PUBLISHED IN: PROCEEDINGS OF THE AUDIO ENGINEERING SOCIETY CONVENTION 146, 2019 1

Aretousa: A competitive audio streaming software
for Network Music Performance

Konstantinos Tsioutas*, George Xylomenos* and Ioannis Doumanis’
*Athens University of Economics and Business, Department of Informatics, Greece
TUniversity of Central Lancashire, School of Physical Science and Computing, United Kingdom

Abstract—Many existing open source systems provide support
for Network Music Performance (NMP), with each one catering
to a specific system and usage scenario. As our research in
evaluating the Quality of Experience (QoE) of NMP systems as
perceived by musicians involves widely different scenarios and
requires extensive instrumentation of the platform, we built a
new NMP system, Aretousa. Our system offers a large number of
configuration and monitoring options, without sacrificing latency,
the most critical factor for NMP. To show that Aretousa provides
flexibility while being competitive with the state of the art in
terms of latency, we present measurements comparing it against
JackTrip in multiple setups over a high speed research network.

I. INTRODUCTION

Fast and reliable Internet services are being used on an ev-
eryday basis for commercial an recreational purposes. Services
like teleconferencing and tele-presence provide the ability for
companies and individuals to communicate in real time via
fixed and mobile networks, offering audio, video and collabo-
ration facilities. Proprietary systems such as Skype, Vidyo and
WebEx provide professional solutions for high quality tele-
presence and teleconferencing. The WebRTC! framework is
used in many open source platforms, such as BigBlueButton?
which is widely used in e-learning environments. The Quality
of Service (QoS) of such real time services over the Internet
has improved so much over the past few years, that even
commercial versions of some proprietary systems exist.

Network Music Performance (NMP), where two or more
musicians perform music through their Internet connections,
ideally as if they were placed in the same room, is an
“extreme” case of teleconferencing. The critical differentiation
of NMP from teleconferencing is the need for very low audio
latency between the musicians, which places strict limits on
the underlying network and coding latencies. The Mouth to
Ear (M2E) delay, that is, the delay between a microphone at
one end and a speaker at the other end, must be kept below
24 ms [1][2][3] for musicians to be able to synchronize. In
contrast, teleconferencing works well even with delays of over
100 ms.

As a result, NMP is not currently feasible for plain Inter-
net users located behind residential (ADSL) links, requiring
instead the very fast connections of high speed research
networks. Even in such networks, keeping latency low requires

Uhttps://webrtc.org/
Zhttps://bigbluebutton.org/

optimizing the network, avoiding servers and using low delay
codecs or, even, no coding at all. Of course, assessing the
suitability of a specific setup for NMP goes beyond QoS
metrics such as latency: we actually need to measure the
Quality of Experience (QoE) of the participating musicians,
which depends on many additional factors.

In order to measure QoE with different network setups,
codec configurations, collaboration setups and musical styles,
we need a flexible NMP platform that can be easily instru-
mented for data gathering and adapted to different network and
collaboration configurations. Aretousa is a simple but flexible
new NMP system, built on top of open source frameworks for
portability and maintanability. Unlike previous NMP systems
that can operate only in specific setups (e.g., two directly
connected musicians for JackTrip), Aretousa supports a wide
range of setups and options. Using test measurements in a high
speed research network, we show that its latency is competitive
with JackTrip, the most responsive open source NMP system.

This paper is organized as follows. In Section II we present
related work and existing NMP frameworks. The Aretousa
software is described in Section III, while the experiments
conducted with Aretousa are described in Section IV and the
results are provided in Section V. We summarize our work in
Section VI.

II. RELATED WORK ON NMP

Interactive networked music performance begins with John
Gage, who designed the Imaginary Landascape No. 4 per-
formance in 1951, where twelve users on a stage tuned
their portable radio receivers to random radio stations and
changed the volume levels in a random way. Although audio
conferencing has been used on the Internet since the mid
1990s, NMP became practical, even in research networks, only
in the 2000s [4]. The SoundWire group at Stanford University
has conducted extended research on the field leading to Jack-
Trip [5][6], an open source service for real time uncompressed
point-to-point audio streaming; JackTrip avoids servers and
coders/decoders to keep delay low. Other frameworks include
DIAMOUSES [6], LOLA [7] and MusiNET [8]. In MusiNet
our laboratory, the Mobile Multimedia Laboratory (MMLAB)?
explored the use of multicast [9], ultra-low delay servers [10]
and multipath routing [11] to reduce the delay in NMP sessions
with more than two endpoints.

3http://mm.aueb.gr

2 PUBLISHED IN: PROCEEDINGS OF THE AUDIO ENGINEERING SOCIETY CONVENTION 146, 2019

Some experiments have compared server-based (many
clients connected via a server) and peer-to-peer (two or more
clients directly communicating with each other) topologies in
terms of latency and QoS; using a server simplifies sessions
with three or more participants, as each endpoint needs to
communicate only with the server, but introduces delays on the
network path [9]. Other experiments compared uncompressed
audio to audio compressed with low delay audio codecs such
as Opus; common music codecs such as MP3 introduce delays
too high to be useful for NMP. To evaluate M2E delay, some
experiments used claps[2], while in others musicians played
actual instruments. Delays are easier to measure with simple
sounds, which can even be pre-recorded, obviating the need for
musicians. In most cases, very fast LANs or research WANs
were used and the focus was on QoS metrics like delay.

Although QoS is important, it cannot accurately predict the
QoE of musicians, or the effects that NMP has on musician be-
havior. Research on how network latency affects musicians has
concluded that as the latency increases, musicians slow down
their tempo [1][3]. Chafe [2] reached the same conclusion
experimenting with musicians who clapped their hands, adding
that when latency is below 11 ms, musicians accelerate their
tempo. Olmos [12] experimented with two opera singers and a
conductor over a network, evaluating two bio-metric measures,
the Galvanic Skin Response (GSR) and the number of Skin
Conductance Responses (SCR), using software for behavior
recording along with questionnaires. These tests can reveal
far more about QoE in NMP than simple QoS measurements,
and they are the focus of our current research.

III. THE ARETOUSA SOFTWARE

Among the frameworks used for NMP, JackTrip is the most
common choice for end users. It is free to download and simple
to use, but it only supports direct connections between two
musicians. JackTrip uses the Linux ALSA drivers and provides
ultra low latency with (uncompressed) PCM audio. The user
can listen to his own sound, along with the sound from his
peer, and configure the audio buffer size and a few other driver
properties. Most importantly, JackTrip is fast, as it was built
to reduce latency as far as possible.

While JackTrip is an excellent NMP system, it aims for
simplicity and speed in operation. Our desire to evaluate
the musicians’ QoE during NMP as a function of several
parameters, including the audio format, network topology,
audio buffer size, Ethernet packet size, audio compression
parameters, requires a far more flexible system, that could
sacrifice simplicity, but should strive to keep latency low. This
is the motivation for our new NMP system, Aretousa.

To avoid low level coding that would make the prototype
difficult to implement and maintain, Aretousa is based on
the GStreamer* and GTK® open frameworks. It supports
the initialization, configuration, control and mix of multiple
outgoing and incoming audio streams. GStreamer provides
tools to build audio pipelines that capture audio from the
sound card’s input, make all the necessary transformations to

“https://gstreamer.freedesktop.org/
Shttps://www.gtk.org/

Jack

GStreamer

PulseAudio

FFADO ALSA 0SS

Hardware

Fig. 1: Gstreamer and JackTrip API’s stack.

the audio format, segment audio to packets, add necessary
protocol headers like RTP and UDP and, finally, send it to
the network using the udpsink plugin. At the other end, the
udpsrc plugin, receives incoming UDP packets at a UDP
port chosen by the user, strips the protocol headers and sends
audio samples to the sound card’s output. These pipelines
are constructed by plugins connected serially via sources and
sinks. The element that captures audio is pulsesrc, while
the element that plays out the audio is pul sesink; these use
the Pulse audio API which in turns uses the ALSA drivers to
capture audio. GTK is used for the User Interface (Ul).

As shown in Figure 1, while JackTrip uses directly the
ALSA layer, the GStreamer framework sits on top of PulseAu-
dio and ALSA. One can construct a simple pipeline using
GStreamer command line tools to listen to his own audio, for
example, gst-launch-1.0 pulsesrc ! pulsesink.
Using this script, the user will experience an audio delay of
over 200 ms. Each of these plugins is followed by parameters
which can be configured for experimental purposes. By con-
structing a pipeline which streams audio to a certain host, we
can implement a topology to evaluate latency for the path that
the stream will follow.

Aretousa supports both peer-to-peer and server-based ar-
chitectures, as well as both uncompressed PCM audio and
the Opus codec for audio compression. Furthermore, the user
can configure parameters such as the IP address of the NMP
server in server-based mode, or the other peer’s IP address
in peer-to-peer mode, as well as the necessary UDP ports, as
shown in Figure 2. Aretousa also allows configuring the audio
buffer size, the Ethernet packet size, the Opus bit-rate and the
Opus audio bandwidth, among other settings. The musician
can listen to his own sound directly, his sound coming back
from the peer (echo) and/or the peer’s sound, controlling the
sound level for stean via volume sliders.

Aretousa provides the option of recording incoming and

PUBLISHED IN: PROCEEDINGS OF THE AUDIO ENGINEERING SOCIETY CONVENTION 146, 2019 3

ip port 83.212.101.51 7150
Peer's IP
sample rate | 88200 O Pcm
. OPUS
packet size | 1400
startrec
buf size 20000
stop rec
Your Direct Sound play

Sound to Peer start sending

Your sound back from Peer play

Peer's Sound play

7151

UDP port1 UDP port2
bitrate 64000
frame-size us(2.5,5,10,20,40,60) || 2.5
complexity (1~10) 10
bandwidth 1105
stop L cbr(0),vbr(1),c-vbr(2) 0
stop
stop LU}
stop L 1)

Fig. 2: Aretousa’s client UL

Time running

2\5{

”} E!! MM2ME = t1 + t2

Fig. 3: My Mouth to My Ear delay.

outgoing streams to separate wave files, allowing the user
to mix and/or analyze them offline, using audio processing
software. Although Aretousa can be used by ordinary musi-
cians, its target group is experimenters wanting to test different
parameters and setups. To test server-based configurations,
we have built a simple GStreamer-based server that operates
as a Selective Forwarding Unit (SFU), that is, it selectively
forwards packets, but it does not decode and re-encode them,
to avoid adding delay. An SFU is very useful when more
than two musicians want to collaborate, since it can replicate
a single stream coming from each musician to all other
participants in the session [10].

IV. TEST CONFIGURATION

To illustrate the capabilities of Aretousa and demonstrate
that, despite its flexibility, it is competitive with JackTrip, we
tested both systems and measured their round-trip audio delay,
which we define as My Mouth to My Ear (MM2ME) delay.
As shown in Figure 3, MM2ME is a more appropriate metric
than M2E for NMP, as when musicians play together, each
musician plays one note and unconsciously expects to listen
to the other musicians’ note to play his next one and so on. In
addition, measuring MM2ME delay accurately is much easier
than measuring the M2E delay, as it can be done at one end-
point, by simply reflecting the transmitted sound at the other

STREAMING
MACHINE

RECORDING
MACHINE

&

€
e

ON BOARD - CH1 CH2
AUDIO INTERFACE

EXTERNAL
AUDIO INTERFACE

=)

Fig. 4: NMP testing configuration.

endpoint; M2E needs to be measured at both endpoints, thus
requiring perfectly synchronized clocks. During these tests, we
also evaluated the degree of synchronization musicians could
achieve with various configuration parameters.

Network delay can be measured by using the RTP time
stamps in the packets. The M2E delay also includes the
time needed to capture, encode (optionally), packetize and
then depacketize, decode (optionally) and playout samples;
MM2ME requires repeating this process for each direction of
communication. To assess such delays, we can send an audio
stream to the peer, get it back, and compare the outgoing and
incoming streams.

We implemented sessions using both Aretousa and JackTrip
with PCM audio. With Aretousa, we also tested compressed
audio using the Opus codec, with varying parameters. We
experimented with various Ethernet packet sizes and audio
buffer sizes. We used the GRNET? infrastructure, to which
MMLAB is connected through fiber optic links. The computers
used for the experiments ran Ubuntu 16.04 with i7 processors
and 12 GB of RAM; we used the onboard sound card of each
machine for audio capture and playback.

As shown in Figure 4, at each endpoint the computer used
for streaming was complemented by a separate computer for
recording, which used an external audio interface, to avoid

Shttps://grnet.gr/en/

4 PUBLISHED IN: PROCEEDINGS OF THE AUDIO ENGINEERING SOCIETY CONVENTION 146, 2019

8

it PV

8

9)&
(@R
Fig. 5: Topology through NMP server.

delaying the audio capture and playout operations due to
recording. A little mixing console with an auxiliary output, a
condenser microphone and closed type headphones were used
by each of the two musicians participating. The microphone,
which captured physical audio, was routed to the audio input
of the streaming machine for transmission using the Aretousa
software. In parallel, it was routed via the console to the
recording computer, using channel 1 of the external audio
interface. The audio output of the streaming machine was
directed to the musician’s headphone, and was also routed to
the recording computer, where it was recorded using channel
2 of the external audio interface. As a result, the recording
combined what the musician produced (channel 1) and what
the musician heard (channel2).

As mentioned above, using Aretousa, the user can monitor
or mute his own sound, the other peer’s sound and his audio
echoed back from the peer. By monitoring his own sound, the
user experiences the audio delay introduced by the streaming
machine’s audio buffers used to capture and playback sound.
By monitoring his audio echoed back from the other peer,
he also experiences the delays due to packetization, network
transmission and reception, depacketization at the peer, and
then repacketization, transmission, reception and depacketiza-
tion at his end.

In our first scenario, we played back the captured sound
directly, so as to assess the delays due to audio buffering: the
audio was captured and then played out directly in the same
machine. In our second scenario, we connected the two peers
directly: the audio stream was sent from one client to the other,
played out, captured again, and reflected back. This scenario
captures the full MM2ME delay. The third scenario was the
same as the second, but using an NMP server between the
endpoints, as shown in Figure 5; the server did not perform
any processing. This scenario was only tested with Aretousa,
as JackTrip does not support NMP servers.

To calculate MM2ME delay, we used hand claps, as they are
easy to spot in audio processing programs: we simply needed
to measure the distance between the peaks (the claps) among
the two channels representing the sound sent and received. We
also asked musicians to perform using the setup of Figure 5,
but without reflecting the audio of each musician. After each
session, they were asked to answer a survey with questions
about sound quality, clicks, audio interrupts, delay perceived,
ability to synchronize, ability to express feelings and the
overall procedure quality.

V. RESULTS AND DISCUSSION

Figure 6 shows the MM2ME delay measured in the first
scenario (direct audio in a single machine) as the audio buffer

capture size grows from 4 ms to 20 ms worth of audio,
with uncompressed sound (PCM); orange boxes represent the
mean/min/max and variance with Aretousa and green boxes
the same metrics for JackTrip. Since in this scenario audio is
captured and played out once, these numbers are the minimum
possible one way delays due to the audio system (without
networking). It is clear that beyond 10 ms of audio buffering,
it is impossible to achieve the latencies required for NMP
(24 ms). The delays between JackTrip and Aretousa are nearly
the same in all aspects.

Figure 5 shows the MM2ME delay measured in the second
scenario (direct connection between two peers); this is the
real-world MM2ME delay in a configuration without servers.
If we consider as an upper limit of MM2ME twice the limit
for M2E, that is, 2x24 ms, the audio capure buffer needs to
be kept to no more than 10 ms. Again, Aretousa and JackTrip
are virtually the same in each case.

Figure 8 shows the MM2ME delay measured in the third
scenario (two peers with a server in between), as the capture
buffer size grows. This time, we only use Aretousa, but in
addition to uncompressed audio (PCM), we show the MM2ME
delay when using the Opus codec with a frame size of 2 us
and 20 us. We also show for reference the network delay, as
measured by the RTP timestamps; anything above this line, is
due to the audio system. Assuming again that the MM2ME
limit is around 2x24 ms, PCM audio can handle up to 10 ms
of audio buffering, while Opus cannot handle more than 5 ms,
due to its additional coding and decoding delay, which is 20 ms
or more. We can also note that the server has added around
7 ms of delay, by comparing the PCM delays at 10 ms of
audio buffering between Figure 7 and Figure 8.

The MM2ME delay calculations show that over a high speed
research network, such as GRNET, and with a server acting as
a simple forwarder for each stream, the biggest percentage of
the audio delay comes from the audio system, which defines
the total MM2ME delay. The network delay when the server
was included was very low, around 7 ms as evaluated with
Wireshark. Aretousa did not add any perceivable delay when
using uncompressed PCM audio, but coding with Opus added
at least 20 ms of delay, requiring a reduced audio buffer size
to make NMP possible.

VI. SUMMARY

We have created a new software platform for NMP, Are-
tousa, which offers numerous options for experimenters desir-
ing to assess either the QoS or the QoE of NMP sessions in
widely different setups. To show that Aretousa is competitive
with other NMP options in terms of latency, the main limiting
factor for NMP, we compared it with JackTrip and found that
it provides virtually identical M2E and MM2ME delays. In
addition, we provided results with an intervening NMP server
and with Opus encoded audio, to showcase the flexibility of
Aretousa for testing. We are planning to use Aretousa for
a comprehensive assessment of QoE with actual musicians,
by designing and carrying out a proper experimental study,
that will encompass network metrics, QoE questionnaires and
biometric data from electroencephalography (EEG) headsets,
to reveal the full range or human responses to NMP.

PUBLISHED IN: PROCEEDINGS OF THE AUDIO ENGINEERING SOCIETY CONVENTION 146, 2019 5

MM2ME delay in ms for various buffer sizes
Direct Audio
Aretousa - Jacktrip

45

40

335

30

5

. —— =

15

HW4ms M 4ms @ Sms B S5ms [10ms [10ms [15ms [l 15ms B 20ms B 20ms

Fig. 6: MM2ME delay in ms, direct audio, using Aretousa (orange) and JackTrip (green) for various buffer sizes.

VII. ACKNOWLEDGMENTS

We would like to thank the musicians Nikos Sariyannis
and Christos Panagiotakopoulos for their patience during the
experiments.

[1]

[2]

[3]

[4]

[51

[6]

[71

REFERENCES

C. Bartlette, D. Headlam, M. Bocko, and G. Velikic, “Effect of network
latency on interactive musical performance,” Music Perception: An
Interdisciplinary Journal, vol. 24, no. 1, pp. 49-62, 2006. [Online].
Available: http://www.jstor.org/stable/10.1525/mp.2006.24.1.49

C. Chafe and M. Gurevich, “Network time delay and ensemble
accuracy: Effects of latency, asymmetry,” in Audio Engineering Society
Convention 117, Oct 2004. [Online]. Available: http://www.aes.org/e-
lib/browse.cfm?elib=12865

P. F. Driessen, T. E. Darcie, and B. Pillay, “The effects of
network delay on tempo in musical performance,” Computer Music
Journal, vol. 35, no. 1, pp. 76-89, Mar. 2011. [Online]. Available:
http://dx.doi.org/10.1162/COMIJ_a_00041

A. Barbosa, “Displaced soundscapes: A survey of network systems for
music and sonic art creation,” Leonardo Music Journal, vol. 13, pp.
53-59, 2003.

J.-P. Caceres and C. Chafe, “JackTrip: Under the hood of an engine
for network audio,” in Proceedings of International Computer Music
Conference, 2009, p. 509-512.

C. Alexandraki and D. Akoumianakis, “Exploring new perspectives
in network music performance: The diamouses framework,” Computer
Music Journal, vol. 34, no. 2, pp. 66—83, 2010. [Online]. Available:
https://doi.org/10.1162/com;j.2010.34.2.66

C. Drioli, C. Allocchio, and N. Buso, “Networked performances and
natural interaction via lola: Low latency high quality a/v streaming
system,” in Information Technologies for Performing Arts, Media Access,
and Entertainment, P. Nesi and R. Santucci, Eds. Berlin, Heidelberg:
Springer, 2013, pp. 240-250.

[8]

[9]

[10]

(1]

[12]

D. Akoumianakis, C. Alexandraki, V. Alexiou, C. Anagnostopoulou,
A. Eleftheriadis, V. Lalioti, Y. Mastorakis, A. Modas, A. Mouchtaris,
D. Pavlidi, G. C. Polyzos, P. Tsakalides, G. Xylomenos, and P. Zervas,
“The musinet project: Addressing the challenges in networked music
performance systems,” in International Conference on Information,
Intelligence, Systems and Applications (IISA), July 2015, pp. 1-6.

C. Stais, Y. Thomas, G. Xylomenos, and C. Tsilopoulos, “Networked
music performance over information-centric networks,” in IEEE Inter-
national Conference on Communications Workshops (ICC), June 2013,
pp. 647-651.

G. Baltas and G. Xylomenos, “Evaluating the impact of network i/0 on
ultra-low delay packet switching,” in IEEE Symposium on Computers
and Communication (ISCC), July 2015, pp. 397-402.

Y. Thomas, G. Xylomenos, and G. C. Polyzos, “Exploiting path diversity
for networked music performance in the publish subscribe internet,”
in International Conference on Information, Intelligence, Systems and
Applications (IISA), July 2015, pp. 1-6.

A. Olmos, M. Brulé, N. Bouillot, M. Benovoy, J. Blum, H. Sun,
N. W. Lund, and J. R. Cooperstock, “Exploring the role of latency
and orchestra placement on the networked performance of a distributed
opera,” in 12th Annual International Workshop on Presence, 2009.

a0

80

70

60

50

40

30

20

10

PUBLISHED IN: PROCEEDINGS OF THE AUDIO ENGINEERING SOCIETY CONVENTION 146, 2019

MM2ME delay in ms for various buffer sizes
peer to peer
Aretousa - Jacktrip

N

==

_—t—

1

Hams l4ms [l 5ms M 5ms [10ms Wl 10ms [15ms [l 15ms B 20ms W 20ms

Fig. 7: MM2ME delay in ms, peer to peer, using Aretousa (orange) and JackTrip (green) for various buffer sizes.

140

120

100

BO

60

40

20

4ms S5ms 10ms 15ms 20ms

P m—Opus 2us fs ss—Opus 20us fs RTP delay

Fig. 8: MM2ME delay in ms, peer to peer via a server, using Aretousa for various buffer sizes.

