the core motivation for OLIA [16],

the importance of pushing traffic exclusively to the “best” path is debatable, as

preferring the least congested path can exhibit poor responsiveness [17, Fig. 4] and

penalize performance in datacenters [3].

Load balancing In [3, Fig. 3] a topology with four parallel links of different

capacities is used to estimate the load balancing efficiency of the multipath algo-

rithm. Three multipath connections are deployed, each establishing one subflow

through a different link, so that each connection competes with a different multi-

path connection on a different link. Ideally, the connections will balance congestion

load across all links and perform similarly getting cumulatively C capacity. Fig-

ure 4.14(d) illustrates the performance of the three connections normalized to C.

NMCC utilizes 98% of network resources while other algorithms reach 100%. The

slight performance degradation is measured at the connection that performs in the

widest paths, while the slower connection perform similarly to LIA, thus achiev-

ing better load balancing (standard deviation of NMCC is 12%, LIA’s 14% and

Uncoupled’s 17%) at the cost of lower resource utilization.

Finally, in [3, Fig. 7] a torus topology with five parallel links is used to

assess again the efficiency of the multipath algorithms in load balancing. Each

link is used by two subflows from different connections, but one link is considerably

narrower. The multipath connections must balance congestion load in all links and

perform similarly. The results are presented in Fig. 4.14(e), which illustrates the

throughput of the five flows normalized to the fastest single-path measured. In

all cases throughput is not perfectly equalized, as the score of connections sharing

the narrow link differs from the average with the standard deviation being 9%, 9%

and 15% for NMCC, LIA and Uncoupled, respectively. In this experiment resource

utilization is 100% of network capacity.

Discussion of results The results of the simulations in the benchmark topolo-

gies yield that the TCP-friendliness of NMCC is met under various conditions,

while resource utilization and load balancing is efficient. NMCC is slightly better

than LIA (and Uncoupled) in sharing the bottlenecks, since it tackles friendli-

79

Nodes Edges Access Nodes
Globalcenter.gml 12 39 3
Janetlense.gml 20 40 3
Gridnet.gml 12 23 3
Internetmci.gml 23 43 5
Goodnet.gml 17 31 4
Iij.gml 37 65 10
Geant2012.gml 40 61 8
SwitchL3.gml 42 63 12
Bics.gml 33 48 5
Uninett2011.gml 69 98 11
PionierL3.gml 38 52 9
Ans.gml 20 27 3
Aarnet.gml 21 26 4
Nsfnet.gml 13 15 3
Bren.gml 37 42 20

Table 4.2: Characteristics of the AS topologies used in the domain-scale
experiments.

ness roughly perfectly (Fig. 4.14(a)), it exhibits a minor resource underutilization

compared to LIA (2% less in Fig. 4.14(c)) due to not pushing all traffic in the

least congested path, and it offers similar load balancing to LIA (Fig. 4.14(d,e)).

The results are reasonable, since NMCC is designed to offer instant and accurate

TCP-friendliness, instead of using only the “best” path in order to balance the

congestion load.

Domain-scale simulations with NS-3

Having evaluated the performance of NMCC in benchmark topologies, we

now turn our attention to more realistic WAN environments. Our goal is to ex-

amine the fairness of NMCC and MPTCP in real network topologies, as well as

to assess whether multipath in general, and TM awareness in particular, make a

difference in the real world. We therefore implemented mmTP with NMCC and

the LIA congestion control algorithms, over a detailed implementation of the entire

PSI architecture in the NS-3 simulator.

For this evaluation, we used the 15 Autonomous System (AS) topologies

80

listed in Table 4.2, taken from the Internet Topology Zoo repository.13 Since path

richness is expected to have an influence on multipath performance, we intention-

ally selected topologies with different density factors14 (from 0.04 to 0.5). For each

AS topology we simulated a number of connections initiated from clients outside

the AS to servers inside the AS. We considered two types of clients: single-homed

clients are connected to an Access Node (AN)15 of the AS with a 100 Mbps connec-

tion; dual-homed clients are also connected to a second AN with a slower 12 Mbps

connection, simulating smartphones with Wi-Fi and 4G interfaces. As dual-homed

smartphone users are normally connected to different ISPs over each interface, the

two ANs are selected randomly, as shown in Fig. 4.15. The access link delays

are also randomly selected in the 5 to 125–500 ms range (the range depends on

the scenario). The link delay and capacity inside the AS is the same for all links

(10 Mbps to 1 Gbps, depending on the scenario) with a 5 ms delay.

The servers that these clients connect to are also randomly placed in the AS,

but we made sure that the number of servers is 10-20% of the number of clients,

as indicated in [77]. In each simulation run, all clients started requesting content

simultaneously from the appropriate server. We measured the throughput and

error rate of each connection for 3 s after the metrics converged to their final values.

Although we only attached two users per AN, we conducted 100 experiments per

topology, leading to many different server locations and client-server paths. In the

following we present average results measured across all topologies with an error

margin of less than 2% for a confidence level of 95%.

Friendliness of NMCC and LIA Our first set of experiments focuses on how

NMCC and LIA handle friendliness. In these experiments we only used single-

homed clients to guarantee that paths are overlapping, hence friendliness is always

an issue. We randomly selected 50% of the clients to initiate single-path transfers,

with all other clients initiating multipath transfers. We varied two parameters

that can significantly affect the aggressiveness of multipath flows: path capacity

13http://www.topology-zoo.org/dataset.html
14density = 2|Edges|

|Nodes|(|Nodes|−1)
15A node with degree equal to one.

81

Figure 4.15: AS-scale topologies: client attachment to the Access Nodes (AN) of
the AS with two access links. The testbed allows configuring different access links’
latencies (per user) and in-network link capacities (per experiment).

and delay variance. Limited capacity is the reason congestion occurs, while delay

variance leads to RTT mismatch among paths, which is known to challenge multi-

path protocols. We simulated different network capacities by configuring different

values for all intra-AS links, while different path delays were configured only for

access links.

We used two metrics to assess performance at the user and network lev-

els. Relative Throughput is the throughput of each connection normalized to the

throughput of the fastest connection in that run, thus expressing the relative

performance of all users. A more friendly algorithm will exhibit higher relative

throughput values for the slowest users. For NMCC Throughput Gains we sort

all connections in ascending throughput order for both NMCC and LIA, and then

we calculate for each rank the NMCC gain over LIA, relative to the LIA through-

put; positive values indicate that NMCC is faster, while negative ones that LIA is

82

Figure 4.16: NMCC performance in the domain-scale topologies compared to
LIA under different (a) in-network link capacities and (b) access link delay ranges.

faster. Since the aggregate throughput across all connections (the overall network

utilization) was equal in the NMCC and LIA experiments, fairness is enhanced

when the slower users gain throughput, at the expense of the faster users.

We first explored these metrics for in-network link capacities ranging from

10 Mbps to 1 Gbps, when the access link delays are randomly and uniformly drawn

from the 5 to 125 ms range; we show the results in Fig. 4.16(a.1-2), omitting the

results for 1 Gbps as they are identical to those for 100 Mbps. Figure 4.16(a.1)

shows that the relative throughput of the slowest users in NMCC is closer to that

of the fastest users compared to LIA, regardless of the link speed. It also shows

that the differences are larger as links get narrower (10Mbps exhibits the largest

performance gap), since in these cases the bottleneck is reached more easily, making

83

friendliness more of an issue. Moreover, Fig. 4.16(a.2) shows that NMCC tackles

friendliness more efficiently than LIA, as it enhances the throughput of slow users

up to 100% for 10 Mbps links, while slightly reducing the throughput of fast users,

thus improving overall fairness. We also observe that the throughput gains of

NMCC are smaller for larger link capacities, since the congestion level is lower,

the variance of user throughput is less and, therefore, the margins for improving

friendliness are thinner.

We then repeated these experiments, but this time we fixed the intra-AS link

speed to 10 Mbps and varied the propagation delay of access links by randomly and

uniformly choosing latencies in the 5 to 125 ms, 5 to 250 ms and 5 to 500 ms ranges;

the results are shown in Fig. 4.16(b.1-2). Figure 4.16(b.1) indicates that fairness

is more of an issue when the delay variance is high, due to the RTT-unfairness

of TCP. Nonetheless, NMCC offers significant gains in terms of friendliness to the

slowest users; specifically, Fig. 4.16(b.2) depicts a substantial fairness improvement

for roughly 80% of the slowest NMCC transfers compared to LIA. Finally, we

notice that the friendliness gains offered by NMCC are reduced as delay mismatch

increases.

The effect of TM assistance Our second set of experiments investigates the

throughput gains with NMCC due to the exploitation of information about disjoint

paths. The experimental setup is similar to the previous section, using AS-scale

simulations with 15 real AS topologies. However, since we are interested in disjoint

paths, we only configured dual-homed clients. We first ran each experiment using

single-flow transport, and then repeated it using NMCC, with and without TM

assistance.

We varied three parameters which can impact performance when TM as-

sistance is offered: path capacity, number of paths used and the path formation

algorithm used. We expect that bandwidth availability will be proportional to the

throughput gains, since the more aggressive TM-assisted connections will maximize

their performance when more unused resources exist. Increasing the number of

paths should enhance the benefits of TM assistance, as the probability of avoiding

performance bottlenecks is increased. We examined the establishment of two and

84

three paths, in addition to the single-path baseline; three is the maximum number

of paths expected to exhibit gains [1]. Finally, in addition to the k-shortest paths

algorithm, which can return both disjoint and non-disjoint paths, we also used

Bhandari’s algorithm [78], which discovers pairs of disjoint paths with Dijkstra-

like complexity. To assess performance, we used Multipath Throughput Gain which

expresses the aggregate gain in network throughput offered by multipath NMCC

over single-path performance. Since each topology has a different density, the per

topology results help assess how the gains of NMCC are distributed under different

scenarios. Notice that topologies are plotted in ascending order of density from

left to right.

Figure 4.17 depicts the Multipath Throughput Gain for each topology. In

all cases, the access link delays are drawn from the 5-125 ms range. In Fig. 4.17(a)

we show the gains offered with two and three-shortest paths, with and without

TM assistance, in a resource-constrained network with 10 Mbps intra-AS links.

The average gain for two and three-shortest paths is 14% and 24%, respectively,

highlighting the effectiveness of multipath even with slow links. Since we only have

two access links, hence at most two disjoint paths, the additional gains when using

a third path are exclusively due to the avoidance of in-network bottlenecks. On

the other hand, even though 32% and 51% of users get disjoint paths in the two

and three-shortest path scenarios (49% gets overlapping paths), respectively, TM

assistance does not have a noticeable effect on multipath gain in this scenario.

Raising the intra-AS link speed to 100 Mbps makes TM assistance matter:

on average, it increases multipath throughput by 2% compared to the case without

TM assistance. As a result, with 3-shortest path connections we see an average

throughput gain of 57% over single-path connections. Notice that the network links

are fully saturated in these runs, therefore any performance gains are still due to

bottleneck avoidance. TM assistance delivers the clearer benefits with 1 Gbps

intra-AS links, where in-network congestion is negligible, hence NMCC’s aggres-

siveness over disjoint paths actually exploits idle resources, as shown in Fig. 4.17(c).

In this case, TM assistance offers a further increase in throughput of 6% and 8%

on average over mmTP without TM assistance with 2 and 3-shortest paths, re-

85

spectively, for an average gain of 69% and 87% over single-path connections.

We then explored the performance limits of TM assistance by implementing

Bhandari’s path formation algorithm to discover pairs of shortest disjoint paths.

In this case, 86% of the connections managed to get disjoint paths, thus benefiting

from TM assistance; the remaining 14% got overlapping paths. The results shown

are the averages among all connections, regardless of whether they used disjoint

paths or not, with 1 Gbps intra-AS links. As shown in Fig. 4.17(d), TM assistance

in this case provides 11% additional gains, for an average gain of 87% over single-

path connections; this is 18% higher than with the k-shortest paths algorithm with

2-shortest paths and TM assistance (Fig. 4.17(c)), since in that case we did not

get so many disjoint paths. Consequently, TM assistance does make a difference

when there are resources to exploit, as it consumes more aggressively the unused

bandwidth in disjoint paths.

Finally, we notice a correlation between the gains of TM assistance and

the overall multipath gains. TM assistance delivers roughly 10% higher perfor-

mance to multipath connections, i.e., when multipath users experience 100% more

throughput than single-path ones, then the TM assistance will provide 10% addi-

tional gains. As expected, multipath gains are correlated with network density, as

in all figures the performance in the (denser) topologies to the right are generally

higher. This experimentally validates our intuition that TM assistance performs

best in dense topologies where disjoint paths are easier to find and more resources

are pooled.

Discussion of results We evaluated NMCC and TM assistance mechanism

in real-life domain-scale topologies, where multiple users perform simultaneously,

sharing the available network resources. First, the results highlight the fairness

gains that NMCC offers to the network compared to LIA, due to achieving ac-

curate and instant friendliness. NMCC improves by up to 100% the throughput

of the slowest users by reducing the throughput of the fastest and, potentially,

over-aggressive multipath users, thus democratizing the sharing of network re-

sources (Fig. 4.16.(a.2)). Second, the results demonstrate that the greedy friendli-

ness technique increases impressively the network resource utilization in domain-

86

scale scenarios under different path formation policies, when network capacity is

high. In the case of 2-shortest disjoint paths, multipath with greedy friendliness

increases the network resource utilization of multipath without greedy friendliness

by 10% on average (Fig. 4.17.(d)).

87

Figure 4.17: mmTP performance in the domain-scale topologies with and with-
out TM assistance under different path formation policies and in-network link
capacities: (a-c) Yen’s path formation algorithm and (d) Bhandari’s disjoint path
formation algorithm. Topologies are plotted in ascending order by density from
the left to the right.

Chapter 5

Integration of hybrid multi-flow

congestion control in IP Networks

In this section we discuss the integration of our multiflow solution with the

IP architecture. First, we elaborate on the installation of our topological assistance

module in IP networks through the MPLS and the SDN technologies. Second, we

integrate NMCC with IP networks through the Linux implementation of MPTCP

and explore experimentally the performance gains that NMCC can bring to IP

networks compared to the LIA, OLIA and BALIA algorithms.

5.1 Topological assistance module in TCP/IP

Our hybrid congestion control mechanism for multiflow transfers relies on

an in-network module to apply path formation policies and to notify the end-hosts

about shared bottlenecks. The PSI architecture is an appropriate terrain for this

design, since it provides a TM function that discovers the dissemination paths

and interacts with the end-hosts. We detect three essential features of PSI that

facilitate our topological assistance module. First, the TM knows the physical

structure of the network, so it can easily detect shared bottlenecks. Second, the

path formation policy, such as finding the k-shortest disjoint paths, can be de-

ployed at request-level, where the end-users declare their preference via meta-data

or name-conventions, e.g., registered postfixes of item names. Third, when two

88

89

publish-subscribe requests are matched, the TM sends the LIPSIN identifiers di-

rectly to the applications, therefore it directly pushes the topological information

to the users. Any changes to these paths, whether due to failures or load balancing

decisions, require the distribution of new LIPSIN identifiers by the TM, therefore

the applications are always aware of path overlaps. In order to extend our scheme

to other types of networks, such as IP-based ones, we need equivalent in-network

mechanisms to provide such information, as well as mechanisms to ensure that this

information remains valid as routing decisions change.

5.1.1 Topological assistance in MPLS

Multi-Protocol Label Switching (MPLS) [9] is a quite popular solution for

providing centralized path selection and source routing in IP networks. Currently,

MPLS is primarily used to apply domain-scale traffic engineering, rather than to

enhance the performance of individual connections, hence, connections are dis-

tributed to different paths according to static sharing weights for general load

balancing, e.g., in case of three available paths, 33% of incoming traffic is pushed

over a different path, using the Round Robin technique to map a connection to

a path. Consequently, congestion control takes place at the actual end-hosts (i.e

the users), while the ingress MPLS router is confined to the flow control of the

available paths.

The greedy friendliness technique can be enabled by exploiting the MPLS

network administrator, who discovers the paths in the MPLS cloud, assigns con-

nections to these paths and pushes the routing information to the MPLS routers.

Along with the routing information, the administrator can push to the MPLS

routers information about the disjointness of the paths. Thereupon, the ingress

router can act as the congestion manager of the MPLS cloud, similarly to a Per-

formance Enhancement Point (PEP), like Split TCP for wireless links [79], thus

becoming the end-host of a local MPLS service. When the network administrator

discovers multiple paths for bulk flows and sends the corresponding labels to the

ingress router, it also sends information about shared bottlenecks, as described

in Sec. 4.2.1. The ingress router, that splits the connections and applies conges-

90

tion control in the MPLS network, can then exploit this information along with

source routing to selectively engage the friendliness mechanism, thus enhancing

the resource utilization of the MPLS cloud. Although this solution offers apparent

gains, such as relying on the tested technology of PEPs, it also puts significant

computation overhead to the ingress router, that deploys a (multipath) congestion

loop per connection, thus questioning the feasibility of this design.

In order to provide a computationally feasible solution, we sketch a com-

bination of the previous approaches that brings the efficiency of the second and

the scalability of the first. We propose that the ingress MPLS router performs

as a PEP, splitting the connections and practicing the congestion control within

the MPLS cloud, thus offering efficient performance. We also suggest that the

ingress router groups the individual incoming connections that are sent to the

same egress router, and manages congestion control on groups instead of connec-

tions, thus reducing the computational costs. Thereupon, the congestion control

of “grouped” connections is jointly managed by the ingress router that exploits a

congestion control algorithm, such as NMCC and LIA, and the network-assistance

of the network administrator, so as to apply domain-scale greedy friendliness (in-

stead of connection-level). The computation overhead of this solution is caused

by establishing one congestion loop per group of connections, or per egress router,

and by splitting the connections, like Split-TCP, thus being acceptable. However,

the technical details, such as grouping the connections and jointly performing the

congestion control of multiple connections, need to be further explored.

5.1.2 Topological assistance in SDN

Software-Defined Networking (SDN) [80] is a novel networking technology

that can be used to achieve similar goals to PSI, including centralized path selec-

tion. The SDN controller is equivalent to PSI’s TM, being aware of the network

topology and discovering the dissemination paths that are materialized by the

on-path SDN switches, thus offering source routing. Nonetheless, the SDN con-

troller does not communicate with the end-hosts, hence it cannot pass topological

information to them. We can apply the same ideas as for MPLS to introduce

91

in-network assistance and NMCC to SDN clouds, by considering the ingress SDN

switch as the congestion manager of bulk flows. When the SDN controller creates

forwarding paths by sending the appropriate rules to the SDN switches, it can send

information on how flows are grouped depending on path sharing to the ingress

SDN router, as well as instructions on how to tag each IP header so as to implicitly

select the appropriate path. The ingress SDN router will then run NMCC for each

bulk flow, as in the MPLS case.

A different approach to provide topological information to the end-users is

stirred by the integration schemes of SDN and MPTCP [34, 35]. In these setups,

the SDN switches “sniff” the special MPTCP messages that carry the MP JOIN

option signaling the establishment of additional subflows. The switches also main-

tain certain state that allows the identification of subflows that belong to the same

MPTCP session, in order to force path diversity deterministically. Upon this de-

sign, SDN switches can insert their unique identifiers to the MPTCP header so

that the entire path can be derived at the receiving host. Then, the MPTCP

sender examines the identifiers and simply deduces the existence of possible bot-

tlenecks. However, this design may be inefficient for long wide-area paths, where

path information does not fit in the MPTCP header, or network operators that do

not want to disclose their internal routing decisions.

To avoid these issues, we propose an alternative design where the SDN

switches insert distributively topological information to the MPTCP header, simi-

larly to the “group id” of the TM assistance module, so as to inform the MPTCP

end-user about shared links without indicating the entire path. Specifically, the

MPTCP header is extended with a field, namely, PATH OVERLAP, that contains

the list of the transport identifiers (e.g., destination IP addresses) of subflows com-

peting in the same bottleneck. The field is initially empty but it is updated by

any SDN switch that forwards multiple MP JOIN messages over the same link.

The SDN switch stores the destination address of each subflow during the estab-

lishment, so it can list the destination addresses of all subflows being forwarded

over the same link when a new subflow is established. The topological information

its delivered to the MPTCP end-user via the MP JOIN message and then greedy

92

friendliness is applied.

Even though the only overhead of this extension is the special field in the

MPTCP header that must be included to carry the topological information of the

paths, the inherited scalability concerns described in [34, 35] remain. On the one

hand, the processing overhead at the switches is insignificant since the procedure

takes place only during the establishment of the subflows upon the receipt of the

MP JOIN option. In addition, there is no memory overhead compared to [34, 35]

since the required state at the switches is already kept. On the other hand, the

operation of the switches in large-scale networks with numerous MPTCP endpoints

is questioned by the induced session state at the switches. A second weakness of

the design is not being compliant with the dynamic forwarding of SDN networks.

The topological information can be invalidated in case network routing is internally

rearranged without MPTCP being notified (SDN rules change but MP JOIN is not

resent), thus compromising the correctness of the mechanism.

In order to avoid those issues we sketch a third integration plan where the

SDN controller has a primary role in the procedure. Again, we assume MPTCP-aware

SDN switches and controllers,1 but now the controller stores the MPTCP state that

associates subflows of the same multipath session, while the switches remain state-

less with regard to MPTCP. In this case, the SDN switches forward the MP JOIN

messages to the controller that deduces the performance bottlenecks thus forming

a centralized topological assistance module similar to PSI’s TM. Upon the receipt

of the MP JOIN message the controller either stores the status of the connection

when this is the first subflow to establish, or updates the connection status if an

additional subflow is to be established. The status of the connection includes the

(statistically) unique identifier of the connection, the IP addresses of the subflows

and the paths assigned to each subflow; the latter is soft-state memory (and can

be derived) for enhancing the performance during the second step. In the sec-

ond step, the controller compares the new path with the established (if any) and

determines the existence of shared links, following the procedure presented in Sec-

tion 4.2.1. This information then is inserted in the special PATH OVERLAP field

1Multiple SDN controllers are assumed so as to control large-scale networks.

93

of the MPTCP packet’s header and forwarded to its original destination.

The main advantage of this approach is that topological information re-

mains valid throughout the entire transmission, even if subflows change on-the-fly.

Routing decisions and bottleneck detection are made by the SDN controller, thus

offering consistency, but also rising scalability concerns. The processing overhead

for the controller is not significant, since the procedure to detect shared bottlenecks

is found to be relatively inexpensive (Section 4.2.1). However, the introduced mem-

ory state can be critical in case MPTCP becomes the dominant transport protocol.

In order to alleviate the storage overhead, we can assume that the connection sta-

tus is stored for a rather brief period of time and then is automatically dropped.

The period of time needs to be long enough to aggregate the establishment of

the subflows but brief enough to minimize the memory requirements. 1-2 seconds

seem acceptable as MPTCP typically deploys the subflows instantly. MPTCP also

allows to change the subflow address and, in turn, the established path during the

lifetime of a connection, an option that is practical for mobility. Expectedly, these

cases are not handled by our extended controller, therefore the endpoints will be

notified to act friendly by default so as to avoid penalizing the TCP-friendliness

constraint.

5.2 Normalized Multiflow Congestion Control in

TCP/IP

The NMCC is compatible with MPTCP, since it is applied at the end-users

and exploits information that is already available to MPTCP-end hosts: the RTTs,

congestion window sizes and the congestion states of the subflows. In the following

we discuss the integration details and challenges that we faced while embedding

NMCC in the Linux implementation of MPTCP.2 Then, we exploit the Linux

implementation of MPTCP in order to evaluate the performance gains of NMCC

compared to the LIA, OLIA and BALIA algorithms, especially in terms of latency

in converging to TCP-friendliness.

2https://www.multipath-tcp.org/

94

5.2.1 Design and implementation in Linux MPTCP

NMCC can be seamlessly integrated in the Linux kernel, as TCP (and

MPTCP) offers pluggable congestion control via a special handler interface [81, 82].

Therefore, our code simply overrides the handlers that tackle the estimation of the

window increase upon the successful delivery of an ACK and the estimation of the

SS threshold when a congestion event takes place. The information required to

calculate m and mt, such as the RTT, the congestion window and the SS threshold

of the subflows, is available to each subflow, hence the implementation is direct.

Our primary challenge was to convert the normalized window growth al-

gorithm from RTT-based to packet-based. This procedure is described in Sec-

tion 4.2.2, where we elaborate on an algorithm that translates inflated RTTs, the

technique that NMCC exploits to implement friendliness, to reduced window in-

creases, the typical method to control MPTCP’s aggressiveness.

A second challenge was to avoid integer overflow while applying m, which

is a real number, to the congestion window of TCP, which is a positive natural

number with packet-level granularity. In the CA phase, TCP exploits an increase

threshold, which is the counter of the ACKed packets since the last window in-

crease, to trigger window growth. We found in our experiments that the accuracy

of this method is acceptable for windows larger that 10 packets, which is also

the minimum allowed window size of Linux MPTCP. In the SS state though, the

TCP increase algorithm is memoryless and does not provide an increase threshold

that we can exploit, thus penalizing NMCC’s performance. Therefore, we im-

plemented a probabilistic increase pattern, where a random number in the range

[0, 1) is drawn from a uniform distribution on every ACK receipt. The fractional

increase of the normalized window growth is rounded up when its fractional part

is higher than the random number. Although producing random numbers is rel-

atively cheap, it can induce measurable overhead to resource constrained devices.

In this case, a stateful increase algorithm akin to CA’s increase threshold can be

also implemented, at the expense of adding one more variable per subflow to keep

the SS increase threshold.

95

5.2.2 Evaluation of MPTCP convergence with NMCC

To investigate the convergence time of the proposed multipath algorithms,

we conducted experiments using the Linux kernel implementation of MPTCP. We

provide below a detailed description of our setup where we investigate the correla-

tion between MPTCP’s convergence to friendliness and three network parameters:

propagation delay, bandwidth and error rate.

To avoid being biased by the hardware and software used, we configured a

testbed where hardware resources are shared by multipath and single-path connec-

tions. We cloned a virtual machine (VM) that runs MPTCP v0.91 on Linux kernel

v.4.1.37 and hosted two clones, as clients, in a host machine using VirtualBox,3

reserving the exact same resources for both VMs (2 cores at 4 GHz and 2 GB

RAM). A third cloned VM, acting as the server, was placed in a different machine,

ending with the topology of Fig. 5.1. The configuration and IP assignment of

these VMs allows the establishment of two subflows between the client-VMs and

the server-VM, but MPTCP is enabled only at one client-VM, as shown in the

figure.

In each experiment we simultaneously deployed 4 iperf4 connections from

each client-VM, thus creating 2 single-path flows and 4 multipath subflows over

each path. Each run lasted 30 minutes and was repeated 30 times. The netem5 tool

was used to emulate different values of propagation delay, bandwidth and packet

loss rate. Different configurations of delay, bandwidth and error rate are expected

to have an influence on the convergence time of the congestion algorithms, hence we

deployed TCP Reno in the MP-disabled host and MPTCP with one of NMCC, LIA,

OLIA and BALIA in the MP-enabled host. Notice, that any TCP-friendly TCP

variant, such as CUBIC TCP, can be used instead of Reno without influencing the

results. Finally, we tested MPTCP using the (unfriendly) Uncoupled algorithm,

where each subflow behaves as a Reno connection, to establish a performance

baseline.

3https://www.virtualbox.org/
4https://iperf.fr/
5http://man7.org/linux/man-pages/man8/tc-netem.8.html

96

Figure 5.1: LAN testbed topology for evaluating MPTCP in Linux. Two client
VMs are co-hosted in the same client node.

Impact of propagation delay

We first investigate the impact of path propagation delay on the convergence

of MPTCP. We configure three setups with equal RTTs in both paths, namely,

10 ms, 100 ms and 200 ms, when congestion level is minimum. The bandwidth was

set to 8 Mbps per path (2 Mbps per connection) with no additional packet drops

from netem. The results are plotted in Fig. 5.2, where rows and columns depict the

performance of different algorithms with different delays, respectively. Specifically,

each plot illustrates the average bandwidth share of the MPTCP and TCP RENO

flows normalized to the overall traffic for every second of the experiment. As

expected, we observe that NMCC and MP-RENO are not affected by path latency,

converging very fast to friendliness and unfriendliness, respectively. LIA, OLIA

and BALIA on the other hand, exhibit significant convergence time that reaches

600 s and 1300 s with 10 ms and 200 ms latencies, respectively. As expected, the

higher the network delay, the more convergence time is required, as congestion

feedback is more frequent for lower latency paths allowing faster convergence. It is

important to notice that LIA and OLIA are TCP-friendly in the long run (BALIA

is over-aggressive), but they do not achieve fairness until some minutes into a

session, thus being unfriendly for connections that last less than 600 s. Finally,

the resource utilization is roughly 1% more than MP-RENO for all three friendly

algorithms.

Impact of bandwidth

We next investigate the impact of bandwidth on the convergence of MPTCP.

Again, we configure three setups with the same transfer rate in each path, namely,

97

Figure 5.2: MPTCP performance in the LAN testbed with two disjoint paths,
different congestion algorithms (rows 1-5) and different path latencies (columns a-
c).

4, 8 and 16 Mbps, setting the RTT to 100 ms (when congestion level is minimum)

and no additional packet loss by the netem tool. The results are plotted in Fig. 5.3,

where rows and columns depict the performance of different algorithms with differ-

ent transfer rates, respectively. For space reasons we omit the case of 8 Mbps which

was already presented in Fig. 5.2. We observe that NMCC is not affected by the

amount of available bandwidth, as it converges to stability as fast as MP-RENO

in both narrow and wide links. However, LIA, OLIA and BALIA are struggling in

narrow links, being unfriendly for roughly 1400 s, 800 s and 1100 s, respectively,

until their bandwidth share is stabilized. MPTCP by design is a little more ag-

gressive in wide links as MP-RENO gains more than the theoretical limit of 0.68%,

which, in turn, explains the relative over-aggressiveness of OLIA and NMCC, how-

ever BALIA is again noticeably over-aggressive getting 56% in wide links. Finally,

98

Figure 5.3: MPTCP performance in the LAN testbed with two disjoint paths, dif-
ferent congestion algorithms (rows 1-5) and different transfer rates (columns a,b).

although we repeated each experiment 30 times, the plotted performance lines for

narrower links present more fluctuation, implying that the increased intensity of

flow competition in narrow links challenges convergence. The resource utilization

is 1-2% more than MP-RENO for all three friendly algorithms.

Impact of packet loss

We then investigate the impact of random packet loss on the convergence

of MPTCP. We configure three setups with the same packet drops rate over each

path, namely, no loss, 0.0001% and 0.1%, setting the bandwidth to 8 Mbps and

the RTT to 100 ms (when congestion level is minimum). The losses follow a uni-

form distribution, thus engaging the Fast Recovery state of TCP in most cases. A

99

0.1% packet loss can produce multiple “false” congestion events within a second;

however, connections still reach the maximum transfer rate, thus maintaining high

resource utilization and vigorous flow competition. Figure 5.4 shows the results

obtained, where each column of plots presents MPTCP performance under a dif-

ferent segment loss rate. Again, for space reasons we omit the case of zero loss,

which is presented in Fig. 5.2. We observe that NMCC is not affected by the error

rate, as it converges to stability as fast as MP-RENO in all cases. In contrast, LIA

and OLIA present the highest deviation from the fair share in the beginning of

the experiment when packet drops are 0.0001%, although their convergence time

is not altered with regard to the zero loss scenario. On the other hand, in case

of frequent losses (0.1% loss rate) all algorithms are stabilized instantly. The fre-

quent losses probably accelerate the detection of changed network conditions and

the algorithms adapt rapidly. However, note that both LIA and OLIA are consis-

tently less aggressive than needed, getting 47% and 48% of bandwidth, respectively.

Oppositely, NMCC is slightly over-aggressive (53%) and BALIA achieves perfect

sharing.

Impact of path mismatch

We finally investigate the impact of path mismatch on the convergence of

MPTCP. We configure three setups with mismatched paths in terms of bandwidth,

error rate or propagation delay. Figure 5.5 shows the results obtained for paths with

different error rates (column a) and different RTTs (column b). We do not include

the plots with different bandwidths, since the results are similar to Fig. 5.2(b).

Bandwidth is set to 8 Mbps, RTT to 100 ms (when congestion level is minimum)

and error rate to 0%, unless stated otherwise. In both setups NMCC converges

roughly instantly, thus offering friendliness from the beginning of the session. In

contrast, on paths with different error rates LIA, OLIA and BALIA present a rather

slow convergence, requiring roughly 400 s, 900 s and 800 s until their throughput

is stabilized. In paths with different latencies, LIA, OLIA and BALIA present

even slower convergence, needing approximately 1000 s until they are stabilized.

In addition, when the error rates are different, LIA leads to a moderate resource

100

Figure 5.4: MPTCP performance in the LAN testbed with two disjoint
paths, different congestion algorithms (rows 1-5) and different packet drop rates
(columns a,b).

underutilization, grasping 94% of the available bandwidth, while OLIA grasps only

42%, compromising the throughput gains promised by MPTCP. Again, when error

rate is high (even in one path only) BALIA offers perfect sharing, but only after

900 s.

Discussion of results

The evaluation of MPTCP unveiled rather interesting results about the ac-

curacy and the speed with which the different algorithms achieve TCP-friendliness.

In general, we validate that friendliness towards single-path connections is re-

spected by LIA, OLIA, BALIA and NMCC, however the efficiency of reaching

101

Figure 5.5: MPTCP performance in the LAN testbed with two disjoint paths,
different congestion algorithms (rows 1-5) and mismatched paths in terms of error-
rate (column a) and RTT (column b).

it exhibits impressive differences. First, we point out that MPTCP in Linux in-

herently introduces some convergence latency; even MP-RENO that does not in-

clude any friendliness mechanism requires several seconds to stabilize. Second,

we infer that NMCC converges instantly as it is stabilized simultaneously with

MP-RENO in all experiments, thus not inducing any temporal overhead. Third,

the TCP-friendliness of LIA, OLIA and BALIA is severely questioned since their

converge latency lays in the range of roughly 200 s (Fig. 5.2(a), 5.3(b)) to 1000 s

after MPTCP (Fig. 5.2(c), 5.3(a)). Their performance is better in wide links with

low propagation delay, deteriorating measurably as paths get narrower and longer.

However, all algorithms converge instantly when both paths include high error-rate

102

links (Fig. 5.4(b)) probably because the frequent congestion events (timeouts and

triple duplicate ACKs) feed the congestion algorithms faster than in the error-free

cases.

In terms of accuracy in TCP-friendliness, NMCC exhibits less deviation

in different setups compared to LIA, OLIA and BALIA. Specifically, NMCC is

slightly more aggressive than single-path in all scenarios, getting roughly 52-55%

of resources. This mild over-aggressiveness is an inherent characteristic of NMCC

when deployed in disjoint paths since it normalizes the performance of the fastest

available path, a non-fixed characteristic over prolonged periods, and gains a slight

performance advantage due to path plurality. On the other hand, the performance

of LIA, OLIA and BALIA varies, being faster than single-path in some scenarios

(Fig. 5.3(b)) and slower in others (Fig. 5.3(a)), indicating that their friendliness is

visibly affected by network conditions. When paths present significant error rate,

BALIA constitutes the most accurate algorithm, splitting the network resources

perfectly even.

Chapter 6

Discussion and future work

In this Chapter we discuss apparent issues that multiflow faces in ICN. At

the same time, we outline our future research targets that integrate additional

ICN-specific features into multflow transfers.

6.1 Multisource and multipath made easy in PSI

mmTP combines well-known content distribution techniques into a single

transport protocol: multisource downloading is widely adopted by P2P applica-

tions [4] and multipath transfer is a well-established research topic. What mmTP

adds is the exploitation of the PSI centralized path selection property and the

LIPSIN explicit-routing scheme, so as to not only support multisource and multi-

path transport, but also keep network operation simple, provide a generic interface

for content delivery and utilize network storage. In this section we explain how

these aspects of PSI simplify multisource and multipath transport.

First, the separation of the core network functions in PSI along with the

choice of explicit-routing results in simple signaling and stateless Forwarding Nodes (FNs).

Routing is orthogonal to forwarding: FNs operate in a stateless manner by using

in-packet LIPSIN FIDs, without any routing state, knowledge of the actual data

path or the transfer state. These gains are achieved in exchange for the additional

delay required at the slow-path rendezvous phase, where the initial subscription

is resolved and the TM computes suitable data paths. We acknowledge that the

103

104

centralized nature of path computation in the TM raises scalability concerns. Yet,

we believe that TM functionality will be placed in multiple nodes with enhanced

capabilities that meet the processing requirements [72], thus utilizing in-network

computation resources. In addition, this design is well-aligned with on-going de-

velopments in the area of Software Defined Networking (SDN), where the process

of discovering and installing paths in a centralized manner is not found to be a

performance bottleneck [34].

Second, the separation of routing and forwarding allows the transparent

implementation of multisource and multipath services. The FIDs that the TM

delivers to the endpoints are a set of distinct options for requesting data. These

options may involve different publishers and/or different paths, but this informa-

tion is concealed from the hosts. The subscriber evaluates in real-time the perfor-

mance of each option (i.e. path) and adjusts the amount of data to be delivered

through it accordingly. Hence, mmTP provides a generic interface, transparently

supporting any combination of multisource and/or multipath services. The nature

of the service will be decided by the TM, according to a network domain’s policies

and goals. Essentially, the TM selects the paths, the FNs realize those paths and

the subscriber controls each path’s utilization.

Third, explicit-routing and centralized path selection assure diversity of

transmission routes and friendliness towards single-flow connections. Multipath

protocols are commonly compromised by IP’s hop-by-hop routing, which can force

paths from multihomed hosts to converge over the same bottleneck links. In con-

trast, in PSI the FIDs indicate dissemination paths that are predefined, hence

avoiding convergence at bottleneck links. At the same time, TCP-based multi-

source solutions, such as BitTorrent, are not friendly towards single-flow TCP

when operating over the same link, while others, like MTCP with LIA, throttle

bandwidth aggregation in order to avoid starving standard TCP flows. In PSI,

path formation is rather agile [44], i.e, can be made to select only disjoint paths,

thus allowing each subflow to operate over distinct links. Alternatively, exploiting

greedy friendliness, the TM informs the subscriber when many subflows perform

over the same network resources, so as to appropriately tune their congestion win-

105

dow management. All in all, there are several ways to enforce friendliness among

end-to-end connections in PSI, undertaken either by the TM or by the end-hosts.

6.2 Delay-based end-to-end congestion detection

in ICN

On-path packet-level caching in ICN can be detrimental to end-to-end RTT-

based congestion control schemes, since packets arriving from the cache exhibit

lower delays than packets arriving from the content source. Packet caches can cause

serious trouble to traffic control protocols using RTTs as congestion indicators.

When random content packets are stored in the cache, the RTT greatly fluctuates

depending on whether a given packet arrived from the cache or from the content

source, causing spurious timeouts and degrading transport layer performance. This

does not occur in typical IP-based object caches, where the cache either holds the

entire object or the object is fetched from the source without any RTT fluctuations.

Authors in [83] find that roughly 2-3% of Web requests are aborted before they are

fully downloaded, with the total volume of downloaded bytes until aborted reaching

30% of the entire traffic in some cases. Therefore, in a packet-level cache we can

expect various partial objects to reside in each cache, leading to such RTT-related

issues.

Several solutions have been proposed so far, most of them are designed

for NDN networks where the problem is intensified due to the dynamic selec-

tion of sources; the on-path routers make forwarding decisions on-the-fly, thus

exploiting different and unknown sources throughout the transmission. In the ICP

protocol [84] the authors exploit the weighted average of a history of the last N

(typically 20) RTT measurements in order to provide a reliable estimator. In

CCTCP [85] the authors propose the installation of individual RTT estimators

per source and predict the location of chunks before actually emitting the request.

While these solutions perform relatively well under difficult conditions, they consti-

tute stochastic solutions that mitigate the impact of the problem without providing

a solid solution. A deterministic design can be inspired by [56], where the Route

106

labeling technique explicitly defines the exploited path per chunk, since on-path

routers distributively insert path information in each packet. Nevertheless, this

approach stresses the in-network operation, hence it is expected to reduce the

scalability of the service. A light-weight variation of this technique is presented

in the following section where we discuss the adaptation of mmTP for the NDN

architecture.

In order to deliver a complete and scalable solution we propose rethinking

the problem from the perspective of in-network caching. Introducing novel cache

replacement policies can eliminate the problem of RTT variance, for instance,

OPC [63, 86] that stores exclusively the initial part of any content item, from the

first to the n-th packet with no gaps, can substantially limit the on-path multi-

sourcing. The design can be further evolved by assuming that caches explicitly

inform the congestion control endpoints about the origin of a packet (e.g., source

identifier) and the state of the cache (e.g., the subsequent requests that can be

found cached). The information will assist the end-users in adjusting their sending

rate accordingly to the current source location by either establishing dedicated

RTT-estimators per source or ignoring the cached responses. While this design is

not sufficient for the NDN architecture, it can offer enhanced performance in PSI.

Specifically, the NDN endpoints cannot associate a packet with the exploited route,

therefore the detection of congestion level in the different parts of the network

and, in turn, the separate flow control per path is inaccurate without in-network

mechanisms. Acknowledging that end-to-end congestion control in NDN can be

inefficient and that active in-network congestion control (see Section 3.3.2) penal-

izes the scalability of the network operation, constitutes a strong reality check for

the NDN architecture.

6.3 mmTP design for NDN

The mmTP protocol is a complete transport1 solution that exploits the

many-to-one communication model of ICN networks, as well as the centralized path

1According to the TCP/IP stack mmTP can be classified as a cross-layer solution, spanning
over network and transport layers.

107

selection and source routing of PSI (or SDN as discussed in Section 5.1.2) in order

to provide multiple paths to many locations while practicing end-to-end conges-

tion control with greedy friendliness. The NDN architecture also offers inherently

many-to-one communications and supports multipath among two endpoints, thus

satisfying one of the two requirements of mmTP. In order to use mmTP over NDN

though, the distributed hop-by-hop in-network routing must allow the establish-

ment of individual subflows that can be independently monitored and controlled

by the end-hosts.

In NDN a request for a name is considered to match any piece of content

whose name has the requested name as a prefix, for example, /aueb.gr/a can be

matched by a content item named /aueb.gr/a/ v1/ s1, which could mean the

first segment (s1) of the first version (v1) of the requested data (a). Assuming

that content /aueb.gr/a resides at multiple locations, then at the on-path routers

we have multiple entries in the FIB leading to those locations, hence the received

Interests can be distributed among the different FIB entries materializing a mul-

tiflow transmission. The routing information about the individual paths can be

created by the network distributively and transmitted to the endpoints through

the content name itself, thus maintaining consistency with the NDN principles. In

detail, the “branching” routers can append a subflow-specific postfix, that identi-

fies the route followed by the packet, to each received Data packet, for example,

/aueb.gr/a/ v1/ s1/ R1 implies that the first segment of the first version of the

requested data was transmitted over router R via the first FIB entry (R1) for that

content. Then, the Data packet will be pushed successfully until its the destination

since the registered name prefix in the PIT will be matched with the Data packet’s

content name as well, albeit the later is “extended”.

Our solution is quite similar to the Route labeling technique discussed in [56]

but being placed only at the branching nodes of the dissemination paths is expected

to impose significantly less overhead, thus maintaining scalability. It also serves as

an in-network mechanism that delivers topological information to the endpoints,

thus offering the implementation of the greedy friendliness concept in order to

enhance network performance. The main weakness of the design is that it disallows

108

the (cache everything) on-path caching, where Data packets are stored at the on-

path routers in order to respond faster to future requests of the same information

piece. Contrary to routing that allows longest-prefix matching, caching requires

absolute name matching, therefore disallowing on-path caching at routers between

the “branching” routers and the receivers.

Chapter 7

Conclusions

ICN has emerged as a promising candidate for shaping Future Internet

architectures. With regard to multiflow content delivery, ICN presents inherent

advantages, such as loose coupling of peers, content-based routing and ubiquitous

packet-level caching, that assist in the realization of efficient content distribution

patterns. The PSI architecture, an ICN instance based on the publish-subscribe

paradigm, allows natively the establishment of multiple paths among two com-

munication endpoints, as well as ensures the disjointness of those paths through

stateless source routing and centralized paths management. Oppositely to TCP/IP

networks, PSI supports multipath without the need for multihoming and assures

path divergence without overwhelming routing state at in-network nodes.

We exploited these features and designed and implemented mmTP, the first

multipath and multisource transport protocol for PSI. mmTP combines well-known

content distribution techniques in a single protocol, without requiring complicated

network signaling or adding state to routers. We implemented a prototype of

mmTP in the PSI architecture prototype and evaluated its performance on Plan-

etLab. Our results verify the effectiveness of both multisource and multipath

delivery, in terms of throughput, load balancing and resilience to network failures.

mmTP also introduces a novel hybrid congestion control algorithm for mul-

tiflow transport that consists of the end-to-end NMCC algorithm and an in-network

assistance mechanism. Our design offers friendliness to single-path connections

using TCP-like congestion control, while increasing the utilization of network re-

109

110

sources. It achieves this by detecting shared physical bottlenecks and managing

aggressiveness accordingly, a scheme the we call greedy friendliness. We have im-

plemented the congestion control algorithm and evaluated its performance gains

in several topological and traffic scenarios, using both direct experimentation in

a LAN environment and packet-level simulations in a WAN environment. Our

results verify the anticipated gains, showing that the average network throughput

with mmTP yields up to 160% and 15% increase compared to single-path and

multipath without the greedy friendliness mechanism, respectively.

Finally, we highlighted a weakness of the LIA, OLIA and BALIA multipath

congestion control algorithms, namely, the need for long time periods until they

achieve a TCP-friendly state. Contrary to previous studies that focus on long-term

results, we monitored the instantaneous performance of connections throughout the

transmission, finding that the convergence latency is in the order of minutes, thus

questioning the effectiveness of these algorithms. The NMCC congestion control al-

gorithm exploits a deterministic rate control design that exhibits zero convergence

delay, which was shown to offer fair resource sharing instantly and consistently.

Using the Linux implementation of MPTCP and the htsim simulator, we explored

the performance of NMCC under a set of well-known benchmark scenarios, val-

idating that TCP-friendliness is substantially enhanced while responsiveness and

load balancing in the long run are comparable to LIA, OLIA and BALIA.

Appendix A

Acronyms

ACK Acknowledgment

AS Autonomous System

BALIA Balanced Linked Adaptation

CA Congestion Avoidance

CCN Content-Centric Networking

CDN Content Delivery Network

CMT Concurrent Multipath Transfer

DASH Dynamic Adaptive Streaming over HTTP

DiffServ Differentiated Services

DRR Deficit Round Robin

ECMP Equal Cost MultiPath

ECN Explicit Congestion Notification

FIB Forwarding Interest Base

FID Forwarding Identifier

FN Forwarding Node

HTTP/2 Hypertext Transfer Protocol Version 2

HMAC Hash-based Message Authentication Code

ICN Information-Centric Networking

IP Internet Protocol

ISP Internet Service Provider

111

112

LIA Linked Increase Algorithm

LS Label-Switched Path

LDP Label Distribution Protocol

mmTP multipath and multisource Transport Protocol

MPLS Multiprotocol Label Switching

MPTCP Multipath-TCP

MSS Maximum Segment Size

MTU Maximum Transfer Unit

NDN Named Data Networking

NMCC Normalized Multiflow Congestion Control

OLIA Opportunistic Linked Increase Algorithm

OOD Out-of-Order Delivery

PIT Pending Interest Table

PSI Publish Subscribe Internetworking

QoE Quality of Experience

QoS Quality of Service

PEP Performance Enhancement Proxy

RENE Rendezvous Network

RN Rendezvous Node

RTT Round Trip Time

RTO Retransmission Time Out

SCTP Stream Control Transmission Protocol

SS Slow Start

TM Topology Manager

TCP Transmission Control Protocol

URL Universal Resource Locator

VM Virtual Machine

Bibliography

[1] J. Qadir, A. Ali, K.-L. A. Yau, A. Sathiaseelan, and J. Crowcroft, “Exploiting
the power of multiplicity: a holistic survey of network-layer multipath,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, 2015.

[2] O. Bonaventure and S. Seo, “Multipath TCP deployments,” IETF Journal,
vol. 12, no. 2, 2016.

[3] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, imple-
mentation and evaluation of congestion control for multipath TCP,” in
Proc. USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), Boston, MA, USA, March 2011.

[4] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content
distribution technologies.” ACM Computing Surveys, vol. 36, no. 4, 2004.

[5] A.-M. K. Pathan and R. Buyya, “A taxonomy and survey of content delivery
networks,” vol. 4, 2007.

[6] Cisco, “Visual networking index: Global mobile
data traffic forecast update, 2016-2021 white paper,”
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/mobile-white-paper-c11-520862.html, accessed: 2018-2-
15.

[7] ——, “Global cloud index: Forecast and methodology, 2016-2021 white
paper,” https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/global-cloud-index-gci/white-paper-c11-738085.html, accessed:
2018-3-2.

[8] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “SOCKS
protocol version 5,” RFC 1928, March 1996.

[9] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “Require-
ments for traffic engineering over MPLS,” RFC 2702, September 1999.

113

114

[10] K. Kirkpatrick, “Software-defined networking,” Communications of the ACM,
vol. 56, no. 9, 2013.

[11] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. Workshop on
Economics of Peer-to-Peer Systems, Berkley, CA, USA, June 2003.

[12] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
guidelines for multipath TCP development,” RFC 6182, March 2011.

[13] C. Xu, J. Zhao, and G.-M. Muntean, “Congestion control design for multipath
transport protocols: a survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 4, 2016.

[14] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly congestion
control,” IEEE Network, vol. 15, no. 3, May 2001.

[15] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing and
rate control,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 2, 2005.

[16] R. Khalili et al., “Opportunistic linked-increases congestion con-
trol algorithm for MPTCP,” Internet-Draft, 2015. [Online].
Available: https://www.ietf.org/archive/id/draft-khalili-mptcp-congestion-
control-05.txt

[17] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis, de-
sign, and implementation,” IEEE/ACM Transactions on Networking, vol. 24,
no. 1, 2016.

[18] G. Xylomenos et al., “A survey of information-centric networking research,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 2, 2014.

[19] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, and C. Esteve, “LIPSIN:
line speed publish/subscribe internetworking,” in Proc. ACM SIGCOMM
Conference, Barcelona, Spain, August 2009.

[20] N. Fotiou, Y. Thomas, V. A. Siris, and G. C. Polyzos, “Security requirements
and solutions for integrated satellite-terrestrial information-centric networks,”
in Proc. IEEE Advanced Satellite Multimedia Systems Conference (ASMS)
Workshop on Signal Processing for Space Communications Workshop (SPSC),
Livorno, Italy, September 2014.

[21] G. Parisis and D. Trossen, “Filling the gaps of unused capacity through a foun-
tain coded dissemination of information,” ACM SIGMOBILE Mobile Com-
puting and Communications Review, vol. 18, no. 1, 2014.

115

[22] T. Stockhammer, “Dynamic adaptive streaming over HTTP: standards and
design principles,” in Proc. ACM Multimedia Systems Conference (MMSys),
Scottsdale, Arizona, USA, November 2011.

[23] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions for
multipath operation with multiple addresses,” RFC 6824, January 2013.

[24] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
November 2000.

[25] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley,
“Improving datacenter performance and robustness with multipath TCP,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, 2011.

[26] R. Stewart, “Stream control transmission protocol,” RFC 4960, September
2007.

[27] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath transfer
using SCTP multihoming over independent end-to-end paths,” IEEE/ACM
Transactions on networking, vol. 14, no. 5, 2006.

[28] G. Papastergiou et al., “De-ossifying the internet transport layer: A survey
and future perspectives,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 1, 2017.

[29] C. Raiciu et al., “How hard can it be? designing and implementing a deploy-
able multipath TCP,” in Proc. USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Lombard, IL, April 2012.

[30] M. Handley, “Why the internet only just works,” BT Technology Journal,
vol. 24, no. 3, 2006.

[31] C. A. Sunshine, “Source routing in computer networks,” ACM SIGCOMM
Computer Communication Review, vol. 7, no. 1, 1977.

[32] F. Le Faucheur et al., “Multi-protocol label switching (MPLS) support of
differentiated services,” Tech. Rep.

[33] B. Sonkoly, F. Németh, L. Csikor, L. Gulyás, and A. Gulyás, “SDN based
testbeds for evaluating and promoting multipath TCP,” in Proc. IEEE In-
ternational Conference on Communications (ICC), Sydney, Australia, June
2014.

[34] S. Zannettou, M. Sirivianos, and F. Papadopoulos, “Exploiting path diver-
sity in datacenters using MPTCP-aware SDN,” in Proc. IEEE Symposium on
Computers and Communications (ISCC), Messina, Italy, June 2016.

116

[35] M. Sandri, A. Silva, L. A. Rocha, and F. L. Verdi, “On the benefits of us-
ing multipath tcp and openflow in shared bottlenecks,” in Proc. IEEE Inter-
national Conference on Advanced Information Networking and Applications
(AINA), Gwangju, Korea, March 2015.

[36] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. N. Rao, “Improving
web availability for clients with MONET,” in Proc. USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Berkley, CA, USA,
May 2005.

[37] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient overlay
networks,” ACM SIGCOMM Computer Communication Review, vol. 32, no. 1,
2002.

[38] Q. Chen, R. Xie, F. R. Yu, J. Liu, T. Huang, and Y. Liu, “Transport con-
trol strategies in named data networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, 2016.

[39] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A case
for stateful forwarding plane,” Elsevier Computer Communications, vol. 36,
no. 7, 2013.

[40] C. Stais, Y. Thomas, G. Xylomenos, and C. Tsilopoulos, “Networked music
performance over information-centric networks,” in Proc. IEEE International
Conference on Communications Workshops (ICC), Budapest, Hungary, June
2013.

[41] V. A. Siris, Y. Thomas, and G. C. Polyzos, “Supporting the IoT over in-
tegrated satellite-terrestrial networks using information-centric networking,”
in Proc. IFIP New Technologies, Mobility and Security (NTMS), Larnace,
Cyprus, November 2016.

[42] T. De Cola et al., “Network and protocol architectures for future satellite sys-
tems,” Now Publisher Inc. Foundations and Trends R© in Networking, vol. 12,
no. 1-2, 2017.

[43] C. Ververidis et al., “Experimenting with services over an information-centric
integrated satellite-terrestrial network,” in Proc. IEEE Future Network and
Mobile Summit (FutureNetworkSummit), Lisboa, Portugal, July 2013.

[44] Y. Thomas, P. A. Frangoudis, and G. C. Polyzos, “QoS-driven multipath rout-
ing for on-demand video streaming in a publish-subscribe internet,” in Proc.
IEEE International Conference on Multimedia and Expo (ICME) Workshop
on Multimedia Streaming in information-Centric networks (MuSiC), Turin,
Italy, June 2015.

117

[45] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang, “Congestion control
in named data networking - A survey,” Elsevier Computer Communications,
vol. 86, 2016.

[46] J. Postel, “Transmission control protocol,” RFC 793, September 1981.

[47] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host congestion
control for TCP,” IEEE Communications surveys & tutorials, vol. 12, no. 3,
2010.

[48] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC 5681,
September 2009.

[49] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath
congestion control for shared bottleneck,” in Proc. International Workshop
on Protocols for Future, Large-Scale and Diverse Network Transports (PLFD-
NeT), Tokyo, Japan, May 2009.

[50] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-path
TCP: a joint congestion control and routing scheme to exploit path diversity
in the internet,” IEEE/ACM Transactions on networking, vol. 14, no. 6, 2006.

[51] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath
TCP,” in Proc. IEEE International Conference on Network Protocols (ICNP),
Austin, TX, USA, October 2012.

[52] M. Becke, T. Dreibholz, H. Adhari, and E. P. Rathgeb, “On the fairness of
transport protocols in a multi-path environment,” in Proc. IEEE International
Conference on Communications (ICC), OTTAWA, CANADA, June 2012.

[53] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, and R. Y. Wang, “A
transport layer approach for improving end-to-end performance and robust-
ness using redundant paths.” in Proc. USENIX Annual Technical Conference,
Boston, MA, USA, June 2004.

[54] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared congestion of
flows via end-to-end measurement,” IEEE/ACM Transactions on Networking,
vol. 10, no. 3, 2002.

[55] S. Ferlin, Ö. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revisiting
congestion control for multipath TCP with shared bottleneck detection,” in
Proc. IEEE INFOCOM, San Francisco, CA, USA, April 2016.

[56] G. Carofiglio, M. Gallo, L. Muscariello, and M. Papali, “Multipath congestion
control in content-centric networks,” in Proc. IEEE INFOCOM Workshop on
Emerging Design Choices in Name-Oriented Networking (NOMEN), Torino,
Italy, April 2013.

118

[57] S. Oueslati, J. Roberts, and N. Sbihi, “Flow-aware traffic control for a content-
centric network,” in Proc. IEEE INFOCOM, 2012.

[58] C. Tsilopoulos, G. Xylomenos, and Y. Thomas, “Reducing forwarding state
in content-centric networks with semi-stateless forwarding,” in Proc. IEEE
INFOCOM, Toronto, ON, Canada, May 2014.

[59] D. Perino and M. Varvello, “A reality check for content centric networking,” in
Proc. ACM SIGCOMM Workshop on Information-Centric Networking (ICN),
Toronto, ON, Canada, August 2011.

[60] Y. Thomas, C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos, “Multisource
and multipath file transfers through Publish-Subscribe Internetworking,” in
Proc. ACM SIGCOMM Workshop on Information-Centric Networking (ICN),
Hong Kong, China, August 2013.

[61] ——, “Accelerating file downloads in publish-subscribe internetworking with
multisource and multipath transfers,” in Proc. World Telecommunications
Congress (WTC), Berlin, Germany, June 2014.

[62] Y. Thomas, G. Xylomenos, C. Tsilopoulos, and G. C. Polyzos, “Multi-flow
congestion control with network assistance,” in Proc. IFIP Networking, Vi-
enna, Austria, May 2016.

[63] ——, “Object-oriented packet caching for ICN,” in Proc. ACM Information-
Centric Networking (ICN), San Francisco, CA, USA, September 2015.

[64] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental evaluation
of multipath TCP schedulers,” in Proc. ACM SIGCOMM Capacity Sharing
Workshop (CSWS), Chicago, USA, August 2014.

[65] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking estimation-
based mptcp scheduler for heterogeneous networks,” in Proc. IFIP Network-
ing, Vienna, Austria, May 2016.

[66] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIGCOMM,
Stanford, CA, USA, August 1988.

[67] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox,
“Information-centric networking: seeing the forest for the trees,” in Proc.
ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), Cam-
bridge, MA, USA, November 2011.

[68] K. Wang et al., “On the path management of multi-path TCP in internet sce-
narios based on the NorNet Testbed,” in Proc. IEEE International Conference
on Advanced Information Networking and Applications (AINA), Taipei, Tai-
wan, March 2017.

119

[69] Y. Lu et al., “Multi-path transport for {RDMA} in datacenters,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Renton, WA, USA, April 2018.

[70] G. Parisis, D. Trossen, and D. Syrivelis, “Implementation and evaluation of
an information-centric network,” in Proc. IFIP Networking, 2013.

[71] J. Yen, “Finding the k shortest loopless paths in a network,” Science Man-
agement, vol. 17, no. 11, 1971.

[72] B. A. Alzahrani, M. J. Reed, J. Riihijärvi, and V. G. Vassilakis, “Scalabil-
ity of information centric networking using mediated topology management,”
Elsevier Journal of Network and Computer Applications, 2014.

[73] D. Eppstein, “Finding the k shortest paths,” SIAM Journal on computing,
vol. 28, no. 2, 1998.

[74] T. Henderson, E. Sahouria, S. McCanne, and R. Katz, “On improving the
fairness of TCP congestion avoidance,” in Proc. IEEE Global Telecommunica-
tions Conference (GLOBECOM), vol. 1, Sydney, Australia, November 1998.

[75] R. Barik, M. Welzl, S. Ferlin, and O. Alay, “LISA: A linked slow-start algo-
rithm for MPTCP,” in Proc. IEEE International Conference on Communica-
tions (ICC), Kuala Lumpur, Malaysia, May 2016.

[76] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP
Reno performance: a simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, 2000.

[77] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett, and
J. Bannister, “Census and survey of the visible internet,” in Proc. ACM In-
ternet Measurement Conference (IMC), Vouliagmeni, Greece, October 2008.

[78] R. Bhandari, “Optimal diverse routing in telecommunication fiber networks,”
in Proc. IEEE INFOCOM, Toronto, ON, Canada, June 1994.

[79] G. Xylomenos, G. C. Polyzos, P. Mahonen, and M. Saaranen, “TCP per-
formance issues over wireless links,” IEEE communications, vol. 39, no. 4,
2001.

[80] H. Kim and N. Feamster, “Improving network management with software
defined networking,” IEEE Communications, vol. 51, no. 2, 2013.

[81] S. Arianfar, “TCP’s congestion control implementation in Linux kernel,” in
Proc. Seminar on Network Protocols in Operating Systems, Helsinki, Finland,
September 2012.

120

[82] P. Sarolahti and A. Kuznetsov, “Congestion control in Linux TCP.” in Proc.
USENIX Annual Technical Conference, Monterey, CA, USA, June 2002.

[83] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,” in Proc.
ACM Internet Measurement Conference (IMC), Berlin, Germany, November
2011.

[84] G. Carofiglio, M. Gallo, and L. Muscariello, “ICP: Design and evaluation of
an interest control protocol for content-centric networking,” in Proc. IEEE
INFOCOM Workshop on Emerging Design Choices in Name-Oriented Net-
working (NOMEN), Orlando, FL, USA, January 2012.

[85] L. Saino, C. Cocora, and G. Pavlou, “Cctcp: A scalable receiver-driven con-
gestion control protocol for content centric networking,” in Proc. IEEE Inter-
national Conference on Communications (ICC), Orlando, FL, USA, March
2013.

[86] Y. Thomas and G. Xylomenos, “Towards improving the efficiency of ICN
packet-caches,” in Proc. Heterogeneous Networking for Quality, Reliability,
Security and Robustness (QShine), Rhodes, Greece, August 2014.

