
PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85 1

Adaptive Semi-Stateless Forwarding for
Content-Centric Networks

Christos Tsilopoulos and George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics

School of Information Sciences and Technology
Athens University of Economics and Business

Athens 10434, Greece
tsilochr@aueb.gr xgeorge@aueb.gr

Abstract—In Content-Centric Networks, users request content
by issuing Interest messages, receiving Data messages in response.
Interests leave state on routers on their path, to allow Data to
follow the reverse path. Despite the advantages made possible
by this state, its storage requirements raise scalability concerns.
We propose an adaptive semi-stateless forwarding scheme where
Interests are tracked only on a fraction of the routers. Between
state-tracking routers, Interests gather reverse path information,
which is used to deliver Data via Bloom filter-based forwarding.
We show how the fraction of state-tracking routers can be dy-
namically adapted to reduce state while limiting communication
overheads. Our scheme allows this state, along with all other
required data structures, to comfortably fit into the fast memory
of a practical router.

Index Terms—ICN, CCN, PIT

I. INTRODUCTION

The networking research community has spent considerable
effort in Information Centric Networking (ICN) architectures
which primarily facilitate content distribution by utilizing in-
network data storage and computation resources. Among the
various ICN proposals, the one that has received the most
attention is Content-Centric Networking (CCN) [1] and its
derivatives, where users request named content by issuing
Interest packets and receiving in response the corresponding
Data packets. Routers propagate Interests towards content
sources, storing back pointers for each forwarded Interest in a
Pending Interest Table (PIT). When Data are returned, routers
push them towards their requester(s) based on information
in the PIT [1]. If an incoming Data finds no match in the
PIT, routers consider it unwanted and discard it. Routing and
forwarding rely exclusively on content names, rather than host
addresses.

The stateful name-based forwarding of CCN offers four
key advantages. First, the network provides support for native
multicast: if multiple users request the same content, their
Interests are merged by common on-path routers, by adding
back pointers to the same PIT entry, so as to later replicate
the received Data [1]. While unicast applications rarely ask
for the same content at the same time, multicast is ideal for
live streaming applications, such as IPTV or Facebook Live.
Second, host addresses are omitted, thus avoiding a number
of address-related vulnerabilities (e.g., DoS attacks). Third,
routers prevent the delivery of unwanted data, i.e. data that

has not been explicitly requested (e.g., spam) [1]. Fourth,
maintaining per-packet forwarding state enables routers to re-
alize adaptive forwarding, i.e., routers may actively participate
in functions such as link failure recovery, flow control and
detection of malicious behavior [2].

The need to track each forwarded Interest raises scalability
concerns [3]. These have led to proposals for stateless schemes
that remove the PIT [4], [5], [6], while other proposals adopt
semi-stateless solutions that drop the per Interest forwarding
information of CCN [7], [8], [9], [10], [11], [12]. This,
however, undermines the advantages of CCN’s stateful for-
warding: (i) routers cannot aggregate Interests, thus multicast
is not supported, (ii) host addresses are brought back in some
schemes, (iii) routers cannot drop unwanted packets since
forwarding state is removed, which is also why (iv) adaptive
forwarding is prevented.

In this paper, we propose an adaptive semi-stateless for-
warding scheme for CCN. Instead of tracking an Interest at ei-
ther all or none of the routers, we store forwarding information
on every d hops, thus each router tracks on average 1/d of the
Interests. At intermediate hops, Interests collect reverse path
information, which is stored at routers tracking that particular
Interest. Data are later forwarded between routers tracking
the corresponding Interest via Bloom filter-based stateless for-
warding [13]. The resulting forwarding state reduction comes
at the cost of increased bandwidth overhead for multicast
(but not unicast) applications, caused by (i) additional Interest
transmissions, as Interests may not be aggregated at the first
common router and (ii) redundant Data transmissions, due to
false positives in the Bloom filters. As this overhead can grow
quite large in some topologies, we extend our solution from
Tsilopoulos et al. [13] by dynamically adapting d, so as to
balance state reduction against messaging overheads.

Despite this state reduction, our scheme preserves the ad-
vantages of CCN: native multicast and host/route anonymity
are fully preserved, while routers can discard unwanted traffic
and support adaptive forwarding for the fraction of Interests
that they are tracking. Furthermore, only the Interest and
Data forwarding of CCN need to be modified, leaving the
control plane intact. In simulations using a wide range of
realistic topologies, we found that forwarding state is reduced
to 18.9% − 27.4% of CCN in unicast applications, with
negligible bandwidth penalties, while in multicast applications

2 PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85

state is reduced to 27.3%− 63.2% of CCN, at the expense of
1.6% − 12.1% in bandwidth overhead. Therefore, with the
small, but not negligible, amounts of multicast traffic that
CCN could enable (e.g., 5− 10% of total traffic), our scheme
manages to reduce the PIT to no more than 30% of its original
size, thus managing to fit it, along with all other required data
structures, in the fast memory of a practical router.

The remainder of this paper is organized as follows. In
Section II we outline CCN forwarding and related work on
reducing forwarding state. Section III presents our scheme in
detail, assuming a fixed d, explaining how Interests are tracked
and Data are forwarded. Our evaluation in Section IV shows
that while PIT size is reduced, the messaging overhead can be
large in some topologies. We therefore present a method for
dynamically adapting d depending on tree density in Section V
and show in Section VI that this approach balances the benefits
and overheads of semi-stateless forwarding. We conclude in
Section VII.

II. BACKGROUND AND RELATED WORK

A. Content Centric Networking

All communication in CCN revolves around named data.
Users issue Interest packets specifying a content name and
receive in response Data packets with the corresponding
content. For each Interest, a user receives at most one Data
packet. Content names are variable-length hierarchical identi-
fiers, e.g., /a/b/c.mp4. Interests are forwarded by routers
hop by hop. At each hop, a router first checks its Content
Store (CS) to see if a copy of the Data is available; if so, the
Data packet is returned over the link that the Interest came
through. Otherwise, the router checks its Pending Interest
Table (PIT) to see if an Interest for the same Data has already
been forwarded. If so, the router adds the Interest’s incoming
interface to the PIT entry and drops the Interest. Otherwise,
the router stores the Interest and the interface it arrived from
in the PIT, and forwards the Interest based on its Forwarding
Information Base (FIB).

When the Interest reaches the content source, the requested
Data packet is transmitted along the reverse path: at each
hop, routers check their PIT for matching entries and transmit
the Data packet through the appropriate interface; if multi-
ple interfaces are listed, the Data packet is replicated, thus
achieving multicast. Data packets that have no match in the
PIT are discarded. After a Data packet is forwarded, the
router considers the Interest satisfied and deletes the PIT
entry. Timers are used to purge PIT entries that have not
been satisfied for a long time. Essentially, routers maintain
per packet state: as Interests are forwarded, breadcrumb-like
trails are left in the PITs. These are consumed by Data packets
as they reverse the path of the Interests. Figure 1 shows
an example of CCN operation, where the Interests of three
clients (U1, U2 and U3) for content /a/b/c.mp4 have been
forwarded to a content source (S); the PIT entries form a
multicast tree (from S to U1, U2 and U3).

CCN’s stateful forwarding offers four advantages. First,
identical Interests are merged at the first common router, thus
enabling Data to be returned via multicast. Although Interests

Fig. 1. CCN operation. Arrows show the Interests propagating towards content
source S.

from unicast applications may benefit from this [14], native
multicast is ideal for live streaming, where users consume
content in a synchronized manner, e.g., IPTV or Facebook
Live. Second, as no host addresses are used, a number of
address-related problems (address space depletion, address as-
signment and governance) can be mitigated [1]. Third, routers
drop Data packets that do not match a PIT entry, thus unwanted
traffic (e.g., spam) is discarded early [1]. Fourth, per-packet
state enables adaptive forwarding [2], where routers exploit
forwarding state to assist functions such as fast recovery from
link failures, congestion avoidance and early attack detection.

The amount of PIT state kept in routers, however, raises
scalability concerns. The work in [15] mapped realistic IP
traffic onto CCN and estimated that a 20 Gbps access router
would require 1.5 M PIT entries.1 Work in [16] estimated that,
in an extreme worst case scenario, the PIT may reach 30–60 M
entries. Since CCN names are variable-length and, in general,
longer than host addresses, the total memory requirements
for the PIT grow significantly. Although other work argues
that PIT sizes are manageable, growing to no more than 2 M
entries in a worst case scenario [17], it assumes flows with
congestion-controlled Interests (as in TCP), large Data packets
and bottlenecks at the access network only; unfortunately,
Interests can be issued in advance at fixed rates [18], Data
packets can be very small to reduce latency [19] and core
links can become the bottleneck as access speeds grow [17],
invalidating these assumptions.

A rough estimate of the number of PIT entries needed
to fully utilize a link that only transmits Data packets is
bandwidth×RTT/data packet size, since PIT entries are
active at least for the Round-Trip Time (RTT) to the content
source and back. For example, to fully utilize a 40 Gbps link
with 1500-byte Data packets and an average RTT of 80 ms,
the PIT must hold around 266 K entries per link. Since each
direction of a link normally carries both Interests and Data,
with symmetric traffic and flow balance between Interests and
Data, the PIT drops to 252 K entries [16]. Assuming an
optimized PIT implementation, the actual memory footprint
of this PIT would be 15.6–23 MB, depending on the size

1In that study, the authors assumed that an Interest can correspond to
multiple Data packets. This radically changes the basic CCN behavior of one
Interest per Data and may heavily underestimate the amount of PIT entries.

PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85 3

of the content names used [16]. Clearly, this cannot fit into a
router’s on-chip static RAM (SRAM) which is at most 4.5 MB
but offers an access time of 1 ns. Although it is possible to fit
such a PIT into off-chip SRAM, which has an access time of
4 ns and a size of up to 27 MB, we also need to fit in there
the FIB and the index for the CS (the actual CS can reside
in DRAM), therefore in a practical router implementation, the
PIT should take up no more than one third of the off-chip
SRAM [3]. This means that the PIT memory footprint must
be reduced to at most 30% of its current size. Otherwise, we
will need to use RLDRAM, whose size is only limited by cost,
but has an access time of 15 ns; this is too slow to serve cache
hits at a line rate of 40 Gbps [3].

B. Reducing PIT size

Since the PIT is checked for every arriving packet, it should
reside in the line-cards’ fast memory along with the FIB
and CS, but as we saw above, it cannot even fit in the off-
chip SRAM [3], [16]. Some alternative implementations can,
under certain assumptions on the traffic mix and content-name
length, substantially reduce the memory-footprint of the PIT.
DiPIT [8] encodes multiple Interests in counting Bloom filters,
thus losing information on individual Interests, which is crucial
for dropping stale Interests [16] and adaptive forwarding.
Encode Name Prefix Trie (ENPT) [15] organizes the PIT in
a trie-like structure with linear (O(N)) insert and lookup
costs (N is the number of name components), compared to
the constant (O(1)) complexity of hash tables; the multiple
memory accesses per packet make it too slow for high speed
routers. Finally, by storing compact fingerprints of content
names in the PIT, we can reduce its size by up to 50% [7];
not only this is insufficient to fit it into off-chip SRAM, but
the collisions in the fingerprint space prevent Interest merging
(and multicast).

Another way to reduce PIT state requirements is through
Persistent Interests (PIs) [20]. With PIs, users send Interests for
channels or notifications, grouped by a prefix of the content-
name. Since a PI matches a number of Data packets, PIs are
not deleted after a matching Data packet is forwarded; instead,
they remain in the PIT until they expire or are explicitly
revoked. The corresponding Data packets must be specially
marked, so that forwarding can be performed on a prefix of
their full name. If multiple users send PIs for the same prefix,
CCN can group them into a single multicast tree. Although PIs
can significantly reduce the number of Interests transmitted,
the lifetime of a PI is much longer than that of a plain Interest,
thus it is unclear whether the PIT size is reduced.

In the HyPOP scheme, a fixed-size PIT is used as a cache for
the most popular Interests, supporting multicast only for the
corresponding Data items [9]; non-popular content uses Bloom
filters to perform source routing, inspired by our original semi-
stateless scheme [13]. Since the PIT size is fixed, HyPOP’s
evaluation focuses on its cache hit ratio, ignoring the overhead
due to redundant Data messages, which can be very high
(see Section IV). In the CCN-GRAM scheme [10], routers
adopt anonymous identities and instead of tracing Interests
in the PIT, an Anonymous Request Table (ART) tracks the

next hop to each identity, essentially creating a virtual circuit
towards the requesting router; the router maintains a PIT-like
structure to demultiplex Data to local clients. This negates
most of the advantages of stateful forwarding, including native
multicast support, as state is tracked per router. For multicast
applications, a separate Multicast ART (MART) maintains the
next hops for each group, as in IP multicast, as well as a next
message counter; this is similar to the PI scheme, but Interests
must be sent continuously to ask for the next message [11].
In addition to requiring applications to know whether they are
unicast or multicast, the long lifetime of the MART entries
may not reduce memory size requirements.

C. Making CCN stateless

Another approach to avoid the problems posed by the PIT, is
to make CCN stateless. The CONET architecture, essentially
a stateless variant of CCN, moves all forwarding information
from the routers to the packet headers [4]. During Interest
propagation, routers append their identifier in the packet’s
header. When the Interest reaches the content source, the
header is reversed and placed as a source-route in the Data
header. The pit/LESS proposal also includes the reverse path
in the header, but instead of router identifiers, Interests encode
all path links in a counting Bloom filter large enough to
hold any unicast path without false positives, using entropy
coding to keep filter sizes small; a PIT-like structure is used to
demultiplex Data to local clients [5]. Another proposal is to use
a routable name to identify the originator of an Interest, so that
Data can be returned using the same FIB as for Interests [6].
Finally, another scheme uses a PIT to store the IP address
for an Interest only when it enters the network or when it
branches to multiple hops; at these points, the current router’s
IP address is stored in the Interest [12]. Data are returned by
retracing this path, using the IP addresses in the PIT entries
for routing.

In all these proposals, the motivation for the (partial or full)
removal of the PIT is that the claimed advantages of CCN’s
stateful forwarding are not important enough to justify main-
taining such state. Regarding Interest aggregation, analytical
studies indicate that it is rare with unicast applications, as
content that tends to be requested often is served by the CS
without creating a PIT entry. Estimates on the actual fraction
of merged Interests ranging from less than 1% to up to 5% [6],
[14]. These studies, however, do not take into account the live
streaming applications enabled by native multicast, such as
IPTV or Facebook live. Assuming that video will remain the
dominant type of traffic, at least for the foreseeable future, we
would expect the adoption of CCN to increase the fraction of
multicast traffic due to live video streaming, therefore CCN
should be prepared to deal with a rate of Interest aggregation
of up to 5–10%, primarily due to multicast. Regarding security,
while it is true that the PIT is itself vulnerable to attacks [14],
the stateless alternatives rely on global identifiers (e.g. router
addresses, routable names, or even full paths), which lead us to
the same problems that CCN meant to avoid by removing node
identifiers: we lose node and path anonymity and the ability to
drop unwanted traffic, since we can no longer track which Data

4 PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85

have been requested. Finally, regarding adaptive forwarding,
the argument that routers do not have the autonomy to make
their own decisions is not persuasive [6], since route flapping
due to autonomic router decisions is a common problem with
IP, and we would expect CCN-based schemes to exploit their
content awareness to improve upon IP.

III. SEMI-STATELESS FORWARDING

A. Overview

We now present a forwarding scheme for CCN that com-
bines stateful and stateless operation, in order to reduce the
resource requirements of routers without losing the advantages
of statefull operation. Instead of storing per Interest state in
either all or none of the routers, as in plain CCN or its stateless
variants, respectively, we track Interests at some of the on-path
routers, using a mix of stateful (in-router) and Bloom filter-
based stateless (in-packet) forwarding [21].

During Interest propagation, instead of updating the PIT at
each router, the Interest is tracked at every d hops, where d is
a system parameter, e.g., d = 3 or d = 4. Non state-tracking
routers add reverse path information inside Interests. When
a router tracks an Interest, instead of storing the Interest’s
incoming interface, it stores the reverse path (or tree) gathered
by the Interest. During Data forwarding, routers that tracked a
particular Interest place the source-route for the downstream
path (tree) in the Data packet and push it towards the next
stateful router(s). Between state-tracking routers, packets are
forwarded according to the in-packet source-route.

Our solution reduces forwarding state, while preserving the
properties of CCN. Native multicast, host and route anonymity
are preserved due to the adoption of Bloom filter-based source-
routing, while dismissal of unwanted traffic and adaptive
forwarding is supported for the fraction of Interests that each
router tracks. Though the latter are supported in a more
coarse manner, our approach compares favorably to both fully
stateless [4], [5], [6] and semi-stateless solutions that drop
fine-grained forwarding information [7], [8], [9], [10], [11],
[12].

Our scheme has two parts: (i) updating the PIT on the arrival
of an Interest and (ii) tracking reverse path information in
Interests and using it for Data.

B. Interest tracking

In previous work, we considered three different Interest
tracking policies [13]. In probabilistic tracking, each router
randomly chooses to store 1

d of the incoming Interests in
the PIT. In hash-based tracking, each router hashes the name
in the Interest concatenated with a fixed local suffix and if
the result is divisible by d it stores the Interest in the PIT.
Finally, in hop counter-based tracking each Interest includes
a hop counter (HC) which counts the hops until the Interest
must be stored in the PIT. The first two policies, due to their
probabilistic nature, also require a HC to prevent very long
paths between routers tracking an Interest. For this reason, this
paper only considers the third policy, which, although simple,
has been shown to offer good overall performance [13].

procedure HC TRACK(interest, incoming port)
pit entry := PIT lookup(interest)
if pit entry not null then

store in PIT (interest, incoming port)
return . Interest suppressed

end if
hc := increment hop counter(interest)
if hc = d then

store in PIT (interest, incoming port)
reset hop counter(interest)

end if
out port := FIB lookup(name)
forward(interest, out port)

end procedure

Fig. 2. Hop Counter-based Interest tracking.

In the hop counter-based policy, an HC is stored inside the
Interest header and is incremented at each hop. When HC =
d, routers store the Interest in their PIT and reset the HC to 0.
To ensure that Interests for the same Data will be merged, upon
receiving an Interest, routers first check their PIT and proceed
with the HC check only if no match is found; otherwise, they
merge the new Interest into the existing PIT entry and drop it.
The initial value for the HC is randomly selected by the issuing
host in the range [0, d− 1] so as to distribute forwarding state
to all routers. If the initial HC was always set to 0, routers
with distance d−1 or less from hosts would be kept stateless.
In the example of Figure 1, if d = 3, all Interests would be
tracked by R4, making it a bottleneck, while R1 to R3 would
have an empty PIT. With a randomly selected HC, there is a
1/d probability for each on-path router to track the Interest.
Figure 2 shows the detailed algorithm for the Hop Counter-
based tracking policy.

C. Data forwarding

We now describe how semi-stateless packet forwarding can
be incorporated into CCN, without sacrificing native multicast
or host and route anonymity. In our Bloom-filter based for-
warding scheme, the network duplicates multicast data only at
branching points, even when the route is maintained elsewhere.
To encode the set of links representing a path (or tree), each
link is assigned a Link Identifier (LID), which is an m-bit
string with only k bits set to 1 (k << m). The k bits are
determined using k hash functions. LIDs are unidirectional
(a bi-directional link is assigned two LIDs) and need not
be unique in the network. Each LID is in itself a Bloom
filter representing a set with itself as the only member. A
set of links representing a delivery path is encoded in a
Bloom filter by ORing the constituent path link LIDs [21].
We then place this Bloom filter in a packet’s header and call
it an in-packet Bloom filter (iBF). For example, in Figure 3,
the Bloom filter for transmitting packets from R1 to R3 is
LIDR1→R2 |LIDR2→R3 = 000111; this is used as the iBF of
these packets. During forwarding, routers extract the iBF from
packets and examine which of their outgoing links are part of
the iBF. If the expression iBF & LIDi == LIDi is true,

PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85 5

Fig. 3. Bloom filter-based forwarding. Links are annotated with LIDs (m = 6
and k = 2).

Fig. 4. Interest from U1: R1 updates the Interest iBF. R2 tracks the Interest
with the iBF for R2 → R1 → U1. R2 resets the iBF to 0 and forwards the
Interest.

Fig. 5. Interest from U2: R1 updates the Interest iBF. R2 adds the iBF to
its existing PIT entry and drops the Interest. The stored iBF contains the tree
to U1 and U2.

then the router assumes that LIDi is part of the Bloom filter
and transmits the packet over link i. For multicast delivery,
we simply add to the iBF the LIDs of all the tree links; the
forwarding logic remains the same, but a node can expect
multiple outgoing links to match an iBF. For example, in
Figure 3, the iBF for multicasting packets from R1 to {R3,
R4} is LIDR1→R2 |LIDR2→R3 |LIDR2→R4 = 100111.

To integrate Bloom filter-based forwarding in CCN, we
extend Interest and Data packets to carry an iBF in their
headers. Interest packets accumulate the iBF for the traversed
(reverse) path and Data packets carry the iBF for the delivery
path. Specifically, upon receiving an Interest, routers update
the Interest’s traversed path by adding (ORing) the outgoing
LID of the packet’s incoming link. If a router decides to store
an Interest in its PIT, it stores the iBF and then resets the iBF in
the Interest before further forwarding it. When the respective
Data packet arrives, the router acts as a relay point by inserting
the stored iBF in the Data packet and then forwarding it based
on the iBF.

Figure 4 shows an example where d = 2 and U1 and U2

are two multicast users. First, U1 requests /vid/packet/3
with initial HC = 0. U1 creates the Interest with an empty
iBF (i.e. all bits are set to 0) and transmits the packet. R1

receives the Interest, increases the HC and adds the LID for

procedure SEMI STATE FWD(data, incoming port)
pit entry := PIT lookup(data.name)
if pit entry not null then

data.iBF := pit entry.iBF
end if
iBF Forward(data, incoming port)

end procedure
procedure IBF FORWARD(data, incoming port)

for port in all ports do
if port = incoming port then

continue
end if
lidport := link id(port)
if data.iBF & lidport = lidport then

forward(data, port)
end if

end for
end procedure

Fig. 6. Semi-stateless Data forwarding.

the reverse direction, i.e. LIDR1→U1 , to the Interest iBF (step
1). R1 forwards the Interest to R2. Node R2 increases the HC
to 2 and adds LIDR2→R1

to the Interest iBF (now containing
the path R2 → R1 → U1). Since HC = 2 (= d), R2 stores
the Interest along with the iBF in its PIT (step 2). R2 then
resets the Interest’s HC and iBF and forwards the Interest (step
3). This continues until the Interest reaches the data source.
During Interest forwarding, if a router finds a matching PIT
entry, it simply adds the Interest’s iBF to the one in the PIT.
This is shown in Figure 5, where U2 transmits an Interest for
the same content as U1 did, with initial HC = 0. The request
arrives at R1 which updates the Interest’s HC and iBF (step
1) and forwards it to R2. R2 updates the Interest’s iBF, adds
it to the iBF stored in the PIT and suppresses the Interest
(step 2). The PIT at R2 now contains the iBF for the tree
R2 → R1 → {U1, U2}.

Upon the arrival of a Data packet, a router checks its PIT
and if a matching entry exists, it replaces the Data iBF with
the stored iBF and further forwards the packet. If no PIT entry
exists, the router forwards the Data packet according to its iBF.
If no LID matches the Data packet’s iBF, the router drops
it. Finishing the example of Figures 4 and 5, when the Data
packet /vid/packet/3 arrives at R2, the router replaces
the Data iBF with the one stored in the PIT. The iBF now
contains LIDR2→R1 , LIDR1→U1 and LIDR1→U2 , therefore
the packet is delivered to R1 which then duplicates it to U1

and U2. Note that even though the iBF is stored at a non-
branching router (R2), Bloom filter-based forwarding ensures
that Data packets are only duplicated at branching nodes (R1).
Figure 6 shows the Data forwarding algorithm.

Our forwarding scheme requires only slight changes in
the CCN architecture. Apart from the modified Interest and
Data handling operations, the incorporation of Bloom filter-
based stateless forwarding does not affect the control plane,
as there is no need for any additional routing information
exchange. General PIT behavior, including timeouts, is exactly

6 PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85

the same as in plain CCN. Routers only need to know their
own outgoing LIDs, which can be autonomously computed,
e.g., by Double Hashing [22] of the MAC address of the
network interface during node bootstrap. There is no need
to coordinate LID assignment, as LIDs do not need to be
globally unique. Source-routes are constructed in a distributed
manner, in contrast to other Bloom filter-based forwarding
schemes which require a centralized routing module [21].
Nodes also remain anonymous, as in CCN. Security is not
downgraded, as due to the Bloom filter-based and source-
specific representation of the source-routes, it is very difficult
to perform targeted attacks to nodes. Hosts are unaware of
router LIDs and it is highly improbable that a host can guess
a valid iBF to attack a particular node [21]. Content sources
obtain valid iBFs only when Interests arrive at them, but they
have no idea where these iBFs lead and they rarely obtain an
iBF for an end-to-end path2, thus preserving route anonymity.

D. Performance tradeoffs

There are five performance tradeoffs involved when in-
corporating Bloom filter-based forwarding in CCN. First, all
Interest and Data packets must carry iBFs, hence bandwidth
overhead is increased due to the extra field in packet headers.
Second, the PIT stores iBFs instead of interface identifiers
(or, ports). While iBFs are typically 128–256 bits long [21],
up to x ports can be encoded with an x-bit map, e.g., 32-
bits for 32 ports; the full port bitmap is needed to support
multicasting. Hence, the actual reduction in the memory
footprint of the PIT is not equivalent to the reduction in PIT
entries. Third, iBF-based forwarding is susceptible to false
forwarding decisions which cause redundant traffic, especially
as more LIDs are added to the iBF. The scale of this overhead
depends on the size of the multicast group and the value of d.3

Fourth, multicast applications suffer from redundant Interest
transmissions, since Interests are not necessarily aggregated
at the first common router of the multicast tree. For example,
assume that U1 and U2 in Figure 1 consume the same content.
If d = 3, their Interests will be aggregated at either R1,
R3 or R4, although R1 is the nearest common point. When
Interests are aggregated at R3, one extra Interest is transmitted,
while for Interests that rendezvous at R4, two extra Interests
are transmitted. The additional Interests depend on d and
tree density: as d grows, Interests may be suppressed further
from the optimal point; when the tree is sparse, Interests are
rarely aggregated, thus extra Interests are also rare. Fifth, our
scheme adds a very small per packet processing overhead
(2–3 add/compare operations), but as it reduces the number
of (costlier) insert/remove operations on the PIT, it should
actually reduce the average packet processing delay.

IV. EVALUATION OF THE BASIC SCHEME

A. Simulation setup

We evaluated the effectiveness of our approach through sim-
ulations, using synthetic scale-free graphs generated with the

2The path has to be smaller than d hops, minus the initial value of HC.
3With unicast paths, the probability of false forwarding decisions is

negligible for the values of d considered, as we will show in Section IV.

TABLE I
GRAPH CHARACTERISTICS OF THE EXPERIMENTAL TOPOLOGIES.

Topology Nodes Access Links Diameter Avg (Max) deg.
AS-20965 40 8 61 8 3 (10)
AS-224 74 15 101 9 2.7 (8)
AS-3967 79 7 147 10 3.7 (12)
AS-1755 87 10 161 11 3.7 (11)
AS-1221 104 51 151 8 2.9 (18)
AS-6461 138 9 372 8 5.4 (20)
scale-free-50 50 24 62 6 2.5 (18)
scale-free-100 100 46 133 7 2.6 (33)

Barabási-Albert algorithm [23] and ISP topologies obtained
from Rocketfuel [24] and the Internet Topology Zoo [25].
Table I shows the graph characteristics of the tested topologies.
For each one, we considered the graph to represent the back-
bone network of a Content-Delivery Network (CDN) provider.
Nodes with a single link (degree = 1) are considered to
be gateways providing access to local ISPs. We attached 5
additional nodes in each access gateway, each representing the
aggregate demand generated by one ISP. In our experiments,
iBFs are 16 bytes long (m = 128). LIDs are computed
autonomously by each router: a router i uses Double Hash-
ing [22] to generate the ki hash functions over the value
ki = dlog2(degi − 1)e as in [26], where degi is the degree
of node i. In all tests, routing information (the FIB) was pre-
populated, allowing Interests to reach content sources over the
shortest paths, with hop count as the metric.

We tested our scheme using the same application for both
unicast and multicast: a HTTP-like live streaming application
where a server generates data chunks at a constant rate and
clients request Data packets in a Stop-and-Wait fashion. For
unicast, a single client downloads the content, while for mul-
ticast many clients simultaneously download it. Both server
and client(s) are located at the edges of the graph, i.e., inside
regional ISPs, and are randomly placed in each experiment.
Experiments last until 1000 Data packets are delivered. For
each topology t we ran our application with group sizes
ranging from 1 to Ct receivers, where Ct is the number of edge
nodes (regional ISPs) attached to the backbone’s access nodes.
Each experiment was repeated 20 times, changing the random
generator’s seed, thus selecting different server and client(s).
Unless otherwise indicated, results are from the AS-20965
topology, and are representative of all topologies. Detailed
results from all topologies are provided in [27].

B. Evaluation metrics

We focused on the reduction of forwarding state in routers
in terms of (a) PIT entries and (b) actual memory footprint.
We assumed a hash table-based implementation, reportedly the
most suitable data structure for the PIT [16]. We assumed 32-
bit memory pointers and interface ports encoded with 32-bit
maps. For the size of content names, we adopted the real-world
measurements of [15] which reported two sizes: small content
names, 20 bytes on average, and large content names, 56 bytes
on average. Apart from the reduction of forwarding state, we
also measured the bandwidth overhead due to (a) additional

PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85 7

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6
 0

 0.5

 1

 1.5

 2

 2.5

 3

P
IT

 e
n

tr
ie

s
 (

%
)

D
a
ta

 o
v
e

rh
e
a

d
 (

%
)

d

PIT entries
Data overhead

Fig. 7. PIT entries and Data overhead for unicast traffic as a function of d.

Interests caused by not storing PIT entries at the first common
router and (b) redundant Data caused by false positives in the
Bloom filters. Note that additional Interests can only occur
with multicast scenarios, while redundant Data may occur in
both unicast and multicast. All results shown are normalized
against the basic CCN behavior, which is the performance
baseline.

C. Unicast

Figure 7 shows the performance of our scheme for unicast
flows. The left axis shows the average number of PIT entries
in each router normalized against baseline CCN as a function
of d. For d = 3, the PIT stores 27.4% of the entries compared
to basic CCN, while for d = 4, it drops to 18.9%. The right
axis shows the amount of additional Data packets transmitted
due to false positives, with respect to d. Data overhead is very
low, below 1.7% in the worst case, since the number of links
inserted in unicast Bloom filters (up to d − 1) is quite small
and very rarely leads to false positives. The stepwise behavior
of Data overhead, which is evident in all topologies tested
(see [27]), is due to the fact that nodes use the same LIDs for
their attached links in all experiments. As a result, if a false
positive appears with d = 2, it will reappear with any higher
d. In our case, one false positive appears with d = 2 and a
second one appears with d = 3, but no more false positives
appear with d up to 6. It is clear that with unicast traffic only,
our scheme can easily fit the PIT into a realistic router, by
reducing its footprint to no more than 30% of baseline CCN.

D. Multicast

For multicast, we first examine performance with respect to
group size, and then consider different group size distributions,
before looking at overall memory footprint and communication
overhead. In each run, both the server and all clients are ran-
domly placed at edge nodes of the network (see Section IV-A).

1) The effect of group size: Figure 8 shows the performance
of our scheme with respect to multicast group size, for various
values of d. Figure 8(a) shows that the gains in the number of
PIT entries do not depend on group size, only on d. On the
other hand, additional Interests grow with group size, as shown
in Figure 8(b), as well as with d. As discussed in Section III-D,
as groups grow and/or multicast trees become dense, the
possibility of not storing state at the optimal points increases,

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
IT

 e
n

tr
ie

s
 (

%
)

Group size

d=2
d=3
d=4
d=5
d=6

(a) PIT entries

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40

In
te

re
s
ts

 o
v
e
rh

e
a
d

 (
%

)

Group size

d=2
d=3
d=4
d=5
d=6

(b) Interests overhead

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

D
a
ta

 o
v
e
rh

e
a
d
(%

)

Group size

d=2
d=3
d=4
d=5
d=6

(c) Data overhead

Fig. 8. PIT entries, Interests and Data overhead depending on d against group
size.

and so do the additional Interests. For the redundant Data,
shown in Figure 8(c), the effect of d is even more pronounced.
As the group size grows, larger trees are encoded in iBFs
(with tree height up to d− 1), increasing the number of false
positives. Overall, there is a common pattern: semi-stateless
forwarding is more effective for small groups, as it causes
less bandwidth overhead in terms of redundant Interests and
Data packets compared to baseline CCN, with d determining
the balance between PIT gains and communication overhead.
To understand aggregate performance then, we need to make
some assumptions on the distribution of group sizes.

2) Uniform distribution of group sizes: Let us first assume
that multicast group sizes follow a uniform distribution. For
each topology t, we took into account all experiments of mul-
ticast groups with [3, Ct] participants,4 where Ct is the number
of edge nodes (regional ISPs) attached to the backbone’s

4The smallest multicast group consists of 1 sender and 2 receivers, while
the largest multicast group consists of 1 sender and Ct − 1 receivers.

8 PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 3 4 5 6
 0

 20

 40

 60

 80

 100

 120

 140

 160

P
IT

 e
n

tr
ie

s
 (

%
)

D
a

ta
/I
n

te
re

s
ts

 O
v
e

rh
e
a

d
 (

%
)

d

PIT entries
Interests overhead

Data overhead

Fig. 9. PIT entries, Interests and Data overhead against d (uniform group
sizes).

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6
 0

 20

 40

 60

 80

 100

 120

P
IT

 e
n
tr

ie
s
 (

%
)

D
a
ta

/I
n
te

re
s
ts

 O
v
e
rh

e
a
d

 (
%

)

d

PIT entries
Interests overhead

Data overhead

Fig. 10. PIT entries, Interests and Data overhead against d (Zipf group sizes).

access nodes. Recall that, for each group size, each experiment
was repeated 20 times, randomly choosing different sender
and receivers. Therefore, for each topology t, we examine the
average system behavior of 20 ∗ (Ct − 2) experiments with
group sizes uniformly distributed in [3, Ct]. Figure 9 shows
performance with respect to d, with PIT entries on the left
axis and Interests/Data overhead on the right axis. PIT state
is reduced as d grows, while both types of communication
overhead grow: while Interests overhead is much higher with
smaller d, Data overhead also becomes significant with higher
d. For d = 3, our scheme reduces the average PIT state to
27% compared to basic CCN, at the cost of 60% additional
Interests and 9% additional Data transmissions. For d = 4,
the average number of entries is reduced to 19%, at the cost
of 88% additional Interests and 22% additional Data. Clearly,
the overheads are significant when groups sizes are uniform.

3) Zipf distribution of group sizes: Let us now assume that
multicast group sizes follow a Zipf-like distribution, a more
realistic scenario [28]. For the Zipf distribution, we follow the
methodology of [29]: for each tested topology t, the size of the
ith group is group size(t, i) = bi−αt ∗Ct+0.5c where Ct is
the maximum group size in topology t (equal to the number of
ISPs), and αt is selected so that the smallest multicast group
size is 3 (one server and two receivers). Figure 10 shows the
performance of our scheme with respect to d. The patterns
are similar to the previous case, but the results are far more
encouraging, as the transmission overheads are manageable for
moderate values of d. When d = 3, PIT entries are on average
reduced to 29% at the cost of 20% additional Interests and 4%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

AS-20965

AS-224

AS-3967

AS-1755

AS-1221

AS-6461

scale-free-50

scale-free-100

P
e
rc

e
n

ta
g
e

 (
%

)

PIT entries
Interests overhead

Data overhead

(a) d = 3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

AS-20965

AS-224

AS-3967

AS-1755

AS-1221

AS-6461

scale-free-50

scale-free-100

P
e

rc
e

n
ta

g
e
 (

%
)

PIT entries
Interests overhead

Data overhead

(b) d = 4

Fig. 11. PIT entries, Interests and Data overhead for all topologies (Zipf
group sizes).

additional Data transmitted. For d = 4, the PIT is on average
reduced to 20% at the cost of 32% additional Interests and
6% additional Data transmitted.

Although the PIT is reduced equally in both group size
distributions, there are significant differences in the commu-
nication overheads. Our scheme provides a significant PIT
reduction with relatively manageable bandwidth overheads
when group sizes follow a Zipf distribution. More worrying is
the fact that performance also depends on network topology,
with some topologies being especially problematic. Figure 11
shows performance data for all topologies for d = 3 and d = 4
with a Zipf distribution of group sizes. In most topologies, the
Data overhead is below 10%, while the Interests overhead is
around 30%. However, the costs in AS-1221, scale-free-50 and
scale-free-100 are quite high.

4) PIT memory footprint: We now assess the actual mem-
ory size reduction of the PIT. Recall from Section III-D that
our PIT contains fewer entries, but each entry occupies more
memory due to the need to store a Bloom filter instead of a
port mask. Figure 12 shows the size reduction of a hash table-
based PIT as a function of d for AS-20965. For d = 3, the
actual memory footprint for the PIT is reduced to 39% for
small content names and 34% for large content names. For
d = 4, the memory footprint for the PIT is reduced to 28%
for small content names and 24% for large content names. The
results across all topologies (not shown) are 28.3% − 42.6%
of basic CCN for d = 3 and 15.1%− 28.3% for d = 4.

5) Bandwidth overhead: As already discussed, PIT state
reduction comes at the cost of additional Interest and Data
transmissions with multicast. Most of these are Interests not

PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85 9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5 6

P
IT

 b
y
te

s
 (

%
)

d

Small content-names
Large content-names

Fig. 12. PIT size reduction (in bytes) for small (20-bytes) and large (56-bytes)
content names (Zipf group sizes).

 0

 5

 10

 15

 20

 25

 2 3 4 5 6

B
a
n

d
w

id
th

 o
v
e

rh
e

a
d

 (
%

)

d

Small names-Small packets
Small names-Large packets
Large names-Small packets
Large names-Large packets

Fig. 13. Bandwidth overhead for small (36-byte Interests) and large content
names (70-byte Interests), with small (1500 bytes) and large (7500 bytes)
Data (Zipf group sizes).

aggregated at the optimal point, while the rest are Data trans-
mitted due to false positives in the Bloom filters. In terms of
actual bandwidth, however, as Interests are much smaller than
Data, the overhead depends on the size of Interests relative to
Data. In Figure 13 we present the overall bandwidth overhead
in topology AS-20965, in terms of the fraction of additional
bytes transmitted compared to basic CCN. We assume small
(20 bytes) and large (56 bytes) content names, so with the
additional CCN meta-data, Interests are on average 36 and
70 bytes long, respectively. We then consider two types of
Data packets: a small Data packet that carries 1500 bytes of
payload, targeting a CCN deployment over Ethernet, and a
large Data packet that carries 7500 bytes of payload, targeting
a CCN deployment over either Ethernet with jumbo frames or
a UDP-based overlay. We also take into account the extra fields
required in the Interest and Data packet headers (iBF and HC).
When d = 3, the additional bandwidth is 4.6%− 7.2%, while
for d = 4 the additional bandwidth is 7% − 10%, both quite
reasonable considering the corresponding gains in PIT size.
The results across all topologies (not shown) are 1.1%− 11%
of basic CCN for d = 3 and 5.4% − 16.2% for d = 4, if
we exclude the problematic topologies (AS-1221, scale-free-
50 and scale-free-100); in these topologies, overheads are up
to 48.6% with d = 3 and 172.8% with d = 4, which is clearly
an issue.

E. Unicast - Multicast traffic mix

In order to evaluate the overall benefits and costs of semi-
stateless forwarding, we need to consider a mix of unicast
and multicast traffic. Figure 14 shows the overall PIT size

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
IT

 b
y
te

s
 (

ra
ti
o

)

Proportion of multicast PIT entries

d=3, Small names
d=3, Large names
d=4, Small names
d=4, Large names

Fig. 14. PIT size reduction (in bytes) depending on the fraction of multicast
Interests.

reduction for small and large names depending on the fraction
of multicast traffic. A value of 0.0 in the x-axis means that
0% of PIT entries in each router are generated by multicast
applications while a value of 1.0 means that 100% of PIT
entries are generated by multicast applications. Although our
method reduces the PIT more effectively for unicast appli-
cations, there are no significant differences with increasing
fractions of multicast traffic.

In a similar manner, we computed the bandwidth overheads
as a function of the traffic mix (not shown). The traffic mix
plays a more important role on bandwidth overheads, which
roughly double when all traffic is multicast. For d = 3, the PIT
size in AS-20965 is reduced to 33% − 40% of regular CCN
at a cost of 2%− 7% additional bandwidth, while for d = 4,
the PIT requires 24%− 28% of the memory of regular CCN
at a bandwidth cost of 2%− 10%, as the fraction of multicast
interests ranges from 0% to 100%. For the expected fraction of
multicast traffic (up to 5−10%), our scheme achieves the goal
of reducing PIT size to no more than 30% of baseline CCN
with very low overhead costs. However, with some topologies
(AS-1221, scale-free-50 and scale-free-100), the overheads can
become problematic even with that level of multicast traffic;
with unicast traffic only, the overheads are negligible in all
topologies.

V. ADAPTIVE SEMI-STATELESS FORWARDING

A. Overview

As shown in Section IV, the communication overheads
of our semi-stateless scheme can be problematic with some
topologies; in addition, for a given topology, they become
worse as multicast group size grows. The root cause of both
these problems is tree density: as multicast trees become
denser, more links need to be encoded in each iBF, leading to
more Data transmissions due to false positives; there are also
more opportunities to store PIT state at non-branching tree
nodes, leading to more Interest transmissions. Some topologies
have high degree nodes, making such problems unavoidable; in
others, the problem only appears as group size grows. A rela-
tively large d, for example d = 3 or d = 4, favors sparse trees;
PIT size is significantly reduced with almost negligible costs
in bandwidth overhead. For denser trees though, a smaller d,
for example d = 2, avoids excessive bandwidth overheads,
at the cost of smaller gains in PIT size. Ideally, instead of
setting a fixed value for d, we should set d depending on tree

10 PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85

procedure HC TRACK AD(interest, incoming port)
d := extract d(interest)
pit entry := PIT lookup(interest)
if pit entry not null then

dmin := min(d, pit entry.d)
store in PIT (interest, dmin, incoming port)
return . Interest suppressed

end if
hc := increment hop counter(interest)
if hc = d then

store in PIT (interest, d, incoming port)
reset hop counter(interest)

end if
out port := FIB lookup(name)
forward(interest, out port)

end procedure

Fig. 15. Hop Counter-based Interest tracking with adaptive d.

density. This is not easy within the architectural context of
CCN, where routers have no global knowledge of topology or
routing. It is even more difficult if we consider that density
may vary at different areas of the same tree.

Since the dominant overhead is redundant Data transmis-
sions, a simple way to reduce overhead is to limit the number
of links inserted into the iBFs. Previous studies have shown
that the false positive probability (fpp) of iBFs must be kept
below 0.5% [26]. The fpp is equal to = (1 − e−kn/m)k

where m is the Bloom filter size (bits), k is the number of
hash functions and n is the number of items inserted (LIDs).
While m and k are known to each router, n is not, since
Interests carry an accumulated iBF. Fortunately, the fpp can
be estimated by examining an iBF’s fill factor, the portion of
bits set to 1, as follows [30]:

fpp = (fill factor)k = (
bits set

m
)k

A router can thus estimate an iBF’s fpp by counting the
number of bits set to 1. For k = 5 or k = 6, we can infer
that an iBF is congested when its fill factor exceeds 0.4.
We will exploit this to extend our scheme with the dynamic
adaptation of d, based on the iBFs constructed in the network.

At a high level, our adaptive semi-stateless scheme tries
to reduce PIT size, until it detects that redundant traffic
thresholds may have been violated. The issuing host sets d
on a per-Interest basis, starting with a default value. During
Data forwarding, routers inspect the downstream iBFs. If
the fill factor of an iBF is above a predefined threshold,
e.g., fill factor ≥ 0.4, the router assumes that this iBF
is congested and inserts a Bloom filter Congestion Notifica-
tion (BCN) in the Data packet. The BCN is carried down-
stream to all receivers and instructs them to lower their d. This
leads to smaller iBFs, which eventually stops the BCNs. If a
host does not receive any BCNs for a number of consecutive
Data packets, it increases its d in order to reduce PIT size,
based on an exponential back-off scheme. We expand on this
basic idea below.

procedure SEMI STATE FWD AD(data, incoming port)
pit entry := PIT lookup(data.name)
if pit entry not null then

data.iBF := pit entry.iBF
if fillfactor(data.iBF) >= fillfactormax then

dBCN := max(1, pit entry.dmin − 1)
if BCN is set(data) then

dBCN = min(dBCN , data.dBCN)
end if
data.dBCN = dBCN

end if
end if
iBF Forward(data, incoming port)

end procedure

Fig. 16. Semi-Stateless Data Forwarding with adaptive d.

B. Interest tracking

Each time a host issues an Interest, it selects an appropriate
d and places it in the Interest header, in addition to the
HC. During Interest forwarding, routers perform the same
operations as before, except that d is obtained from the
Interest’s header, rather than being a system-wide constant.
For each Interest stored in the PIT, routers store the minimum
d among those received in the merged Interests for the same
Data packet. For example, a user may request /a/b/c.mp4
with d = 3 while another may request it with d = 4. If the
two Interests are merged on the same router, the router will
store in the PIT dmin = 3. Algorithm 15 shows the adaptive
HC-based Interest tracking policy.

C. Data forwarding

Routers forward Data packets as before, adding a
fill factor check whenever a new iBF is inserted, which
takes place only at routers where the corresponding Interest is
tracked. Upon the reception of a Data packet, if a PIT entry
for it exists, the router checks the new iBF’s fill factor and
if it exceeds the threshold, the BCN feedback field is set in the
Data packet header. The BCN feedback is an integer number
set to dBCN = max(1, dmin− 1), where dmin is the value of
d stored in the PIT entry. If the Data packet already contains
BCN feedback, indicated by a non-zero value in the BCN
field, the field is set to the minimum between the value in
the header and the value calculated from the PIT. The BCN
feedback propagates all the way to the receivers, instructing
them to set their d to dBCN . For example, if a Data packet has
a BCN field set to 3 and along the path another router must set
BCN to 2, then the field will be set to dBCN = min(2, 3) = 2.
The details for adaptive semi-stateless forwarding are shown in
Algorithm 16 (IBF FORWARD is the same as in Algorithm 6).

D. Receiver-side adaptation

In addition to decreasing d based on BCN feedback, hosts
also try to increase d during an application session, for two
reasons. First, with no prior knowledge of network conditions
and/or application type (unicast or multicast), hosts must start

PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85 11

Fig. 17. Adaptation of d on a sub-tree granularity.

with a conservative value for d, ddefault = 2, to avoid
excessive bandwidth overheads. However, a low value for d
is less effective for unicast and sparse multicast trees, where
d can be increased without significant bandwidth penalties.
Second, when a router sends BCN feedback, it affects all
downstream receivers, even though the decision is made based
only on the locally stored iBF. Consider, for example, the
multicast tree of Figure 17, which is quite imbalanced; the
subtree formed by receivers 0–6 is denser than the subtree
formed by receivers 7–9. Assume that router A sets the BCN
feedback to dBCN = 2, causing all downstream receivers to
set their d to 2. This will reduce the opportunities for PIT state
reduction in routers C and F. In this region of the tree, d = 4
would produce smaller PITs with little overhead. Therefore,
after A sends its BCN feedback, receivers 7, 8 and 9 have an
incentive to increase d.

Hosts attempt to increase their d based on an exponential
back-off scheme. At a high-level, the goal is to avoid a
collision when all hosts increase their d together, e.g., every 10
Interests, as this might lead to very congested Bloom filters.
We thus use randomization to allow the system to gradually
approach a steady state. Specifically, when hosts receive Data
packets with BCN feedback, they update their d. Hosts monitor
when the last BCN-enabled Data packet arrived and after a
number of consecutive non-BCN Data packets are received,
they assume that the network is in a steady state. Hosts then
increase their own d by 1, trying to achieve higher PIT state
reductions. The number of consecutive non-BCN Data packets
that will trigger an increase in d is calculated as

exp backoff = random(1, slot size ∗ 21+dBCN) (1)

where the slot size is selected by the application and may
depend on the application packet transmission rate. Once a
host receives a Data packet with BCN set, after setting its
d, it selects a random back-off interval, which dictates the
number of consecutive non-BCN Data packets that should
arrive before an attempt to increase its d. If, in the meantime,
another BCN-marked Data packet arrives, the whole process is
restarted: d is updated and the back-off is reset using the new
d. Similarly, if d is increased, the process restarts. The host
will next attempt to increase d after waiting for statistically
more time, unless BCN feedback arrives again. As we show

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

P
e

rc
e

n
ta

g
e
 (

%
)

interest

PIT entries
Additional Interests

Additional Data

Fig. 18. Performance over time with 5 receivers.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

P
e
rc

e
n
ta

g
e

 (
%

)

interest

PIT entries
Additional Interests

Additional Data

Fig. 19. Performance over time with 30 receivers.

in Section VI, this adaptive scheme keeps additional Data
packets low. However, the number of additional Interests is
hard to detect in a distributed manner. Based on the results of
Section IV, we decided to limit d to dmax = 4, to bound the
number of additional Interests.

VI. EVALUATION OF THE DYNAMIC SCHEME

We repeated the experiments of Section IV using our
adaptive semi-stateless scheme. Hosts start with ddefault = 2
and an upper bound of dmax = 4. For the HTTP-like streaming
application, we set the slot size to 20 Interests; note that
other applications may choose a different slot size. Again,
all results shown are normalized against basic CCN and the
default topology is AS-20965.

Figures 18 and 19 show the behavior of the adaptive
scheme over time for multicast groups with 5 and 30 receivers,
respectively, in terms of PIT entries, additional Interests and
Data packets. In both cases, hosts start with ddefault and adjust
d according to the BCNs received, eventually converging to
a steady state. Data overhead is kept low in both cases,
never exceeding 5%, at the cost of varying gains in PIT state
reduction. Analysis of the data reveals that for the smaller
group (Figure 18), the PIT is reduced to less than 30% of basic
CCN, since all hosts are able to increase their d to 4, with no
BCN feedback. On the other hand, for the larger multicast
group (Figure 19), the PIT was reduced to 75% of basic CCN
due to the density of the multicast tree: almost half of the
receivers set d = 1, resorting to stateful forwarding, while
other receivers used larger values. The Interests overhead also
varies: ≈ 20% for the small multicast group and ≈ 30% in

12 PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

AS-20965

AS-224

AS-3967

AS-1755

AS-1221

AS-6461

scale-free-50

scale-free-100

P
e
rc

e
n

ta
g
e

 (
%

)

Fixed d=3
Fixed d=4

Adaptive d

(a) PIT entries

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

AS-20965

AS-224

AS-3967

AS-1755

AS-1221

AS-6461

scale-free-50

scale-free-100

P
e

rc
e

n
ta

g
e
 (

%
)

Fixed d=3
Fixed d=4

Adaptive d

(b) Interests overhead

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

AS-20965

AS-224

AS-3967

AS-1755

AS-1221

AS-6461

scale-free-50

scale-free-100

P
e
rc

e
n
ta

g
e
 (

%
)

Fixed d=3
Fixed d=4

Adaptive d

(c) Data overhead

Fig. 20. Comparison of fixed-d with adaptive d for all topologies (Zipf group
sizes).

the large multicast group. Recall, however, that Interests, due
to their small size, affect bandwidth overhead much less than
Data.

Figure 20 compares the performance of the adaptive and
fixed-d schemes across all topologies, when group sizes follow
a Zipf distribution. In the topologies that performed well with
fixed d, the PIT reduction has a similar behavior: the adaptive
scheme reduces the PIT similarly to the fixed scheme with
d = 3 or d = 4. The difference is in the three under-performing
topologies, where PIT size is reduced less with adaptive d:
40% for AS-1221, 35% for scale-free-50 and 45% for scale-
free-100. However, we have a tremendous improvement on
Data overhead (Fig. 20(c)) in these topologies, which drops
below 10% in all cases; the less important Interests overhead
also remains below 35% (Fig. 20(b)).

Due to lack of space, we do not show the detailed results for
PIT memory size reduction and bandwidth overhead, across all
topologies; results for all topologies are available in [27]. The

reduction in bytes to the PIT size with the adaptive scheme is
27.3%−63.2% of basic CCN with both small and large content
names, while the combined Interests and Data overhead with
the adaptive scheme is 1.6% − 12.1% over basic CCN with
small and large packets, combined with small and large content
names. Since unicast traffic is not affected by the adaptation
of d, as false positives are very rare there, for the expected
fraction of multicast traffic (up to 5−10%) and even with worst
case assumptions on PIT reduction and bandwidth overhead
for multicast, our adaptive semi-stateless scheme manages to
reduce the PIT size to no more than 30% of baseline CCN
with all topologies, thus managing to fit it into a router’s fast
memory.

VII. CONCLUSION

We proposed a semi-stateless forwarding scheme for CCN
that reduces the amount of forwarding state kept in routers
by combining a mix of stateful (in-router) and Bloom filter-
based stateless (in-packet) forwarding. A simulation-based
evaluation over realistic ISP topologies showed that forward-
ing state can be reduced to 18.9% − 27.4% of basic CCN
in unicast applications, with negligible bandwidth penalties.
However, in multicast applications, while in most topologies
the forwarding state was reduced to 15.1%− 42.6% of basic
CCN at a cost of 1.1% − 16.2% of bandwidth overhead,
in some topologies the overheads reached very high values,
making the scheme impractical. For this reason, we extended
our scheme to dynamically adapt to local tree density, so as
to keep overheads low. Our semi-stateless scheme reduced
forwarding state to 27.3% − 63.2% of basic CCN at the
expense of only 1.6% − 12.1% of overhead, across a wide
range of topologies. This allows fitting the PIT in a router’s
fast memory, even with a non-negligible fraction of multicast
traffic, while maintaining the advantages of CCN’s stateful
forwarding and without requiring any changes to the CCN
architecture, apart from modifications in Interest and Data
forwarding.

ACKNOWLEDGMENTS

This research was co-financed by the European Union
(ESF) and Greek national funds through the Research Program
THALIS - MUSINET, the EU-funded H2020 ICT project
POINT under contract 643990, and by the RC-AUEB funded
“Original Scientific Publications” project under contract ER-
3013-01.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in Proc. of
the International Conference on Emerging networking experiments and
technologies (CoNext). New York, NY, USA: ACM, 2009, pp. 1–12.

[2] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779 – 791, 2013.

[3] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proc. of the SIGCOMM Information Centric Networking (ICN)
Workshop. New York, NY, USA: ACM, 2011, pp. 44–49.

[4] A. Detti, N. Blefari Melazzi, S. Salsano, and M. Pomposini, “CONET: a
content centric inter-networking architecture,” in Proc. of the SIGCOMM
Information Centric Networking (ICN) Workshop. New York, NY, USA:
ACM, 2011, pp. 50–55.

PUBLISHED IN: COMPUTER NETWORKS, VOL.153, 2019, PP. 73–85 13

[5] A. Azgin, R. Ravindran, and G. Wang, “pit/LESS: Stateless forwarding
in content centric networks,” in Proc. of the Global Communications
Conference (GLOBECOM). Piscataway, NJ, USA: IEEE, Dec 2016,
pp. 1–7.

[6] C. Ghali, G. Tsudik, E. Uzun, and C. A. Wood, “Living in a
pit-less world: A case against stateful forwarding in content-centric
networking,” CoRR, vol. abs/1512.07755, 2015. [Online]. Available:
http://arxiv.org/abs/1512.07755

[7] H. Yuan and P. Crowley, “Scalable pending interest table design:
From principles to practice,” in Proc. of the Conference on Computer
Communications (INFOCOM). Piscataway, NJ, USA: IEEE, 2014, pp.
2049–2057.

[8] W. You, B. Mathieu, P. Truong, J.-F. Peltier, and G. Simon, “DiPIT: A
distributed Bloom-filter based PIT table for CCN nodes,” in Proc. of the
International Conference on Computer Communications and Networks
(ICCCN). Piscataway, NJ, USA: IEEE, 2012, pp. 1–7.

[9] X. Wang, W. Wang, C. Zeng, R. Dai, S. Wang, and S. Xu, “Reducing the
size of pending interest table for content-centric networks with hybrid
forwarding,” in Proc. of the International Conference on Communica-
tions (ICC). Piscataway, NJ, USA: IEEE, May 2016, pp. 1–6.

[10] J. Garcia-Luna-Aceves and M. M. Barijough, “Content-centric network-
ing using anonymous datagrams,” in Proc. of the IFIP Networking
Conference. Piscataway, NJ, USA: IEEE, May 2016, pp. 171–179.

[11] J. Garcia-Luna-Aceves and M. Barijough, “Efficient multicasting in
content-centric networks using datagrams,” in Proc. of the Global
Communications Conference (GLOBECOM). Piscataway, NJ, USA:
IEEE, Dec 2016, pp. 1–6.

[12] A. Carzaniga, M. Papalini, and A. L. Wolf, “Content-based pub-
lish/subscribe networking and information-centric networking,” in Proc.
of the SIGCOMM Information Centric Networking (ICN) Workshop.
New York, NY, USA: ACM, 2011, pp. 56–61.

[13] C. Tsilopoulos, G. Xylomenos, and Y. Thomas, “Reducing forwarding
state in content-centric networks with semi-stateless forwarding,” in
Proc. of the Conference on Computer Communications (INFOCOM).
Piscataway, NJ, USA: IEEE, 2014, pp. 2067–2075.

[14] A. Dabirmoghaddam, M. Dehghan, and J. J. Garcia-Luna-
Aceves, “Characterizing interest aggregation in content-centric
networks,” CoRR, vol. abs/1603.07995, 2016. [Online]. Available:
http://arxiv.org/abs/1603.07995

[15] H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in
named data networking,” in Proc. of the Symposium on Architectures
for Networking and Communications Systems (ANCS). New York, NY,
USA: ACM, 2012, pp. 211–222.

[16] M. Varvello, D. Perino, and L. Linguaglossa, “On the design and
implementation of a wire-speed pending interest table,” in Proc. of
the Conference on Computer Communications (INFOCOM) Workshops.
Piscataway, NJ, USA: IEEE, 2013, pp. 369–374.

[17] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Pending interest
table sizing in named data networking,” in Proc. of the Information-
Centric Networking Conference (ICN). New York, NY, USA: ACM,
2015, pp. 49–58.

[18] C. Stais, Y. Thomas, G. Xylomenos, and C. Tsilopoulos, “Networked
music performance over information-centric networks,” in Proc. of
the International Conference on Communications (ICC) Workshops.
Piscataway, NJ, USA: IEEE, 2013, pp. 647–651.

[19] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “VoCCN: voice-over content-centric
networks,” in Proc. of the Workshop on Re-architecting the Internet
(ReArch). New York, NY, USA: ACM, 2009, pp. 1–6.

[20] C. Tsilopoulos and G. Xylomenos, “Supporting diverse traffic types in
information centric networks,” in Proc. of the SIGCOMM Information
Centric Networking (ICN) Workshop. New York, NY, USA: ACM,
2011, pp. 13–18.

[21] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander, “LIPSIN: line speed publish/subscribe inter-networking,”
in Proc. of the SIGCOMM Conference on Data Communications. New
York, NY, USA: ACM, 2009, pp. 195–206.

[22] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” in Proc. of the European Symposium on
Algorithms. Berlin, Heidelberg: Springer, 2006, pp. 456–467.

[23] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[24] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in Proc. of the SIGCOMM Conference on Data
Communications. New York, NY, USA: ACM, 2002, pp. 133–145.

[25] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
Internet topology zoo,” Journal on Selected Areas in Communications,
vol. 29, no. 9, pp. 1765–1775, 2011.

[26] M. Särelä, C. Esteve Rothenberg, T. Aura, A. Zahemszky, P. Nikander,
and J. Ott, “Forwarding anomalies in Bloom filter-based multicast,” in
Proc. of the Conference on Computer Communications (INFOCOM).
Piscataway, NJ, USA: IEEE, 2011, pp. 2399–2407.

[27] C. Tsilopoulos, “Multicast forwarding in future information-centric net-
work architectures,” Ph.D. dissertation, Athens University of Economics
and Business, Department of Informatics, 2016.

[28] T. W. Cho, M. Rabinovich, K. Ramakrishnan, D. Srivastava, and
Y. Zhang, “Enabling content dissemination using efficient and scalable
multicast,” in Proc. of the Conference on Computer Communications
(INFOCOM). Piscataway, NJ, USA: IEEE, 2009, pp. 1980–1988.

[29] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
Journal on Selected Areas in Communications, vol. 20, no. 8, pp. 1489–
1499, 2002.

[30] S. Tarkoma, C. Esteve Rothenberg, and E. Lagerspetz, “Theory and
practice of Bloom filters for distributed systems,” Communications
Surveys and Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

