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Abstract—The use of multiple transport flows over distinct,
if possible, paths, is a well-known technique for enhancing
the performance and stability of data transfer. Multipath
TCP (MPTCP), the most popular multipath transport protocol
in-use, allows a single receiver to exploit multiple paths from
a single sender. Nevertheless, MPTCP cannot fully exploit the
potential gains of multipath connectivity, as it must fairly
share resources with regular, single-path TCP, without knowing
whether the available paths are distinct or share bottleneck links,
due to IP’s design choices. We introduce a hybrid congestion
control algorithm for multipath transport that enables higher
bandwidth utilization compared to MPTCP, while remaining
friendly to TCP-like flows. Our solution employs (i) Normalized
Multiflow Congestion Control (NMCC), a novel end-to-end con-
gestion control algorithm and (ii) an in-network module that
exposes topological information to the end-users in order to
support the greedy friendliness technique. The end-to-end NMCC
is architecture-independent and can be seamlessly integrated
with MPTCP. The in-network module has been implemented
for the PSI Information-Centric Networking architecture, but
it can also be integrated with Multi-Protocol Label Switching
(MPLS) and Software Defined Networking (SDN). Using an
actual protocol implementation deployed on our testbed, as
well as on a comprehensive packet-level simulator, we obtain
experimental results which demonstrate clear gains for our design
in terms of throughput and friendliness to other flows.

I. INTRODUCTION

Experience with content distribution indicates that multi-
source and multipath [1], i.e. the use of multiple sources and
multiple paths to each source, respectively, can benefit both
network operators and end users. The exploitation of multiple
paths offers higher throughput via bandwidth aggregation and
resilience to link failures, while the use of multiple sources
can further enhance throughput, while adding resiliency to
source failures. By spreading flows across more links and
sources, multisource and multipath provide load balancing,
higher resource utilization and fault tolerance.1

Multipath transport is the focus of considerable research
activity, due to the increasing numbers of multihomed devices,
such as smartphones with Wi-Fi, Bluetooth and Cellular
connectivity. This work has focused nearly exclusively on
multipath connectivity between two endpoints, as most traffic
is carried over TCP which does not support multiple endpoints

1In this paper, multisource is considered a special variant of multipath,
hence we use the term only when the establishment of multiple paths takes
advantage of multiple sources.

at either end. A significant body of research has focused on the
side-effects of multipath, such as lack of TCP friendliness [2],
[3], [4], [5], [6], [7]. This issue arises from the uncoupled
congestion control scheme originally proposed for Multipath
TCP (MPTCP), where each sub-flow grasps bandwidth in-
dependently, similarly to a TCP connection. This causes the
multipath transfer of N flows to grasp up to N times more
bandwidth than a single-path flow over the same bottleneck,
thus leading to unfair resource sharing. The current coupled
MPTCP congestion control algorithms achieve friendliness by
restricting the resource share of the individual sub-flows in
order to jointly deliver equal throughput with a single-path
flow.

Blindly restricting multipath flows can, however, lead to
degraded resource utilization when friendliness concerns are
not an issue, for example, when sub-flows exploit disjoint
paths. Unfortunately, in the IP architecture the information
about path disjointness is not available at the endpoints that
perform congestion control. Each node is only aware of
its own routing decisions, therefore even when an endpoint
uses different physical interfaces to select distinct paths, it is
unknown if the paths overlapp a few hops away. Nevertheless,
IP networks operating over technologies that utilize centralized
path computation components, including Multi-Protocol Label
Switching (MPLS) and Software Defined Networking (SDN),
are in principle capable of providing path-specific information
to suitably modified endpoints.

Efficient utilization of network resources is also the driving
force of the Publish Subscribe Internet (PSI) architecture,
an instantiation of the Information-Centric Networking (ICN)
paradigm [8]. Following ICN principles, PSI bases com-
munication on self-identified information items, rather than
endpoints, thus allowing information retrieval from multiple
sources. PSI supports centralized path selection via a special
network entity, the Topology Manager, and source routing via
LIPSIN forwarding [9], thus allowing endpoints to reliably
detect whether a set of paths to one or more sources do overlap.
We have exploited these features in previous studies [10], [11],
where we presented the Multisource and Multipath Transfer
Protocol (mmTP), a multipath transport protocol for PSI, that
was shown to deliver enhanced throughput and resilience over
the, inherently unpredictable, PlanetLab testbed [11]. More-
over, in [12], we introduced the greedy friendliness technique,
where the friendliness constraint is met opportunistically ac-
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cording to the topological information offered by the Topology
Manager.

In this paper, we delve deeper into the exploitation of any
available topological knowledge of the network in order to
enhance the resource utilization and friendliness of multipath
congestion control. Specifically, we present and evaluate a
novel congestion control scheme for multipath transport that
consists of two independent modules: (i) Normalized Multi-
flow Congestion Control (NMCC), an end-to-end multipath-
aware algorithm that manages bandwidth aggregation under
the friendliness constraint, and (ii) an in-network topologi-
cal information mechanism that provides information about
shared bottlenecks, thus allowing the application of greedy
friendliness technique, i.e.,to neglect the friendliness constraint
when friendliness concerns are not an issue. Our solution is
practicable in network environments that support centralized
path computation components, such as PSI, SDN, and MPLS.
In this paper, we extend our previous work [12] in four
directions:

• We introduce a more sophisticated in-network assistance
algorithm to detect when friendliness concerns are not an
issue.

• We present a more sophisticated version of NMCC that
addresses friendliness more accurately and we model
mathematically its performance.

• We asses experimentally the performance of NMCC
with and without in-network assistance in domain scale
scenarios.

• We provide details on the integration with IP networks
operating over technologies like MPLS and SDN.

The remainder of this paper is organized as follows. In
Section II we summarize existing work on multipath transport
in IP and ICN networks. In Section III we briefly describe PSI
and its features that allow us to realize selective friendliness
and multisource connectivity. In Section IV we introduce our
hybrid congestion control scheme, which consists of NMCC
and the in-network assistance mechanism. In Section V we
experimentally evaluate our design, using a prototype im-
plementation in a real LAN testbed, while in Section VI
we evaluate it in a WAN environment using packet-level
simulations in NS-3. In Section VII we explain how the
required in-network mechanism can be supported by MPLS
and SDN. In Section VIII we model mathematically the
throughput of NMCC showing that it achieves friendliness.
Finally, we provide our conclusions in Section IX.

II. BACKGROUND WORK

Multipath congestion control is an active research topic
for both traditional IP networks and ICN clean-slate architec-
tures [13]. The common goal is maximizing resource utiliza-
tion, in terms of exploiting the bandwidth available in multiple
paths, while not harming competitive single-path transfers, a
constraint also known as friendliness or TCP-friendliness.

A. Friendliness

When a multipath connection with N independently con-
trolled sub-flows competes against a single-path connection for

the same bottleneck link, the multipath connection can be up to
N times as aggressive as the single-path one. In this work, we
acknowledge the needs and opportunities presented by Future
Internet technologies, where end-points can be aware of the in-
network bottleneck links, hence we provide a refined definition
of friendliness that examines the problem at link-level, instead
of path-level:

A multipath connection should not acquire a larger share
of resources in a shared bottleneck link than a single-path
connection on the best of its paths.

The price of friendliness can be performance degradation:
network resources are not be fully utilized by the multipath
sub-flows in order to maintain friendliness to single-path con-
nections. By exploiting our refined definition of friendliness,
we can discover multiple paths that do not share the same
bottleneck link, thus needlessly penalizing the performance in
order to be friendly.2

Friendliness is different from fairness [14]. While the first
defines the equal share of resource between multipath and
single-path connections, the later describes the equal share
of resources among all single-path flows, e.g., regardless of
the delay of the flows. Consequently, TCP Reno, the TCP
flavor that is the basis of friendliness research, is friendly by
definition, but it is inherently unfair, as it favors shorter RTTs.

B. Multipath Congestion Control

The most prevalent multipath schemes reside in the ap-
plication layer: Web browsers based on HTTP/1.1 [15] and
BitTorrent clients [16]. According to HTTP/1.1, multiple re-
quests to the same server can not be send in parallel, but
must be pipelined through a single TCP connection, thus
suffering from the head-of-line blocking issue. In order to
achieve concurrency and thereby reduce latency, Web browsers
typically establish multiple TCP connections to a single
server.3 BitTorrent clients exploit multisource by establishing
a number of independent TCP connections to several content
sources, achieving enhanced transmission rates and infor-
mation availability, as the client simultaneously downloads
different parts of a file from each source. Nonetheless, the
uncoupled management of the established TCP flows often
becomes unfriendly, since the transfer rate of the deployed
flows can not be managed individually.

This issue is addressed at the transport layer by Multipath
TCP (MPTCP) [17], an extension of TCP that allows the
deployment and management of multiple TCP-like sub-flows
among two endpoints. Being aware of the available set of sub-
flows, MPTCP can control their transfer rate and jointly tackle
performance and friendliness. Several congestion control al-
gorithms have been proposed so far [5], [2], [18], [19], [20],
with the Linked Increase Algorithm (LIA) algorith [2] being
the default choice of the Linux MPTCP implementation.4 Ac-
cording to the LIA algorithm, MPTCP manages its sub-flows

2In this paper we will use the term friendly to imply single-path TCP-
friendly.

3 This case is also considered multipath, since a single application estab-
lishes multiple TCP flows between the same communication end-points.

4 https://www.multipath-tcp.org/
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under two constraints: (i) a multipath flow should achieve at
least as much throughput as it would get with single-path TCP
on the best of its paths and (ii) a multipath flow should grasp
no more capacity on any path or collection of paths than a
single-path TCP flow that is using the best of those paths. The
first constraint ensures that the use of MPTCP is beneficial.
The second constraint assures MPTCP’s friendliness towards
unicast connections, but also compromises performance when
friendliness in not an actual issue, for example, when the
available paths do not share a bottleneck link.

MPTCP’s conservative approach to friendliness is imposed
by the IP routing architecture. Due to the distributed, hop-by-
hop routing of IP networks, a transport protocol cannot reliably
detect whether the paths used are overlapping, therefore, its
congestion control module cannot detect whether friendliness
is an issue or not. There are some solutions for end-to-end
detection of shared bottlenecks in the literature [21], [22],
but their efficiency is debatable. In [21] the authors detect
shared bottlenecks based on the temporal correlation of Fast
Retransmit packets, while in [22] the authors evaluate both
loss-based and delay-based correlation techniques, arguing that
the loss-based technique is unreliable, while the delay-based
methods require considerably more time for accurate results;
even the loss-based method requires roughly 15 s to converge,
which is too high for a general purpose multipath protocol.

A recent proposal [23] exploits the propagation delay of
sub-flows to detect shared bottlenecks, specifically for enhanc-
ing MPTCP performance. In this work, the authors measure
the path propagation delay instead of the RTT, in order to
avoid the noise of the return path and identify bottlenecks
more accurately. They argue that a sampling period of 3.5 s is
adequate for detecting bottlenecks with 97% mean accuracy,
thus gaining up to 40% higher throughput at the user-level
when friendliness is not required. Our work further investigates
the gains of greedy friendliness, by conducting domain scale
experiments and using network provided information, rather
than inference, to detect the existence of shared bottlenecks.

Finally, a different approach is followed by studies that
exploit SDN’s centralized path selection module in order to
avoid the shared bottlenecks of MPTCP paths. In [24] the
authors present an MPTCP-aware SDN control plane module
that detects MPTCP sub-flows and allocates deterministically
paths to them. The module offers increased flexibility in
path selection allowing shortest, k-shortest and k-disjoint
paths routing, thus delivering measurable performance gains
compared to the stochastic Equal Cost Multipath (ECMP)
approach [3]. Similarly, in [25] the authors present a mech-
anism that enhances path diversity of MPTCP sub-flows in
order to avoid performance bottlenecks, also supporting the
creation of multiple paths for single-homed MPTCP users.
The novelty lays in constructing different SDN routes by
“sniffing” the special MPTCP message for establishing a new
path (MP JOIN), thus supporting multipath communication
to single-homed users that multiplex sub-flows based on port
numbers. Although these studies have not yet delivered solid
and practical results, they give insight into the transport layer
of Future Internet where end-to-end congestion control can be
enhanced by novel in-network functions.

III. MULTIPATH TRANSPORT IN THE PSI ARCHITECTURE

A. The PSI architecture

In the PSI architecture, content objects are treated as publi-
cations, content sources as publishers and content consumers
as subscribers. User programs exploit a publish/subscribe
API for advertising and requesting information. A fundamen-
tal design tenet in PSI is the clear separation of its core
functions [26]: (i) the Rendezvous function tracks available
publications and resolves subscriptions to publishers, (ii) the
Topology Management and Path Formation function monitors
the network topology and forms forwarding paths and (iii) the
Forwarding function handles packet forwarding.

Accordingly, network nodes in a PSI network are classified
into Rendezvous Nodes (RNs), Topology Managers (TMs) and
Forwarding Nodes (FNs) [27]. The RNs receive and store the
pub/sub requests and match publications with subscriptions of
the same content. When matching takes place, the RN asks a
TM to find one or more appropriate dissemination routes. The
TM, which is aware of topology, network conditions and con-
tent characteristics, discovers the “best” path(s) and encodes
them into LIPSIN identifiers, a representation of the set of
links comprising each path [9]. Finally, the LIPSIN identifiers
are delivered to the endpoint applications that exploit them for
direct communication. LIPSIN forwarding, which is realized
by the FNs, offers stateless source routing, since all path
information is encoded in the LIPSIN identifier. Note also that
paths are pinned as long as their LIPSIN identifiers are fixed:
any change to a path, will require encoding a different set of
links into the LIPSIN identifier.

The centralized nature of the TMs raises concerns about
PSI’s feasibility, since they must compute paths for all network
connections. However, research shows that a centralized intra-
domain TM service is feasible: for a typical national-scale
network provider in the UK, it was demonstrated that a
reasonable number of TM instances with precomputed paths
can efficiently cope with the resulting network load [28]. Cen-
tralized path computation is not that uncommon in IP networks
either, as it is prevalent in network domains using MPLS
below IP and is the most common approach in SDN domains;
the processing overhead of the SDN control plane, which
includes detecting and encoding paths, is found acceptable
when multiple co-existing SDN controllers are deployed in
large scale networks [25].

B. Multipath in PSI

We have presented a multipath transport protocol for PSI in
previous publications [10], [11], the Multisource and Multi-
path Transfer Protocol (mmTP). mmTP is a reliable protocol
that supports multisource and multipath data transfers by
exploiting PSI’s source routing and centralized path selection.
mmTP relies on a TM function that can discover multiple
paths between a receiver and multiple senders. These paths
are encoded in LIPSIN identifiers that are later sent to the
endpoints. Given that LIPSIN identifiers encode dissemination
routes without unveiling the actual dissemination paths, or
even the destination nodes, the endpoints acquire a set of
distinct “options” for pulling data, which may involve different
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Fig. 1. Example of FB detection in case of a single shared link.

publishers and/or different paths. Hence, mmTP provides a
generic interface, transparently supporting any combination of
multisource and/or multipath services.

The design of mmTP allows congestion control in two lev-
els: (i) path selection by the TMs and (ii) path utilization by the
endpoints. Specifically, the TMs, which are aware of network
conditions, select appropriate routes for load balancing and
bandwidth aggregation. We have previously shown the gains of
centralized path formation in [29], where we used QoS routing
schemes to satisfy certain throughput and error rate constraints
in PSI. Based on these routes, the endpoints evaluate in real-
time the performance of each path and adjust the amount
of data to be delivered through it. The congestion control
mechanism used at the endpoints, which is derived from
TCP, pushes complexity at the network edges, thus enhancing
network stability and keeping forwarding stateless. A detailed
description of mmTP design and operation is provided in [11],
where we also explore the performance enhancement and
increased resilience offered by multipath and multisource in a
PlanetLab overlay topology.

IV. HYBRID MULTIPATH CONGESTION CONTROL

In this section we present a hybrid multipath congestion
control algorithm that enhances resource utilization without
violating the friendliness requirement. Our novel congestion
control scheme consists of two independent modules: (i)
Normalized Multiflow Congestion Control (NMCC), an end-
to-end multipath-aware algorithm, and (ii) an in-network topo-
logical information mechanism to assist congestion control.
NMCC is designed to offer high resource utilization (even in
heterogeneous paths), responsiveness and friendliness since the
beginning of the connection. The in-network mechanism ex-
ploits knowledge of shared bottlenecks in order to improve the
friendliness control through the greedy friendliness technique.

A. In-network Assistance Mechanism

The best case scenario for multipath communication arises
when all communication paths are physically disjoint, that is,
they do not share any performance bottlenecks. In this case,
each sub-flow can use the same congestion control algorithm
as single-path connections without any constraints; this ap-
proach is called uncoupled congestion control. In contrast,
when some sub-flows share links that constrain their transfer
rate, their aggressiveness needs to be limited in order for
them to remain friendly to single-path flows. Our congestion
control scheme practices greedy friendliness by limiting the
aggressiveness of the sub-flows only when needed, namely, in
the second case.

Fig. 2. Example of FB detection in case of multiple shared links.

1) Detection of friendliness bottlenecks: In single-path
transfers, the bottleneck is the link that constrains the resource
share that a connection gets in the other links of a path.
When the resource share is equivalent to the transfer rate,
then the bottleneck is the path’s “narrowest” link that limits the
(maximum) transfer rate of a connection.5 Given a unicast path
p that consists of n links, where bli is the available transfer
rate in link li, the transfer rate of a connection in p, bp, is
limited by the path’s bottleneck, hence:

bp = min{bl1 , bl2 , .., bln} (1)

In multipath transfers, the detection of bottlenecks that penal-
ize friendliness, namely friendliness bottlenecks (FBs), is more
complex. A FB must satisfy two conditions: first, it must be
shared by at least two sub-flows and, second, it must limit
the transfer rate of these sub-flows. In this case, the link can
be unevenly shared by a multipath connection and a single-
path, thus requiring a friendly multipath congestion control
algorithm.

The definition clarifies that not all shared links are perfor-
mance bottlenecks, e.g., the shared links that are wider than
the individual bottlenecks of the available paths may not FBs.
Consider the simple example of Fig. 1, where n sub-flows
go through n different first links but share the second link bn.
Depending on the transfer rate of the links, the bottleneck may
be detected at the first link, thus being a non-shared bottleneck,
or at link bn, thus being a shared bottleneck. We only examine
the shared links, hence the second case qualifies for a FB. We
observe that the shared links are not FB as far as they do not
constitute performance bottlenecks for the individual paths,
namely when the best single-path connection can get more
resources in the shared link than in the individual bottleneck.
Thereupon, we conclude that link bn can not be a FB iff

bbn > bxmax(Zbn + 1)/2 (2)

where bxmax is the transfer rate of the widest first link and Zbn

is the number of sub-flows running in bn. In the example of
Fig. 1, the best single-path connection competes with 1 and
3 sub-flows in xmax and bn, respectively, hence the path’s
performance according to (1) is min{bxmax

/2, bbn/4} and
min{bxmax/2, bbn/2} with unfriendly and friendly congestion
control, respectively. If bbn > bxmax4/2, then the best single-
path connection will be constrained in link xmax, thus getting
bxmax

/2 regardless of the friendliness of multipath congestion
control.

5We assume a link monitoring protocol that measures the available transfer
rate. The details of the protocol are out of scope for this work.
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Fig. 3. Three different cases of path composition and their corresponding group id codes that mark sub-flows sharing a link: (a) Disjoint paths, (b) Paths
A and B share one link, (c) Paths A and B share one link, paths B and C share another link.

In case of multiple shared links, the same approach is still
valid. Consider the example of Fig. 2, where a multipath
connection of three sub-flows is deployed, creating two likely
FBs (shared links x21 and x32). According to (2), there is not
FB iff the share of a single-path connection in the shared link
is larger than its share in the largest individual bottleneck. We
have two shared links, therefore:

bx21
> max{min{bx11

, bx31
},min{bx12

, bx32
}}4/2

bx32 > max{min{bx13 , bx23},min{bx12 , bx21}}4/2

If any of the previous is false, then we conclude the existence
of a FB and friendly multipath congestion control must be
enabled.

2) Encoding of friendliness bottlenecks: Path selection in
PSI is performed by the TMs, whose operation details extend
beyond the scope of this paper. Our only requirement is that
when the TMs return a set of paths encoded as LIPSIN
identifiers, a group id code should be added to each identifier
so as to indicate paths that share a FB. Specifically, all paths
that share a FB with each other (not necessarily the same
bottleneck) are marked with the same group id. In general,
for any given underlying routing mechanism, the in-network
assistance mechanism must be able to signal to NMCC how
the available paths are grouped by group id.

For instance, Fig. 3 shows four examples of path composi-
tion along with the corresponding group id codes, when all
links present the same transfer rate. In Fig. 3(a) the three paths
are disjoint, thus each path is marked with a distinct group id,
whereas in Fig. 3(b) paths A and B share a FB according to (2),
thus they have the same group id. In Fig.3(c) Paths A and
B share a FB and paths B and C share a different FB; they
still get the same group id, to ensure that each path belongs
to a single group. This simplifies operation, at the cost of
losing some efficiency, since a congested link may only affect
some of the paths in a group. Finally, in Fig. 3(d), two FBs are
shared by two sets of sub-flows, each of which passes through
one FB, thus leading to two different groups.

We have also considered grouping the paths in Fig.3(c)
with link-level granularity to further enhance the accuracy
of friendliness adaptation. In this case, each group would
only consist of paths sharing the same FB, hence a path

could belong to several groups. Consequently, path B would
belong to a group with path A and another with path C.
This complicates controlling the aggressiveness of each group,
since congestion events in path B can affect path A, path C,
or even both.

3) Operational overhead: Finally, we discuss the opera-
tional overhead that our notification service induces to the
standard TM operation [28], as it requires finding the best
k-paths, detecting shared links and examining the existence of
FBs. Finding the k-shortest paths in a topology of n nodes
and e edges has O(e+n log n+ k) complexity [30], which is
similar to Dijkstra’s shortest path algorithm. However, finding
the common links among these paths can be computationally
expensive. If the k disjoint paths are up to h hops each,
O(h2k(k− 1)/2) comparisons are required to compare them,
as the h links of the kth path must be compared with each
of the h links of the k − 1 previous paths. For example, in
a datacenter network where multipath can provide gains with
up to 6 paths (k ≤ 6) [31] and the dissemination paths can
consist of 6-8 hops, the inflicted computational overhead can
be considerable.

We propose an alternative method that introduces slightly
more states but reduces computational complexity to O(2kh).
We exploit a Hash Table with O(1) retrieval complexity, where
the keys are link identifiers and the values are the sets of
path identifiers containing the corresponding link. First, all
k paths are parsed and the identifier of each path is entered
in the corresponding link entries (kh writes), thus creating
a collection of paths for each link. Then, all table entries
are parsed (kh reads) to derive the path groups: initially, all
paths associated with the same link form a group, and then
we recursively merge any groups that happen to share any
entries (that is, common path identifiers). Referring again to
Fig. 3(c), we would initially create one group for paths A
and B and another for paths B and C, due to their shared
links. Then, we would merge the two groups due to their
shared path. Although this design requires storing the entire
path information, assuming 4-byte integers for link and path
identifiers, the storage cost is negligible.

The examination of shared links is the last step. The
calculation takes place for each group path independently,



6 PUBLISHED IN: COMPUTER COMMUNICATIONS, VOL. 153, 2020

checking the shared bottlenecks of each group until (2) is false
and a FB is concluded. The best case arises when no shared
links are presented, thus presenting no operation overhead. The
worst case is when all groups have (multiple) shared links
that are not FBs, hence all shared links must be examined.
However, the examination of (2) is light-weight as the required
information, such as path bottlenecks and the number of sub-
flows in the shared links, can be gathered in the previous step,
when parsing the paths to detect shared links.

B. End-to-end Multipath Congestion Control
When the available paths have different group ids (i.e.,

they do not share any links), window management does not
consider friendliness: our algorithm creates a distinct sub-flow
for each path with an individual congestion window variable
(cwnd), RTT-based loss detection timer and retransmission
mechanism. In addition, each sub-flow operates independently
the Slow Start and Congestion Avoidance algorithms. There-
fore, window management with disjoint paths uses the TCP
(uncoupled) congestion control scheme.

In contrast, when some paths have the same group id
(i.e., they share a bottleneck link) the NMCC algorithm is
used to manage them as a group. NMCC is quite different
from the existing congestion control algorithms of MPTCP.
First, NMCC is friendly during the Slow Start phase, thus
offering friendliness to unicast connections instantly. Second,
NMCC addresses the RTT-mismatch issue [2] inherently, thus
performing efficiently in heterogeneous paths. Third, NMCC
exploits all paths equally (according to their characteristics),
thus offering responsiveness.

The fundamental novelty of NMCC is detected the way
it approaches friendliness. NMCC pursues friendliness by
normalizing the growth of the transfer rate of each flow, rather
than the transfer rate itself, as in other approaches. NMCC
assumes that all connections start at the same state, that is,
they begin with the minimum allowed congestion window,
and remain friendly as long as their throughput increase rates
are equal. NMCC thus focuses on distributing the throughput
increase rate of a connection among its pool of available
sub-flows. The friendliness constraint is deterministically met
at each window increase, hence NMCC remains friendly
throughout the connection’s lifespan.

In addition, NMCC does not focus on the best path, un-
like the majority of proposed congestion control algorithms.
NMCC restrains the aggressiveness of sub-flows proportion-
ally thus leaving the same percentage of traffic in each path.
The focus on the best path is known to deliver high throughput
and friendliness easier under certain conditions [18], but it can
lead to performance entrapment when the best path changes
during the transfer. Thereafter, the protocols that select the best
path, such as LIA, introduce probing or special mechanisms to
maintain some traffic on the other paths. OLIA [18], which fo-
cuses exclusively on the best path, is found to be unresponsive
in the evaluation of Balia [19], which constitutes a solution
with balanced responsiveness and friendliness. NMCC natively
pushes more traffic on the best path but does not neglect the
other paths, thus avoiding the need for probing or additional
mechanisms.

Finally, in order to achieve friendliness while maintaining
a simple design, NMCC exploits inherent properties of TCP.
Specifically, NMCC is based on a well-known TCP-fairness
characteristic, the fact that connections with higher RTTs are
less aggressive [14], in order to normalize the growth of the
transfer rate of sub-flows. Instead of restraining the growth
of the congestion window per RTT like previous solutions,
NMCC indirectly controls congestion window growth by
inflating the RTTs used in the calculations; this simplifies
friendliness in the Slow Start phase and avoids multipath-
related issues due to RTT-mismatch, sudden load and con-
gestion shifts.

1) Congestion Avoidance: NMCC uses an inflated RTT ′
i ≥

RTTi for each sub-flow i to control window growth; the
inflated RTT ′

i slows down the rate of increasing the con-
gestion window. In order to estimate the amount of inflation,
we introduce a friendliness factor in Congestion Avoidance
mca ≥ 1 where RTT ′

i = mcaRTTi. The calculation of mca

is derived based on two fairness goals: (i) the growth rate of
all sub-flows sharing a link should be no more than that of a
single-path connection and (ii) the overall growth rate should
not be less than that of the “best” single-path connection.

The best path is the one with the highest throughput increase
rate, since friendliness is based on equalizing the cumulative
throughput increase rate of all sub-flows with the throughput
increase rate of the most aggressive available single-path.

Since we do not know the RTT of the best single-path con-
nection, we approximate it by the minimum RTTi, RTTmin,
among our pool of sub-flows. During Congestion Avoidance,
a sub-flow i increases its congestion window by one maximum
segment size (MSS) per RTT , so its window growth rate is
MSS/RTTi and its throughput growth rate is MSS/RTT 2

i .
Therefore the throughput growth rates in this phase must
satisfy the following equation:

MSS

RTT 2
min

=

N∑
i=1

MSS

RTT ′2
i

=

N∑
i=1

MSS

m2
caRTT 2

i

(3)

where N is the set of jointly controlled sub-flows. We can
therefore estimate mca using the following equation:

m2
ca =

RTT 2
min

MSS

N∑
i=1

MSS

RTT 2
i

= RTT 2
min

N∑
i=1

1

RTT 2
i

(4)

To understand the friendliness factor mca, consider a simple
example. Assume that the TM offers two paths marked with
the same group id, with RTTA = 5 ms and RTTB = 10 ms.
We initially set m2

ca = 2, the number of jointly controlled
paths.6 Upon receipt of the first packet over each path, we
can calculate mca = 5

√
(1/52 + 1/102) ≃ 1.118. Therefore,

RTT ′
A = 5.59 ms and RTT ′

B = 11.18 ms. The inflated
RTT s allow NMCC to increase its overall congestion win-
dow by roughly 1/5.59 + 1/11.18 = 0.268 MSS/ms, while
the best single-path connection will inflate its window by
1/5 = 0.2 MSS/ms. However, the throughput increase rates
are equalized: NMCC increases the overall throughput by
1/(5.59)2+1/(11.18)2 = 0.04 MSS/ms2, and the best single-
path connection by 1/52 = 0.04 MSS/ms2. Consequently,

6This is equivalent to assuming that all RTT s are equal in (4).
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both connections will extend their share of network resources
evenly, thus fairly sharing the available bandwidth.

Proportional path exploitation: By applying mca to
the RTT s of all sub-flows, we adapt the growth rate of
all paths, which means that, although we favor the sub-flow
which operates over the fastest path, we do not neglect the
other paths. Therefore, NMCC does not require probing to
detect load changes on unused paths, performing efficiently
in heterogeneous environments, adapting fast to path failures
and congestion bursts. For instance, consider an integrated
terrestrial-satellite network where the terrestrial link has 10 ms
delay and the satellite one has a 250 ms delay. In this case
mca = 1.00079, which causes a tiny adjustment to the RTT
of each flow that does not constrain sub-flow growth, allowing
NMCC to effectively grasp the available resources.

Friendliness vs. Responsiveness: NMCC also presents an
interesting ability to adapt its responsiveness under different
circumstances. Responsiveness defines the fastness of respond-
ing to dynamic changes in the network. Although timely
adaptation is critical for maintaining high performance under
variable conditions, over-sensitivity can penalize the stability
requirement: routing needs to respond quickly to achieve the
potential benefits, but not so quickly that the network is
destabilized. In [19] the authors analyze the trade-off between
friendliness and responsiveness in multipath congestion con-
trol. They mathematically prove that the friendliness penalizes
responsiveness and vice verse, since the friendly restrained
throughput increase rate does not allow to aggressively grasp
the resources that become free. Along these lines, NMCC
is the least responsive when all sub-flows present equal
throughput increase rate and the friendliness factor takes its
maximum value, that is the number of sub-flows. On the
contrary, NMCC is the most responsive when the sub-flows
present very different throughput increase rates, hence the
friendliness factor is close to 1. The poor responsiveness can
penalize resource utilization in case of disjoint paths, where
the subset of sub-flows performing on a path fails to grasp
the available resources as quickly as a single-path connection
since their cumulative aggressiveness is less. However, in our
design the in-network assistance module instructs uncoupled
congestion control in case of disjoint paths, thus avoiding the
problem.

Compliance with (MP)TCP design: Finally, rather than
radically modifying the existing implementations of window-
based congestion control to rely on modified RTTs, we convert
the inflated RTT algorithm to an equivalent one that controls
the window growth per ACK. The throughput increase rate of
a sub-flow with NMCC is:

MSS

RTT ′2
=

MSS

(mcaRTT )2
=

MSS/m2
ca

RTT 2
(5)

hence the increase of a friendly congestion window is
MSS/m2

ca over the unmodified RTT. Measuring cwnd in
bytes, in Congestion Avoidance TCP increases its window by
MSS2/cwnd bytes, cwnd/MSS times within an RTT, for
an overall growth of 1 MSS. By reducing the amount of per-
ACK increase of a sub-flow to MSS2/(m2

cacwnd) bytes, the
cumulative increase of NMCC within an RTT is MSS/m2

ca,

thus satisfying the friendliness requirement. In this case, the
friendliness factor mca directly controls the growth of the
congestion window upon the receipt of an ACK, thus allowing
NMCC to be integrated with TCP-like transport protocols.

2) Slow Start: Most work on multipath transport only deals
with Congestion Avoidance, since Slow Start is considered a
transient state with no measurable impact on the steady state
performance. Nevertheless, during the evaluation of NMCC
we noticed that friendliness was compromised when (i) the
content was relatively small and (ii) the path was very con-
gested. An analysis of the evolution of the congestion windows
showed that NMCC with N sub-flows gained bandwidth
almost N -times faster than a single-path connection during
Slow Start. Since short and very congested connections spend
a measurable fraction of their lifetimes in Slow Start, meeting
the friendliness goals in Congestion Avoidance was not enough
to amortize NMCC’s aggressive behavior during Slow Start.

One way to reduce aggressiveness during Slow Start is to
reduce ssthresh, the window size which makes the algorithm
switch from Slow Start to Congestion Avoidance. Unfortu-
nately, this has two disadvantages. First, when a connection
starts, the available bandwidth of the communication path
is unknown, thus ssthresh should be set high enough to
probe it. Second, reducing ssthresh only limits the amount
of bandwidth that the protocol will re-acquire before it slows
down, not its rate of acquisition until that happens. For this
reason, NMCC must control the amount of bandwidth gained
during Slow Start, as well as its rate of growth.

The NMCC friendliness approach for Congestion Avoid-
ance can be seamlessly adapted to the Slow Start phase for
controlling aggressiveness. Specifically, in Slow Start, when
a sub-flow i doubles its congestion window every RTTi,
its instant throughput growth rate is cwndi/RTT 2

i . We in-
troduce mss the friendliness factor for Slow Start where
RTT ′

i = mssRTTi. Similarly to the Congestion Avoidance
phase, mss must equalize the throughput growth rate of all
multipath flows with the fastest increasing single-path, hence:

cwndk
RTT 2

k

=

N∑
i=1

cwndi

RTT ′2
i

=

N∑
i=1

cwndi
m2

ssRTT 2
i

where k is the single-path with the highest growth rate. We
can therefore estimate mss as follows:

m2
ss =

RTT 2
k

cwndk

N∑
i=1

cwndi
RTT 2

i

(6)

The similarity of (4) and (6) allows the creation of a
unified method for estimating the friendliness factor when sub-
flows are in different states. We introduce Ωi and Ω′

i, the
regular and the friendly throughput growth rate of sub-flow
i, respectively. The estimation of Ωi and Ω′

i depends on the
apparent congestion phase of the sub-flow, therefore:

Ωi =

 MSS/RTT 2
i , in Cong. Avoidance

cwndi/RTT 2
i , in Slow Start

 (7)
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Ω′
i =


MSS
RTT ′2

i
= MSS

m2
caRTT 2

i
, in cong. avoidance

cwndi

RTT ′2
i

= cwndi

m2
ssRTT 2

i
, in Slow Start

 (8)

The combination of (4), (6) and (8) provides a unified formula
for estimating m, the friendliness factor of NMCC, taking into
account sub-flows in both the Congestion Avoidance and Slow
Start phases:

m2 = m2
ca = m2

ss =

∑N
i=1 Ωi

Ωmax
(9)

To better understand the operation of NMCC with sub-flows
in different congestion phases, assume that NMCC exploits
three sub-flows, A, B and C, but only sub-flow C is in
Congestion Avoidance. The algorithm only requires estimating
m based on (8) and, then, calculating the RTT ′s. Assume that
initially the RTT s are 10, 5 and 5 ms and the windows are
100, 20 and 10 MSS for sub-flows A, B and C, respectively.
From (7), the unfriendly throughput increase rates, Ωi, for
paths A, B and C are 100/102 = 1, 20/52 = 0.8 and
1/52 = 0.04 MSS/ms2, respectively, hence from (9) we can
calculate that m = 1.356. The inflated RTT ′s are 13.56, 6.78
and 6.78 ms, resulting in throughput increase rates, Ω′

i, of
0.543, 0.435 and 0.022 MSS/ms2 for paths A, B and C,
respectively. As expected, the aggregate throughput growth
rate is equal to that of the best single-path, or 1 MSS/ms2.

A final issue is that the window increase algorithm of
NMCC can penalize its throughput during Slow Start. Specif-
ically, during Slow Start the congestion window of a NMCC
sub-flow on the jth RTT is set to cwndj = cwndj−1 +
cwndj−1/m

2 = ((m2 + 1)/m2)cwndj−1, while a single-
path flow would set it to cwndj = 2cwndj−1. At the next
RTT , NMCC would apply the friendliness factor to an already
reduced window, thus increasing its lag behind the single-
path flow. NMCC thus exhibits a “leak” in the growth of the
congestion window, which is rj = ((m2 − 1)/m2)cwndj−1.
The growth leak exhibits two properties: first, a new leak is in-
troduced each RTT due to the application of m2, and, second,
old leaks grow every RTT as m2 is applied to cwndj−1. The
first property is important for NMCC as it assures friendliness,
but the second falsely penalizes performance. The total amount
of lag produced is equal to the summation of old leaks which
is

∑j−1
i=1 rim

2(j−1−i) on the jth RTT .
To avoid this problem, NMCC uses the window size

of an equivalent single-path flow as the basis of in-
crease. Specifically, the new window size is estimated as
cwndj = cwndj−1 + cwndspj /m2, where cwndspj is the win-
dow size of a single-path flow running in the same path
on the jth RTT . The combined Slow Start and Congestion
Avoidance algorithm is presented in Algorithm 1.

3) Window reduction: NMCC does not introduce a par-
ticular mechanism to maintain friendliness during window
reduction, thus adopting the single-path operation. The fact
that NMCC is enabled only when a FB is detected, eliminates
the need of throughput regulation in case of loss, since
the cumulative throughput reduction rate of multipath and
single-path in the FB is equal. In particular, we estimate the

Algorithm 1 Window adjustment and estimation of m.
1: procedure INCREASE WINDOW
2: if (cwnd < ssthresh/m2) then
3: cwnd← cwnd+ cwndsp ∗MSS/(cwnd ∗m2)
4: else
5: cwnd← cwnd+MSS ∗MSS/(cwnd ∗m2)
6: end if
7: end procedure
1: procedure ESTIMATE M
2: max rate← 0
3: total rate← 0
4: for (i ∈ sub− flows) do
5: if (cwndi < ssthreshi/m

2) then
6: rate← cwndi/RTT 2

i

7: else
8: rate←MSS/RTT 2

i

9: end if
10: total rate← total rate+ rate
11: if (rate > max rate) then
12: max rate← rate
13: end if
14: end for
15: m← sqrt(total rate/max rate)
16: end procedure

throughput decrease rate, D, as the product of throughput
reduction per loss and the frequency of loss, hence:

D =
cwnd

2

RTT

1

(tRTT )

where tRTT is the frequency of loss with t > 0. The number
t essentially reflects the congestion increase rounds since the
last loss, thus being proportional to window size cwnd, which
is steadily increased every RTT in Congestion Avoidance.
Thereafter, we can approximate t with cwnd/2, which is equal
to number of window increases between two successive losses,
and rewrite the throughput decrease rate as the following

D =
cwnd

2

RTT

1
cwnd

2 RTT
=

1

RTT 2
(10)

The equation shows that paths with larger RTTs exhibit lower
throughput reduction rate, since they increase their windows
slower thus achieving lower transfer rates in general. There-
fore, in order to equalize the throughput decrease rate of a
multipath connection and a single-path connection on the best
path, the following must be true:

Dk =

N∑
i=1

Di ⇔
1

RTT 2
k

=

N∑
i=1

1

RTT 2
i

(11)

where k is the single-path with the fastest growth rate and,
therefore, our performance point of reference. The equation
is identical to the initial problem statement (Eq. (3)), which
is already solved through the friendliness factor m and the
inflated RTT ′s, thus arriving at a valid equation.

Our method relies on the sub-flows being constrained by
the same FB and can not be applied otherwise, hence NMCC
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is unfriendly during window reduction in case of individual
FBs with different error rates or delays.

RTT estimation: The computation of the friendliness factor
greatly relies on the accurate and timely estimation of path’s
RTT. Being the cornerstone of TCP loss detection mechanism,
this procedure is an established solution with well-explored
gains and weaknesses. In mmTP, we avoid “poisoning” the
RTT measurements by ignoring the RTT sample of expired
and retransmitted packets when estimating a path’s RTT [32]
(unless timestamps are employed). When the RTT exhibits
higher variance, usually in WANs, the smoothed RTT can be
considered instead of the RTT [32]. In case of sender or path
failure, when packets stop being delivered, thus rendering the
RTT outdated, we propose the exploitation of a special flag,
called is-active, that describes if a sub-flow is able to deliver
packets. The receiver, which manages congestion control, sets
this flag to false when the retransmission timer expires and
changes it to true only when a packet is received. While the
flag is false the RTT of the sub-flow is excluded from the
friendliness factor estimation. After connectivity is restored,
the RTT of the sub-flow is estimated based on the RTT sample
of the first received packet, which can be a retransmission if
timestamps are employed. Finally, in case the medium presents
losses that are not related to the congestion level of the path,
f.i., in satellite networks, our algorithm suffers from TCP’s
inefficiency to estimate network conditions accurately, but
we argue that friendliness will not be significantly affected.
Specifically, if the lossy link is not a friendliness bottleneck,
then sub-flows will perform similarly to single-paths, thus not
requiring the estimation of the friendliness factor. In case the
lossy link is a friendliness bottleneck, then the RTT of the
sub-flows will fluctuate similarly, hence the friendliness factor
estimation will not be greatly affected. Although, this issue
is realistically addressed through Performance Enhancement
Proxies (PEPs) [33], which is an orthogonal issue to conges-
tion control algorithms, we consider this an interesting topic
for future work.

V. PERFORMANCE EVALUATION: LAN

In this section, we evaluate the performance of our hybrid
congestion control algorithm, as well as its friendliness to
single-path TCP Reno, using an implementation of our algo-
rithm in a LAN environment. In the next section, we examine
WAN scenarios using packet-level simulations in NS-3.

We have implemented our hybrid congestion control algo-
rithm as part of the mmTP protocol that runs over Blackadder,
the PSI prototype implementation [34]. Our implementation
includes the mmTP sender and receiver applications with
NMCC enabled, as well as a TM that computes the k-shortest
paths from every publisher to a subscriber, using the algorithm
by Yen [35] with hop count as the metric. Unlike MPTCP,
mmTP is a receiver-driven protocol that is based on the
transfer of autonomous, self-verified chunks (or packets). Each
mmTP sub-flow autonomously transfers the next data chunk
that needs to be delivered, regardless if its a retransmission

Transmission mode Transfer rate (MBps)
Multisource with TM assistance 21.3
Multisource with no TM assistance 20.7
Single-path from P1 to S1 10.6
Single-path from P2 to S2 10.7
Single-paths on both paths 21.1

TABLE I
AVERAGE TRANSFER RATES WITH DISJOINT PATHS (WITHOUT

CONTENDING TRAFFIC).

or not, therefore the scheduling of packets does not affect
performance.7

We deployed Blackadder with mmTP in LAN topologies in
our laboratory, using 100 Mbps switches and workstations as
network nodes. In this environment we have full control of
the communication paths, we can avoid unwanted traffic that
could influence the results and we can monitor link capacities
and delays, as well as node and router status. Our experiments
examine (i) the effect of TM assistance when paths are disjoint,
(ii) the effectiveness of NMCC with overlapping paths and
(iii) NMCC’s behavior in short transfers.

In our testbed, the transmission latency among publishers
and subscribers is set to 100 ms and the bandwidth of each
link is 11.7 MBps, as estimated using iperf.8 The duration
of transfers during all experiments is 300 s, but we consider
only the final 60 s where the system has reached its steady
state, except when mentioned otherwise. In order to enhance
the reliability of our conclusions, we repeated each experiment
until the margin of error was less than 2%, so as to achieve a
confidence level of 95%.

A. Disjoint paths

We first deployed mmTP in the topology of Fig. 4(a), in
order to investigate the performance gains of our approach
when paths are known to be disjoint. Figure 4(a) supports
one multisource path from publishers P1 and P2 to subscriber
S1 and two disjoint paths from publishers P1 and P2 to
subscribers S1 and S2, respectively. We first executed some
experiments with no contending traffic, so as to establish a
performance baseline, leading to the average transfer rates
shown in Table I; each line depicts results from a different
experiment. The first two experiments involve running mmTP
in multisource mode to both publishers, with and without
TM assistance, while the next three experiments involve
running single-path mmTP connections to each publisher,
first independently and then together. We notice that each
path offers roughly 10.6 MBps throughput and collectively
mmTP achieves 21.3 and 20.7 MBps with and without TM
assistance, respectively. These preliminary results validate that
mmTP fully exploits available capacity and imply that TM
assistance slightly enhances performance, even in the absence
of competitive flows, since with TM assistance the window
growth in each path is not throttled in any way.

We then deployed mmTP in multisource mode over the
same topology (S1 requests data from both P1 and P2), with

7Our implementation will be available upon paper publication.
8Available at http://iperf.sourceforge.net/.



10 PUBLISHED IN: COMPUTER COMMUNICATIONS, VOL. 153, 2020

t

Fig. 4. Topology for performance evaluation with (a) disjoint paths and (b) shared paths.

Fig. 5. (a) Bandwidth shares of NMCC and all single-path connections. (b) Transfer rate of NMCC and the average single-path connection.

Fig. 6. Bandwidth share of mmTP with and without TM assistance.

one or two single-path connections competing over one or both
disjoint paths (S1 to P1 and S2 to P2). In Fig. 6 we show the
average share of the total bandwidth that mmTP achieved in
each case, depending on whether TM assistance was turned
on or off. The results validate the performance gains and the
friendliness of NMCC. Ideally, with one contending single-
path connection NMCC should use half of the bandwidth
over one path and the entire bandwidth over the other, or
75% of the total bandwidth. With two contending single-path
connections NMCC should use half of the bandwidth over
each path, or 50% of the total bandwidth. In our experiments,
mmTP with TM assistance acquires 67.5% and 49.2% of the
overall bandwidth, respectively. On the other hand, without
TM assistance the bandwidth shares of mmTP are significantly
lower, namely 54.6% and 38.5%, respectively, reflecting a far
more conservative sharing of the available bandwidth. How-
ever, these connections do not all share the same bottleneck
link, hence aggressiveness mitigation is unnecessary.

B. Shared paths

To investigate the case where paths share some links,
mandating a less aggressive behavior to ensure friendliness,
we used the topology shown in Fig. 4(b), where Publishers
and Subscribers are connected by paths sharing a link. We
deployed a multisource connection from subscriber S1 to
publishers P1 and P2, in parallel with 1, 2, 4 and 9 single-
path connections from subscriber S1 to publisher P1 and from
subscriber S2 to publisher P2; these connections are distributed
uniformly between the two paths.

Figure 5(a) demonstrates the average bandwidth percentage
acquired by NMCC and all single-path connections, while
Fig. 5(b) displays the average transfer rate achieved by NMCC
and the average unicast connection. NMCC acquires 53%,
37%, 22% and 12% of the bottleneck link’s bandwidth when
competing with 1, 2, 4 and 9 single-path connections, respec-
tively, marginally over the fair sharing ratios of 50%, 33.3%,
20% and 10%, respectively, thus satisfying the friendliness
goal. The slight performance advantage of NMCC, also evi-
dent in the transfer rates, arises from NMCC’s goal to match
the best single-path available. With multiple similar paths, the
best available path over a prolonged period is not fixed, as
congestion levels fluctuate. NMCC chooses the best path based
on current RTT, hence it performs similarly to a multipath
congestion control algorithm that exploits only the best path
from a pool, thus gaining a slight performance advantage. The
mean friendliness factor, m, of NMCC in these experiments
was roughly 1.4, while the optimal would be 1.41, indicating
a slight over-aggressiveness.

We also examined NMCC’s response to a sudden change
in the congestion level, by repeating the previous experiment,
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Fig. 7. Instant bandwidth shares of NMCC and 1 single-path connection
when NMCC is deployed 30 s before (left) and after (right) the single-path
connection. We also present the percentage of the overall instant resource
utilization.

Fig. 8. Bandwidth share of mmTP with and without friendly Slow Start in
short transfers.

but this time starting the multipath connection either 30 s after
or 30 s before the start of the single-path connections. In our
setup, with no competitive traffic, the connections converge
to the steady state transfer rate within a couple of seconds,
hence the initial connections are stabilized by the time the late
connections are deployed. The results show that friendliness
is not substantially affected by congestion bursts, as NMCC
acquires 55%, 36%, 23% and 12% of the bandwidth when
competing with 1, 2, 4 and 9 single-path connections, re-
spectively. Consequently, NMCC manages to efficiently share
bandwidth with newly established connections, as well as to
obtain a fair share of bandwidth when launched in an already
congested path. In Fig. 7 we plot the instant throughput rate
of the multipath and the single-path connection (when only
1 single-path is deployed), showing that the response of the
multipath connection is instant regardless of the connection de-
ployment sequence. The convergence to friendliness presents
some further delay (roughly 60 s), but the overall resource
utilization remains close to 100% at all times.

C. Short Transfers

NMCC is friendly during Slow Start, unlike MPTCP’s LIA,
OLIA and Balia, which are only concerned with Congestion
Avoidance. This is particularly important for short transfers,
where friendly Congestion Avoidance cannot compensate for

an unfriendly Slow Start. To evaluate this aspect of NMCC,
we reused the shared link topology of Fig. 4(b), deploying one
multisource NMCC connection and either 1 or 2 contending
single-path connections. Each connection transfers a 10 MB
object, which would require less than 1.1 s to complete in
the absence of contention. Figure 8 presents the percentage
of overall bandwidth acquired by NMCC when friendly Slow
Start is turned on or off.

With unfriendly Slow Start, NMCC grabs a disproportionate
amount of bandwidth from the competing connections, com-
pared to the ideal shares of 50% and 33%. In the first case,
NMCC gets 61% of the bandwidth; while in the second case
it gets 44%, or 11% more than the fair share in both cases. On
the other hand, NMCC with friendly Slow Start gains 52% and
36% of the total bandwidth. Consequently, NMCC is friendly
even with short transfers.

For even shorter transfers, for example Web objects a few
kilobytes long, the unfairness is even more pronounced, as
such connections can easily complete during Slow Start. The
reason for presenting results from a 10 MB transfer is to show
that the initial over-aggressiveness during Slow Start cannot be
compensated during Congestion Avoidance, even with longer
transfers. We also note that unfriendly Slow Start would be
a problem in any scenario where timeouts occur often, from
lossy links to very congested paths, as they would lead to
frequent invocations of the Slow Start phase.

D. Dynamic cross traffic

The estimation of the friendliness factor m is RTT-based;
here we investigate the impact of RTT fluctuations, caused
by dynamic cross traffic, on the computation of m and, in
turn, the friendliness of NMCC. In order to simulate dynamic
background traffic, we deploy Cisco’s TREX9 traffic generator
in the topology of Fig. 4.(b). TREX generates Layer 4-
7 traffic based on pre-processing and smart replay of real
traffic templates. More specifically, TREX replays numerous
connections of different types, such as HTTPS, DNS and
RTP, each type exhibiting distinct frequency, size and RTT
properties. By proportionally adjusting the launch frequency
of the different connection types, we can vary the volume
of generated traffic, while retaining the characteristics of real
traffic templates. We test the performance of NMCC under
four different levels of congestion, namely, without any TREX
traffic and when it constitutes approximately 100%, 50% and
10% of the available bandwidth.10 In all setups, we deploy one
multisource NMCC connection and 2 contending single-path
connections.

Figure 9 depicts the friendliness factor m throughout the
transfer (with 5000 packets sampling frequency). Given that
the topology includes a single bottleneck link and the path
RTTs are equal, the optimal estimation of m2 would be 2,
thus halving the aggressiveness of the two sub-flows. We
observe that without cross traffic m2 exhibits roughly zero
variance, hence the average value is 1.985, being very close

9https://trex-tgn.cisco.com/
10TREX traffic is highly dynamic, presenting frequent bursts. The indicated

percentages represent the maximum ratios seen during the experiments.
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Fig. 9. Estimation of the friendliness factor when competing with dynamic
cross traffic in four setups: when cross traffic consumes (during bursts) up to
0%, 10%, 50% and 100% of available bandwidth.

to the optimal value. The deviation of m2 grows as the amount
of cross traffic grows, since the bursts of traffic are more
intense; the std. deviation of RTT increases by 500% when
the maximum TREX traffic volume is tested. Thereafter, the
average value of m2 is equal to 1.924, 1.894 and 1.874 when
TREX bursts consume up to 10%, 50% and 100% of network
resources. However, the deviation of m from its optimal value
is found too small to penalize friendliness, since the multipath
connection consumes roughly 37% of the resources regardless
of the volume of the dynamic cross traffic (we exclude the
bandwidth share of the TREX traffic from our measurements).
The bandwidth sharing ratio is identical to the one reported in
Fig. 5, hence we conclude that the RTT-based estimation of m
is robust in the face of RTT fluctuations caused by dynamic
cross traffic.

VI. PERFORMANCE EVALUATION: WAN

Having evaluated the performance of NMCC in a controlled
LAN testbed, we now turn our attention to more realistic
WAN environments. Our goal is to examine the performance of
NMCC in real network topologies, as well as to assess whether
multipath in general, and TM awareness in particular, make a
difference in the real world. We therefore implemented mmTP
with NMCC, over a detailed implementation of the entire PSI
architecture in the NS-3 simulator.11 We also implemented
and deployed LIA within mmTP in order to establish a
performance baseline.

For this evaluation, we used the 15 Autonomous Sys-
tem (AS) topologies listed in Table II, taken from the Internet
Topology Zoo repository.12 Since path richness is expected to
have an influence on multipath performance, we intentionally
selected topologies with different density factors13 (from 0.04
to 0.5). For each AS topology we simulated a number of
connections initiated from clients outside the AS to servers
inside the AS. We considered two types of clients: single-
homed clients are connected to an Access Node (AN)14 of
the AS with a high speed 100 Mbps connection; dual-homed

11https://www.nsnam.org
12http://www.topology-zoo.org/dataset.html
13density =

2|Edges|
|Nodes|(|Nodes|−1)

14A node with degree equal to one.

Nodes Edges Access Nodes
Globalcenter.gml 12 39 3
Janetlense.gml 20 40 3
Gridnet.gml 12 23 3
Internetmci.gml 23 43 5
Goodnet.gml 17 31 4
Iij.gml 37 65 10
Geant2012.gml 40 61 8
SwitchL3.gml 42 63 12
Bics.gml 33 48 5
Uninett2011.gml 69 98 11
PionierL3.gml 38 52 9
Ans.gml 20 27 3
Aarnet.gml 21 26 4
Nsfnet.gml 13 15 3
Bren.gml 37 42 20

TABLE II
AS TOPOLOGIES TESTED.

Fig. 10. Client attachment to access nodes in the simulations.

clients are also connected to a second AN with a slower
12 Mbps connection, simulating smartphones with Wi-Fi and
4G interfaces. As dual-homed smartphone users are normally
connected to different ISPs over each interface, the two ANs
are selected randomly, as shown in Fig. 10. The access link
delays are also randomly selected in the 5 to 125–500 ms
range (the range depends on the scenario). The link delay and
capacity inside the AS is the same for all links (10 Mbps to
1 Gbps, depending on the scenario) with a 5 ms delay.

The servers that these clients connect to are also randomly
placed in the AS, but we made sure that the number of servers
is 10-20% of the number of clients, a ratio that is also observed
in the Internet [36]. In each simulation run, all clients started
requesting content simultaneously from the appropriate server.
We measured the throughput and error rate of each connection
for 3 s after the metrics converged to their final values, in order
to reduce the performance volatility, as the transfer rate of
TCP connections in congested links can present fluctuations.
Although we only attached two users per AN, we conducted
100 experiments per topology, leading to many different server
locations and client-server paths. In the following we present
average results measured across all topologies with an error
margin of less than 2% for a confidence level of 95%.
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Fig. 11. Performance comparison of NMCC and LIA algorithms in overlapping paths for varying (a) link capacity and (b) delay range.

A. Friendliness assessment of NMCC

Our first set of experiments focuses on how NMCC and LIA
handle friendliness. In these experiments we only used single-
homed clients to guarantee that paths are overlapping, hence
friendliness is always an issue. We randomly selected 50%
of the clients to initiate single-path transfers, with all other
clients initiating multipath transfers. We varied two parameters
that can significantly affect the aggressiveness of multipath
flows: path capacity and delay variance. Limited capacity is
the reason congestion occurs, while delay variance leads to
RTT mismatch among paths, which is known to challenge
multipath protocols. We simulated different network capacities
by configuring different values for all intra-AS links, while
different path delays were configured only for access links.

We used three metrics to assess performance at the user
and network levels. Congestion Level reflects the number of
timeouts (which trigger window closing events) per connection
during the monitoring period. Relative Throughput is the
throughput of each connection normalized to the throughput
of the fastest connection in that run, thus expressing the
relative performance of all users. A more friendly algorithm
will exhibit higher relative throughput values for the slowest
users. For NMCC Throughput Gains we sort all connections
in ascending throughput order for both NMCC and LIA, and
then calculate for each rank the NMCC gain over LIA, relative
to the LIA throughput; positive values indicate that NMCC
is faster, while negative ones that LIA is faster. Since the
aggregate throughput across all connections was equal in the
NMCC and LIA experiments, fairness is enhanced when the

slower users gain throughput, at the expense of the faster users.

We first explored these metrics for in-network link capac-
ities ranging from 10 Mbps to 1 Gbps, when the access link
delays are randomly and uniformly drawn from the 5 to 125 ms
range; we show the results in Fig. 11(a.1-3), omitting the
results for 1 Gbps as they are identical to those for 100 Mbps.
Figure 11(a.1) shows that the congestion level is inversely
proportional to the link capacity and that the LIA algorithm
produces slightly more time-outs that NMCC. Figure 11(a.2)
shows that the relative throughput of the slowest users in
NMCC is closer to that of the fastest users compared to LIA,
regardless of the link speed. It also shows that the differ-
ences are larger with narrower links, since in these cases the
bottleneck is reached more easily, making friendliness more
of an issue. Finally, Fig. 11(a.3) shows that NMCC tackles
friendliness more efficiently than LIA, as it enhances the
throughput of slow users up to 100% for 10 Mbps links, while
slightly reducing the throughput of fast users, thus improving
overall fairness. We also observe that the throughput gains of
LIA are smaller for larger link capacities, since the congestion
level is lower, the variance of user throughput is less and,
therefore, the margins for improving friendliness are thinner.

We then repeated these experiments, but this time we fixed
the intra-AS link speed to 10 Mbps and varied the propagation
delay of access links by randomly and uniformly choosing
latencies in the 5 to 125 ms, 5 to 250 ms and 5 to 500 ms
ranges; the results are shown in Fig. 11(b.1-3). Figure 11(b.1)
shows that the number of congestion events is not particularly
correlated with path delay variance.Figure 11(b.2) indicates
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that fairness is more of an issue when the delay variance is
high, due to the RTT-unfairness of TCP. Nonetheless, NMCC
offers significant gains in terms of friendliness to the slowest
users; specifically, Fig. 11(b.3) depicts a substantial throughput
increase for roughly 80% of the slowest NMCC transfers
compared to LIA. Finally, we notice that the friendliness
gains offered by NMCC are reduced as delay heterogeneity
increases.

B. Assessment of greedy friendliness through TM assistance

Our second set of experiments investigates the throughput
gains that greedy friendliness offers to multipath. The exper-
imental setup is similar to the previous section, using AS-
scale simulations with 15 real AS topologies. However, since
we are interested in disjoint paths, we only considered dual-
homed clients. We first ran each experiment using single-path
transport, and then repeated it using NMCC, with and without
TM assistance.

We varied three parameters which can impact performance
when TM assistance is offered: path capacity, number of paths
used and the path formation algorithm used. We expect that
bandwidth availability will be proportional to the throughput
gains, since the more aggressive TM-assisted connections will
maximize their performance when more unused resources
exist. Increasing the number of paths used should enhance
the benefits of TM assistance, as the probability of finding
disjoint paths is increased. We examined 2 and 3 dissemination
paths, in addition to the single-path baseline; 3 is the maximum
number of paths expected to exhibit gains, according to [13].
Finally, in addition to the k-shortest paths algorithm, which
can return both disjoint and non-disjoint paths, we also used
Bhandari’s algorithm [37], which discovers pairs of disjoint
paths with Dijkstra-like complexity. To assess performance,
we used Multipath Throughput Gain which expresses the
aggregate gain in network throughput offered by multipath
over single-path performance. Since each topology has a
different density, the per topology results help assess how
the gains of NMCC are distributed under different scenarios.
Notice that topologies are plotted in ascending order of density
from left to right.

Figure 12 depicts the Multipath Throughput Gain for each
topology in some representative scenarios. In all cases, the
access link delays are drawn from the 5-125 ms range. In
Fig. 12(a) we show the gains offered with 2 and 3 paths,
with and without TM assistance, in a resource-constrained
network with 10 Mbps intra-AS links. The average gain for
2 and 3 paths is 14% and 24%, respectively, highlighting the
effectiveness of multipath even with slow links. Since we only
have two access links, hence at most two disjoint paths, the
additional gains when using a 3rd path are exclusively due to
the avoidance of in-network bottlenecks. On the other hand,
TM assistance does not have a noticeable effect on multipath
gain, even though 32% and 51% of users get disjoint paths in
the 2 and 3 path scenarios, respectively.

Raising the intra-AS link speed to 100 Mbps makes TM as-
sistance matter: on average, it increases gains by 2% compared
to the case without TM assistance. As a result, with 3-path

Fig. 12. Performance gains of multipath with and without TM assistance
compared to single-path: (a-c) Yen’s path formation algorithm and (d) Bhan-
dari’s disjoint path formation algorithm. Topologies are plotted in ascending
order by density from the left to the right.

connections we see an average throughput gain of 57% over
single-path connections. Notice that the network links are fully
saturated in these runs, therefore any performance gains are
still due to bottleneck avoidance. TM assistance delivers the
clearer benefits with 1 Gbps intra-AS links, where in-network
congestion is negligible, hence NMCC’s aggressiveness over
disjoint paths actually exploits idle resources, as shown in
Fig. 12(c). In this case, TM assistance offers a further increase



PUBLISHED IN: IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 153, 2020 15

in throughput of 6% and 8% on average over mmTP without
TM assistance with 2 and 3 paths, respectively, for an average
gain of 69% and 87% over single-path connections.

We then explored the performance limits of TM assistance
by implementing Bhandari’s path formation algorithm to dis-
cover pairs of shortest disjoint paths. In this case, 86% of
the connections managed to get disjoint paths, thus benefiting
from TM assistance; the remaining 14% got overlapping paths.
The results shown are the averages among all connections,
regardless of whether they used disjoint paths or not, with
1 Gbps intra-AS links. As shown in Fig. 12(d), TM assistance
in this case provides 11% additional gains, for an average
gain of 87% over single-path connections; this is 18% higher
than with the k-shortest paths algorithm with 2 paths and TM
assistance (see Fig. 12(c)), since in that case we did not get so
many disjoint paths. Consequently, TM assistance does make
a difference when there are resources to exploit, as it better
exploits the unused bandwidth in disjoint paths.

Finally, we notice a correlation between the gains of TM
assistance and the overall multipath gains. TM assistance
delivers roughly 10% higher performance to multipath con-
nections, i.e., when multipath users experience 100% more
throughput than single-path ones, then the TM assistance
will provide 10% additional gains. As expected, multipath
gains are correlated with network density, as in all figures
the performance in the (denser) topologies to the right are
generally higher. This experimentally validates our intuition
that TM assistance performs best in dense topologies where
disjoint paths are easier to find.

VII. GREEDY FRIENDLINESS IP NETWORKS

Our hybrid congestion control mechanism for multipath
transfers relies on an in-network scheme that reports shared
bottlenecks to the endpoints. The PSI architecture is an appro-
priate terrain for this design, since it provides a TM function
that (i) is aware of network topology and (ii) interacts with
the endpoints. The TM knows the physical structure of the
network, so it can easily detect shared bottlenecks. In addition,
when two pub/sub requests are matched, the TM sends the
LIPSIN identifiers of the paths directly to the applications,
therefore it directly pushes the topological information to the
users. Finally, any changes to these paths, whether due to
failures or load balancing decisions, require the distribution
of new LIPSIN identifiers, therefore applications are always
aware of path overlaps. In order to extend our scheme to other
types of networks, such as IP-based ones, we need equivalent
in-network mechanisms to provide such information, as well
as mechanisms to ensure that this information remains accurate
as routing decisions change.

A. Multi-Protocol Label Switching (MPLS)

A technology that offers centralized path selection and
source routing in IP networks is Multi-Protocol Label Switch-
ing (MPLS) [38]. MPLS is used in backbone networks, where
it applies QoS-based traffic control by classifying flows and
forwarding them via predefined routes. Short fixed-length
labels are assigned to packets at the ingress to an MPLS

cloud, and these labels are used to make forwarding decisions
inside the MPLS domain. The path computation process is
generic, allowing route computation by the underlying routing
protocols or explicit definition by a network administrator.
Multipath deliveries are also encouraged, in the form of
splitting single-path connections into several sub-flows at the
ingress router.

Currently, MPLS is primarily used to apply domain-scale
traffic engineering, rather than to enhance the performance
of individual connections, hence, connection splitting is done
with static sharing weights for general load balancing. Conse-
quently, congestion control takes place at the actual endpoints
(i.e the users), while the ingress MPLS router is confined to the
flow control of the available paths. However, if we consider
the ingress router as the congestion manager of the MPLS
cloud, as it splits the flow, assigns labels to each of its sub-
flows and becomes the endpoint of a local MPLS service,
then our network-assisted congestion control can be applied
inside the MPLS network. Specifically, when the network
administrator discovers multiple paths for bulk flows and sends
the corresponding labels to the ingress router, it can also
send information on how flows are grouped depending on
path sharing, as described in Sec. IV-A. The ingress router,
which runs NMCC for each bulk flow, can then exploit this
information along with source routing to selectively engage
the friendliness mechanism. Although, the integration of our
design with MPLS is feasible and can be realistic under certain
conditions, the centralized placement of congestion control at
the ingress router raises serious scalability concerns.

In order to reduce the computational cost, we propose the
application of congestion control on groups of connections
that follow the same route in the MPLS network. Again,
the ingress router splits the connections, like Split-TCP [33],
and practices the congestion control within the MPLS cloud.
However, the ingress router deploys one persistent multipath
connection to each egress router in order to transfer the data
of the individual incoming connections that are sent to the
same egress router over the same routes. The establishment of
the persistent multipath connection requires that the network
manager discovers the paths and computes the associated
group ids, that are sent to the ingress router in order to control
friendliness accordingly. Thereupon, the congestion control of
grouped connections is jointly managed by the ingress router,
that exploits NMCC or LIA, and the network administrator,
that acts similarly to the PSI’s TM. The computation overhead
of this solution consists of the cost for establishing one
congestion loop per egress router,15 and the cost of splitting the
connections, like Split-TCP, thus being significantly reduced.
However, the technical details on grouping the connections
and jointly performing the congestion control of multiple
connections need to be further explored.

B. Software-Defined Networking (SDN)

Software-Defined Networking (SDN) [39] is a novel net-
working scheme that can be used to achieve similar goals

15More congestion loops are required when multiple sets of routes lead to
the same egress router, f.i., when Differential Services are enabled.
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to PSI, including centralized path selection. In SDN, pro-
grammable switches forward packets based on “dynamic”
rules that bind flow identifiers, such as fields of the IP header,
with outgoing network interfaces. These rules are defined by
a centralized controller that is aware of the network topology
and forms virtual circuits by explicitly sending rules to all on-
path switches. Circuit creation can be reactive, where a switch
ask the controller’s assistance when no rule can be applied to
a received packet, or proactive, where the controller forms
the route a priori, for example, to achieve load balancing. In
both cases, SDN operation is transparent to the endpoints that
manage congestion control.

As the SDN controller does not communicate with end-
points, which means that it cannot pass any topological
information to them directly, we can apply the same ideas
as for MPLS to introduce in-network assistance and NMCC
to SDN clouds, by considering the ingress SDN switch as the
congestion manager of bulk flows or groups of flows. When
the SDN controller creates forwarding paths by sending the
appropriate rules to the SDN switches, it can send information
on how flows are grouped depending on path sharing to the
ingress SDN switch, as well as instructions on how to tag each
IP header so as to implicitly select the appropriate path.

In order to enable greedy friendliness at connection-level,
we propose the exploitation of MPTCP and push the topo-
logical information of every connection to the endpoints
through the MPTCP packet header. In this case, the SDN
controller performs as the man in the middle during the
establishment of MPTCP sub-flows, thus forming a cen-
tralized topological assistance module similar to PSI’s TM.
We assume MPTCP-aware SDN switches that monitor traffic
in order to detect the handshake messages of (MP)TCP;
MP CAPABLE and MP JOIN options are enabled during the
(re-)establishment of a (sub-)flow [40]. The SDN switches
forward these MPTCP messages to the controller that, in
addition to its standard operation, stores the routing state and
the MPTCP state of the sub-flow locally. The controller can
associate the sub-flows of the same multipath session through
the authentication attributes carried in the MPTCP header,
thus being aware of the dissemination paths and the shared
performance bottlenecks.

Upon the receipt of a MPTCP handshake message the
controller either stores the status of the connection (if it is
the first sub-flow to establish) or updates the connection status
(if an additional sub-flow is to be established). The status of
the connection includes the header attributes of the MPTCP
handshake messages and the physical routes assigned to each
sub-flow; the latter is soft-state memory (and can be derived)
for enhancing the performance during the second step. Then,
the controller compares the new path with the established (if
any) and determines the existence of shared links and the
corresponding group ids, following the procedure presented
in Section IV-A. The group id of each path is delivered via a
special field, named PATH OVERLAP, that is inserted in the
MPTCP packet’s header. The MPTCP packet is send back to
the SDN switch, which forwards it to its original destination.

Placing the SDN controller in the middle of the connection
establishment is both a gift and a curse. On the one hand, the

topological information remains valid throughout the entire
transmission, even if sub-flows change on-the-fly. Routing
decisions and bottleneck detection are made by the SDN
controller, thus offering consistency. On the other hand, the
centralized nature of the controller rises scalability concerns
with regard to the memory costs of the design. The processing
overhead for the controller is not significant, since the pro-
cedure to detect shared bottlenecks is found to be relatively
inexpensive (Section IV-A3), but the introduced memory state
at the controller can become critical as the number of MPTCP
connections grows. Several techniques can be used to mitigate
this cost, thus enhancing the scalability of the design, however
their analysis goes beyond the scope of this paper.

VIII. FRIENDLINESS THROUGH GROWTH RATE
NORMALIZATION

According to our definition of friendliness, a friendly mul-
tipath protocol must not get more bandwidth than any single-
path connection on any available path, i.e., at any time t the
bandwidth share (or throughput) of multipath (TMP (t)) and
single-path (TSP (t)) must be equal:

TMP (t) = TSP (t) (12)

The function of throughput in time, T (t), can be studied in
congestion rounds that last N RTTs. During the congestion
round, we assume that the throughput increases linearly for
N − 1 RTTs, while packets are delivered successfully. Then,
the throughput remains idle until the retransmission timer
expires on the N th RTT, when throughput is reduced mul-
tiplicatively, determining the end of the congestion round. We
approximate the throughput as shown in the following:

T (t) =


ta, for 0 ≤ t ≤ N − 1

(N − 1)a, for N − 1 ≤ t < N

(N − 1)a/2, for t = N

 (13)

where t is real number that counts RTTs and a is real
number that defines the amount of throughput increase every
RTT (usually 1 MSS). The function of throughput in time is
continuous in the closed interval [0, N − 1] and differentiable
in the open interval (0, N − 1).

In Section IV-B, we model the throughput increase rate of
NMCC in order to be equal with the throughput increase rate
of the best single-path available, hence in field (0, N − 1):

∂TMP

∂t
=

∂TSP

∂t
(14)

Using Lagranges Mean Value Theorem, we can prove that if
two functions have equal derivatives at all points, then they
differ by a constant. Assuming that TMP (0) = TSP (0), since
connections start with the minimum congestion window, we ar-
gue that the constant that describes the difference between the
throughput of multipath and single-path is zero, thus delivering
equal throughput and, in turn, friendliness during the time
interval (0, N−1). In addition, we notice that throughput does
not change in the time interval [N − 1, N), between the last
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received packet and the expiration of the retransmission timer,
hence friendliness is not affected. 16 Finally, in Section IV-B,
we model the throughput decrease rate in order to be equal
with the throughput decrease rate of the best single-path
available, thus equalizing the throughput reduction at time N ,
when the congestion round ends. Thereupon, we conclude that
the throughput of multipath and single-path is equal during the
entire congestion round.

IX. CONCLUSIONS

We presented a hybrid congestion control algorithm for mul-
tipath transport, consisting of NMCC and an in-network assis-
tance mechanism. Being applicable to networks that support
centralized path computation, such as PSI, SDN and MPLS,
our design offers friendliness to single path connections using
TCP-like congestion control, while increasing the utilization of
network resources. It achieves this by detecting shared friend-
liness bottlenecks and managing aggressiveness accordingly, a
scheme called greedy friendliness. We have implemented the
congestion control algorithm in the PSI architecture prototype
and evaluated its performance in several topological and traffic
scenarios, using both direct experimentation in a LAN envi-
ronment and packet-level simulations in a WAN environment.
Our results verify the effectiveness of our design, since greedy
friendliness amplifies by roughly 10% the performance gains
of multipath connections in WAN environment, i.e., when
multipath users get 100% more throughput than single-path
ones, then the greedy friendliness assistance will provide
10% additional gains. In addition, we observe that NMCC
achieves friendliness more accurately than LIA congestion
control algorithm in case of short transfers, as well as in a
wide range of real network topologies.
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