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ABSTRACT
Distributed Hash Tables (DHT) are once again attracting research
interest, 20 years after their inception, as a promising solution for
scalable and decentralized content storage. A prominent example
is the InterPlanetary File System (IPFS), a distributed peer-to-peer
storage system with more than 20K online peers, which uses the
Kademlia DHT. We design and implement H-Kademlia, a hierarchi-
cal version of Kademlia for IPFS, where peers are distributed into
disjoint sets of users, or clusters. Peer clustering can offer resilience
to network partition, privacy of in-cluster content lookups, as well
as improved caching, content filtering and access control. We as-
sess the performance of IPFS over H-Kademlia via simulations that
use real traces from the IPFS network. Our findings show that our
design delivers the benefits of peer clustering, without significant
performance penalties.
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1 INTRODUCTION
Serving millions of downloads daily and supporting dozens of third-
party applications, the InterPlanetary File System (IPFS) [5] is an
increasingly popular solution for decentralized storage. Currently,
the IPFS network is present in over 150 countries and more than
2500 autonomous systems and is growing rapidly [20]. IPFS is a
fully decentralized storage system which achieves high reliability
via content replication across multiple storage nodes; it is widely
used to build highly resilient web sites and web-based applications.

Under the hood, IPFS is an open-source, content-addressable
Peer-to-Peer (P2P) content storage network. IPFS uses a Distributed
Hash Table (DHT) for content routing, that is, correlating “who
stores” with “what content;” specifically, IPFS relies on a tailored
version of Kademlia [13]. Similar to other DHTs, in Kademlia each
participating node, or peer, maintains a number of links to other
peers, so as to be able to locate a content item in a logarithmic
number of steps. Kademlia is a “flat” DHT in that each peer can
maintain links to any other peer. As a result, a single overlay link
between two peers can span a large distance over the actual Internet.

An alternative to the flat DHT organization is to start with clus-
ters of peers, for example, a cluster for the peers in each autonomous
system, and set up a separate DHT for each cluster. To interconnect
these clusters, we can use the Canon design paradigm [9], which en-
ables the construction of multi-level, DHT-based overlay networks,
through a progressive merging of individual DHT clusters, thus
creating a hierarchical DHT.

The resulting network allows locating content and peers in any
participating cluster, but with two additional properties: Local-
ity of intrA-Cluster Paths (LACP) and Convergence of intEr-Cluster
Paths (CECP). LACP assures that lookups for content located inside
a cluster will never exit the cluster. This enhances content avail-
ability in case of cluster partitioning, since “local” content remains
reachable, and improves privacy, since lookups for local content
are essentially hidden from the rest of the network. CECP assures
that lookups for the same “global” content item exit the cluster from
the same peer. This creates chances for caching, since any request
for that content will go through that peer, as well as other net-
work optimizations (e.g., overlay mutlicast delivery trees), and also
enables deploying security mechanisms, such as content filtering
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and access control. For example, assuming that all EU peers form
a cluster, the LACP property ensures that lookups from peers in
the EU for content that resides at peers within the EU will never
leave the EU cluster (which is a legal requirement for some types of
content, according to the GDPR); the CECP property ensures that
all lookups from peers in the EU for a blocked content item that
resides outside the EU, can be stopped at a unique EU peer.

The drawback of clustering is that by restricting the links be-
tween peers in different clusters to achieve the LACP and CECP
properties, paths to content can be made longer and it may be easier
for paths to break as peers come and go. Our goal in this paper is
to establish whether the cost of clustering is detrimental to IPFS.
Therefore, we apply the Canon paradigm to Kademlia, introduc-
ing Hierarchical-Kademlia (H-Kademlia), and adapt it to IPFS. Our
main contributions include (i) the first technical specification of
H-Kademlia, (ii) an open-source implementation of H-Kademlia
for the PeerNet Simulator,1 (iii) the integration of H-Kademlia to
IPFS and (iv) an evaluation of IPFS over H-Kademlia based on real
IPFS traces, showing that the H-Kademlia delivers the benefits of
clustering, without significant performance penalties.

The remainder of the paper is organized as follows. In Section 2,
we briefly describe IPFS, Kademlia, and hierarhical DHTs. In Sec-
tion 3, we detail our H-Kademlia design. In Section 4, we introduce
the setup of our evaluation. In Section 5, we evaluate the perfor-
mance of IPFS over H-Kademlia. Finally, in Section 6, we conclude
and discuss future work.

2 BACKGROUNDWORK
The InterPlanetary File System (IPFS) is a P2P system that stores
content items in a distributed, decentralized, and collaborative way.
Each IPFS node, or peer, can store and lookup content, also par-
ticipating in the routing of content storage and lookup requests.
Pointers to files are replicated on multiple peers in order to provide
resilience to failures. Redundancy is driven by a demand-oriented
replication policy that correlates replication to popularity, thus en-
hancing scalability. Currently, the IPFS network consists of roughly
20K active peers.2 Recent research indicates that IPFS suffers from
high rates of churn: 87.6% of user sessions last for less than 8
hours [20]. It also suggests that IPFS is challenged by slow content
publication, which takes over 33s for 50% of the publications, since
the high churn rate leads to inaccurate routing state and timeouts.

DHTs are fundamental components for many P2P systems, map-
ping identifiers (IDs) to values and supporting storing and looking
up content in a distributed manner. IPFS uses a tailored version of
the Kademlia DHT [13], adding the Coral [8] and S/Kademlia [4]
extensions. Kademlia uses the XOR metric to organize the network.
Every peer (and content) is assigned a unique ID of size 𝑠 (256 bits
in IPFS). Kademlia peers maintain 𝑠 KBuckets, storing information
about remote peers. The 𝑥𝑡ℎ KBucket of a peer stores information
about peers that have a common ID prefix of length 𝑥 − 1 with the
peer’s ID. Given an ID, Kademlia locates the (XOR-based) “closest”
peers to that ID in a logarithmic number of steps.

The Kademlia protocol introduces four types of messages: PING,
STORE, FIND_PEER, and FIND_VALUE. A PING message is sent to a

1https://github.com/PeerNet/PeerNet.git
2https://trudi.weizenbaum-institut.de/ipfs_analysis.html

receiver peer in order to verify that it is alive. A STORE message
conveys a request for storing a <ID, value> pair at the receiver
peer. A FIND_PEER message asks the receiver peer for the closest
peers to a given ID. A FIND_VALUE message requests the value
associated with a given ID which is stored at the receiver peer.

For content Lookup, the inquiring peer, which starts the process,
sends in parallel 𝑘𝑎𝑑𝐴 (3 in IPFS) FIND_VALUE messages to the
peers closest to the content’s ID, until either the entire network is
searched or the ID is found. When an inquired peer does not have
the content, it returns the closest peers to the requested ID based
on its local KBuckets, thus allowing the inquiring peer to move
closer to its target. Content Store is based on the same recursive
process. The difference is that the inquiring peer first locates the
𝑘𝑎𝑑𝐾 (20 in IPFS) closest peers to the content’s ID and then sends
a STORE message to each of them. A peer stops its search when
the lists of IDs in the responses do not contain any peer IDs closer
to the content ID compared to those already discovered.

When a peer Joins, it uses a “bootstrapping peer,” acquired
through an out-of-band mechanism. The new peer inserts the boot-
strapping peer into the appropriate KBucket, and then performs
a Lookup for the new peer’s ID. The new peer forwards to the
bootstrapping peer a Lookup for its local ID. During the Lookup
process, the new peer adds to its KBuckets information about the
peers with IDs closest to its own, and vice versa. Note that the
KBuckets are updated every time a new peer ID is found through
any received message. When a peer Leaves, it does not explicitly
notify anyone; Kademlia removes a peer from a KBucket after a
message to it remains unanswered for a predefined period.

Canon is a design paradigm that enables the construction of
multi-level DHT-based overlay networks, through a progressive
merging of individual DHTs, assuming a hierarchical structure of
the different peer clusters [9]. A Canon-based DHT achieves the
LACP and CECP properties mentioned in the previous section. A
brief discussion regarding the application of the Canon paradigm
to Kademlia is presented in [9]; to the best of our knowledge, this
paper is the first work to document, implement and experimentally
evaluate such a design.

Literature on hierarchical DHTs demonstrates specific advan-
tages over traditional flat designs [1]. Specifically, studies that sys-
tematically compare hierarchical and flat DHTs suggest that hier-
archical designs present reduced cost of maintenance and size of
routing state [11], better fault isolation and enhanced provisioning
of content placement, at the cost of higher intercluster traffic [14]
and longer routing paths [10].

Hierarchical DHTs can be grouped into two categories [1, 21]:
horizontal, in which all peers are equal, and vertical, in which a
relatively small group of “super” peers behave as proxies that in-
terconnect clusters. In a horizontal system, hierarchy is built by
merging clusters; during this process, all peers add links to a number
of peers in sibling DHTs. In a vertical system, a tree-like hierar-
chy is created from self-contained DHTs, where transition from a
lower-level cluster to an upper-level one is realized only through
super peers which are members of both clusters. Artigas et al. [1]
verify the claim of [9] that horizontal hierarchical DHTs achieve
better load balancing and greater resilience to failures compared to
vertical designs. In addition, horizontal systems, which can be built
by slightly modifying existing flat DHT designs, allow for code

https://trudi.weizenbaum-institut.de/ipfs_analysis.html
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reuse and (possibly) incremental deployments (i.e., co-existenceof a
flat DHT and its corresponding hierarchical variant). Furthermore,
they do not impose any requirements on how peers and content
identifiers are constructed. Finally, they do not require special pur-
pose, powerful super peers to take on extra responsibilities. Such
a requirement would contradict the decentralized nature of IPFS,
introducing security and privacy concerns.

A vertical design for H-Kademlia is introduced in [12]; it uses
super-peers for inter-cluster communication and correlates clusters
with peer identifiers. That work does not delve into the imple-
mentation specifics of the protocol and only examines the design
analytically. Our H-Kademlia design follows instead the horizontal
paradigm, with cluster-independent peer IDs and no super peers.
This is critical for IPFS, where peers and content identifiers are cryp-
tographically associated with specific physical peers and content
items, respectively, thus preventing the use of [12].

H-Pastry [7] is probably the most similar hierarchical DHT to H-
Kademlia. H-Pastry is a multi-level DHT implemented by adapting
the Pastry DHT following the Canon approach and by adding sup-
port for multihoming and peering relationships. H-Pastry cannot
be easily used for IPFS which is deeply intertwined with Kademlia.
In contrast, H-Kademlia can introduce hierarchical clustering into
IPFS, without altering the IPFS implementation itself.

3 H-KADEMLIA DESIGN
Our H-Kademlia design introduces a modified KBucket mainte-
nance process which differentiates local peers (from the same clus-
ter) and remote peers (from a different cluster). In H-Kademlia, a
peer can maintain links to any local peers. However, it can only
maintain a link to a remote peer if it is the XOR-wise closest one to
that remote peer among all peers in its cluster. Therefore, a peer 𝐴
performs the following checks before inserting a candidate peer 𝐶
in its KBuckets:

• If peer 𝐶 is remote, then peer 𝐴 searches for the peer in its
cluster that is the closest one to 𝐶 .
– If that is not 𝐴, then 𝐴 does not store a link to 𝐶 .
– Otherwise, 𝐴 inserts a link to 𝐶 in its KBuckets; we say
that 𝐴 becomes its cluster’s gateway peer for 𝐶 .

• If peer 𝐶 is local, then it is always added in 𝐴’s KBuckets; in
addition,𝐴 removes any links to remote peers that are closer
to 𝐶 than to 𝐴, as 𝐶 should become their new gateway peer.

Figure 1 shows the H-Kademlia operations during a Store and a
Lookup, using a network of four peers in two clusters; the degree of
replication (𝑘𝑎𝑑𝐾 ) is 2, meaning that each content item is stored in
2 peers, and the degree of parallelism (𝑘𝑎𝑑𝐴) is 1, meaning that each
lookup is not sent in parallel to multiple peers. We also assume that
the peers have already populated their KBuckets with peer IDs.

Figure 1(a) shows the resolution of a Store request where peer
010 wants to store some content with ID 110. The cluster’s gateway
peer for ID 110 is peer 111, hence only local peer 111 has a link
to remote peer 110 in its KBuckets. Peer 010 starts by sending a
FIND_PEER message to peer 111, which is the closest peer to the
content ID in its KBuckets (message 1); peer 111 sends back peer ID
110 and the ID of one of the other two peers which are close to the
content ID (message 2); peer 010 sends a request to the next closest
non-inquired peer, that is, peer 110 (message 3), which finds and

(a)

(b)

Figure 1: H-Kademlia resolving (a) a Store and (b) a Lookup
request in a network of four peers (circles) in two clusters
(dotted circles). The lines indicate overlay links, the arrows
indicate messages and the numbering shows the sequence of
the messages.

returns the IDs of the 𝑘𝑎𝑑𝐾 closest peers to the content ID (message
4). As no new peers were discovered, peer 010 concludes that the
process is done and sends STORE requests to the 𝑘𝑎𝑑𝐾 peers closest
to ID 110, namely, peers 111 and 110.

Figure 1(b) shows the resolution of a Lookup request where peer
000 searches for content ID 110; the gateway peer for content ID
110 is peer 111. If peer 000 does not find a locally stored copy of the
content, it sends a FIND_VALUE request to the closest peer to that
content ID in its KBuckets, peer 111 (message 1). Peer 111 searches
locally for the content, and if the search fails it replies with the
IDs of the 𝑘𝑎𝑑𝐾 closest peers in its KBuckets (message 2). Peer 000
sends a request to peer 110 (message 3), which satisfies the request.

These examples illustrate the two properties of the Canon para-
digm (and, by extension, H-Kademlia). First, all requests that con-
cern a non-local peer ID exit the cluster through the same gateway
peer (CECP). This property is useful for caching, as it ensures that
all lookups for a content ID will go through the gateway peer. Sec-
ond, all requests that can be resolved locally, never exit the cluster
(LACP). This property is useful for implementing traffic control
policies, including security and access control mechanisms. Both
properties arise due to the decision to only store a link to a re-
mote peer at the peer closest to it. Note that as the only change
to flat Kademlia is the policy of inserting links to the KBuckets,
H-Kademlia can be gradually adopted by the IPFS network.

Peers need a mechanism to decide whether other peers are lo-
cal or remote, in order to implement H-Kademlia. This can be an
out-of-band mechanism, such as an online service, or a distributed
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procedure that each peer can perform. Depending on the cluster-
ing scheme, different mechanisms may be appropriate. For a fixed
clustering method, e.g., based on the peer’s country of origin, an
out-of-band bootstrap mechanism can assign cluster IDs to the new
peers and respond to cluster ID queries. For a dynamic clustering
method, e.g., based on inter-peer latency, the peers should exchange
clustering-specific messages in order to infer and share changes in
network topology. Without loss of generality, we assume that each
peer knows the cluster it belongs to and shares this information
with other peers by including it in Kademlia messages.

Caching can deliver an additional performance gain to hierar-
chical DHTs by resolving requests within a cluster. In our system,
each peer opportunistically stores the traffic it forwards. Without
loss of generality, we assume a First In First Out (FIFO) replacement
policy, according to which each received content item is inserted
in the cache, evicting the oldest content item when cache is full.
Thereafter, upon the receipt of a Lookup request, each inquired peer
searches its cache and, if the item is found locally, it returns it to
the inquiring peer. Responses from remote peers are also cached
at the gateway peer for their content ID; future requests for the
same content will always flow through the gateway peer, due to
the CECP property.

H-Kademlia can be used as a defense mechanism against com-
mon DHT threats. For example, due to the LACP, H-Kademlia guar-
antees that Lookup requests for locally stored content will always
succeed, even when the DHT network is under an external Eclipse
attack [18], i.e., an attacker “eclipses” some peers by “poisoning”
the routing protocol. H-Kademlia is resilient to this type of attack
since routing entries for “local” peers have higher priority.

The clustering scheme is orthogonal to the design of H-Kademlia
since, asmentioned previously, the only requirement forH-Kademlia
to operate is that peers should be able to decide whether another
peer is local or remote. However, the clustering scheme determines
what we can achieve by clustering the peers. For instance, a latency-
based clustering, that “minimizes” the intra-cluster latencies, is ex-
pected to mitigate the lookup latency when the content source and
the peer that emits the Lookup request reside at the same cluster.
Note that, in H-Kademlia, a latency-based clustering policy would
act as the second routing metric, akin to Pastry’s ability to consider
the link latencies when updating the routing table [15].

In our experiments, clusters were based on the peer’s country of
origin. This policy is appropriate for supporting security mecha-
nisms and access control policies for multi-level DHTs. For exam-
ple, due to international content distribution agreements, content
availability can be restricted within a country; the LACP property
ensures that these requests will be satisfied locally. Peers within the
same country are likely to experience lower latency, thus combining
management and performance considerations. At a second level,
we could group all EU countries into a merged cluster, ensuring
that EU originated requests for EU hosted content do not leave the
EU, as mandated by the GDPR for some types of content.

Alternatively, by forming clusters based on trust metrics, rather
than topology-based metrics, H-Kademlia can provide resilience
against Denial-of-Service (DoS) attacks, where attackers refuse to
forward or respond to a query [6]. Such a trust-based clustering
approach can also be used as a building block for a query privacy
mechanism [2]: in H-Kademlia a query is initially routed through

intra-cluster (trusted) peers and only if no result is found, it exits the
cluster through the gateway peer, which can act as an obfuscation
point for the query.

4 EVALUATION SETUP
We have implemented Kademlia and H-Kademlia on PeerNet, a well-
established simulator for P2P networks, using real IPFS traces to
drive the evaluation. We selected the following metrics to explore
the performance of H-Kademlia:

• Path length (ℎ𝑜𝑝𝑠): the distance that a request travels until
it reaches its destination, in overlay hops.

• Latency (𝑚𝑠): the time between the emission of a request and
its completion, that is, when one peer is found for a Lookup,
or all peers are found for a Store.

• Success ratio (%): the ratio of Lookups that are successfully
resolved.

• Routing state (𝑝𝑒𝑒𝑟𝑠): the number of peers that are main-
tained in the KBuckets.

• Store receivers (𝑝𝑒𝑒𝑟𝑠): the number of peers that are selected
to store a content item in a Store.

• Inter to Intra-Cluster Ratio: the ratio of inter-cluster to intra-
cluster messages in Lookups and Stores.

To evaluate the performance of H-Kademlia under realistic condi-
tions, we started with traces of actual IPFS network traffic provided
by Nebula, an IPFS crawler.3 We analysed the traces and inferred
the value distributions of the parameters critical to our evaluation,
such as peer churn, network topology, network size, content pop-
ularity, and request rate. Subsequently, we fed values from these
distributions to our simulations. This allowed us to simulate diverse
scenarios, rather than the specific scenarios provided by the traces.
As the generation of the input parameters was stochastic, we tested
multiple input data sets and we present the average measurements.

Churn. To describe churn, we consider three peer session param-
eters: the overall up-time, the number of sessions (or re-connections)
and the down-time between sessions. We infer the up-time distribu-
tion from [16] (Fig. “peer classification”). Traces in [19] (Fig. “inter-
arrival time") depict the CDF of the unavailability period (between
two consecutive sessions) in the IPFS network. From the same
traces, we determined the number of sessions that the peers con-
ducted within the trace period and inferred the distribution that
relates the percentage of peers to the number of re-connections.
For the simulations, we generated a random churn profile for each
peer according to these distributions.4

Network topology. Network topology consists of peer location
and overlay link latency. We inferred the peer location distribution
from [17] (Fig. “geolocation of on peers”). Then, we synthesized
a link-latency matrix at the country level (for scalability) based
on publicly available global RTT measurements made by cloud
providers.5 By combining the location distribution and the latency
matrix, we approximated the latency between every pair of peers.

3https://github.com/dennis-tra/nebula
4As we combine the results of crawls with different timespans, we scale them down to
a two-day duration, the minimum one among the crawls.
5https://learn.microsoft.com/azure/networking/azure-network-latency
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Figure 2: Performance comparison of H-Kademlia and Kademlia: Store requests.

Network size. Due to churn, the number of (unique) peers seen
differs from the number of up peers at any specific time. We deter-
mined the number of unique peers from the number of up peers
and the mean up-time of peers. The number of up peers is 10K
to 12K [19] (Fig. “crawl time series"). The mean up-time of peers
in [16] (Figs. “peer classification” and “reliability”) suggests a 3.7 ra-
tio of active to up peers, hence our simulations use 37K unique peers;
this is consistent with the 54K unique peers in 7 days from [19].

Content Popularity and Request Rate. Content popularity in IPFS
is assessed in [3], which reports the total number of Lookups re-
ceived for a particular content item over a given period; this study
indicates that the IPFS network handles roughly 10M requests daily.
Hence, we generated a traffic workload with size equal to the over-
all requests, i.e., 20M for 2 days, and roughly 20K individual content
items. Due to computational and memory constraints, each experi-
ment simulates 1.5M requests (3.6 hours of IPFS operation). We are
not aware of any studies characterizing Stores for IPFS or similar
P2P networks, hence we also use the distribution of [3] for Stores,
assuming an 1:4 ratio of Stores to Lookups.

Our setup does not consider the correlation between different
input parameters, e.g., different churn rates for different countries;
peers are randomly assigned location, reliability and other parame-
ters. The configuration parameters of (H-)Kademlia are those used
in IPFS: 256 bit IDs, 𝑘𝑎𝑑𝐴=3 and 𝑘𝑎𝑑𝐾=20. The error detection
timeout is 2s and we explore four different IPFS modes: Kademlia,
Kademlia with caching, H-Kademlia and H-Kademlia with caching.

5 PERFORMANCE EVALUATION
5.1 Store requests
In Fig. 2 we present themetrics related to Stores: path length, latency
and store receivers. All figures show the evolution of the metrics as
the 1.5M requests are being issued. Hierarchy and caching does not
seem to affect any of the metrics. In parallel, we notice a increasing
trend in hops and latency suggesting that the metrics may have
not yet converged, which is in accordance with the findings of
paper [20] that reports that “publication” latency can reach up to
150-s. The application of the hierarchical scheme and caching does
not improve the performance of the Store process but does not
make it worse either.

5.2 Lookup requests
In Fig. 3 we present the metrics related to Lookups: path length (in
hops), latency and success ratio. The results indicate that the number
of hops grows by approximately 0.5 hops with H-Kademlia, but is
reduced by roughly 0.2 hops with caching. The difference is more
evident for latency, where the hierachical design increases latency
by roughly 150 ms and caching offers approximately 50 ms latency
reduction. The success ratio is affected as well: H-Kademlia has
an approximately 5% lower success ratio; caching increases this
success ratio by approximately 3% (slightly less for flat Kademlia).

Since the difference in path length is not significant, we infer that
the latency overhead of H-Kademlia can be attributed to presenting
more re-transmissions. The hierarchical design reduces the number
of acceptable peers in the Kbuckets (see also Fig. 4, where the
KBucket size in hierarchical mode is consistently lower), making it
harder to locate peers under peer churn. To verify our inference,
we ran the experiment without churn and found that H-Kademlia
and Kademlia present similar latency.

Finally, we observe that caching does not have a substantial
effect on the Lookup performance of H-Kademlia for two reasons.
First, Lookups are sent in parallel to 𝑘𝑎𝑑𝐴=3 “one-hop-away” peers,
therefore content can be found at two other local peers besides
the gateway peer, hence caching cannot greatly exploit the CECP
property. Second, the cached responses in our experiments comprise
roughly 23% of the successful Lookups, but they are only shorter by
around 0.5 hops (compared to the origin peer). Caching should have
more prevalent effects on larger networks, but since in Kademlia
path length grows logarithmically to the network size, this would
mean very large networks.

5.3 Topology awareness and clustering
In Fig. 4 we present metrics related to topology awareness and
clustering: KBucket size and Inter:Intra-cluster ratio for Stores and
Lookups. The routing state (KBucket size) is consistently smaller
for H-Kademlia; there are roughly 20 fewer peers compared to
Kademlia. Although this issue does not severely challenge operation,
it explains the small performance disadvantages of H-Kademlia seen
in previous experiments. With no churn and complete topology
awareness, the number of peers in the KBuckets would be 200 peers,
hence the churn observed in the IPFS traces penalizes the topology
awareness of the peers by 20% to 30%.
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Figure 3: Performance comparison of H-Kademlia and Kademlia: Lookup requests.

Figure 4: Performance comparison of H-Kademlia and Kademlia: Topology awareness and clustering.

For the “Inter:Intra-cluster”message ratio for Lookups and Stores,
note first that the clustering for flat Kademlia is virtual; the met-
rics are estimated a posteriori based on the clustering used in the
equivalent H-Kademlia experiments. We observe that H-Kademlia
significantly increasesmessage locality for both Stores and Lookups,
respectively. Specifically, for H-Kademlia the ratio of inter-cluster
to intra-cluster messages is 1.15 and 0.6 for Stores and Lookups,
respectively, compared to 1.55 and 1.4 for flat Kademlia, thus a
significant portion of traffic is confined within the cluster.

In addition, we observe that caching can reduce the overall dis-
tance to discovered peers; the discovered network “shrinks” around
the reference peer because caching reduces the length of the paths.
This assumption is indicated by the inter-to-intra cluster ratio of
messages sent during Stores, shown in Fig. 4 for H-Kademlia, where
caching reduces the number of inter-cluster messages, thus favoring
“shorter” intra-cluster links.

5.4 Discussion
Our evaluation suggests that H-Kademlia offers the benefits of
clustering to IPFS without significant performance penalties. Even
though the parallelism and extensive content replication of Kadem-
lia reduce the performance gains promised by the CECP property,
the LACP property is prevalent in H-Kademlia. In the following,
we summarize these effects:

• The routing state of H-Kademlia is smaller, since the inter-
cluster peers are filtered.

• The performance of Lookups is slightlyworse forH-Kademlia,
due to routing through the gateway peer.

• Locality is significantly increased by H-Kademlia, for both
Lookups and Stores.

• Caching is not effective in H-Kademlia, due to the parallelism
of requests.

• Caching can reduce the topological awareness of Kademlia
nodes by reducing the length of paths.

• Our findings show similar trends with the actual measure-
ments of IPFS in [20], i.e., timeouts due to unresponsive peers
penalize the latency of Stores but not Lookups.

6 CONCLUSIONS AND FUTUREWORK
This paper introducedH-Kademlia, a hierarchical DHT design based
on Kademlia and the Canon paradigm. We designed, implemented
and evaluated H-Kademlia in PeerNet, as a candidate DHT for the
growing IPFS network. In our simulations, we considered real IPFS
traces that capture user activity in terms of user location, churn,
and content requests. Our findings show that in the case of IPFS,
H-Kademlia can enhance the locality of requests, reducing the cost
of inter-cluster traffic and facilitating the implementation of several
security mechanisms, at the cost of a minor performance loss in
Lookup latency and success ratio.

Due to space limitations, we did not consider alternative cluster-
ing approaches. To enhance performance, a fine-tuned clustering
policy that leverages Kademlia’s parallelism and content replica-
tion could deliver better results. To enhance security, clustering
mechanisms based on peer profiles, i.e., white lists and cryptogra-
phy support, can instead be considered. Finally, an important topic
for future work is evaluating the performance of IPFS under an
incremental deployment of H-Kademlia to selected peer clusters.
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