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Abstract—In this paper, we propose an online learning ap-
proach, utilizing the framework of Online Convex Optimization
(OCO) to tackle the problem of learning the optimal energy
supply plan, in terms of total incurred cost, from the perspective
of an electricity retailer that also owns power generators and
renewable energy sources. The retailer does not have prior
knowledge about key dynamic processes that affect the problem,
such as future demand, renewable energy supply, and wholesale
market prices. The retailer sequentially learns how to adjust the
power generation plan so as to minimize the power generation
cost plus the cost of buying additional power from the wholesale
market, in case the planned generated amount is not enough to
cover the demand. We use Online Mirror Descent (OMD) and
Online Gradient Descent (OGD), and we verify that they both
achieve sublinear static and dynamic regret, which compare the
cumulative cost of each algorithm against that of the optimal
offline static and dynamic solution respectively. In particular,
dynamic regret appears to be well aligned with the considered
setting since it captures the fact that a power generator can
dynamically change its power output between consecutive time
slots based on only small adjustments and not in an arbitrary
fashion, due to ramp constraints. Our model can capture
different settings of electricity markets. Simulations with real
data verify that OMD precisely learns the optimal dynamic
supply policy for small power adjustments between consecutive
time slots.

I. INTRODUCTION

Electricity retailers are responsible for selling electricity to
end-consumers, charging them fixed or dynamic prices based
on their contracts. In some cases, a retailer may also have
power generation infrastructure in its possession, as well as
renewable energy sources. The retailer may want to utilize
these assets to directly fulfill its customers’ demand, instead of
selling the generated electricity through the wholesale market,
given that the market structure and regulation allow it. In
case the company resources do not manage to cover the
customer demand, additional energy shall be purchased from
the wholesale electricity market.

Hence, the retailer has two main alternatives to support
the supply. One is through power generation, and the other
is through the wholesale market, where various interested
entities such as generators and resellers trade electricity. One
of the most popular market designs consists of the day-ahead
market where these entities offer and request energy for the
next day with an hourly granularity, and the real-time spot
market where the actual economic dispatch takes place for

every 5-minute slot during the current day, taking into account
the outcome of the day-ahead market, real-time bids, and all
the constraints necessary for the delivery of electricity to end-
consumers [1].

In order to enhance energy efficiency, it is crucial for elec-
tricity retailers to plan the future supply to their customers, and
thus manage their power generation resources appropriately.
The power generation at any given moment is affected by
several dynamic processes such as consumer power demand,
power supply from renewable sources, and energy market
prices. These processes are often non-stationary in the sense
that their statistics are time-varying, hence difficult to predict
and characterize statistically, while they jointly affect the
power generation decision, and the choice between the two
power supply alternatives. Thus, Online Convex Optimization
(OCO) is an ideal framework to model such non-stationary dy-
namic processes since it constitutes a distribution-free online
approach [2], contrary to supervised learning models that can
capture the dynamics of non-stationary processes only with the
utilization of complex deep learning algorithms which require
a significant amount of data, often difficult to collect [3].

Various machine learning models have been widely utilized
in smart grid related applications like Demand Response
(DR), load forecasting, renewable supply prediction, energy
disaggregation, electricity pattern recognition, and load peak
detection, as well as load profiling and management [4].
Supervised learning models regarding the prediction of renew-
able energy generation, energy market prices and consumer
electricity demand can be utilized by retailers in order to
accumulate prior knowledge, and adjust the power generation
accordingly. However, these types of models need quality
training data with multi-dimensional feature vectors including
exogenous variables like weather conditions. Collecting such
data might sometimes be difficult and costly, especially in
cases where most of the houses do not have smart meters.
Thus, supervised learning is often not the best tool when there
are little or inaccurate data available, and when the dynamic
processes of the model are non-stationary.

Contrary to supervised learning techniques that require
availability of the entire dataset, an online model can make
decisions without full knowledge of the dataset, by learning
sequentially from data streams arriving in real time. An online
learner makes a decision x; at time ¢, and then nature chooses



wy (which is an adversary process). The learner experiences
a cost f(xy,w;) based on a cost function f(-,-). The learner
adjusts its decisions in consecutive time slots based on the
incurred cost and hopes to converge to the best decision as
time goes to infinity [2]. An online learning model can be
directly deployed by a retailer, by conducting a “warm-up”
phase on a limited set of historical data and perform accurately
from the very first moment in production.

In this paper we use the framework of OCO to address
and tackle the problem of learning the optimal (in terms
of cost efficiency) energy supply plan in the presence of
non-stationary dynamic processes such as consumer demand,
renewable supply and wholesale market prices. We consider
an electricity retailer that faces the problem of how much
power to generate at each time slot, in order to minimize the
total incurred cost. There exists a cost of power generation
which depends on the amount of power to generate, as well as
exogenous factors that affect the generation cost. There also
exists a time-varying monetary cost associated with buying
the power needed to satisfy the demand from the wholesale
market. The solution involves the planning decision of how
much power to generate.

A. Related work

OCO has found application in several domains, and among
them in the smart grid ecosystem. In [5] the authors propose
a demand response framework with real-time pricing using
OCO to tackle demand uncertainty for the centralized power
load scheduling problem, from the distribution network opera-
tor perspective, which is decomposed into separate scheduling
sub-problems for each customer.

In [6] the authors propose a distributed energy management
system for networked microgrids, and they use the online
alternating direction method of multipliers along with OCO.
The problem objective is to minimize the microturbine power
generation cost along with the costs of transactions with
other microgrids. The decision variables include the active
and reactive microturbine power generation and demand, the
amount of power transacted with other microgrids, and the
microgrid voltages.

The authors of [7] utilize OCO to tackle the problem
of scheduling power generation in smart microgrids with
wind turbines. The objective is to minimize the microgrid
power generation cost along with the spot market transaction
cost. Specifically, the model assumes a standard electricity
generation forecast decided in the previous day through offline
demand prediction, and the OCO algorithm learns the cost
received from the difference between actual and forecasted
demand, and the unpredictability of wind turbines. The authors
include demand forecasting in the model, but demand might
not always be predicted accurately and deviates from the
setting where the learner has no prior knowledge about the
future.

In [8] an algorithm called Averaging Fixed Horizon Control
(AFHC) is studied for OCO with ramp constraints. This

approach assumes that the learner has a perfect lookahead for
a specific number of future cost functions, which might not
always be realistic because of the effects of non-stationary dy-
namic processes. The algorithm is validated with simulations
for a simplified version of the economic dispatch problem,
where the objective is to minimize the grid power generation
cost, while satisfying the total demand and the generator ramp
constraints. Transactions with the wholesale market and other
parameters are not taken into account since the focus of the
paper is on ramp constraints applied to OCO.

In [9] the authors tackle the problem of online optimal
grid power flow with renewable energy sources, from the
perspective of a network operator. They use OCO to minimize
the cumulative bus generation and spot market transaction
cost, while taking into account transmission network and
operational constraints, so that the cost at each bus of the grid
is minimized. Differently from [9], we tackle the problem of
optimal power generation from the perspective of an electricity
retailer with generation capabilities, and study the perfor-
mance of the algorithms using the dynamic regret formulation
which captures the effect of generator ramp constraints.

B. Contributions

The contributions of our work are the following:

o We address and formulate the basic planning problem of
retailer cost minimization which entails the decision for
energy supply planning, given the instantaneous values of
customer power demand, supply from renewable energy
sources and wholesale market prices.

o We propose an OCO approach using the Online Mirror
Descent (OMD) algorithm to solve the problem. This
approach learns jointly all three evolving dynamic pro-
cesses and adjusts the power generation to minimize the
expenses made by a retailer.

« We use dynamic regret to compare our online solution to
that of an offline agent that has complete prior informa-
tion for all the processes and applies an optimal dynamic
policy. Hence, this offline agent used for comparison is
the equivalent of a perfect forecasting model for all the
dynamic processes, which has superior performance than
the state-of-the-art in time-series prediction. Furthermore,
dynamic regret is closely aligned with our problem, since
by definition it captures the fact that the power generators
have inherent limitations in different time slots due to
ramp constraints.

o« We show through simulations on real data that OMD
converges much faster than OGD, since it learns the
power generation pattern within some days, whereas
OGD would need 4 months. This is particularly important
since the model operates in the absence of prior informa-
tion about market prices, renewable source supply, and
consumer demand.

The rest of the paper is organised as follows. In section
IT we formulate the problem of learning the optimal retailer



energy supply plan with static and dynamic regret, and de-
scribe how we utilized OGD and OMD. In section III we
present numerical results and discuss the performance of the
algorithms, and in section IV we conclude our work.

II. LEARNING THE OPTIMAL ENERGY SUPPLY PLAN
A. Model

We consider an electricity retail company with power gen-
eration capabilities that needs to plan the amount of power
P, to generate at each time slot ¢ = 1,2,...,T (i.e. at the
beginning of time slot ¢), where 7' is the data time horizon.
Each time slot is in the order of several minutes or even several
hours, since power generators suffer from ramp constraints
and cannot adjust their output in an arbitrary manner.

The retail company owns a set of power generators, with
a total power generation cost function G(P;) for a power
generation of P, and a set of renewable energy sources with
a power generation output of r, at time ¢. We also define the
cumulative power demand of the retailer’s customers as d;.

If the power from the generators and the renewable sources
does not eventually suffice to cover the demand, the retailer
has to acquire additional power to satisfy the demand. This
is achieved through the wholesale energy transaction market,
where the retailer can buy an additional amount of electricity
needed at time ¢ at a price ¢; ($MWh). This price is deter-
mined based on the structure and regulation of the wholesale
market, for example through bidding. We assume that the
retail company has no prior knowledge about future electricity
demand, renewable power supply and market prices, while
trying to decide on the amount of power to be generated
in the future. At the beginning of time slot ¢ the generators
produce the amount of power P; that has been planned. When
time slot ¢ ends, the actual values of these three unknown
processes are revealed and the retailer suffers the total cost
¢t(P;) for time slot ¢. The arbitrary processes that show the
evolution of demand, market prices and renewable supply
respectively, are unknown a priori to the retailer, while their
non-stationary nature implies that their statistics cannot be
easily characterized.

B. Problem formulation

The single time step problem is to minimize the total cost
for each time slot ¢, which consists of:

(a) The power generation cost G(-), which is piece-wise
linear and convex, since the differential cost of power
generation increases as the demand increases. This means
that generating additional units of power becomes more
expensive as the demand grows, because the activation
of more expensive power plants is needed to cover
increasing demand [10].

(b) The monetary cost of buying additional power at price g
from the wholesale market only if the produced amount
P, plus the generated power from renewable sources 7,
does not cover consumer demand d;.

The formulation of the problem for each time slot ¢ (i.e. if
dy,r¢, q; are given), where the total cost is minimized and the
decision variable is the amount of power P; to be generated
at time ¢, is as follows:

m}i)fl ct(Py) = G(P) + g max{0,d; — ry — P}, 0
vte{l,...,T}

and the overall cost function ¢;(-) is convex as the sum of
two convex functions. The single time slot problem cannot be
directly solved since it includes unknown parameters, hence
the generation decisions need to be taken sequentially as
data is revealed, making the OCO framework an appropriate
solution.

Remark. Our model and problem formulation are stated in
a general form so that they can be applied on real electricity
market models with few modifications depending on each
market’s regulation. For example, in a day-ahead market
where the retailer would have to declare its planned generation
for the next 24 hours, our model would remain the same but
instead of being scalars, P, qy,d;, and r; would be vectors,
each with 24 elements, where each element would account for
a specific 1-hour interval during the next day. However, the
structure of electricity markets can vary significantly based on
regulations, hence we study the generic case of hourly supply
planning.

C. Online Convex Optimization

According to [11], the OCO framework can be regarded as
a game where an online player chooses x; € K at iteration ¢,
where K is the convex feasible region. Consider F : K — R
to be a family of bounded convex cost functions, from which
an adversary assigns a cost function f;(-) € F to the player
at each iteration. One metric to evaluate the performance of
an online learning algorithm is the so called static regret.
The static regret for an online control policy is defined as
the difference between the total costs incurred by an online
sequential policy and that of the optimal static policy that
minimizes the total cost over the time horizon.

In our problem, a dynamic policy 7 is a sequence of power
generations {P;, P,,..., Pr}. We are interested in policies
for which the regret is sublinear in 7" and therefore the model
will learn the optimal policy in the long run. The static regret
of an OCO algorithm for the problem of learning the power
generation plan using ¢;(-) as the cost function at each time
slot becomes:

SR(m) =Y _c(P) =) e(P*), with 2)

ct(P) 3)

where the first term refers to the cumulative cost of the
online learning algorithm, and the second term represents the
cumulative cost of the optimal static offline policy that has
all available information. If the regret SR(m) is sublinear in



terms of T, this means that the average regret SRT(TF) goes to

zero as t increases and that in the long run, the dynamic policy
performs on average very close to the optimal one [11].

D. Dynamic Regret

A regret definition that fits better the setting of our problem
is that of dynamic regret [12], where the learning algorithm
is compared against a dynamic offline strategy instead of a
static one. The dynamic regret formulation is more appropriate
for our setting, due to the nature of the power generation
adaptation, where the generated power can be adjusted on an
hourly basis in order to react to demand, renewable supply
and price patterns. However, most power generators suffer
from ramp constraints and do not have the ability to arbitrarily
adjust the amount of generated power in a short amount of
time. Consequently, the dynamic regret captures the real-life
constraints above. In other words we allow limited adjustment
of the offline policy between successive time slots, by defin-
ing the path length of a sequence/policy {Py, Ps,..., Pr}:

tT;ll d(Py, Piy1), where d(+, -) is the difference between two
consecutive values. The definition of the dynamic regret of
an OCO algorithm for the problem of learning the power
generation pattern, using c¢;(-) as the cost function at each
time slot is:

T

o4y @

DR(m,L) =Y c(P) - , Jnin
t=1

P €A(T,L)
where A(T, L) is the set of sequences with T" elements and a
maximum allowed path length of L. As with static regret, the
goal is to minimize dynamic regret and achieve sublinearity,
so that the model will learn the optimal dynamic policy in
the long run. We also define the average allowed adjustment
between consecutive slots as % which in our problem captures
the average allowable amount of change of the generation
between consecutive time slots.

Remark. Parameter L reflects the total amount of change
of the optimal decision between successive slots, over a time
horizon. Large values of L do not apply any limitations to
the amount of power to be generated in two consecutive
slots, thus leading to an optimal unconstrained offline dynamic
policy. However, smaller L values might be more appropriate
due to generation limitations. This is mainly because power
generators need time to adjust their power output level, and
the bigger the adjustment is, the more time is needed.

Furthermore, a general bound for dynamic regret cannot be
derived, but bounds in terms of maximum path length L can be
obtained [13]. Hence, if L takes large values, dynamic regret
is not guaranteed to achieve sublinear bounds. Consequently, it
is only feasible to achieve sublinear dynamic regret when the
maximum path length is small [14]. For the aforementioned
reasons, the maximum path length L should be assigned small
values.

E. Algorithms

Online Gradient Descent (OGD) is one of the first proposed
algorithms for online learning and for solving OCO problems

[11], hence we use it as a baseline. The OGD algorithm [2],
[11] is described below as Algorithm 1:

Algorithm 1 Online Gradient Descent (OGD)
Input: learning rate: 6 > 0

1: initialize: P, =0

2: fort =1,2,...,T do

3: update rule: Piy; = P, — Ve (Pr)
4: end for

where {c1(-),ca("),...,er(-)} is the sequence of convex
cost functions and {Py, P», ..., Pr} is the sequence of power
generation values the algorithm chooses. It has been shown
that, subject to certain conditions, OGD achieves a sublinear
static regret bound of O(+/T), and a dynamic regret bound
of O(VT(1+ L)) [12], [13], [15].

In Online Mirror Descent (OMD) the update is performed
in a “dual” space defined by the choice of a regularization
function R(-) that affects the update rule [11]. It is described
below as Algorithm 2:

Algorithm 2 Online Mirror Descent (OMD)
Input: learning rate: 6 > 0

1: initialize: P; =0

2. fort=1,2,...,7T do

3: update rule: P;yq = arg min (V¢ (P), P) + Dr(P, P;)
PeR+t

4: end for

In the above, Dg(:,-) is the Bregman Divergence for a
convex regularization function R(-) which is defined as:

DR(P» Pt) = R(P) - R(Pt) - <VR(Pt),P - Pt> (5

where (-, -) stands for the inner product of two vectors. OMD
is a generalization of OGD, since for R(P) = %PQ the OGD
algorithm is derived from OMD. It can be shown that OMD
achieves a static regret bound of O(ﬁ ) [2]. In addition,
OMD achieves sublinear dynamic regret bounds only for
small values of maximum path length L, hence if the average
allowed adjustment between consecutive slots % is small, then
OMD is guaranteed to have sublinear dynamic regret [14].
This makes OMD an ideal algorithm for learning the optimal
power generation plan.

III. NUMERICAL RESULTS

In this section, we present the results of the simulations
conducted with real smart grid data, to demonstrate that
the proposed model can quickly learn the optimal power
generation planning policy.

A. Dataset and model parameters

The dataset we used originates from the Independent Elec-
tricity System Operator (IESO) of Ontario, Canada [16], and it
includes 6 months of hourly values regarding demand (MW),
intra-day energy prices ($/MWh) and power generation by
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Fig. 1. Comparison between static regret, dynamic regret with L = 5 - 10° MW and
dynamic regret with L = 2 - 10% MW for OGD over a time horizon of T = 4,727
hours.

fuel type. Since real datasets from retail companies are not
easy to obtain, we assume that all of Ontario’s consumers
are customers of a single retailer. The features we use are:
wind and solar as the only renewable energy sources (),
total power demand (d;), and intra-day energy transaction
prices (g;). Furthermore, we consider the following generation
cost function: G(P;) = 0.0001P? which captures a realistic
generation cost as described in the literature [9], [7], [10]. A
different cost function can be utilized for different generators
based on their characteristics and placement in the grid.

B. Simulations

The length of a time slot in the dataset is 1 hour, and we
ran the simulations for 7' = 4, 727 hours corresponding to 6
months of hourly data using a learning rate of § = 0.2 for
OGD and OMD. In our experiments we used absolute differ-
ence as the distance measure between consecutive generation
values for (4).

First, we compared OGD’s performance with the optimal
offline static solution, which in our case was 21,017 MW.
The static regret for this setting was sublinear as depicted in
Fig. 1. However, the retailer can also perform adjustments
between consecutive time slots in order to lower the cost. For
this reason, OGD’s predictions were also compared to the best
offline dynamic solution with a maximum path length set to
L = 2-10° MW, because for L > 2 - 10 MW there is
no restriction regarding power generation changes between
consecutive time slots. This happens because % = 423.1
MW, which means that the retailer can make adjustments
of up to 423.1 MW on average from one time slot to the
next. The dynamic regret (4) of this setting was found to
be sublinear as depicted in Fig. 1. We also tested the case
where the maximum path length has a smaller value of
L =5-10° MW, i.e. % = 105.7 MW. This translates to a more
realistic scenario, where the power generators can only apply
small generation adjustments between consecutive time slots
because of physical limitations in their means of generating
power. The dynamic regret was also found to be sublinear in
this case, as can be observed in Fig. 1. It is also evident from
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Fig. 2. Comparison between static regret, dynamic regret with L = 5 - 10° MW and
dynamic regret with L = 2 - 10% MW for OMD over a time horizon of T' = 4, 727
hours.

Fig. 1 that OGD achieved a lower static regret compared to
the two dynamic regret cases, which makes sense since the
static offline solution is easier to be learned than the dynamic
one, especially if the latter involves large values of L.

The same series of simulations were also conducted for the
OMD algorithm using the following regularization function
for (5): R(P) = §;P? so that OMD can perform larger
generation adjustments between consecutive time slots com-
pared to OGD, and resemble as much as possible the optimal
generation pattern. As we can observe from Fig. 2, the OMD
algorithm also achieved a sublinear regret in all three cases.
From the results of Fig. 1 and Fig. 2, it is clear that OMD:

(a) Converges much faster than OGD, i.e. in some days,
compared to 4 months.

(b) Achieves superior performance compared to the optimal
offline static solution, since the static regret goes to zero.

(c) Learns the optimal offline dynamic solution for small L.

Fig. 3 illustrates the cost for the cases of OMD, OGD and
the optimal offline dynamic solution with L = 2 - 106 MW
for a specific time window consisting of 8 days. It shows
that if the retailer applies OMD, then in most cases a much
lower cost compared to OGD is achieved, while in some cases
the cost is almost equal to the optimal offline solution for
large values of L (% = 423.1 MW). One interesting outcome
derived from Fig. 3 is that during night time, OMD has a
slightly higher cost than OGD. This happens most probably
due to its “aggressive” nature, but is insignificant compared
to the cost reduction during daytime.

Finally, in Fig. 4 we observe OMD and OGD perform
similar to what they would in a real setting, trying to learn
the optimal hourly amount of power generation, compared to
the offline solutions. OMD performs much better than OGD,
and it achieves faster convergence, while closely resembling
the power generation pattern of the optimal offline dynamic
solution for small values of L. OMD converges to the optimal
offline dynamic power generation policy much faster than
OGD, i.e. in a matter of some days instead of several months.
This translates to significant cost reduction for the retailer
that can utilize OMD to achieve a near-optimal performance
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in terms of total cost in a short amount of time, and in
the absence of prior knowledge about the unknown dynamic
processes.

IV. CONCLUSION

In this paper the framework of OCO is utilized for the
problem of learning the optimal energy supply plan for an
electricity retailer. Our model learns the power generation pol-
icy in an online manner without prior knowledge of customer
demand, renewable supply and market prices. In addition, we
use dynamic regret to characterize the online learning policy,
which is realistic since power generators can perform small
output adjustments between consecutive time slots due to ramp
constraints. Simulations with real smart grid data showed that
OMD can learn the optimal dynamic power generation policy
for small values of maximum path length much faster that
OGD, while also achieving lower cost for the retail company.

We identify several future research directions. Our model
is amenable to adaptation to different market structures, and
it would be interesting to investigate how it will change in the
presence of both day-ahead and intra-day markets. The cost
function can be enhanced by including a cost for realizing
DR. If the retailer is also an aggregator, then the cost would
amount to the DR incentives provided to consumers, otherwise
this cost would be that of remuneration of the aggregator to
perform DR on its behalf [17]. Energy trading could also be
incorporated in the cost, by allowing the retailer to sell excess
energy back to the grid at a possibly time-varying price.
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