
PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019 1

Error and Congestion Control for Wireless Sensor
Networks

Charilaos Stais and George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics

School of Information Sciences and Technology
Athens University of Economics and Business

Athens 10434, Greece
stais@aueb.gr, xgeorge@aueb.gr

Abstract—In the Wireless Sensors Network (WSN) field, a wide
variety of sensors produce a heterogeneous traffic mix, targeting
diverse applications with different reliability requirements. We
focus on emergency response scenarios, where a mobile rescuer
moves through a, possibly disconnected, network, trying to talk
to diverse sensors. We assume two types of sensors, event sensors
triggered by an event and periodic sensors activated at predefined
time intervals, as well as two types of transmission, either using
the highest bit rate available or using predefined bit-rates. Our
Reliable Transport protocol for SEnsor Networks with MObile
Sinks (RT-SENMOS), takes into account all these parameters
and tries to provide the best possible user experience under
the current circumstances of the network, using a sink-driven
approach where an application-specific sink is combined with
generic sensors. RT-SENMOS was implemented and tested over
a real network with emulated losses and compared against Rate-
Controlled Reliable Transport (RCRT), a well-known sink-driven
protocol. The results show that RT-SENMOS fully exploits the
available bandwidth in all cases, while RCRT only manages to
exploit 60% to 90% of it. Furthermore, RT-SENMOS adapts
much faster to prevailing network conditions, while its protocol
overhead, in terms of control messages exchanged, is much lower
than that of RCRT.

Index Terms—WSN, Transport, Error Control, Congestion
Control

I. INTRODUCTION

Among the wide range of applications of Wireless Sensor
Network (WSN), one of the most demanding ones is emer-
gency response in disaster areas, both because the WSN may
have become partitioned due to sensor failures, and because of
the need to transport data quickly and accurately to the emer-
gency response team. A human or a robot entering a disaster
area to provide help can expect the network to be connected or
all the sensors to be available, therefore emergency response
applications need a transport protocol that can connect to
sensors quickly and transfer as much data as possible reliably,
without creating congestion around the rescuer where all the
data streams are converging. This means that a transport layer
protocol for emergency response applications must not only
handle the unpredictability of regular WSNs, it must also
constantly adapt to the shifting congestion levels and network
connectivity created by the rescuer’s mobility.

As part of the the DIstributed Sensor systems For Emer-
gency Response (DISFER) project, we created and imple-
mented the Reliable Transport protocol for SEnsor Networks

with MObile Sinks (RT-SENMOS) [1]. To better handle emer-
gency response applications, RT-SENMOS moves all respon-
sibility for error and congestion control to the sink, in our case
represented by a mobile rescuer; that is, the sink instructs
the sensors what and how much to send, with the sensors
implementing a generic set of mechanisms. The rationale
behind this design decision is to allow the application to fully
control the transport session depending on its requirements, for
example, allocating higher transport rates to more important
sensors and adjusting the reliability level depending on the
sensor data. As a result, a set of generic sensors normally
used by a totally unrelated application, e.g., security, can be
leveraged for an emergency response application targeted to
the specific disaster scenario. The mobile rescuer simply loads
to the sink an application appropriate for the disaster scenario
at hand (e.g., fire, flood, earthquake, etc.) and enters the
disaster area, using any already installed sensors that remain
operational. Finally, unlike most transport protocols which
require support at the kernel level, RT-SENMOS runs entirely
in user space over UDP/IP as part of the application executing
at the sink.

In this paper we present the design of RT-SENMOS, in-
cluding a performance evaluation of RT-SENMOS against the
Rate-Controlled Reliable Transport (RCRT) [2] protocol, an-
other sink-controlled approach, using actual implementations
of both protocols running on a real network with emulated
losses, extending the preliminary evaluation of our previous
work [1]. While RCRT is very similar in philosophy to RT-
SENMOS, it is not as appropriate for emergency response
applications for four reasons. First, RCRT takes a long time
to detect congestion, as it monitors loss recovery time; RT-
SENMOS uses timeouts to detect congestion faster, which
is critical for mobile rescuers. Second, RCRT responds too
drastically to congestion (similarly to TCP); RT-SENMOS
uses fixed adaptation steps to avoid dropping the transmission
rate to zero during rescue missions. Third, while RCRT offers
different rate allocation policies, they apply to all sensors;
RT-SENMOS can apply different rate allocation policies to
each sensor type, allowing the application to prioritize the
most important sensors. Finally, while RCRT sends original
and retransmitted packets together, RT-SENMOS can either
recover from errors with immediate retransmissions or in
recovery rounds, allowing the application to prioritize the



2 PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019

recovery of the most important data.
The second version of RT-SENMOS described in this paper

implements two different congestion control policies, covering
both sensors that can transmit at any available rate and sensors
that can only transmit at specific rates (e.g., video cameras),
and two different error control methods, either immediate
retransmissions or recovery rounds, superseding the simpler
first version that only implemented congestion control for
sensors transmitting at any available rate and recovery in
rounds [3], [4]. Essentially, the first version of RT-SENMOS
only offers a subset of the functionality of the second version.
We apply both RT-SENMOS and RCRT to an emergency
response scenario, where different types of sensors connect
with a mobile rescuer. The results show that RT-SENMOS
fully exploits the available bandwidth in all cases, while RCRT
only manages to exploit 60% to 90% of it, it adapts much
faster to prevailing network conditions and requires far less
control messages to operate.

The structure of the remainder of this paper is as follows. In
Section II we present past work on WSN transport protocols
and place RT-SENMOS in this context. In Section III we
present our assumptions and motivate our design choices.
In Section IV we describe in detail the mechanisms and
policies of RT-SENMOS. Section V contains our performance
evaluation of RT-SENMOS against RCRT in an emergency
response scenario. We conclude in Section VI.

II. BACKGROUND AND RELATED WORK

A. Types of WSN transport protocols

A characteristic aspect of WSNs is that their typical use
involves a large number of sensor nodes communicating with
a single sink, either directly or via other nodes (sensors
or not). This many-to-one communication model requires
different assumptions than those made for one-to-one transport
protocols, such as TCP. In this section we discuss existing
work on reliable transport for WSNs, with a focus on their
suitability for emergency response scenarios, where the WSN
may only be partially connected, as some sensors may have
failed. A rescuer may thus have to roam around the disaster
area to receive information from the surviving sensors. As
speed is essential in emergency response, transport protocols
for WSNs in such scenarios must be able to quickly connect
to sensors, get as much information as possible, and adapt to
shifting network conditions as the rescuer roams.

WSN transport protocols can be categorized using two
orthogonal axes [2]. First, in the reliability axis, a protocol may
provide either a reliable or an unreliable service. Second, in the
congestion control axis, a protocol may provide no congestion
control, distributed congestion control or centralized conges-
tion control. Reliability can be further implemented hop-by-
hop with retransmissions, as in RMST [5], end-to-end with
retransmissions, as in RCRT [2] and STCP [6], or end-to-
end using forward error control, as in ReInForM [7]. While
hop-by-hop reliability is useful for WSNs with losses due to
bad link conditions, most WSNs can retransmit lost packets
at the link layer, if needed [5]. The use of forward reliability
between acknowledgments requires a well-connected WSN,

which is unlikely in cases of emergency response applications.
Considering the fact that end-to-end retransmissions do not
require any co-operation from intermediate nodes, we will
focus on this kind of recovery scheme.

We can also distinguish WSN transport protocols based
on who is responsible for congestion control. In sensor-
driven protocols, each sensor sending data is responsible for
congestion detection and error correction in its own data
stream. In this approach, the sink simply receives data and
reports packet losses (through ACKs or NAKs). The advantage
of this technique is that the sink is very simple. However,
this means that the sensors must be more complex as they
must make all the decisions. The other option is to make
the sink drive congestion control, using its awareness of all
simultaneous transport sessions to co-ordinate the sensors. In
this case, the sink is complex and the sensors are simple; in
addition to its cost benefits, this choice can enable different
applications to be supported by suitably modifying the sink.
This is of particular interest in emergency response scenarios,
where sensors that may have been intended for a different
application (e.g., security) may be reused to assist rescuers.
For this reason, we will focus on sink-driven schemes.

An alternative to the end-to-end handling of error and
congestion control is hierarchical aggregation. For example,
ESRT [8] chooses some nodes and assigns them the responsi-
bility to manage those events, by collecting data from nearby
sensors, merging them and delivering them to the sink. This
approach comes with the problem of selecting merge nodes,
which implies network topology discovery. Also, a hierarchical
approach may cause delays in cases of emergency where we
need quick responses.

Another way to classify transport protocols is based on
how they detect congestion. The main methods are observing
packet losses, queue lengths and packet delays, either in
absolute terms or in relative terms (i.e., how these metrics
evolve over time). Packet loss measurements require an ACK
or NAK-based mechanism for feedback, while delay mea-
surements require taking Round-Trip Time (RTT) samples;
queue length measurement does not require feedback. All these
techniques are in principle suitable for emergency response
applications.

B. Reliable transport protocols for WSNs
The Priority-based Congestion Control Protocol (PCCP) [9]

detects congestion using a metric derived from the ratio of
packet inter-arrival time to packet service time. The purpose
of this metric is to improve QoS via better link utilization with
respect to packet losses and delays. The Adaptive Rate Con-
trol (ARC) [10] protocol does not enforce a specific method of
congestion detection and management; each node acts alone
and tries to adapt its transmission rate. This approach does
not burden the network with control overhead, but speed
and efficiency cannot be guaranteed. Siphon [11] reacts to
congestion by redirecting traffic to other nodes, which act
as virtual sinks. The goal is to unload congested links and
perform load balancing through multipath transmission. This
approach assumes a multi-hop and dense network, where we
can easily find alternative paths towards the sink.



PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019 3

Multipath transmission and load balancing are combined
in [12], aiming to proactively handle congestion via a pri-
mary and a secondary path, if available, for load balancing.
The mechanism monitors the sensor’s buffers for congestion
detection. In the same direction, CODA [13] takes advantage
of buffer monitoring to detect congestion. The sink examines
the usage of nearby buffers based on sensor reports and
uses this information to detect congestion. Once congestion
appears, the sink starts sending signals and all other nodes
push them via a backpressure mechanism towards the source.
In a similar way, Fusion [14] relies on the queue lengths of
intermediate nodes for congestion detection and uses hop-by-
hop rate adjustment. Buffer usage is normally a good indicator
of network capacity. However, when collisions are excessive,
after several unsuccessful MAC-level retransmissions packets
are dropped, therefore a decrease in buffer occupancy may not
indicate the absence of congestion.

In [15] the authors combine fairness and congestion control,
assuming that fairness is achieved via the allocation of equal
rates to each node. This solution is not suitable for WSNs
with different types of sensors, where each type demands a
different rate. The use of an equal rate allocation policy may
not exploit all the available bandwidth, leaving some nodes
with less bandwidth than what they asked for, while wasting
bandwidth when for nodes that do not need it.

Rate-Controlled Reliable Transport (RCRT) [2] adopts a
centralized approach where the sink is responsible for net-
work monitoring and congestion management, leaving sensors
without any functionality related to reliable transfer (except
recovery) as in STCP [6]. RCRT employs a negative acknowl-
edgment mechanism, where only losses are reported by the
sink to the sensors. RCRT can employ three different rate
allocation policies to assign the available transmission capacity
to the sensors. In the fair policy, the same rate is allocated to
all sensors, regardless of their requirements. In the demand
proportional policy, each sensor is assigned the same fraction
of its desired rate as all other sensors. In the demand limited
policy the same rate is allocated to all sensors, except that
sensors that asked for a lower rate are only assigned that rate,
leaving more bandwidth for the others. RCRT relies on the
time needed to recover from a packet loss to detect congestion
and adapt the overall transmission rate to be assigned to the
sensors. If this time is too high, the network is congested
and the sink reduces the assigned rates. If it is too low,
then the network is underutilized and the sink increases the
assigned rates. If it is in between, the network is stable and
rates do not change. RCRT is a good candidate for emergency
response applications as the sink is in control of the network,
meaning that sensors are simple, all control loops are end-
to-end, meaning there is no reliance on intermediate nodes,
and the protocol is relatively simple to operate, meaning that
it is easy to re-establish connectivity when the sink moves.
However, the only distinction possible between sensors is their
required transmission rate.

III. ASSUMPTIONS AND DESIGN RATIONALE

The only assumption made by RT-SENMOS about the
network is that it is a multi-hop WSN using a broadcast-

based wireless communication technology, which could be
WiFi, Bluetooth or ZigBee. Some of the nodes in the network
(possibly, all of them) host sensors, which try to transmit their
data to a pre-defined network address, the sink. The broadcast
communication technology implies that the sink is a natural
congestion point, as all data transmissions from the sensors
converge there and have to contend for the same bandwidth.
Since we target emergency response scenarios, we assume that
the sink may be a human or robotic rescuer moving around the
disaster area. This implies that the WSN from the viewpoint of
the sink may be constantly in flux. We assume that all sensor
nodes are pre-programmed with a network address for the sink,
but they are otherwise generic, in the sense that they just try to
send their data to the sink using a set of generic mechanisms.
The application logic is embedded in the sink, which exploits
the generic RT-SENMOS mechanisms to achieve its specific
goals. This allows the WSN to support arbitrary applications
by simply having an appropriate application at the sink assume
the pre-defined sink address.

In general, the WSN may be partitioned due to sensor and
node failures, therefore as the sink moves it may connect
with different partitions of the network from different vantage
points. We assume an underlying WSN routing protocol that
dynamically connects the mobile sink with any reachable
sensors [16], understanding that connectivity with a sensor
may fail at any time. Due to our focus on emergency response
scenarios, we do not expect the network topology to be
complicated; instead, we expect that sensors will be only a
few (probably only one) hop away from the sink, with the sink
having to move across the area to communicate with additional
sensors. For this reason, rather than rely on backpressure
mechanisms for congestion management, which would be
undermined by the constant sink movement, we instead rely
on end-to-end congestion and error control, as it only requires
co-operation between the sink and each individual sensor.

To allow RT-SENMOS to be used for a variety of applica-
tions, we need to accomodate diverse sensor types by treating
them appropriately. Sensors can choose among two types of er-
ror recovery behavior, which have to be partially implemented
at the sensor; each sensor will generally only implement one
behavior. Bandwidth allocation however is controlled fully by
the sink, without any support from the sensors, therefore each
application can use its own algorithms. We have implemented
a two phase bandwidth allocation policy, which firsts splits
the available bandwidth among different sensor types, and
then dynamically allocates a portion of that bandwidth to
each individual sensor of that type. Dynamic allocation takes
into account the sensor type, its desired transmission rate(s)
and the behavior of a network where congestion is naturally
concentrated around the sink.

RT-SENMOS is implemented at the application-layer over
UDP/IP, allowing it to be embedded in practically any device,
without requiring kernel modifications or superuser privileges.
Our implementation is written in Java, therefore it can be
used on all kinds of devices, including Android smartphones
and tablets. While most transport protocols are implemented
as libraries, the RT-SENMOS sink implementation was de-
signed to be embedded within an application, thus allowing



4 PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019

Sensor Sink
MSG_HELLO (id, type)

MSG_HELLO_ACK (port [,id])

MSG_INFO (delay, rates, ready, packet, data)

Fig. 1: Connection establishment and sensor information ex-
change.

it to directly control all protocol parameters depending on
its needs, following the Application Layer Framing (ALF)
model [17]. In addition to the rate allocation policies between
and within each type, the application can also control the level
of reliability desired. The sensors are, again, oblivious to all
these policies. This allows different applications, customized
for different emergency response scenarios (e.g., fire, flood,
earthquake, etc.), to exploit any sensors already available in a
disaster area; since all the application logic is in the sink, a
sensor supporting RT-SENMOS can be exploited by any RT-
SENMOS compatible application.

IV. PROTOCOL DESCRIPTION

This section describes the operation of the second version
of RT-SENMOS1. From the viewpoint of a sensor, the pro-
tocol operates in three phases. First, a sensor makes periodic
attempts to connect to the sink; when the sink responds, the
sensor sends it characteristics, and the sink responds with an
initial rate allocation. Then, a number of data transmission
rounds take place, with retransmissions either alongside the
original transmissions or after them, in recovery rounds.
During this pase, the sink may update the rate allocation of
a sensor at any time with a rate update message. Finally,
either side can drop the connection or detect (via timeouts)
a connection failure. A more detailed description is provided
in the following subsections.

A. Connection establishment

In RT-SENMOS, control signaling takes place out-of-band,
using separate data and control channels. All connections are
initiated by the sensors which send communication requests
to the pre-defined sink address using a fixed UDP port,
essentially representing a common control channel. The sink
then allocates a UDP port to the sensor for signaling and
a separate UDP port for data transport. In a multithreaded
environment, the sink can use one thread to receive connection
requests from new sensors, one thread per sensor for signaling
with known sensors and additional per-sensor threads for data
transmissions. The sensors can in turn uss one thread for
signaling and another thread for data. This scheme allows
control messages to be sent without delay, which is especially
useful during congestion period.

The sink constantly listens to the common control channel
for connection requests. Sensors can either periodically try
to connect to the sink or, if the routing protocol offers this

1Older versions of the protocol used a simpler congestion control scheme
and a single error control method; see [3], [4] for details.

Sensor SinkMSG_CTRL_DATA

MSG_CTRL_START (rate, port)

Fig. 2: Start of a new data exchange.

option, wait until the sink becomes reachable. In both cases,
the sensor sends an MSG_HELLO message to the common
control channel, as shown in Figure 1, which includes the pre-
configured identifier of the sensor and its type (for example,
event or periodic). When the sink receives an MSG_HELLO
message, it respondes with a MSG_HELLO_ACK message
which includes the UDP port for the signaling channel dedi-
cated to that sensor; if the sensor left the identifier field empty
in its MSG_HELLO message, the MSG_HELLO_ACK message
also includes an identifier allocated by the sink.

When the sensor receives an MSG_HELLO_ACK message, it
prepares an MSG_INFO message, which is sent, as all subse-
quent control messages, to the signaling channel dedicated to
that sensor. This message includes the delay between receiving
the MSG_HELLO_ACK message from the sink and sending
the MSG_INFO message, the set of data transmission rates
supported by the sensor (possibly, only one), an indication of
whether the sensor is ready to send data immediately, in which
case the message serves as a request to send, as well as the size
of the data packets supported by the sensor and the total size of
the data that the sensor will send. The sink, upon reception of
the MSG_INFO message, can calculate an initial Round-Trip
Time (RTT) estimate for that sensor by subtracting the delay
given in the MSG_INFO message, which represents processing
time at the sensor, from the time period between sending
the MSG_HELLO_ACK message and receiving the MSG_INFO
message, which is measured at the sink side. The sink is now
aware of the sensor’s requirements and can proceed with rate
allocation and data transmission.

B. Data exchange and idle

When a sensor sends its initial MSG_INFO message to
the sink, it may indicate that it is ready to send data, in
which case the sink can proceed with allocating a rate to the
sensor and giving it the go-ahead to transmit. Otherwise, the
connection moves to an idle state until the sensor sends a
MSG_CTRL_DATA message, indicating that it is now ready
to send data, as shown in Figure 2. The same procedure
is repeated after every transmission, that is, the connection
becomes idle until the sensor sends a new MSG_CTRL_DATA
message. This message does not include any parameters, since
all relevant parameters have been passed to the sink via the
MSG_INFO message.

The sink directs the sensor to start transmitting by sending
it an MSG_CTRL_START message which indicates the data
rate that the sensor should use as well as the UDP port to
be used for the data transmission, which represents a sensor-
specific data channel. The rate allocated to the sink is set
as explained in Section IV-E. The sensor then starts sending
data (and, possibly, retransmissions) using the data channel,



PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019 5

Sensor Sink
Data (segment)

MSG_CTRL_RATE (rate)

Data (segment)

Data (segment)

MSG_CTRL_DONE

MSG_CTRL_NACK (segment)

Fig. 3: Data exchange.

Sensor SinkMSG_CTRL_ALIVE

MSG_CTRL_ACK (delay)

MSG_CTRL_BYE

Fig. 4: Connection control and release.

while the sink sends control messages, such as Negative
Acknowledgments (NAKs) and rate updates, over the signaling
channel. The sensor keeps sending data packets with the size
indicated in its MSG_INFO message, until the total data,
again as indicated in its MSG_INFO message, are exhausted.
The data packet header holds a segment number used to
sequentially number the packets; retransmissions use the same
number as the original packet.

When a lost data packet is detected, either due to a
missing segment number, or due to a long delay between
packet arrivals, the sink returns a MSG_CTRL_NAK to the
sensor over the signaling channel, as shown in Figure 3.
The error recovery measures taken by the sensor depend
on its type, as explained in Section IV-D. Once the data
transmission, including any recovery messages, is done, the
sink indicates that the transfer completed successfully by
returning a MSG_CTRL_DONE message over the signaling
channel. Note that the sink knows the total size of the data
transfer from the MSG_INFO message, therefore it can detect
missing packets at the end. Both endpoints the move back to
the idle state, until the sensor is again ready to transmit. The
sink may send a MSG_CTRL_RATE message to the sensor at
any time indicating a modified rate allocation, as explained in
Section IV-E.

C. Connection control and release

Due to sink mobility, the connection between the sink and
the sensor may be broken at any time, without any indication to
the endpoints. To monitor the state of the connection, the sink
periodically sends MSG_CTRL_ALIVE messages to the sen-
sor, which are acknowledged by MSG_CTRL_ACK messages
from the sensor, as shown in Figure 4. The MSG_CTRL_ACK
includes the processing delay at the sensor, thus allowing the
sink to not only confirm that the connection is alive, but also
to make a fresh estimate of the RTT of the connection to that
sensor, by subtracting this delay from the time taken between
sending the MSG_CTRL_ALIVE message and receiving the
MSG_CTRL_ACK message.

On the other hand, if any of the endpoints wants to terminate
the connection voluntarily, it can send a MSG_CTRL_BYE
message to the other side. This message is not acknowledged,
leading to an immediate drop of the connection at both sides.
If it is lost, the other side will eventually timeout, either
waiting for an MSG_CTRL_ALIVE message to arrive (sensor)
or waiting for an MSG_CTRL_ACK message to be returned
(sink).

D. Error recovery

In RT-SENMOS the sink generates NAKs for missing data
packets and the sensors retransmit those packets; segment
numbers are used to detect lost data packets, while RTT-based
timeouts are used to detect lost control packets or very delayed
data packets. The exact error recovery policy can be different
for each type of sensor, but as part of the retransmission
mechanism is implemented at the sensors, we have designed
two different recovery schemes to cover as many applications
as possible, while still offering to the sink the opportunity
to adjust the reliability level depending on the application,
without involving the sensor.

In our test scenarios we have two types of sensors. A
periodic sensor periodically collects data, for example, the
current temperature or a still picture from a security camera.
An event sensor is triggered by a specific event, for example,
motion detection or a fire alarm, to send some data, for
example, a short video from a security camera. Since event
sensors are triggered by an individual event, we assume that
their data transmissions are delay sensitive as we might need to
know their readings right after the event. On the other hand,
periodic sensors constantly transmit new data, therefore we
assume that they are not as delay sensitive, since we just need
to know what their latest available reading is.

For the non delay-sensitive periodic sensors, we retransmit
missing packets in recovery rounds. First, the sensor transmits
all the original data packets and the sink returns NAKs for
any missing ones. Then, all data packets for which NAKs
were received are retransmitted. If NAKs are received for
the retransmissions, we retransmit again the NAKed packets,
repeating this procedure until all packets are received, as in
RMTPSI [18]. The sink can stop the recovery process when-
ever it wants, for example, when enough packets are received
to reconstruct the content, by sending a MSG_CTRL_DONE
message. The goal of this policy is to provide an overview of
all the data quickly, and then let the application decide how
many missing packets it wants to recover.

For the delay-sensitive event sensors, packets are immedi-
ately retransmitted by the sensors when a NAK for them is
received, as in RCRT [2]. The sink can choose which packets
to NAK, depending on their value to the application. For
example, when transmitting an MPEG-encoded video, packets
containing I-frames are more valuable than those containing
P-frames, since I-frames are needed to decode P-frames. In
our evaluation which uses video cameras as event sensors, the
sink monitors the recovery time of the past n retransmissions
to determine whether a retransmitted packet will arrive soon
enough to be played out, based on the current position of the



6 PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019

video player; if not, the packet is not NAKed, since it would
waste transmission resources.

E. Bandwidth management
The bandwidth management algorithm relies on two ob-

servations about our environment: first, in a broadcast-based
WSN congestion is naturally concentrated around the sink
and, second, the algorithm must adapt very quickly due to the
mobiilty of the sink. As a result, while TCP uses an Additive
Increase - Multiplicative Decrease (AIMD) [19] algorithm
to probe the (unknown) bandwidth on the end-to-end path,
leading to wild rate fluctuations, RT-SENMOS starts from the
(known) bandwidth at the sink, which is determined at the
MAC level and adds fixed adaptation steps.

RT-SENMOS first assigns a fraction of the available band-
width to each type of sensor, depending on the priorities of
each application. Then, it allocates rates to individual sensors,
possibly using a different algorithm per sensor type. Note
again that the sensors are not aware of the actual scheme
used. Initial rate allocation takes place whenever the sensor
mix changes, that is, when a new sensor connects to the sink or
when an existing one gets disconnected. Between these events,
the rates are modulated by a congestion management scheme
that measures the loss rate from each sensor in order to adapt
its transmission rate.

In the first version of RT-SENMOS sensors indicated a
single desired rate during connection establishment [4]; in
the second version we also allow indicating a set of target
rates, possibly with a single member [1]. In our experimental
evaluation, periodic sensors ask for a single rate, while event
sensors ask for a set of rates. The algorithm interprets the
single rate as the minimum needed to offer acceptable service,
so the rate allocation algorithm tries to match or exceed it. On
the other hand, with multiple rates the algorithm assumes that
the sensor can use any of these rates, prefering the highest
one, meaning that the rate allocation algorithm should exactly
match one of these rates, otherwise bandwidth may remain
unused. We next explain how the rates are initially allocated
and then dynamically adapted.

1) Initial Rate Allocation: Every time the sensor mix
changes, that is, sensors are connected or disconnected, the
initial rate allocation algorithm assesses whether it needs to
make global adjustments, separately for each type of sensor.
For periodic sensors, we first calculate the sum of the rates
requested (not assigned) by all sensors of that type. If this is
below the available bandwidth for this sensor type, new sen-
sors and existing sensors which were rate-limited will get their
requested rate, while all other existing sensors will keep their
assigned rate. On the other hand, it the aggregate requested
bandwidth is more than what is available, the available rate
is shared equally among all sensors of that type. Note that if
the event that triggered the algorithm was a sensor leaving the
mix, the algorithm first checks if the current rate of a sensor is
higher than its requested rate. If so, there is no need to change
it, since the overall available bandwidth must have increased.
The detailed procedure is given in Figure 5.

On the other hand, for event sensors which only support
specific rates, when the bandwidth is not enough to satisfy

procedure RATE ALLOCATION PERIODIC
periodic total bw :=

calculate total req BW (periodic sensors list)
periodic BW share := get total BW () ∗ (1 −

config.get event share())
if periodic total bw < periodic BW share then

for s in periodic sensors list do
if NOT (left event AND s.current rate >

equal share) then
assign rate(s.req rate)

end if
end for

else
equal share := periodic total bw/num of periodic sensors
for s in periodic sensors list do

if NOT (left event AND s.current rate >
equal share) then

assign rate(equal share)
end if

end for
end if

end procedure

Fig. 5: Initial rate allocation for periodic sensors.

all requests, the equal share rates initially assigned to each
sensor must be adjusted to the highest supported rate that is
less than or equal to their initial allocation. As a result, some
of the initially allocated bandwidth may remain unused; we
will allocate this bandwidth to event sensors whose allocated
bandwidth is smaller than their desired bandwidth and are not
in a congested state. The rate allocation scheme for event
sensors is elaborated upon in Figure 6; the algorithm for
assigning the remainder is explained below, as part of the
dynamic rate adaptation algorithm.

After all bandwidth has been allocated, new sensors are
notified of their assigned rate in the start transmission mes-
sage, while existing sensors whose allocation has changed are
notified by a rate update message (see Section IV-B).

2) Dynamic Rate Adaptation: While the sensor mix re-
mains static, the system periodically detects congestion and
adapts the assigned rates to prevailing conditions as shown in
Figure 7. The congestion detection scheme of RT-SENMOS
assumes that the congestion induced losses in each connection
are more similar to those occurring in a network with Random
Early Detection (RED) [20] rather than in a network with
drop-tail gateways. The rationale is that the large number
of sensors involved and the convergence of all transmissions
around the sink will randomly distribute losses among the
connections, with a loss probability proportional to the level
of congestion. Furthermore, we assume that each sensor type
expects a minimum reliability level, expressed by a loss rate
threshold loss limit; this accounts for wireless losses that do
not indicate congestion. The dynamic rate adaptation scheme
monitors the current loss rate, current loss, for each sensor,
and uses the gap between loss limit and current loss to
make its decisions.



PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019 7

procedure RATE ALLOCATION EVENT
event total bw := calculate total req BW (event sensors list)
event BW share := get total BW () ∗

config.get event share()
unused BW := 0
if event total bw < event BW share then

for s in event sensors list do
if NOT (left event AND s.current rate >

s.req rate) then
assign rate(s.req rate)

end if
end for
unused BW := event BW share −

event total bw
else

equal share := event total bw/num of event sensors
for s in event sensors list do

if equal share NOT in list of supported rates by sensor
then

new rate :=
find suitable bitrate(equal share)

unused BW+ := equal share −
new rate

else
new rate := equal share

end if
if NOT (left event AND s.current rate >

new rate) then
assign rate(new rate)

end if
end for

end if
assign unused BW (event sensors list, unused BW )

end procedure

Fig. 6: Initial rate allocation for event sensors.

Specifically, when loss limit < current loss, the sink
decreases each rate proportionally to the current loss rate:
newRate = currentRate∗ (1− current loss). On the other
hand, when loss limit > current loss, the sink increases
each rate proportionally to the difference between the limit
and the current loss rate: newRate = currentRate ∗ (1 +
loss limit− current loss). As an example, if loss limit =
3%, when current loss = 1% the rate will be increased
by 2%, while when current loss = 5% the rate will be
decreased by 5%; note the slightly higher aggressiveness when
rates are reduced. The event sensor rates are then modified as
explained in the previous section, that is, we adjust them to
the highest feasible desired rate.

Dynamic rate adaptation is performed in two steps, as
explained in Figure 7. In the first step, we examine all sensors
that may be congested, starting from the sensors with the
highest loss rate and proceeding towards those with the lowest
loss rate. Any sensors found to be in a congested state, i.e.,
exhibiting a loss rate higher than the threshold, are assigned
reduced rates. After that, we wait for the network to settle, and

procedure CONGESTION HANDLER
for s in sort loss rate decrease(event sensors list)

do
if s.current loss > s.loss limit then

new rate := s.current rate ∗ (1 −
s.current loss)

assign rate(find suitable bitrate(new rate))
end if

end for
for s in sort loss rate decrease(periodic sensors list)

do
if s.current loss > s.loss limit then

new rate := s.current rate ∗ (1 −
s.current loss)

assign rate(new rate)
end if

end for
Wait for changes to take effect
for s in sort loss rate increase(event sensors list)

do
if s.current loss < s.loss limit then

new rate := s.current rate ∗ (1 +
s.loss limit− s.current loss)

assign rate(find suitable bitrate(new rate))
end if

end for
for s in sort loss rate increase(periodic sensors list)

do
if s.current loss < s.loss limit then

new rate := s.current rate ∗ (1 +
s.loss limit− s.current loss)

assign rate(new rate)
end if

end for
end procedure

Fig. 7: Dynamic rate adaptation.

then proceed in the second step, where we examine all sensors
that may not be congested, from lowest to highest loss rate.
Any sensors found to be in an uncongested state, are assigned
increased rates.

Note that the second part of Figure 7, where rates are
increased, is also used as the last step in the initial rate
allocation algorithms for event sensors (see Figure 6), in order
to exploit any leftover bandwidth from the event sensor pool:
we cycle through the event sensors and only assign the leftover
rate to a sensor if it allows the sensor to upgrade its rate to the
next possible one, e.g., the next highest video quality; whatever
is left, is assigned to the periodic sensor pool.

V. PERFORMANCE EVALUATION

A. Experimental setup

To evaluate the performance of RT-SENMOS against RCRT,
we employed three different scenarios. The main concept in
all scenarios is the emulation of a disaster area, with different
sensor setups in each scenario. In the event sensor and periodic



8 PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019

TABLE I: Experimental parameters

Parameter Value
Content size for periodic sensors (MB) 8
Bit rate for content sensors (KBps) 82
Content duration for event sensors (sec) 30
Bit rates for event sensors (KBps) 50, 87, 187 and 312
Bandwidth available at the sink (MBps) 2
Chunk size (bytes) 512
Target loss rate 2% or 5%
Loss rate threshold 2% or 5%
Periodic sensor share (mixed scenario) 10%, 30% and 50%

sensor scenarios we have 14 sensors of the corresponding type,
while in the mixed sensor scenario we have 14 event and 14
periodic sensors. In all scenarios, an additional node acts as the
sink, connected over a single hop to all sensors in range, using
a shared broadcast WiFi link. We emulated the movement of
the sink in the disaster area by having sensors get in range
(and get connected to) the sink with a specific pattern in each
scenario, while congestion induced losses towards the sink
were emulated using a programmable loss injection module.

While losses were independent, the loss rate emulated was
proportional to the current bandwidth allocation, since we
assumed that the congestion loss model was RED-like. Specifi-
cally, to calculate the loss rate, we multiplied the fraction of the
total bandwidth that was allocated to sensors with a target loss
rate, which was either 2% or 5%; thus, the effective loss rate
ranged from zero (no bandwidth allocated) to the target loss
rate (all bandwidth allocated). The loss rate threshold for each
sensor with RT-SENMOS, below which we assumed there was
no congestion (the acceptable loss rate), was also either 2%
or 5%.

We used our own implementation of the second version of
RT-SENMOS written in standard Java2. Using the same Java
code base and messaging scheme, we also implemented the
full functionality of RCRT, including all of its rate allocation
policies; the parameters were set as in the paper proposing
RCRT [2]. The results provided below for RCRT are from the
fair and demand-proportional policies, where sensors get either
the same rate or the same proportion of their desired rate,
respectively. For event sensors, since RCRT does not support
the concept of multiple bit rates, we used the highest desired
rate as the target rate. Since the rate-limited policy of RCRT
interprets the desired rate as the highest rate desirable, it did
not make sense to compare it with RT-SENMOS which tries
to exceed this rate with periodic sensors.

As periodic sensors we used still cameras that periodically
transmitted 8 MB snapshots at a minimum desired rate of
82 KBps. As event sensors we used video cameras that, when
triggered, sent 30 sec of live video at 50, 87, 187 or 312 KBps;
the actual rate used depended on their allocated rate. The
bandwidth available at the sink was 2 MBps (or, 16 Mbps).
The share of the total bandwidth allocated to periodic sensors
was 10%, 30% and 50%. In all cases, data was transmitted
in 512-byte chunks. The experimental parameters are listed in
Table I.

2An Android Java version is also available, which interoperates with the
standard Java version.

The event sensor scenario simulates an emergency response
incident where a rescuer enters the disaster area and tries to
get a short video from each camera. During the first 2 sec
of the experiment the event sensors gradually connect to the
mobile rescuer, and then we gather data until all sensors have
completed their transmissions. In the periodic sensor scenario
we keep the same setup as in the event sensor scenario, but
the periodic sensors transmit a single fixed-size screenshot
each. Since in both scenarios each sensor only makes a single
transmission, the main difference between the scenarios is in
the way each type of sensor operates: event sensors can only
use specific rates and recover from loses in parallel with data
transmissions, while periodic sensors can use any assigned
rate (ideally, higher than the target rate) and recover from
losses in rounds. It should be noted that the first version of RT-
SENMOS only supported this type of scenario, that is, sensors
that can transmit at any available rate with error recovery in
rounds.

Finally, in the mixed sensor scenario we assumed the
existence of a large hall where all periodic sensors were
installed, leading to a 100 m corridor in which event sensors
were installed every 6.8 m. The rescuer moves from the large
hall to the corridor, connecting to the event sensors as they
get in range, while the periodic sensors are in range from
the beginning. Again, we gather data until all transmissions
finish. In all scenarios, there was no significant difference in
experiment completion time between RT-SENMOS and the
variants of RCRT, so the focus of the evaluation was on the
behavior of the rate allocation schemes.

B. Experimental results

1) Event sensor scenario: We first discuss the results
from the event sensor scenario, where sensors can only take
advantage of specific data rates. In Figure 8 we show the
mean bandwidth allocated and used per sensor, for loss rate
thresholds of 2% and 5%, and a target loss rate of 2%. Note
that since losses are tracked on a per sensor basis, even though
the average loss rate peaks at 2%, individual connections can
see much higher loss rates, thus triggering congestion control
actions. Although in both cases RT-SENMOS quickly adapts
as sensors enter and leave the network, the match between
the assigned and used rates is much better when the loss rate
threshold is set to 5%, higher than the target loss.

In Figure 9a we compare RCRT3 and RT-SENMOS with
a 5% loss rate threshold, with a target loss rate of 2%. As
in the previous figure, the allocated and used bandwidth in
RT-SENMOS is almost the same, meaning that RT-SENMOS
allocates rates which can actually be used by the sensors, while
RCRT exhibits a remarkable difference between the allocated
and used bandwidth, as it strives to allocate as much bandwidth
as possible to each sensor, rather than the actual rate that the
sensor can use, thus wasting the available bandwidth. Note also
that RCRT slowly increases the allocated bandwidth, since
there is no congestion (as some of the allocated bandwidth

3We used the demand-proportional policy for this figure, but the fair policy
has exactly the same behavior in this scenario.



PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019 9

 50

 100

 150

 200

 250

 300

 350

0 5 10 15 20 25 30 35

K
B

ps

execution time

RT-SENMOS: Mean Allocated BW (5%)
RT-SENMOS: Mean Used BW (5%)

RT-SENMOS: Mean Allocated BW (2%)
RT-SENMOS: Mean Used BW (2%)

Fig. 8: Mean Allocated and Used Bandwidth (2% target loss).

 50

 100

 150

 200

 250

 300

 350

0 5 10 15 20 25 30 35

K
B

ps

execution time

RT-SENMOS: Mean Allocated BW (5%)
RT-SENMOS: Mean Used BW (5%)

RCRT: Mean Allocated BW
RCRT: Mean Used BW

(a) Mean allocated and used bandwidth.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0 5 10 15 20 25 30 35

K
B

ps

execution time

RT-SENMOS (2%)
RT-SENMOS (5%)

RCRT

(b) Total used bandwidth.

Fig. 9: Bandwidth Allocation and Usage (2% target loss).

remains unused), without of course affecting the bandwidth
actually used.

This is also reflected in Figure 9b, which shows the total
bandwidth used by RCRT and RT-SENMOS with a 2% and
a 5% loss rate threshold. RCRT is slow to detect the actual
bandwidth available, as it relies on slow RTT measurements,
causing an initial overallocation (it allocates 4.5 MBps, where
only 2 MBps are available) which leads to congestion. Even
in steady state, RCRT exploits less of the available bandwidth
than RT-SENMOS, regardless of loss threshold.

Figure 10 shows the same metrics as Figure 9, with a target
loss rate of 5% rather than 2%. The gap between allocated
and used bandwidth per sensor is much higher for RCRT, as

 50

 100

 150

 200

 250

 300

 350

0 5 10 15 20 25 30 35

K
B

ps

execution time

RT-SENMOS: Mean Allocated BW (5%)
RT-SENMOS: Mean Used BW (5%)

RCRT: Mean Allocated BW
RCRT: Mean Used BW

(a) Mean allocated and used bandwidth.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0 5 10 15 20 25 30 35

K
B

ps

execution time

RT-SENMOS (5%)
RCRT

(b) Total used bandwidth.

Fig. 10: Bandwidth Allocation and Usage (5% target loss).

shown in Figure 10a, even though the used bandwidth for RT-
SENMOS has dropped due to the higher loss rate used. Note
again the gradual increase in the rates allocated by RCRT,
which has no tangible benefit to actual bandwidth used. The
total bandwidth used across all sensors, shown in Figure 10b,
is much higher for RT-SENMOS, due to its quick adaptation
and its awareness of the rate allocation requirements of the
application; again, RCRT overallocates rates at the beginning,
leading to congestion.

Finally, Figure 11 shows that RCRT generates far more
control packets for rate allocation4, as it sends rate allocation
change messages to all nodes, in contrast to RT-SENMOS
which controls each node separately. During the steady state
period shown in Figures 9 and 10, RCRT detects that the
network is under-utilized and tries to slowly increase the rates
assigned to nodes. As it is not aware of the desired rates for
the event sensors, these rate changes do not impact the real
data transfers, but add a large traffic overhead. RCRT will only
manage to upgrade the bit rate usable by those nodes after a
long time and a very large number of rate control messages.
With a 5% loss rate threshold and a 2% target loss rate, RCRT
requires 13 times as many messages as RT-SENMOS, while
with a 5% target loss rate the difference drops to 7 times as
many messages. In the latter case, RT-SENMOS reaches the
loss rate threshold and reconfigures the rates assigned to nodes,
trying to strike a balance between high bandwidth utilization

4All other control messages are the same in both protocols.



10 PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019

434

33

0

50

100

150

200

250

300

350

400

450

500

RCRT RT‐SENMOS

(a) 2% target loss.

448

62

0

50

100

150

200

250

300

350

400

450

500

RCRT RT‐SENMOS

(b) 5% target loss.

Fig. 11: Rate Control Messages Sent (5% loss threshold).

and limited loss rate. RCRT, on the other hand, always sends
rate control messages to all sensors.

2) Periodic sensor scenario: In the periodic sensor sce-
nario, sensors can use any bandwidth made available to them,
starting at their indicated rate, unlike event sensors which
operate only at specific rates. This allows us to compare the
way each protocol exploits the available bandwidth without
rate quantization effects. Note that with periodic sensors the
allocated bandwidth is equal to the bandwidth used, therefore
we do not separately show the bandwidth used. While this
scenario is also supported by the first version of RT-SENMOS
(see [4] for such results), the second version has been further
optimized to make its behavior even more stable.

Figure 12 shows the rates allocated by RT-SENMOS with
a loss rate threshold of 5% and two RCRT policies (fair and
demand-proportional) at target loss rates of 2% and 5%. At the
desired rate of 82 KBps, the system is uncongested, therefore
all policies can increase their bandwidth allocations. While
both RCRT policies operate similarly, since all sensors have
asked for the same rate, making fair the same as demand-
proportional, they only increase the rates slowly, as seen in the
previous scenario; in contrast, RT-SENMOS quickly reaches
the maximum available bandwidth and remains there for the
rest of the experiment.

In Figure 13 we show the total bandwidth allocated to

 60

 80

 100

 120

 140

0 8 16 24 32 40 48 56 64

K
B

ps

execution time

RCRT - Demand proportional
RT-SENMOS

RCRT - Fair

(a) 2% target loss.

 60

 80

 100

 120

 140

0 8 16 24 32 40 48 56 64

K
B

ps

execution time

RCRT - Demand proportional
RT-SENMOS

RCRT - Fair

(b) 5% target loss.

Fig. 12: Mean Allocated Bandwidth (5% loss threshold).

all sensors for the same experiment. It is clear that RT-
SENMOS can quickly reach the maximum available band-
width of 2 MBps, unlike the RCRT policies that do not
manage to get even close to it until the end of the experiment.
The change in the loss rate emulated does not make a big
difference for the RCRT policies, since the system remains
uncongested until the end of the run; as mentioned previously,
the actual losses emulated are proportional to the congestion
in the network. In contrast, RT-SENMOS quickly reaches the
saturation point of the network, hence congestion does induce
losses. The result is that in the 5% loss rate case RT-SENMOS
takes slightly more time to reach its equilibrium state.

3) Mixed sensor scenario: We finally discuss the results
from the mixed sensor scenario, where both sensor types
co-exist. In this scenario, RT-SENMOS first assigns a fixed
fraction of the available bandwidth to each sensor type, and
then performs rate allocation separately for each sensor type.
Figures 14a and 15a show the mean bandwidth allocated to
periodic and event sensors, respectively, when we reserve 10%,
30% and 50% of the bandwidth for periodic sensors, with a
loss rate threshold of 5% at a target loss rate of 2%. We can
see that RT-SENMOS manages to balance the performance
of the different sensor types depending on these allocations,
thus allowing the application to implement priorities among
sensor types. Each type of sensor quickly converges to a
fair rate allocation: periodic sensors are all connected at the
beginning, hence they quickly reach their fair shares, which
increase as some of them complete their transmissions; event



PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019 11

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

0 8 16 24 32 40 48 56 64

K
B

ps

execution time

RCRT - Demand proportional
RT-SENMOS

RCRT - Fair

(a) 2% target loss.

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

0 8 16 24 32 40 48 56 64

K
B

ps

execution time

RCRT - Demand proportional
RT-SENMOS

RCRT - Fair

(b) 5% target loss.

Fig. 13: Total Bandwidth Used (5% loss threshold).

sensors are gradually connected, hence they start with larger
allocations, which are reduced when a large number of them
is connected, and are then increased as the first ones complete
their transmissions. Note also the the continuous rate allocation
for periodic sensors against the quantized rate allocation for
event sensors.

Figures 14b and 15b show the same metrics for RCRT,
using the fair and demand-proportional rate allocation policies.
As event sensors join, the system quickly becomes congested
and the two policies clearly show their differences. The fair
policy of RCRT tries to fairly allocate the available bandwidth
among all sensors, regardless of their desired rates, therefore
all sensors eventually converge at roughly 100 KBps. This
rate is too high for the periodic sensors and too low for
the event sensors. The demand-proportional policy takes the
desired rates into account, trying to equalize the fractions of
the desired rates allocated to each sensor, therefore it allocates
higher rates to the event sensors, but the resulting rates are
again not ideal: periodic sensors get 50 KBps, which is less
that the desired 82 KBps, and event sensors get 200 KBps,
between the desired rates of 312 KBps and 187 Kbps. As a
result, event sensors will leave some bandwidth unused, which
cannot be used by the periodic sensors.

Unlike periodic sensors which can use any allocated rate,
with event sensors only a specific set of rates is allowed,
therefore the allocated bandwidths may exceed the used ones.
As shown in Figure 16a, the mean bandwidth used by event
sensors with RT-SENMOS is nearly exactly the same as the

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 25 50 75 100

K
B

ps

execution time

10% to periodic
30% to periodic
50% to periodic

(a) RT-SENMOS.

 40

 60

 80

 100

 120

 140

 160

 180

0 25 50 75 100

K
B

ps

execution time

Fair
Demand proportional

(b) RCRT.

Fig. 14: Mean Bandwidth Allocated to periodic sensors (2%
target loss).

allocated bandwidth, shown in Figure 15a, while with RCRT
the used bandwidth, shown in Figure 16b, is less than the
allocated bandwidth, shown in Figure 15b. As in the event
sensor scenario, with the fair policy the event sensors cab
only use 87 KBps out of the 100 KBps allocated, while with
the rate-proportional policy the event sensors can only use
187 KBps out of the 200 KBps allocated.

C. Discussion

While RT-SENMOS and RCRT are both sink-driven proto-
cols, they have four critical differences. The first difference
is that RCRT estimates congestion based on the time to
recover a lost packet, a metric that takes time to converge.
RT-SENMOS uses NAKs and timeouts to detect congestion
early, measuring the RTT of the connection with control packet
pairs. In scenarios with mobile rescuers, conditions around
the sink change very fast, requiring the quick adaptation of
RT-SENMOS. The second difference is that RCRT uses an
AIMD scheme to allocate rates, which periodically leads to
congestion. Congestion induces losses, which cause dramatic
rate reductions. RT-SENMOS uses fixed increase and decrease
steps for rate allocation. This leads to more stable behavior in
scenarios with quick disconnections and congestion around
the sink, as in emergency response applications. The third
difference is that while RCRT uses different policies to allocate
rates to sensors based on their bandwidth requirements, RT-
SENMOS allows different types of sensors to separately



12 PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

10% to periodic
30% to periodic
50% to periodic

(a) RT-SENMOS.

 50

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

Fair
Demand proportional

(b) RCRT.

Fig. 15: Mean Bandwidth Allocated to event sensors (2%
target loss).

manage their rate allocations, so as to guarantee that each
category will receive a minimal amount of service. As the
exact manner in which the available bandwidth should be
split between sensors generally depends on the scenario, RT-
SENMOS allows the application to fully tune each class
to the underlying network, with no changes in the sensors,
depending on the priorities of the emergency response scenario
at hand. The fourth difference is that while RCRT sends
original and retransmitted packets together, RT-SENMOS can
either recover from errors with immediate retransmissions or
in recovery rounds. The latter option allows the application
to control the level of reliability required, by stopping the
retransmissions whenever the received data are deemed suffi-
cient; if, however, the application desires full reliability, it can
continue the retransmission rounds as long as desired. This
provides great flexibility in emergency response applications
which can prioritize data depending on sensor type, again with
no changes to the sensors.

VI. CONCLUSION

This paper presented and evaluated a reliable transport
protocol for WSNs, RT-SENMOS, which was designed for
emergency response applications where a mobile rescuer acts
as the data sink. RT-SENMOS is implemented at the ap-
plication layer and concentrates all policy decisions at the
sink, thus allowing a set of generic sensors to be combined
with a customized sink that can synthesize a specific protocol

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

10% to periodic
30% to periodic
50% to periodic

(a) RT-SENMOS.

 50

 100

 150

 200

 250

 300

 350

 400

0 25 50 75

K
B

ps

execution time

Fair
Demand proportional

(b) RCRT.

Fig. 16: Mean Bandwidth Used by event sensors (2% target
loss).

behavior by employing an existing set of error and congestion
control tools. In our case study, this flexibility enabled a
disaster recovery application to split the available bandwidth
between different sensor types and between sensors of the
same type depending on its preferences. RT-SENMOS controls
each sensor individually, depending on the level of congestion,
and allows different types of sensors to employ different loss
recovery schemes. All these are possible by only modifying
the sink, with no changes to the sensors.

We also provided a performance evaluation of RT-SENMOS
against RCRT, using real implementations of both protocols
in Java on a network with emulated losses and mobility. RT-
SENMOS allocates all available bandwidth and tries to meet
the actual requirements of each type, while RCRT utilizes
60% to 90% of the available bandwidth, depending on the
rate allocation policy used. Our experiments show that the
gains from RT-SENMOS are more pronounced with sensors
that operate over a specific set of rates, such as video cameras.
Furthermore, RT-SENMOS is quicker to adapt to network
conditions than RCRT, reaching full bandwidth utilization
faster than RCRT, which only gradually adapts to the available
bandwidth. Finally, RT-SENMOS requires a much smaller
number of control messages, as it sends rate control messages
only to individual nodes and only when needed, unlike RCRT
which constantly sends new rates to all nodes.



PUBLISHED IN: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, VOL. 32, NO. 4, 2019 13

ACKNOWLEDGMENT

This research was co-financed by the European Union
(European Social Fund) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework - Research Fund-
ing Program: THALIS - DISFER and by the RC-AUEB funded
“Original Scientific Publications” project under contract ER-
2766-01.

REFERENCES

[1] C. Stais, G. Xylomenos, and E. Zafeiratos, “RT-SENMOS: Sink-driven
congestion and error control for sensor networks,” in Proc. of the IFIP
Conference on New Technologies, Mobility and Security (NTMS), 2016.

[2] J. Paek and R. Govindan, “RCRT: Rate-controlled reliable transport
for wireless sensor networks,” in Proc. of the ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2007, pp. 305–319.

[3] C. Stais, G. Xylomenos, and G. F. Marias, “Sink controlled reliable
transport for disaster recovery,” in Proc. of the ACM Conference on
Pervasive Technologies Related to Assistive Environments (PETRAE),
2014, pp. 1–4.

[4] C. Stais and G. Xylomenos, “RT-SENMOS: Reliable transport for sensor
networks with mobile sinks,” in Proc. of the IEEE Symposium on
Computers and Communication (ISCC), 2015, pp. 105–110.

[5] F. Stann and J. Heidemann, “RMST: reliable data transport in sensor
networks,” in Proc. of the IEEE Workshop on Sensor Network Protocols
and Applications (SNPA), 2003, pp. 102–112.

[6] Y. G. Iyer, S. Gandham, and S. Venkatesan, “STCP: a generic transport
layer protocol for wireless sensor networks,” in Proc. of the IEEE
Conference on Computer Communications and Networks (ICCCN),
2005, pp. 449–454.

[7] B. Deb, S. Bhatnagar, and B. Nath, “ReInForM: reliable information
forwarding using multiple paths in sensor networks,” in Proc. of the
IEEE Conference on Local Computer Networks (LCN), 2003, pp. 406–
415.

[8] O. B. Akan and I. F. Akyildiz, “Event-to-sink reliable transport in
wireless sensor networks,” IEEE/ACM Transactions on Networking,
vol. 13, no. 5, pp. 1003–1016, Oct. 2005.

[9] C. Wang, K. Sohraby, V. Lawrence, B. Li, and Y. Hu, “Priority-
based congestion control in wireless sensor networks,” in Proc. of the
IEEE Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC), 2006.

[10] A. Woo and D. E. Culler, “A transmission control scheme for media
access in sensor networks,” in Proc. of the ACM Conference on Mobile
Computing and Networking (MobiCom), 2001, pp. 221–235.

[11] C.-Y. Wan, S. B. Eisenman, A. T. Campbell, and J. Crowcroft, “Siphon:
Overload traffic management using multi-radio virtual sinks in sensor
networks,” in Proc. of the ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2005, pp. 116–129.

[12] J.-Y. Teo, Y. Ha, and C.-K. Tham, “Interference-minimized multipath
routing with congestion control in wireless sensor network for high-rate
streaming,” IEEE Transactions on Mobile Computing, vol. 7, no. 9, pp.
1124–1137, 2008.

[13] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA: Congestion
detection and avoidance in sensor networks,” in Proc. of the ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2003,
pp. 266–279.

[14] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating congestion
in wireless sensor networks,” in Proc. of the ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2004, pp. 134–147.

[15] C. T. Ee and R. Bajcsy, “Congestion control and fairness for many-to-
one routing in sensor networks,” in Proc. of the ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2004, pp. 148–161.

[16] K. Karenos and V. Kalogeraki, “Traffic management in sensor networks
with a mobile sink,” IEEE Transactions on Parallel and Distributed
Systems, vol. 21, no. 10, pp. 1515–1530, 2010.

[17] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for
a new generation of protocols,” in Proc. of the ACM Symposium on
Communications Architectures & Protocols (SIGCOMM), 1990, pp.
200–208.

[18] C. Stais, G. Xylomenos, and A. Voulimeneas, “A reliable multicast
transport protocol for information-centric networks,” Journal of Network
and Computer Applications, vol. 50, pp. 92–100, 2015.

[19] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance,” Computer Networks and ISDN
systems, vol. 1, pp. 1–14, 1993.

[20] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
pp. 397–413, 1993.


