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Abstract—The PRE-ACT project is a newly launched Horizon

Europe project that aims to use Artificial Intelligence (AI) to-

wards predicting the risk of side effects of radiotherapy treatment

for breast cancer patients. In this paper, we outline four main

threads pertaining to AI and computing that are part of the

project’s research agenda, namely: (i) Explainable AI techniques

to make the risk prediction interpretable for the patient and

the clinician; (ii) Fair AI techniques to identify and explain

potential biases in clinical decision support systems; (iii) Training

of AI models from distributed data through Federated Learning

algorithms to ensure data privacy; (iv) Mobile applications to

provide the patients and clinicians with an interface for the side

effect risk prediction. For each of these directions, we provide

an overview of the state-of-the-art, with emphasis on techniques

that are more relevant for the project. Collectively, these four

threads can be seen as enforcing Trustworthy AI and pave the

way to transparent and responsible AI systems that are adopted

by end-users and may thus unleash the full potential of AI.

I. INTRODUCTION

Artificial Intelligence (AI) applications are rapidly perme-
ating and transforming many areas of society and have already
widespread use in the analysis of biological and medical data.
The medical science is actively seeking opportunities to apply
AI towards automating and optimizing notoriously difficult
predictive tasks so as to provide tangible benefits to society.
Examples include personalized healthcare, patient monitoring,
drug development, advanced prognosis, among others.

The PRE-ACT project1, under the full name “Prediction of
Radiotherapy side effects using explainable AI for patient com-
munication and treatment modification” is a Horizon Europe
project that aims to apply AI to predict the risk of side effects
following radiotherapy treatment for breast cancer patients.
The project aims to deliver a framework, grounded on solid and
novel AI concepts, for prediction of radiotherapy side effects
and subsequently utilize it to inform about optimal treatment.
The project’s prime focus is on arm lymphoedema, since it is
one of the most disabling side effects in the commonest cancer
type, with comparatively high long-term survival. Other side
effects are acute skin toxicity, late breast toxicity (e.g., breast

*Equal contribution
1https://preact-horizoneurope.eu/

atrophy), and cardiac toxicity. The project consortium includes
researchers in the UK, Greece, Netherlands, France, Italy and
Switzerland, with the combined expertise in computing, AI,
radiation oncology, medical physics, genetics, psychology and
health economics that is necessary to tackle this problem.

The project will leverage data from three multi-centre
patient European cohorts to train AI models for risk prediction
of the aforementioned side effects. Data include patient medi-
cal records such as comorbidities, anatomy, demographics, as
well as treatment data, radiotherapy dose distribution data,
Computerized Tomography (CT) scans, auto-contouring of
critical organs in CT scans, and genetic data. The project
will use these data to train AI models. A communication
package that will emerge through a systematic participatory co-
design methodology with patients and physicians, will ensure
that predictions from the AI model will be presented in a
meaningful, explainable manner to patients and clinicians to
inform their joint decision-making regarding the choice of
radiation treatment option.

The impact of explainability of the AI model will be
assessed in a clinical trial that comprises two arms, namely
two disjoint subsets of recruited patients. In the first arm,
the personalised risk prediction will be communicated to
physicians and patients, while in the second arm, it will not.
Subsequently, in the patient followup period, the impact of
explainability will be assessed through the rate of occurrence
of arm lymphoedema, and through other quality of life in-
dicators for patients. The ultimate goal is to demonstrate that
risk communication in an explainable manner improves patient
quality of life. In this paper, we provide an overview of a
number of AI and computing technologies, we outline key
points and motivate their use in the context of the project.
These technologies are:

• Explainable AI models that demystify the hidden
black-box AI prediction models through easy-to-
understand explanations;

• Decentralized training of AI models using advanced
Federated Learning algorithms;

• Fairness considerations in the AI algorithms that aim
at uncovering and explaining potential biases in data.



• Mobile and web applications that emanate from a co-
design approach with patients and physicians and aim
at presenting the risk prediction to them.

II. EXPLAINABLE ARTIFICIAL INTELLIGENCE

The evolution in the field of AI has led to the predominance
of several contemporary and complex methods such as Neural
Networks (NNs) when AI is applied to decision-making pro-
cesses. In the health domain decisions have a large impact
on individuals, yet modern AI methods provide a limited
understanding of their predictions [1]. Due to the criticality
of such domains, model understanding is essential so that
humans trust the model’s predictions. EXplainable Artificial
Intelligence (XAI) aims to provide explainable predictions,
leading to insights that can prove useful to various stakeholders
such as patients, doctors, and regulatory authorities [1].

XAI methods can be arranged to several taxonomies ac-
cording to different criteria such as the scope of the explana-
tion, i.e., whether it concerns explanation of a single instance x
regarding a single patient (local explainability) or explanation
of the whole model behavior for all the health data it has
encountered (global explainability). Local methods are further
categorized based on the explainability principles that each
algorithm is based on, as well as whether the algorithm is
model-agnostic (i.e., it does not require access to the model
architecture) or model-specific. In this section, we discuss two
well-known families of explainability methods, namely feature
attribution and propositional rules.

A. Feature Attribution
Feature attribution (FA) methods are explanation tech-

niques that assign significance scores to features based on
certain criteria. A feature’s score captures its contribution to
the predicted value of an instance. For example, given a single
patient’s data, the model predicts a certain probability for the
side-effect of lymphoedema, and a feature attribution method
can be used to highlight how critical each feature was to
the model’s prediction. One well-known method which can
be used for FA, LIME (Local Interpretable Model-agnostic
Explanations) [2], yields a local explanation by training an
interpretable model on a new sampled dataset consisting of
perturbed samples of the original dataset and the corresponding
predictions of the “black box” model. Each new sample is
also weighted by the proximity of the sampled instances
to the instance of interest x. The features’ importance is
then acquired by an interpretable (surrogate) model, e.g., the
weights of a linear regression model.

LIME’s output is an inherently interpretable model g,
acquired by minimizing the loss L (e.g., MSE) which measures
how close the prediction of g is to the prediction of the
original model f , while model complexity ⌦(g) is kept low
(for example, we prefer fewer features included). Finally, the
proximity measure ⇡x defines the weighting scheme for the
neighbors.

explanation(x) = argmin
g2G

L(f, g,⇡x) + ⌦(g) (1)

Feature attribution methods are a very promising subfield of
XAI but their dependence on perturbations make them fragile
and prone to adversarial attacks [3]. Methods to make them

more robust as well as ways of combining them with concepts
like Federated Learning (FL) where data access is not trivial,
could constitute directions for future research.

B. Rule Extraction
Many early AI applications relied on expert systems that

performed reasoning using propositional rules. As the present
state of an expert system can always be described by the
numerous inferences derived from the beginning state, these
systems were intrinsically explainable. Consequently, convert-
ing the classifications of the NN models into propositional
rules is a natural way to describe them.

A conclusion and one or more rule antecedents are both
included in propositional rules. A rule antecedent Ai is for-
mally defined as ai < ti, or ai � ti, where ai is an input
variable and ti is a constant. Then, a propositional rule with k
antecedents is: “if A1 and . . . and Ak then Conclusion”. “Con-
clusion” is a class in the context of data classification. Golea
demonstrated that explainability of Multi-Layer Perceptrons
(MLPs) by means of propositional rules is NP-hard [4]. The
number of rules and the number of antecedents per rule are two
criteria that are frequently used to define the complexity of the
extracted rules. Rulesets with less complexity are preferable,
because they are easier to understand at first glance.

If it is possible to arrange data in tables, that is, in rows
and columns where each piece of information is always placed
in the same position, then the data is said to be tabular.
Data represented by images is not tabular, because the same
object could appear in multiple locations. Deep NNs are not
clearly superior to well-known machine learning models, such
as MLPs, Support Vector Machines (SVMs), ensembles of
models, etc., for tabular data. Many scholars tried to use
propositional rules to explain the knowledge that is included
in MLPs and SVMs. A thorough survey of rule extraction
methods to explain MLP responses was provided by Andrews
et al. [5]. Furthermore, a review of numerous explainability
strategies was presented for SVMs [6].

Whether propositional rules are ordered or not is a key
aspect to consider. Ordered rules are given as:

if tests1 on antecedents are true then . . . ,
else if tests2 on antecedents are true then . . . ,
. . . ,
else . . .

The word “else” is absent in unordered rules. A sample can
therefore activate more than one rule. Long ordered rulesets
are challenging to understand because they may contain a large
number of implicit antecedents, particularly those negated by
“else if” (belonging to previous rules). As all rule antecedents
are explicitly presented, unordered rulesets typically present
more rules and antecedents than ordered ones, making them
more transparent. As all antecedents are explicitly stated,
each rule in an unordered ruleset reflects a distinct body of
knowledge that can be analyzed separately. One would attempt
to fully comprehend the significance of each rule in relation
to the data domain while dealing with a large number of
unordered rules. Acquiring the big picture could take some
time.

There are nodes and edges in a binary decision tree (DT),
which is a recursive structure. A predicate with respect to an



attribute is represented by each node. Based on its value, the
classification route for a sample proceeds to either the left or
right branch until it reaches a terminal node. A propositional
rule is defined by each route leading from the root to a terminal
node. DTs are therefore always comprehensible.

Model ensembles frequently offer greater accuracy than a
single model. Several ensemble learning techniques, including
bagging [7] and boosting [8], were proposed. They have
been used with NNs and DTs. Yet, even DTs that can be
simply translated into propositional rules, when coupled in an
ensemble lose their interpretability. Two major techniques are
used with ensembles of DTs to produce propositional rules.
The first makes an effort to make DTs more diverse in order to
decrease the number of DTs in an ensemble. As a result, with
a small number of trees, all of the rules that each tree produces
are considered. Examples of methods for diversity optimization
are described in [9]. With the second group of methods, the
main strategy is to remove as many rules as possible.

Few studies were achieved on NN ensembles for rule
extraction. To produce unordered propositional rules from
ensembles, one of the authors suggested DIMLP ensembles
[10], [11]. Specifically, by pinpointing the exact location of
axis-parallel discriminative hyperplanes, propositional rules
were produced. The REFNE algorithm was introduced by Zhou
et al. [12] (Rule Extraction from Neural Network Ensemble).
A trained ensemble creates new samples in REFNE before
extracting propositional rules. Additionally, attributes are dis-
cretized, and specific fidelity evaluation procedures are used.
Finally, there were only three possible antecedents for rules.
Johansson created rules from ensembles of 20 neural networks
using the genetic programming method [13]. Here, the opti-
mization problem of rule extraction from ensembles was seen
as a trade-off between accuracy and comprehensibility. Finally,
for a small ensemble of MLPs, Hara and Hayashi presented a
rule extraction technique [14].

III. FAIRNESS IN CLINICAL DECISION SUPPORT SYSTEMS

The increasing availability of Electronic Health Records
(EHR) and the rapidly growing predictive power of AI models
have contributed to both the advancement of research and
the creation of business opportunities for deploying clinical
Decision Support Systems (DSS) in healthcare facilities [15],
[16]. With this growth, however, comes a concern that these
models may learn undesired spurious correlations during the
training process, with the resulting decisions being polluted by
unintended biases. While there is growing interest in the AI
community to address biases and fairness-related issues [17],
[18], many of these efforts are still in the early stages of
development. Quantitative and systematic auditing of real-
world datasets and AI models is a nascent field, and there is
a need for interdisciplinary approaches to define, investigate,
and provide guidelines for tackling these issues.

The definition of fairness is a complex and multi-faceted
concept, and its meaning can differ depending on the context
and the perspectives of the partners involved [19]. In the
context of AI and ML, fairness can refer to a variety of
properties such as equal treatment, equal opportunity, and
equal outcomes. Questions of fairness are often approached
as mathematical problems where researchers and practitioners
tend to adopt a quantitative perspective, focusing on developing

models that meet specific criteria, such as equal allocation,
representation, or error rates. This is often done by framing
the task of model development as a constrained optimization
problem, where fairness constraints are incorporated into the
optimization process. The specific constraints used in this
process may be informed by laws, social sciences, and philo-
sophical perspectives. By using a quantitative approach, AI
practitioners aim to optimize models for fairness, balancing
it with other objectives such as accuracy or efficiency. In the
context of clinical decision support systems, fairness may be
defined as providing equal treatment to all patients regardless
of their protected characteristics, such as gender or ethnicity.

Clinical ML models are often trained in heterogeneous
contexts, possibly with data collected from different popu-
lations. When designed without special constraints regarding
fairness, such models are likely to exhibit biases and non-
fairness problems. Bias can arise from various sources, such
as the data used to train the model, the choice of features
and algorithms, or the distribution of the data across different
groups. Therefore, it is crucial to evaluate the fairness of a
model regardless of how it was developed. This evaluation
can be performed using fairness metrics and by examining
the model’s predictions for different groups and demographic
variables. The results of this evaluation can inform decisions
about the deployment and usage of the model, and can also
be used to identify areas for improvement and future work.

Seminal works [20], [21] have shown that increasing
awareness about the possible fairness issues in a ML model
leads to increased transparency. By thoroughly evaluating the
fairness of a model and explaining their origins with XAI
methods, practitioners can better understand its strengths and
limitations and make informed decisions about its deployment.
This process can also identify areas for improvement in the
whole process, from the data collection to the model develop-
ment and validation.

The PRE-ACT project will develop a fairness management
pipeline, with the goal of detecting biases and providing ex-
planations about their nature. The first fundamental component
will be to stratify the patient data according to protected
demographic attributes such as age, ethnicity, and income
proxies - creating both basic and intersectional subgroups.
The performance of the model will then be evaluated on all
subgroups, so that disparities can be highlighted. This will
allow to assess whether the model performs relatively poorly
on subgroups of patients with specific demographic traits.
Besides performance measure, the kind of per-subgroup ML
misdiagnoses will be collected and analysed, thus providing
a preliminary landscape of common misclassifications for all
patient sub-cohorts.

Furthermore, explainability techniques will be exploited to
obtain explanations about the aforementioned mistakes. As a
result, both ML developer and clinical personnel will receive
subgroup-level, human-understandable information about the
driving causes of the model’s erroneous outputs. This infor-
mation can in turn be exploited to address the collected data,
the training process, or the clinical reliability as a whole.

IV. FEDERATED LEARNING

AI can be used with health data to improve clinical services
and make health predictions. However, this kind of data



Fig. 1. The concept of FL. Participants share only model parameters and
keep their sensitive data private.

is stored in various locations and cannot leave from these
locations. Federated Learning (FL) is a distributed Machine
Learning (ML) paradigm that enables the training of a global
model on such private and decentralized data, by exchanging
only models’ parameters instead of the actual data samples
[22]. FL consists of two phases (Fig. 1), which are repeated
until convergence: (i) the local training phase, where each
participant trains its model locally on its own data and updates
the model’s parameters by using, for example, stochastic
gradient descent (SGD) and (ii) the global aggregation phase,
where the updated parameters of the locally updated models
from each participant are aggregated and averaged at a server,
to obtain a new global model which in turn is sent back to all
participants to initiate the next training round. In healthcare,
FL is particularly useful as it allows for the creation of
models that can be trained on patients’ multi-modal data (e.g.,
medical images, genomics etc.) from multiple sources, such as
hospitals and clinics, where regulatory policies or protection
mechanisms for the data might exist [23].

Concretely, in the FL setting, hospitals can first leverage
their local data to train their model and then share only their
trained model’ s weights with a server. There, these weights
are aggregated (e.g., in the simplest form by averaging them)
to create a global model, which in turn is sent back to all
participants to initiate the next round. After consecutive rounds
of updated weights exchange and aggregation, a global model
is created that can for example predict which patients are
at substantial risk of certain side effects, so that the most
effective treatment can be decided. At the same time, the
sensitive health-related data remain under the control of the
individual hospitals, which helps to protect patients’ privacy.
Despite extensive research efforts, there are still two main
challenges of FL in healthcare, in the context of hospital data,
personalization and data heterogeneity and thus, the goal of
PRE-ACT is to develop novel methods to address them.

A. Personalization
The plain FL scheme only develops a common output for

all data holders (i.e., the hospitals) and therefore it does not
adapt the model to each data holder’s requirements. Specifi-
cally, in settings where the data are heterogeneous, e.g., non-
independent and identically distributed (non-IID), the resulted
global model obtained by minimizing the average loss (of all
participants) could perform arbitrarily poorly once applied to

the local dataset of each data holder. To this end, Personalized
Federated Learning provides a solution as it allows for tailoring
the machine learning model to the specific needs and charac-
teristics of individual data holders. A state-of-the-art approach
for addressing the challenges of personalization under non-iid
data distributions is proposed in [24]. The authors separate the
model into client-specific and shared parameters and perform
an unbiased SGD step over both to find an exact solution to
the optimization problem.

The dominant approach for personalization is local fine-
tuning, where each client receives a global model and tunes
it by using its own local data and performing several gradient
descent steps. This approach is predominantly used in meta-
learning methods such as model agnostic meta-learning [25] or
Transfer Learning [26]. The main drawback of these methods
is that the personalized model is bound to overfit as there is an
inevitable tradeoff between personalization and global model
performance. In addition, when data are heterogeneous among
clients, using personalization in FL can be challenging and
developing efficient methods for handling unbalanced data and
class imbalance across clients is still an open problem. PRE-
ACT will address these issues from various perspectives, for
example an approach can be to train more than one model, such
that each model is used to predict side effects for patients of
a specific cohort.

B. Data heterogeneity in Federated Learning
Another challenge in FL is data heterogeneity which refers

to the presence of dissimilar or diverse features in datasets
or even to missing and inconsistent data among data holders.
Especially in cases where data types differ, sharing a common
model for each data holder is challenging. To address this
issue, each client could have its own model parameters, rather
than a shared model across all clients. Therefore, the model is
able to adapt to the specific feature space of each data holder.
For example, in [27] instead of sharing the model’s parameters,
they train locally a Generative Adversarial Network (GAN)
and exchange synthetic images instead of model’s weights.
Unavoidably, such methods lead to inferior performance when
compared against the standard FL training procedure, leaving
a lot of room for improvement. PRE-ACT will cater to fill this
gap, by developing methods that exploit the various types of
non-iid hospital data under challenging privacy restrictions.

In realistic scenarios, clinical data are expected to have
various forms like medical images, genomics’ sequences etc.
It is fairly common that for a number of patients some
attributes might be missing from the datasets. This is a
challenging aspect of FL, that despite research efforts, has
not been addressed; leading to issues with convergence and
accuracy. While data synthesis or augmentations techniques
could be used, they provide only a superficial solution since
the quality of the produced data is not on par with the
actual data, especially in the medical domain. Participants
(e.g., patients, hospitals etc.) with missing data may not be
contributing equally to model updates, leading to bias and
potential issues with fairness. These data heterogeneity issues
in FL are aggravated in the case of medical data and the goal
of PRE-ACT is to tackle them.

When data in hospitals differ not only in feature space but
also in size, the naive parameters’ aggregation would benefit



only the participants with more data locally, as it might result
in a global model that is biased towards data holders with
large datasets. Thus, it is of major importance that datasets
are balanced in terms of size and features. Since, in medical
imaging, the process of data acquisition and annotation is
one of the most crucial and labor-intensive tasks, data syn-
thesis and augmentation could be used as tools to mitigate
this problem [28]. To this end, research should be directed
towards aggregation techniques that take into consideration the
difference between synthetic and actual data, when there are
size differences in datasets. PRE-ACT will develop methods
that incorporate the synthetic data in the training procedure of
FL to cater for such cases.

V. MOBILE AND WEB APPLICATIONS

Fig. 2. System architecture.

The fourth technology of PRE-ACT is the design and
development of mobile and web applications that emanate from
a co-design approach with patients and physicians and aim
at presenting the risk prediction to them. There exist several
mobile app frameworks developed in the context of Euro-
pean projects that aid cancer patients such as FORTEe2 and
PREFERABLE.3 These mostly motivate patients to improve
quality of life. Another application, eSMART [29] proposes
an intelligent symptom monitoring and alerting system. The
user/patient fills symptom questionnaires, and she inserts her
own health data, such as body temperature etc which are then
transmitted to a central Web Server. The Web server employs
simple NNs for each patient and classifies her symptoms. In
case of unusual and dangerous symptoms, the system sends
alerts to physicians and the hospital. ONCORELIEF [30] uses
daily health data of patients recorded from smartwatches and
informs them about their progress during the therapy period.
The mobile device is used as data collector from smartwatch
measurements and transmits them to a central data repository.
ONCORELIEF deploys DNNs trained centrally with the newly
received data and responds back with personalized suggestions
or warnings to each patient, leveraging knowledge from similar
patient behaviour.

The envisioned system architecture will consist of a Web
Server (serving as the back-end), and two Front-end applica-
tion versions; a Web/Desktop one for doctors and a Mobile
one for patients. Details are shown in Fig. 2 and are discussed
in detail in the sequel.

2https://fortee-project.eu/
3https://www.h2020preferable.eu/

A. System Architecture
1) Back-end: The Web Server (Back-end) includes big data

storage (Database), processing, AI and communication (REST
APIs) services. Each service is utilized by various software
components. The central NoSQL database will store diverse
medical data such as DICOM images and other data types. It
will be updated with data from the three cohorts, e.g. auto-
contouring data and daily data entered by each patient. A
NoSQL database, such as MongoDB may store all data in a
key-value fashion, providing quick data querying thanks to its
efficient database indexing. The big data processing service,
will include the Spark framework that is designed to execute
SQL-like queries to NoSQL databases, and to efficiently share
computation resources among computers to reduce execution
time. Spark also includes ML libraries, such as MLib. For the
AI service, relevant frameworks like TensorFlow, Keras, and
PyTorch can be utilized. The DNNs can be trained contin-
uously and achieve high accuracy since the database will be
updated with fresh data from REST API calls of the Front-end
applications. Finally, the communication service will include
a powerful API, which consists of various endpoints and rules
so as to exchange data with both front-end applications. REST
API calls are executed from mobile devices to successfully
retrieve data from the Web server over HTTP.

2) Front-end: Two versions of the same Front-end frame-
work will be created, a Web application for doctors and a
mobile app for patients. Both will include a storage compo-
nent for storing health data and statistics into local database
infrastructures such as SQLite and REALM. A content man-
ager component includes various software utilities to display
readable information to the user via functions of existing
libraries, such as Charts library (Swift iOS). A synchronization
component establishes secure connection with the Web Server
by exchanging encrypted data through SSL/TLS protocols.
An authentication component guarantees data privacy of each
patient by integrating two-factor auth services to prevent
unauthorized users. The mobile app may also include a health
measurements component for extracting health data from third
party services such as Health, Huawei Health etc that load
health data from smartwatches. Users may also insert person-
alized data pertaining to lifestyle (e.g. smoking, exercise) and
illnesses such as COVID-19, fever, allergies etc.

B. Mobile application challenges
One challenge associated with the mobile app is that of

enhancing user familiarity, understanding and trust of the
application. Both the risk prediction and its explanation will
need to be adapted to user personal characteristics, such
as age, education level, and specialization. The application
may provide questionnaires to the user regarding the degree
of understanding/explainability of each report and may need
to adjust the explanation so as to increase user awareness.
It is commonly understood that users tend trust more the
applications that they understand [31]. Similar adaptations may
be applied not only on the interfaces of how to communicate
the risk and its explanation, but also to other interfaces of the
app. Another issue is the user interface per se. The graphical
user interface (GUI) should attract the user, be easy-to-use
and create an engaging experience. Especially for elderly or
impaired users, a friendly interface is necessary.



VI. CONCLUSION

We discussed four pillars underpinning Trustworthy AI and
the way forward in the recently launched European Horizon
Europe PRE-ACT project. Explainable AI and Fair AI will
enable explainability of AI models and will uncover hidden
biases in data. Federated Learning algorithms from decentral-
ized data will train AI models while respecting data privacy.
On the other hand, appropriately designed mobile applications
will be the vehicles towards communicating the outcome of AI
models to patients and physicians. Advances in these pillars
will contribute to the grand objective of the PRE-ACT project,
which is to communicate, in an explainable way, the risk
prediction of radiotherapy side effects to patients and their
clinicians so as to alleviate the occurrence of side effects and
ultimately improve quality of life for cancer patients.
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