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Abstract—Many IoT use cases can benefit from group commu-
nication, where a user requests an IoT resource and this request
can be handled by multiple IoT devices, each of which may
respond back to the user. IoT group communication involves
one-to-many requests and many-to-one responses and this creates
security challenges. In this paper we focus on the provenance chal-
lenge, i.e., how a user can determine whether or not a response
has been received by an authorized device. We provide an effective
and flexible solution for securing IoT group communication using
CoAP, where a CoAP client sends a request to a CoAP group
and receives multiple responses by many IoT devices, acting as
CoAP servers. We design a solution that allows CoAP servers
to digitally sign their responses in a way that clients can verify
that a response has been generated by an authorized member
of the CoAP group. In order to achieve our goal we leverage
Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs).
In particular, we consider that each group is identified by a
DID, and each group member has received a VC that allows
it to participate in that group. The only information a client
needs to know is the DID of the group, which is learned using
DNSSEC. Our solution allows group members to rotate their
signing keys, it achieves group member revocation, and it has
minimal communication and computational overhead

Index Terms—CoAP, Group management, DNSSEC.

I. INTRODUCTION

Traditional Internet-based systems involve one-to-one com-
munication, where a client request a resource from a server
(e.g., a web browser requests a web page from an HTTP
server). IoT systems on the other hand involve uses cases
where one-to-many and many-to-one communication patterns
can be the norm and not an exceptional case. For example,
mass actuation (e.g., turn on the lights of a smart city),
or location-dependent queries (e.g., get the temperature as
measured by all sensors in a smart building), or subscription
to alerts (e.g., subscribe for a fire alert from any fire sensor in
a building). In this paper, we are considering an IoT system
where multiple IoT devices or gateways can provide the same
“type” of information (e.g., temperature measurements) and all
similar information items can be accessed through the same
“channel”, e.g., a user can collect all temperature measure-
ments through that channel: as a channel abstraction we are
considering URIs used by the Constrained Application Pro-
tocol (CoAP) group communication [1]. Using CoAP group
communication, IoT endpoints can become members of groups
that can be accessed by CoAP clients using multicast IP. In
this context new security challenges arise. Our paper focus on

the provenance verification security challenge, i.e., how CoAP
clients can verify that a response has been received by an IoT
device authorized to participate in the corresponding CoAP
group. In order to achieve our goal, we leverage Decentralized
Identifiers (DIDs) [2] and Verifiable Credentials (VCs) [3].

A DID is a new form of identification under standard-
ization by W3C. A DID is a URI that can be resolved to
cryptographic material that can be used for authenticating the
corresponding DID holder. Similarly a VC is a standardized
method for asserting attributes of a subject using a machine
readable encoding. In the proposed solution, a DID is used
for authenticating IoT endpoints as well as for protecting
CoAP groups. Similarly, VCs are used for asserting CoAP
groups membership for IoT endpoints. From a high level
perspective, the proposed system operates as follows. Each
CoAP group is associated with a DID and the corresponding
DID document includes public key(s) used for signing group
membership VCs for IoT device owners. VCs map the DIDs of
IoT device owners to groups in which their devices are allowed
to participate. Then, each IoT device owner configures their
devices with a signing key, an appropriate DID document and
the corresponding membership VC. Using these, IoT endpoints
can sign CoAP responses by generating a signature that
can be verified using information included in the configured
DID document. With our solution we make the following
contributions:

• Given the DID of a group, any entity can verify that a
signed item has been produced by an authorized member
of that group.

• The signing keys of the IoT devices can be rotated
without requiring any communication with the group
administrator, or other group members, or clients.

• IoT endpoints can be easily added to or removed from a
CoAP group.

• IoT endpoints have only to implement legacy digital
signature algorithms in order to support our solution.

• Breached singing keys can be easily detected.

The remainder of this paper is organized as follows. We
introduce CoAP group communication, DIDs, and VCs and
we discuss related work in Section 2. In Section 3, we detail
our design. In Section 4, we present the implementation and
the evaluation of our solution. Finally, we conclude our paper
and we discuss future work items in Section 5.
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II. BACKGROUND AND RELATED WORK

A. CoAP group communication

CoAP [4] is a lightweight protocol, designed to be the
“HTTP of the IoT.” CoAP resources are identified by a URI
scheme, similar to HTTP URIs, and the CoAP interaction
model is similar to the client-server model of HTTP. Therefore,
IoT endpoints act as CoAP “servers”, exposing one or more
CoAP URIs that can be accessed by CoAP “clients” using a
suitable CoAP “method”.

CoAP group communication is a CoAP extension that
allows CoAP clients to retrieve (or set) resources from a group
of CoAP servers e.g., retrieve the temperature measurements
from all sensors of a building, turn on and off all the lights of
a smart city and so forth. With CoAP group communication,
a request to a CoAP URI is received by all group members.
An approach for realizing CoAP group communication is by
using IP multicast (section 2 of [1]). With this approach CoAP
servers belonging to the same group join an IP multicast
address, and CoAP clients learn the IP multicast address of
a group using DNS resolution. Then, CoAP clients can send
CoAP requests to an IP multicast address, and receive the
corresponding response(s) using unicast.

The RFC-recommended approach for realizing CoAP group
communication is the following: CoAP group URIs are asso-
ciated with an IP multicast group, all CoAP servers join the
appropriate IP multicast groups, and DNS servers map group
URIs to the corresponding IP multicast address.

B. Decentralized Identifiers

Decentralized Identifiers (DIDs) is a new identification
system under standardization by W3C. The goal of DIDs is
to enable individuals and organizations to generate their own
identifiers using systems they trust [2]. In a DID architecture
a the Decentralized Identifier (DID) is associated with a DID
document. A DID document includes, among other things,
public keys (or “pointers” to public keys) that can be used as
verification methods, e.g., for authenticating the DID “owner”,
or for verifying digital signatures generated by the DID owner.
DID documents are usually maintained by a DID registry,
e.g., a web server or even a blockchain system. Registries
are responsible for implementing proper security and access
control mechanisms. Registries allow 3rd parties to securely
resolve DID documents. Our system uses the did:self DID
method and leverages DNS servers and the DNSSEC protocol
to implement a DID document registry.

C. Verifiable Credentials

A Verifiable Credential (VC) [3] allows an issuer to assert
some attributes about an entity referred to as the VC subject.
A VC includes information about the issuer, the subject,
the asserted attributes, as well as possible constrains (e.g.,
expiration date). To facilitate interoperability, the VC data
model allows different VC types that defines the attributes a
VC should include. Our system creates a new VC type named
membership and that includes a list of groups the VC subject
is allowed to participate.

D. Related work

The use of DIDs and VCs has been explored in the context
of the IoT by some research efforts. Ansay et al. [5] are
using DIDs and VCs to provide secure firmware/software
update on IoT devices. In that system DIDs and VCs are
used for authenticating software providers to IoT devices. Our
system on other hand uses DIDs and VCs for authenticating
IoT devices to clients, as well as to prove CoAP group
membership. Lorenzo et al. [6] leverage DIDs to provide IoT
device authentication for the Modbus protocol. Their approach
leverages a DID method which is based on Hyperledger Fabric
blockchain. Terzi et al. [7] use DIDs and VCs to express access
rights related to vehicles, as well as to implement delegation
of these rights. Similar to [6] they rely on a blockchain
for implementing a DID registry. Fan et al. [8] also utilize
blockchain (and smart contracts) to implement a DID registry
for DIDs used by IoT devices and manufacturers. Our solution
does not require any external entity (such as a blockchain) for
retrieving DID documents, instead all required information is
stored in a DNS server and it is resolved as part of the CoAP
group URI DNS resolution. Diego et al. [9] study the business
aspects of DIDs in the context of “IoT as a service” platforms.
Their work is orthogonal to our approach which proposes a
security solution for the IoT using DIDs and VCs.

In our previous work we use DIDs to protect the routing
layer of a Next-Generation Internet architecture from poi-
soning attacks [10], as well as for providing authenticity
for content items stored in the Inter-Planetary File System
(IPFS) [11]. In those systems, all DID documents are in-
tegrated in the protected resources and these resources are
identified by a DID (i.e., a public key). In our system we
leverage DNSSEC to store some DID documents. This has the
following advantages: (i) protected resources’ identifiers(i.e.,
CoAP group URIs) can be of arbitrary form (including human
readable and memorable names), (ii) every time a DID is
revoked the corresponding protected resource does not have
to be renamed.

III. DESIGN

A. The did:self method

DID specifications allow DID methods implementors to
decide the information that will be included in the DID doc-
uments of their method, as well as how DID documents will
be resolved. Our system uses the did:self DID method 1 that
does not restrict the type of information that can be included
in a DID document neither imposes any particular registry
type. In particular, owners of did:self DIDs are responsible
for disseminating their DID documents by themselves, e.g., by
directly transmitting them to interested parties, or by storing
them in a Web server: did:self assures that a DID document is
correct even if is retrieved over an unsecured channel. Another
salient feature of did:self is that it permits multiple valid DID
documents for a specific DID to co-exist: in our system we
can take advantage of this feature to allow each IoT device

1did:self specifications can be found at https://github.com/mmlab-aueb/did-
self
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to be configured with a different DID document of the same
did:self DID (that of the device owner).

A did:self-based DID is a base64url [12] encoded Ed22519
public key [13] prefixed with the string “did:self:”.

A DID document in did:self may include any of the proper-
ties defined by the DID specifications, and it is encoded using
JSON. However, and as we detail in Section IV, in this paper
we experiment with the “Concise Binary Object Representa-
tion” (CBOR) [14] which results in smaller representations. It
should be noted that CBOR representation are compliant to
DID specifications. A DID document in our system includes
the following properties:

• id: The DID which the document concerns.
• verificationMethod: A list of public keys ex-

pressed using the “JsonWebKey2020” notation [15]. Each
key in the list is identified by an id.

• authentication: A list of public keys, or public key
identifiers that can be used to authenticate the DID holder.

• assertion: A list of public keys, or public key identi-
fiers that can be used to verify digital signatures of VCs.

The private key that corresponds to an assertion key is used
in our system for signing issued VCs, hence the corresponding
public key is used for verifying these signatures. Similarly, the
private key that corresponds to an authentication key is used
for singing CoAP messages, hence the corresponding public
key is used for authenticating message senders. Each public
key included in the verificationMethod property is
identified by a unique id: there cannot be two keys with same
id for the same did:self DID even if these keys are defined
in different DID document. In our system we take advantage
of this property in order to achieve efficient authentication
key rotation, as well as for detecting breaches of the private
key used by an authentication method. These two security
properties are achieved by following a “use the most recent
key” principle. In particular, given two keys with the same id
the one included in the older DID document will be considered
invalid and it wil be discarded.

Each DID document in did:self is associated with a proof
which is a compact encoded JSON Web Signature (JWS) [16].
However, in this paper we use CBOR Object Signing and
Encryption (COSE) [17] instead. The payload of the proof
is a CBOR object that includes the following claims:

• jti: The DID the proof refers to.
• iat: The date and time of the proof’s generation.
• exp: An expiration time.
• s256: The base64url encoded hash of the DID document,

calculated using SHA-256.
The signature of the proof is generated using the private

key that corresponds to the did:self DID and the Edwards-
curve Digital Signature Algorithm (EdDSA) Given a did:self
DID, a DID document, and the document proof, any entity can
trivially verify the binding between the DID and the document
by executing the following steps:

1) Verify that the DID is equal to the jti claim of the
proof.

2) Verify that the digest of the DID document is equal to
the s256 claim of the proof.

{
"iss":   "<GroupDID>"
"sub": "<OwnerDID>",
…
"vc": {
"credentialSubject": {

"group":  "/building1/energy"
}

}
}

Group 
administrator

Building1

{
"id": "<OwnerDID>",
"verificationMethod": [{

"id": "#panel",
…

]} ,
"authentication":["#panel"] 

}

{
"id": "<OwnerDID>",
"verificationMethod": [{

"id": "#light1",
…

]} ,
"authentication":["light1"] 

}

Endpoint owner

{
"iss":   "<GroupDID>"
"sub": "<OwnerDID>",
…
"vc": {
"credentialSubject": {

"group": "/building1/roof"
}

}
}

Fig. 1. Endpoint onboarding example.

3) Verify that the proof has not expired.
4) Verify the signature of the proof using the did:self DID

(recall that a did:self DID is a public key.)

B. System entities

Our solution considers IoT-based services, e.g., a smart
building management system, where IoT endpoints can be
grouped together. An IoT endpoint can be a an IoT device
or gateway.

IoT endpoints are owned by an endpoint owner. Each IoT
endpoint acts as a CoAP server that “hosts” a number of IoT
resources. A CoAP client can access simultaneously “similar”
resources using CoAP group communication.

A group is administrated by a group administrator and
involves multiple IoT endpoints. Moreover, a group is as-
sociated with a did:self DID denoted by GroupDID and a
Fully Qualified Domain Name (FQDN). The DID document
of a GroupDID includes the assertion verification method: the
public key defined in this method can be used for verifying
VCs issued by the group administrator. A group may include
endpoints from multiple owners Group administrators are
responsible for controlling which owners can can be part of a
group.

The FQDN of each group is associated with an IP multicast
address: all CoAP servers are assumed to have joined the
appropriate IP multicast groups. The semantics of a group
FQDN are deployment specific, e.g., group FQDNs can be
location specific such as “building1.floor1”; then a CoAP
client may read the temperature measurements of all sensors
deployed in the “first floor of building 1” using a CoAP group
URI such as “coap://building1.floor1/temperature”.

CoAP clients are pre-configured with the required group
FQDNs (or they are configured with an appropriate discovery
mechanisms). Finally, it is assumed that the DNS resolution
process is secured (e.g., using DNSSEC).

C. Owner onboarding and endpoint management

Endpoint owners generate one or more did:self DIDs re-
ferred to as OwnerDID. Moreover, for each of their IoT
endpoint, owners generate a public-private key pair and a DID
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document that includes the public key in the authentication
verification method; keys and documents are then installed
in the IoT endpoint. Therefore, for each OwnerDID there
are as many DID documents as the IoT endpoints of the
owner. IoT endpoints will use private keys for signing CoAP
responses and the installed DID documents for authenticating
themselves. Device owners update periodically the keys and
the corresponding DID documents of their IoT endpoints. Our
system follows the convention that the new keys will use the
same key identifier as the one used by the keys being replaced.

A group administrator can authorize an endpoint owner to
participate in a group simply by issuing a membership VC.
In our system, VCs are encoded as CBOR objects and are
signed by the group administrator using CBOR Object Signing
and Encryption. A CBOR encoded VC in our system includes
(among others) the following claims:

• jti: An issuer-specific VC identifier.
• iss: The GroupDID.
• sub: The OwnerDID.
• iat: A timestamp indicating the VC’s issuance time.
• exp: A timestamp indicating the VC’s expiration time.
• vc: The actual VC (see the following).
The vc property of a membership VC includes a claim,

named group, that contains the FQDN of the group the
endpoint owner is allowed to participate. An example of
membership VC is presented in the following listing (in this
example we are using JSON representation for clarity reason):

Listing 1. Example of membership VC
{

‘ ‘ j t i ” : ‘ ‘ member1 ” ,
‘ ‘ i s s ” : ‘ ‘ d i d : s e l f : . . . ” ,
‘ ‘ sub ” : ‘ ‘ d i d : s e l f : . . . ’ ’ ,
‘ ‘ i a t ” : 1650558962 ,
‘ ‘ exp ” : 1681663521 ,
‘ ‘ vc ” : {

‘ ‘ t y p e ” : [ ‘ ‘ membership ’ ’ ] ,
‘ ‘ c r e d e n t i a l S u b j e c t ” : {

‘ ‘ group ” : ‘ ‘ b u i l d i n g 1 . f l o o r 1 ” ,
}

}
}

Owners will receive as many VCs as the number of groups
they can participate. Owners finally, install the VC(s) to the
corresponding IoT endpoints. Figure 1 provides an exam-
ple of the onboarding process. In this example, an owner
has configured two IoT endpoints with the appropriate DID
documents. Then, the owner receives two VCs one for the
group “/building1/energy” and another for the group “/build-
ing1/roof”. Finally, the owner installs to each endpoint the
appropriate VCs. As it can be observed, the roof panel is
configured with two VCs which means it can participate to
both groups.

D. CoAP request

In order for a client to send a CoAP request to a CoAP group
it needs to know the IP multicast address of that group, as

well as the GroupDID and the corresponding DID document;
GroupDID is later used for verifying CoAP responses (see
section III-E). A CoAP client learns the required information
using DNS. The IP multicast address of the CoAP group is
stored in a type A DNS record that maps the CoAP group
FQDN to an IP multicast address. The DID document that
corresponds to the GroupDID is stored in a TXT DNS record
of the group FQDN, which a similar approach use by “DNS-
Based Authentication of Named Entities” [18].

CoAP clients construct their request and send it to the
appropriate IP multicast address. Requests include a token,
which is then used to match the received responses (the token
format and usage are defined in section 5.3.1 of [4]).

E. CoAP response

Each CoAP response in our system includes three CoAP
options (i.e., a structure akin to HTTP headers, see section
3.1 of [4] for more details). These options, defined by our
solution, are: membership, endpoint, and attestation.

The membership option includes the appropriate member-
ship VC (and the corresponding proof), which is installed in
the IoT device during the onboarding process. The endpoint
option includes the DID document (and the corresponding
proof) of OwnerDID. Finally, the attestation option is a COSE
signature. The payload of that signature is a structure that
includes the following fields:

• URI: The CoAP URI of the requested resource.
• token: The token included in the CoAP request.
• s256: The hash of the CoAP response payload, calculated

using SHA-256.
The digital signature for that option is generated using the

private key that corresponds to the authentication key defined
in the DID document included in the endpoint option.

F. CoAP response verification

Upon receiving a CoAP response a CoAP client executes
the following steps:

1) Initially, it extracts the membership VC included in
the membership option and verifies its proof using the
appropriate assertion key defined in the DID document
of the group administrator. If the proof includes an
expiration time, the client verifies that this time has
not passed. If all verifications are successful the client
validates the groups claim includes the requested group
and that the sub claim includes the OwnerDID of the
endpoint that responded.

2) The client extracts the DID document of OwnerDID

included in the endpoint option and verifies its proof.
Then it retrieves from that DID document the public
key which has been used as the authentication key.

3) The client verifies that the attestation option includes
the correct values for the URI, token, and sha-256 fields.
Then it verifies the digital signature of that option using
the extracted authentication key.

The first step of this process verifies that the received
response has been generated by an endpoint authorized by the
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group administrator to provide responses for that particular
CoAP URI. The next steps of this process verify the integrity
and the authenticity of the received response.

G. Membership cancellation

Membership to a group can be cancelled either at the
endpoint owner level or at the endpoint device level. In the
former case the corresponding membership VC is revoked and
all IoT endpoints of the affected provider are removed from
the group. In the latter case the corresponding DID document
is deleted from the IoT endpoint and the affected endpoint
is removed from the group (since it cannot generate anymore
valid singed responses).

1) Membership VC revocation: As discussed in sec-
tion III-A a membership VC has an expiration time. Therefore,
a trivial approach for removing an endpoint owner from a
group is to not update the corresponding membership VC. Of
course, on the other hand, this creates a security-performance
tradeoff.

An alternative solution is to use the revocation scheme
described in [19] for verifying the status of a membership
VC. Based on this scheme, the group administrator maintains a
revocation list that concerns all non-expired VCs it has issued.
This list is a bitstring and each VC is associated with a position
in the list. Revoking a VC means setting the bit corresponding
to the VC to 1. Furthermore, each issued VC includes a field
named “revocationListIndex” that specifies the position of the
VC in the revocation list. Therefore, given a revocation list
and the revocationListIndex of a non-expired VC a client can
learn the status of that VC.

This revocation scheme implies that clients can access the
revocation list. This problem is solved in [19] by requiring
from issuers (i.e., the group administrators in our system) to
“publish” the revocation list under a URL and include this
URL in the VCs. In our solution we follow an alternative
approach: since the size of a revocation list will be small, we
include it in a TXT DNS record of the group FQDN with name
“RevocationList”. Therefore, clients can easily retrieve it with
the DNS resolutions that take place before sending a CoAP
message (described in section III-D).

IV. IMPLEMENTATION AND EVALUATION

A. Performance evaluation

We have implemented our DID related operations of our
system in Python3 using the cbor2 library2 and the cose
library3.

The size of a DID document that includes a public key is
242 bytes and the size of the corresponding proof is 124 bytes.
The size of a membership VC is 127 bytes and the size of a
corresponding proof is 112 bytes.

In our system, the following cryptographic operations are
needed. For DID creation, an Ed22519 key pair, a DID
document, and the corresponding proof have to be generated.

2https://pypi.org/project/cbor2/
3https://pypi.org/project/cose/

Additionally, a group administrator has to generate a member-
ship VC and an IoT device has to sign the “attestation” CoAP
header. Finally, for the CoAP response verification, CoAP
client has to verify the DID document, the membership VC and
the attestation signature included in the corresponding CoAP
headers. Table I shows the time required (in ms) to perform
the cryptographic operations of our system, as measured in a
Raspberry Pi 4 model B with 2 GB of RAM, as well as in a
Espressif ESP32 WROOM-32 IoT device (240MHz dual-core
Xtensa LX7 CPU).

It should be noted however that IoT devices are expected
to perform only the attestation generation. For a memory
efficient implementation of the required signing algorithms, as
well as for a discussion related to their energy consumptions,
interested readers are referred to [20].

B. Security properties

Assuming that the DNSSEC resolution processes is secured,
our solution has the following security related properties:

The integrity of the CoAP response payload is protected.
A digest of the CoAP response payload is recorded in the
attestation option. Since the attestation option also includes the
CoAP request token, an attacker cannot replace the payload
using an old, valid one. On the other hand, an attacker can
replace a payload (and the attestation) with the corresponding
fields of a CoAP response generated by another endpoint but
for the same request. In that case, the CoAP client will receive
twice the same response, signed by the same key, hence the
attack will be detected.

The authenticity of the CoAP response is protected. The
authenticity of a CoAP response, i.e., the verification of the
“binding” between the response payload and the requested
CoAP URI, is achieved by including the CoAP URI in the
attestation field. If the CoAP URI was not included in the
attestation, an attacker could send a CoAP request to a differ-
ent CoAP URI using the same token as a legitimate request,
and then replace a legitimate response with the response it
received to his request. Furthermore, the attestation is signed
by an endpoint authorized by the publisher to make attestation
for that particular URI. Hence, a malicious but authorized
endpoint, cannot generate responses for URIs other than those
for which it has been authorized.

Authorized endpoints can easily rotate keys. An endpoint
can replace its authentication key with a new one by generating
a new DID document; apart from that no more actions are
required, e.g., the endpoint does not have to receive a new
membership VC. In a certificate-based solution on the other
hand, an endpoint would have to receive a new certificate from
the group administrator.

1) Resilience to attacks: A did:self DID is associated with
a private key which is used for signing the proofs of the
corresponding DID documents. In our system we have two
important did:self DIDs: the GroupDID and the OwnerDID.
If the private key that corresponds to GroupDID is breached
(or lost) then the GroupDID must change. This means that
the corresponding DNS record must be updated, all generated
membership VCs must be revoked, and new membership VCs
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TABLE I
CRYPTOGRAPHIC OPERATIONS AND THEIR OVERHEAD.

Operation Time (ms) using RPi Time (ms) using ESP32
Ed22519 pair generation 46 452

DID document and proof generation using COSE 2.7 293
Membership VC generation using COSE 2.7 293

Attestation generation using COSE 0.7 82
DID document verification 1.5 160

Membership VC verification 1.5 160
Attestation verification 1.5 160
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Fig. 2. Impact of an active attacker that generates fake measurements with
valid signature. The blue line indicates that correct value that a device would
have calculated if there was not an attack. The orange line indicates the
estimated value if no defense is considered. The black dotted line indicates
the estimated value if duplicate public keys are omitted

must be generated. If the private key that corresponds to
an OwnerDID is breached (or lost), then the corresponding
endpoint owner must generate a new DID and receive new
membership VCs. Old VCs must be revoked and the IoT
devices must be re-configured with the new VCs and DID
documents.

The most risky component of our system is the private key
of the IoT endpoints since IoT endpoints are usually exposed
to attackers. A breached private key can be used for singing
fake CoAP responses. In order to mitigate this attack we take
advantage of the key id uniqueness property of did:self. In
particular, in order for attackers to use a breached key, they
must include in the generated responses a valid DID document.
But since DID documents are signed by the endpoint owner,
the attacker can only use the same DID document as the
victim endpoint. This means that a CoAP client will receive
two responses signed by the same key. The simplest strategy
in that case is to ignore both these responses. In order to
evaluate the effectiveness of this countermeasure we emulated
an attack scenario. In particular we consider a group of 100
endpoints. These endpoints produce an integer measurement
that follows a uniform distribution between 40 and 60 every 1
minute and a CoAP client is interested in learning the average
value of these measurements. We assume that an attacker has
breached the private keys of half of these devices and produces
fake measurements with value equal to 100. We emulated a
period of one hour, i.e., the CoAP client calculated 60 times
the average value. Each average calculation is independent of

the previous one and the client does not apply any heuristic
for detecting abnormal values. Figure 2 shows the impact of
this attack. The blue line shows that the average value of
the measurements produced only by the legitimate devices.
The yellow line shows the average value calculated by a
“naive” client that takes into consideration all 150 received
measurements (100 valid and 50 malicious). Finally the black
dotted line shows the average value calculated by a client that
filters out measurements that include duplicate keys. As it can
be seen, the value calculated by the user that filters out the
measurements with the same public key is very close to the
real one, nevertheless there are differences due to the lower
number of samples.

C. Comparison to other approaches

1) Registry-based DID methods: Being registry-less,
did:self DID method allows a DID identifier to be mapped to
multiple DID documents. Our system takes advantage of this
property and allows endpoint owners to define a single DID
and then use a different DID document for each IoT endpoint,
each of which includes only a single key used by that particular
endpoint. This makes management of IoT endpoints easier,
since an endpoint owner can easily add or remove an IoT
endpoint. On the other hand, if a registry-based approach was
used (e.g., did:web) all public keys of all IoT endpoints should
had been included in the (single) DID document, hence, adding
or removing an IoT endpoint means that the corresponding
DID document must be updated as well.

Additionally, since DID documents in did:self are “self-
protected” (as they are signed by the DID owner) they can
be included directly in CoAP responses. On the other hand,
in a registry-based system DID documents must be resolved
from a registry. This not only adds communication overhead
(e.g., extra roundtrips for resolving the DID document) but
it also creates new security threats since the registry must be
trusted, secured, and available.

2) Lightweight certificates: Certificate-based solutions,
such as the Simple Public Key Infrastructure (SPKI) [21], can
be used as a mechanism alternative to VCs in our system. The
advantage of VCs is that it is easier to extend their data model
to include new features. For example, our system uses such
data model extension to include information that can be used
for determining the revocation status of a VC. Furthermore,
VCs allow using DIDs for describing the VC subject and when
a VC is combined with a DID method such as did:self, many
entities can securely share the same VC. Using a certificate-
based approach with a certificate that includes the public key
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of the endpoint owner would require the endpoint owner to
issue another certificate for each IoT endpoint. Therefore, if
an owner manages x IoT endpoints, each of which participates
in the same y groups, using our approach, the owner has to
generate x public key pairs and copy y VCs to each IoT
endpoint, whereas in a approach the uses certificates the owner
would have to generate x public key pairs, sign x∗y certificates
and install y certificates to each endpoint.

3) VC-less approach: An alternative approach for achieving
the same functionality of our system is to not use VC at
all and instead included the DIDs of endpoint owners to the
DID documents of GroupDID. This has the advantage that
CoAP responses become shorter (since they do not include
a membership VC) and revocation becomes simpler (since
the group owner has simply to update the corresponding DID
document). On the other hand adding or removing a new end-
point owner requires modification of the corresponding DNS
record, so depending on the frequency with which endpoint
owners are added or removed to a group the VC-less approach
may be a better or worse option. In any case, VCs allow to
express more complex relationships than a DID document.
For example there can be cases where an endpoint owner is
allowed to participate in a group only during specific times:
such advanced trust relationships can be easily expressed using
VCs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a solution for securing group
communications with an application to IoT CoAP-based group
communication. Our solution leverages Decentralized Identi-
fiers (DIDs) and Verifiable Credentials (VCs) to offer efficient
group administration, increased security, and better key man-
agement. Our solution is lightweight with low computational
and communication overhead, and it builds on well supported
and widely used digital signature schemes.

Our solution uses the did:self method which is a DID
method that does not impose particular technology for im-
plementing the registry that maintains DID documents. Future
work in this area includes the investigation of alternative DID
methods.

Although we presented our solution in the context of IoT
group communication, our goal was to provide a generic
design that can be used in other group communication systems.
For this reason, we did not consider security mechanisms
related to CoAP, such as “ Object Security for Constrained
RESTful Environments (OSCORE)”; a realization of our
system specifically for CoAP group communication would
probably considered these solutions. Similarly, our solution
assumed IP multicast as the enabler of group communica-
tion, nevertheless, related efforts have investigated alternative
solutions such as Software-Defined Networking-based group
communication, or even group communication based on the
Information-Centric Networking (ICN) paradigm; our solution
is agnostic to the group communication mechanism but we
expect that there will be mutual benefits from an integrated
approach.
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