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Abstract—Mining pools have gained wide attention allowing in-
dividual miners, who contribute their computational resources
to collectively mine blocks to be rewarded more predictably.
Although (traditional) mining pools make the mining process
more predictable and incentivize small miners to participate,
they introduce centralization and miners need to trust the
pool manager that the revenues would be fairly shared among
members. Efforts to create decentralized mining pools have
been reported in the literature. Nonetheless, the aforemen-
tioned schemes have not been widely adopted and are not
currently in use, mostly due to their scalability issues and the
probabilistic nature of their share validation algorithms, which
may result in potential security problems, as only a random
subset of shares is chosen for validation. Our solution aims
to create an efficient scheme for decentralized mining pools
for Proof-of-Work (PoW) blockchains by leveraging Ethereum
smart contracts to share mining rewards accordingly, while
also utilizing the InterPlanetary File System (IPFS) to minimize
gas fees by storing only the necessary information in the smart
contract.

Index Terms—Ethereum, InterPlanetary File System (IPFS),
Merkle Trees, Incentives, Security.

1. Introduction

Individual miners can combine their mining power in an
attempt to earn a block reward and share the revenues pro-
portionally to the computational resources they utilized. In
particular, miners in a mining pool, co-operate so as to solve
the puzzle that Proof-of-Work (PoW) blockchains introduce,
which increases their chances of mining (building) a valid
block and earning the reward. As a result, the concept of
mining pools allows all pool participants, even those with
low mining power, to attempt to mine a block. The revenues
generated by the pool are distributed to the members by the
pool manager and each member receives rewards (typically)
based on the amount of work they have performed. More
precisely, miners submit to the pool manager hashes of
“near” blocks that they computed, which are named shares.
In this way, miners are rewarded according to the shares
they submitted.

The emergence and proliferation of mining pools is a
result of the benefits they offer to individual miners. Initially,

by joining a mining pool, miners can expect to receive more
regular payouts, even if their individual mining efforts are
not successful in finding new blocks. This can be especially
beneficial for small-scale miners, who might not have the re-
sources to mine blocks individually. Moreover, mining pools
allow individual miners to join their computational power
to mine blocks more effectively. This increases the chances
of finding valid blocks and earning rewards compared to
individual mining. Finally, mining rewards can be highly
variable due to fluctuations in mining difficulty, network
hash rate, and block rewards. Nonetheless, mining pools
aim to reduce this variance by providing a more consistent
stream of rewards.

Despite the several benefits that mining pools introduce,
they introduce centralization [1], [2], [3], [4], in the sense
that revenues generated by the mining process are sent to a
key owned by the pool manager, who is responsible for dis-
tributing the rewards. In this way, mining pools violate the
decentralization principle of blockchains, as miners should
trust the pool manager that the rewards would be fairly
shared among members. If a single mining pool operator
controls a significant portion of the network’s hash rate, he
could potentially launch a 51% attack on the network [5].
Centralization in mining pools can also lead to a lack of
transparency in the distribution of rewards. In some cases,
mining pools may not disclose their payout methods or
algorithms, which can make it difficult for individual miners
to verify the fairness of the pool. Furthermore, mining pools
charge a fee for their services, which can result in reducing
the profits of individual miners, while some pools may also
require a minimum payout threshold, which can delay the
receipt of rewards.

Due to the aforementioned reasons, in this paper, we
propose a solution that leverages smart contracts in order to
fairly distribute the revenues from mining a block among the
members of a mining pool. By leveraging Ethereum smart
contracts, trust is promoted among the pool members, as
they can be sure that the revenues generated by the pool
will be shared according to the number of shares they sub-
mitted. Ethereum smart contracts are immutable, meaning
that a miner cannot alter the shares of other members and
transparent, as they define the rules of how the rewards will
be distributed, which are visible to all participants.

There exist other solutions in the literature that aim to
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address the centralization problem that mining pools intro-
duce, but these schemes raise some security and scalability
concerns. For this purpose, our proposed solution will utilize
the InterPlanetary File System (IPFS) in order to store
only the necessary attributes within the smart contract, thus
minimizing gas fees, i.e., cost. Also, we will not base our
solution on probabilistic validation algorithms, but instead
verify all the shares that members have computed in order
to ensure that rewards will be shared accordingly.

2. Background

Our scheme leverages IPFS for storage for transactions,
while our protocol utilizes mining pool methods in order
to fairly distribute the revenues among the members of the
pool. For this purpose, we briefly discuss the concept of
IPFS and introduce the typical mining pool methods.

2.1. Mining pool methods

We will first refer to the most common mining pool
methods, which define how to distribute the block reward.
In our solution, we have implemented the Pay Per Last
N Shares (PPLNS) method, but our scheme can be easily
modified to incorporate other methods:

• Pay-per-share (PPS): In this method, miners are paid
a fixed amount for each share they contribute to the
pool, regardless of whether a block is found. This
provides a more predictable stream of earnings for
miners, but also introduces greater risk for the pool
operator, since he is responsible for paying out the
rewards even when no blocks are found.

• Proportional: In this approach, rewards are dis-
tributed among miners based on the proportion of
shares they contribute to the pool. Once a block
is found, the reward is split among all miners who
contributed shares to the pool, proportionally to the
number of shares they contributed.

• Pay Per Last N Shares (PPLNS): This method is
similar to proportional, but takes into account the
number of shares contributed over a certain period
of time. More specifically, miners, who contribute
shares within the last N rounds are eligible to re-
ceive rewards when a block is found.

2.2. IPFS

We utilize the IPFS in order to store data related to
the mining pool and keep only the necessary information
in the smart contract, so as to achieve gas minimization.
The IPFS is a Peer-to-Peer (P2P) file system that pro-
vides decentralized data storing and file distribution. One
of its main components is a Distributed Hash Table (DHT),
which is responsible for the data lookup and access pro-
cesses. More specifically, the IPFS leverages a variant of the
Kademlia DHT [6] to achieve scalability. Also, IPFS utilizes
the BitSwap data exchanging protocol in order to achieve

efficient content discovery and retrieval. An analysis of the
IPFS and its BitSwap protocol is outlined in [7]. Finally, it
leverages a Merkle Directed Acyclic Graph (DAG), which
is a combination of a Merkle Tree and a DAG, to assure the
uniqueness of data exchanges. A more detailed analysis of
Merkle Trees is presented in [8], in which the authors were
the first to introduce a technique for Merkle tree traversal
that required only logarithmic space and time.

3. Related Work

Several research efforts have analyzed the security of
mining pools, while others focus on the design and imple-
mentation aspects. For instance, Meni Rosenfeld [9] con-
ducted an analysis of Bitcoin pooled mining reward systems
and proposed a new reward system called proportional re-
ward, which aims to provide a fair distribution of rewards
to miners. Also, he discussed the concept of pool hopping,
in which miners switch between different mining pools
based on current profitability levels. Another study by Li et
al. [10] presented a design and implementation of a Bitcoin
mining pool with distributed resource allocation, which uses
a two-phase protocol for efficient and secure allocation of
resources among miners.

One of the key challenges of mining pools is how to
distribute rewards fairly among participating miners. Bon-
neau et al. [11] studied the economics of mining pools and
identified various factors that affect the distribution of re-
wards, including pool size, payout mechanisms, and mining
difficulty. Moreover, Han et al. [12] proposed a method for
enhancing pool mining reward fairness in cryptocurrency
networks by introducing a dynamic pricing mechanism that
adjusts the reward distribution based on individual miners’
contributions. Miller et al. [13] discuss various mining puz-
zles and protocols in an attempt to render pooled mining
infeasible or discourage its practice. In our solution, we
aim to create an efficient and secure smart contract that will
encourage mining pool participation and will be practical
for real-world applications, without introducing complexity
or pool fees.

There have also been some existing solutions that at-
tempt to address the centralization issue that mining pools
introduce. Existing decentralized mining pool solutions,
namely P2Pool [14], SmartPool [15], and PoolParty [16],
have encountered issues hindering their widespread adop-
tion and long-term sustainability. P2Pool, while pioneering
decentralized mining pools, suffered from high performance
overhead due to extensive message exchanges, especially
under low share difficulty, leading to resource consumption
issues and scalability challenges. In particular, the quantity
of exchanged messages among miners is directly propor-
tional to the number of shares within the pool. In case which
the share difficulty is low, miners should consume signifi-
cant resources, such as bandwidth and local computational
power. As a result, in order for the solution to be practical,
high share difficulty is required.

SmartPool, which utilized Ethereum smart contracts, is
the most promising solution regarding efficiency and secu-

228

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on September 26,2024 at 15:56:43 UTC from IEEE Xplore.  Restrictions apply. 



.

.

.

Miners

Pool manager

Mining 
pool

IPFS

owns

includes 
contract 
address

store 
transactions

eth smart 
contract

owns

submit 
shares

receive 
rewards

Figure 1. Overview of our system’s architecture.

rity concerns. Authors have compared their solution with
P2Pool and they showed that they offer stronger security
guarantees. Nonetheless, a significant concern in SmartPool
is the introduction of probabilistic share verification via
Augmented Merkle Trees, resulting in potential security
vulnerabilities and scalability concerns as computational and
storage requirements increased. More specifically, not all
shares are validated and thus revenues may not be fairly
distributed. Also, Augmented Merkle Trees require storage
and computational overhead and as a result they may intro-
duce scalability concerns. The last decentralized mining pool
scheme, namely the PoolParty, while blockchain-agnostic,
requires second-layer payment protocols, while not imple-
menting the smart contracts described in the corresponding
whitepaper, raising doubts about its practical viability. Due
to the aforementioned issues, all these solutions have been
abandoned. In particular, P2Pool is inactive since September
2018 and SmartPool by December 2017.

To address these challenges, our proposed solution aims
to streamline the process with a single smart contract that
will perform the necessary checks and validations, minimiz-
ing gas costs and complexity, at the same time. Moreover, by
utilizing the IPFS for transaction storage, our scheme offers
potential scalability enhancements. Therefore, our approach
aims to overcome the limitations of existing solutions and
establish a more efficient, secure, and decentralized mining
pool ecosystem.

4. Pool Design

In the following section, we outline the design of our
system by introducing its architecture, the involved pro-
tocols, and the main smart contract actions. A more de-
tailed explanation of the core functionality of our system
is analyzed in the following section, in which the contract
functions are thoroughly discussed.

4.1. Architecture

The overview of our system’s architecture is depicted in
Figure 1. Our system comprises of the following entities; the
pool manager, who owns the mining pool along with its cor-
responding Ethereum smart contract, the miners, who wish
to join the pool, and the IPFS, which serves as a distributed
data storage for the smart contract’s information. The pool
manager is responsible for setting the share threshold and
the number of miners, who will be rewarded according to
PPLNS method. These parameters can be viewed by all
pool members in the smart contract and cannot be modified.
Also, instead of placing the address of the pool manager in
the mining pool, we suggest replacing it with the contract’s
address. This can also be verified by any miner, who partic-
ipates in the pool. Subsequently, miners attempt to find the
next valid block in a PoW blockchain and keep their shares
for later validation. In PoW blockchains, miners initially
utilize transactions from the network to construct a block
header containing information, such as the previous block
hash and the Merkle root. They continuously iterate through
nonce values in the block header, computing the hash of the
header until they find one that meets the network’s difficulty
target. Once a miner has calculated the next valid block, the
corresponding smart contract function is called in order to
validate his calculations and offer him half of the block
reward. The rest of the earnings are stored in the smart
contract and miners submit their shares for validation. When
the verification process is performed, miners are rewarded
according to the PPLNS method. Price split and mining
pool method are specific for our implementation, but they
can be easily modified to incorporate other reward sharing
approaches. In order to reduce gas consumption, which is
a major concern in smart contracts implementations [17],
[18], we utilize the IPFS, in order to store only the required
information for verification. In particular, each transaction
is assigned a unique number, while the list of transactions
and their corresponding numbers are stored on IPFS. As a
result, a miner should only submit a sequence of numbers
for validation instead of the whole list of transactions.

4.2. Protocols

As depicted in Figure 2, from a high-level perspective,
the proposed solution involves the following protocols.

Join pool. Initially, each member joins the mining pool,
which is performed in two ways; first by joining the mining
process in the corresponding mining pool and second by
calling the corresponding smart contract in order to join the
pool. The smart contract keeps track of the members of
the pool by assigning a unique identifier in each member’s
address. Subsequently, all members try to mine a block in
a PoW blockchain and instead of depositing the rewards
from mining a block to the pool manager’s public key, the
amount is deposited in the smart contract’s address. In this
way, our solution guarantees that the collected money will
be fairly shared among the pool members without relying
on a trusted third party.
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Figure 2. Overview of protocol interactions.

Next block validation. The next block needs to be
validated by the smart contract before reward distribution is
performed. For this purpose, a smart contract is called with
inputs the Merkle root, the timestamp, and the corresponding
nonce. The double hash of the header is then computed,
by concatenating the fields of version, hash of the previous
block, Merkle root, timestamp, difficulty, and nonce. The
fields of the header that are not given as an input, are defined
by the pool manager, as they are known and can be seen by
anyone, who has access to the smart contract. Subsequently,
this function checks whether the hash of the header is less
than the difficulty and that the user, who called the function
is actually a member of the mining pool. Upon successful
validation, the miner, who found the next block receives half
of the reward.

Mining pool method. We implemented the PPLNS
method, which rewards the miners that have calculated the
last N shares that are close to the actual hash of the mined
block. The threshold up to which miners are rewarded, along
with the parameter N are defined by the pool manager and
can be viewed by anyone thanks to the smart contract.

Shares validation. Mining pool members, who found
the last N shares can get paid by calling the corresponding
smart contract function. In particular, miners provide the
Merkle root, the timestamp, and the corresponding nonce,
while the rest of the header fields are defined by the pool
manager as previously discussed. In order to reward the
last N shares the following checks need to be made; the
hash of the header is less than the difficulty, the one, who
called the function is actually a member of the mining pool,
the caller has not been already paid and the share is above
the threshold defined by the pool manager. After the caller
passes these checks, he receives the amount of money left
in the contract’s balance divided by N .

Merkle Tree Root. Once calculating a valid block,
the revenues are stored in the smart contract’s balance.
The miner who found the next block should then call the
corresponding function for block validation, while the other
members who wish to submit their shares will call the share
validation function. For these functions, the miner should
provide a valid list of transactions, meaning one that will

yield a valid Merkle Tree root. To minimize gas consump-
tion, each transaction is mapped to a unique increasing
number, and as a result a miner provides only the sequence
of integers that are used to calculate the Merkle Tree root.
When the pool manager receives the sequence, he calculates
the Merkle Tree locally and checks whether the Merkle
Tree root provided by the user is the same with the one
he calculated. If this is the case, the smart contract will
perform the necessary checks in order to reward each miner
accordingly.

5. Implementation

For our proof of concept implementation, we developed
an Ethereum smart contract, called MiningPool,1 which is
written in Solidity. The smart contract is implemented in
a way to share rewards only for PoW blockchains, such
as Bitcoin. In Bitcoin, the goal in PoW algorithm is to
find a suitable nonce, such that the double SHA-256 (hash
function) of that nonce is less than a known difficulty. Our
solution guarantees that a miner will receive the appropriate
rewards, by implementing its core functionalities as smart
contract’s functions. In particular, we have implemented
the functions that were described in the previous section.
More specifically, we included methods for validating the
next block, the miners’ shares, setting the mining pool
parameters, and modifiers that perform the necessary checks.
We assigned in each pool member a unique identifier, while
also mapped each transaction to an integer. The latter is
enabled for efficiency purposes, as much less complexity
is introduced, if we validate only a sequence of numbers,
instead of a list of transactions. In particular, we stored on
IPFS the mapping between the hashed transactions and a
specific number. In this way, a miner has to provide only
the sequence of numbers for share validation and not the
whole transaction block, resulting in greater efficiency and
reduced gas consumption.

Algorithm 1 validateShares
Require: merkleRoot, timestamp, nonce, counter, address

1: concat (version + previousHash + merkleRoot + times-
tamp + difficulty + nonce)

2: headerHash = hash(concat)
3: doubleHeaderHash = hash(headerHash)
4: require(doubleHeaderHash > difficulty AND isMem-

ber(msg.sender) AND doubleHeaderHash < getThresh-
old() AND isMemberPaid(msg.sender) == false);

5: balance = getBalance()
6: require (counter < getShares());
7: address.transfer(balance/getShares())

The main objectives of our solution are share validation
and block reward distribution. For this purpose, we provide
the pseudocode of these functions in Algorithm 1. This code
is executed when a miner wishes to validate his shares and

1. Code available in: https://github.com/sissyp/ADecentralizedMiningPool
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receive the corresponding reward. Note that in our imple-
mentation, there are separate functions for verification and
rewarding, with different inputs, checks, and permissions,
but for simplicity, we provide here only the logic of our
implementation.

We now describe the functionality of these two pro-
cesses. Initially, we create the header by concatenating the
corresponding values, such as the header of the previous
block, the timestamp, and the nonce. In order to perform
actions with string variables, we utilized the String smart
contract from the OpenZeppelin library.2 Subsequently, we
calculated the double hash of the header and we performed
the following checks. First, we needed to assure that the
hashed header is less than the share threshold and exceeds
the known difficulty. Second, we validated that the miner,
who called the smart contract is indeed a member of this
mining pool and finally, we made sure that he has not been
already paid. For member inclusion, we stored each miner’s
address in an array during the join protocol. If these checks
are correct, we retrieve the balance from the smart contract.
We also have a counter to measure the number of miners,
who called the function and we require this counter to be
less than the number of shares, which will be rewarded
according to the PPLNS method. If the miner passes these
checks, rewards are transferred from the contract’s balance
to his address and the validation process is successful.

Regarding the storage requirements, the pool manager
stores on IPFS the mapping between transactions and unique
numbers. In this way, a miner should only provide the
sequence of numbers that correspond to the transactions.

The Merkle Tree root is calculated locally by the pool
manager by first mapping each number that a miner submit-
ted in a transaction fetched from IPFS. Subsequently, the
pool manager constructs the Merkle Tree by continuously
hashing pairs of transactions. Once the Merkle Tree root is
calculated, it is provided as input in the validation functions,
which in turn call the payment functions that perform the
necessary checks to distribute the revenues accordingly. By
storing only the numbers in the smart contract, while the list
of transactions is uploaded on IPFS, gas fees are reduced.

Parameters In our implementation we designed the
system for pay per last N shares method. This can be easily
changed for other methods, such as proportional, but not
for methods, which reward members even if the next block
was not calculated by a member of the pool. As for the
share threshold and N , these are set by the pool manager, so
depending on the mining pool, these parameters may vary,
but all members can view them from the smart contract.
Finally, in our implementation, we reward the member, who
found the next block with half of the amount of money
and the remaining amount divided by N is split among the
members with the last N shares.

Modifiers Finally, it is important to mention the two
modifiers that were used; onlyOwner and onlyOwnerOf. The
former ensures that only the owner of the contract, meaning

2. https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/Strings.sol

the pool manager, can call the corresponding functions,
while the latter makes sure that only the member with the
corresponding identifier will be able to call these functions.
This is useful in many cases, as for instance only the owner
of the contract should define the threshold up to which
shares will be rewarded.

6. Performance Evaluation

In Table 1, we have measured the gas prices of our
core functions in the Sepolia 3 test network of the Ethereum
blockchain. More specifically, we measured the gas required
for validating the new block and distributing the correspond-
ing reward to the miner, who calculated the block, as well as
the gas needed for share validation and rewarding a miner
according to the shares he submitted. Moreover, the third
column refers to the percentage of the reward that gas fees
represent. In particular, we assumed a Bitcoin block, whose
reward is equal to $520, 825.18. In our protocol, we reward
the miner, who computed a valid block with half of the
earnings and the rest of the reward is equally distributed
to the miners, who calculated the last N shares. Note that
share validation is performed for each share separately,
while block validation is performed only once. As observed
from the results, minor gas fees are required compared to
the earnings of the block reward. For share validation we
assumed 1000 shares and as depicted in Table 1, gas fees
comprise only approximately 0.185% of the share reward.

In block validation function, we measured the gas re-
quired to compute the block header, performing a double
hash and checking that is less than the known difficulty.
Upon successful validation, we calculated the gas needed
to transfer half of the block reward to the miner, who
computed it, after performing the necessary checks, such
as ensuring that he is part of the mining pool and he
has not been paid yet. Moreover, in share validation we
calculated the corresponding gas for constructing the block
header and checking that its double hash is greater than the
difficulty, but does not exceed the share threshold. Finally,
for rewarding the shares, we estimated the required gas for
verifying that the miner has not been already paid for this
particular share.

Furthermore, the two last columns refer to the gas fees
and the percentage of the reward that gas prices represent in
SmartPool. The first two rows are marked as not applicable
(N/A) for the SmartPool design, since the gas fees for these
actions are not provided. Mining pools that are based on
the SmartPool contract have mined a total of 105 blocks
in Ethereum and Ethereum Classic networks. In terms of
gas fees, as a percentage of the block reward, SmartPool
required 0.61% from individual miners, while our solution
requires apprroximately 0.185%. These results occur by
adding all the rows in the ”Percentage of reward” column
for SmartPool and our protocol respectively.

We also computed the time required to upload and fetch
the transaction list from IPFS. For this purpose, we assumed

3. https://sepolia.etherscan.io/
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Functions Gas fees Percentage of reward SmartPool gas SmartPool percentage of reward
Block validation 53,376 0.00006527148 N/A N/A

Reward of next block 4,748 0.000005758 N/A N/A
Share validation 52,752 0.0652414 79,903 0.01

Reward of shares 4,652 0.00575507 2,872,693 0.6
TABLE 1. GAS PRICES OF MAIN SMART CONTRACT FUNCTIONS

the average number of Bitcoin transactions that are included
in a block is approximately 2000-3000 4. In either case, the
transaction block should not exceed 1MB. On average, for
2500 transactions of 1MB length, approximately 43 seconds
were required to be uploaded on IPFS and 41 seconds in
order for the list to be retrieved.

7. Security Analysis

We analyzed the security of our protocol by introducing
its requirements and designing the corresponding threat
model. We also define our penalty scheme, which aims to
incentivize miners to behave honestly. The security of our
solution mostly relies on the smart contracts’ and Merkle
Tree’s security, which fulfill our security requirements. In
particular, we define the following requirements for our
protocol:

• Miners do not benefit by submitting false or double
shares.

• Shares are fairly shared among pool members ac-
cording to the PPLNS method.

• Our protocol assures that all shares are correctly
validated.

In SmartPool, on average, it is not profitable to sub-
mit invalid shares based on their payment scheme and in
case one random path from the Augmented Merkle tree is
checked. This may apply on the average case, but stronger
security guarantees apply when validating all shares and not
just a random subset of them. Compared to SmartPool’s
security protocol, our scheme validates all shares so as to
avoid earning any rewards from submitting invalid shares.

7.1. Threat model

We assume that miners act rationally, meaning that they
aim to maximize their rewards and thus, they will behave
according to that objective. We do not require miners to be
honest, meaning submitting their actual shares, but instead,
the system will decentivize them from submitting false or
double ones. Also, we do not take into account an irrational
model, in which miners attempt to cause harm to other
miners or the pool manager, since this is also the case in
centralized mining pools [19], [20]. Furthermore, we assume
that there is no miner controlling over 50% of the total
network. In this way, our system is secure against double-
spending with 51% attacks [5].

4. https://ycharts.com/indicators/bitcoin average transactions per block

In other words, our system relies on the security of the
underlying consensus algorithm, in our case PoW, so as to
prevent manipulation of the blockchain. We also rely on
the transparency, immutability, and auditability of the smart
contracts, meaning that each miner can view the rules of the
pool, while being sure that these rules will be respected and
cannot be modified, by anyone.

7.2. Penalty scheme.

In our solution the last N shares are rewarded according
to the PPLNS method. In centralized mining pools, the pool
manager has to verify each share and distribute the rewards
accordingly. As a result, in this scenario, miners have to
trust the pool manager that he will fairly share the revenues.
Instead, in our scheme the smart contract is responsible for
performing the necessary checks and thus, we do not rely on
any trusted parties. For this purpose, we define the following
penalty scheme, which incentivizes miners to act honestly
and submit their actual shares only once:

p(x) =

{
pay x out of N shares if shares not false/double
0 otherwise

We will later show that in our protocol, miners do not
have any motivation to submit false or double shares, as not
only they will not receive any reward, but they will also be
charged with the gas fees.

7.3. Merkle Trees security

Merkle Tree Root construction. The Merkle Tree root
is one of the main components in the block header. A
Merkle Tree is constructed by iteratively hashing pairs of
transactions to form a single hash, namely the root. In
particular, each transaction within the Tree is individually
hashed with SHA-256, in case of Bitcoin, and these hashes
are then paired, concatenated, and hashed iteratively, until
the root is reached. The Merkle root facilitates verification
of block contents, as the integrity of a specific transaction
can be confirmed by examining a logarithmic number of
hashes, rather than the entire block.

The tamper resistant property of Merkle Trees is im-
portant for our verification protocol. More specifically, a
modification of a single transaction within the Tree would
result in ultimately altering the Merkle root. If a malicious
miner provides a false Merkle root, the verification process
will be unsuccessful and he will not participate in the mining
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process. Only providing a valid list of transactions will allow
him to continue participating in the protocol.

Share Validation. We prove that our penalty scheme
is correct, in the sense that only miners who submit valid
shares will be rewarded according to the PPLNS method.
In particular, with valid shares we define values that are
below the share threshold, but exceed the known difficulty.
We also wish to avoid submitting double shares and get
paid multiple times for the same share. For this purpose,
first, recall that we assumed rational miners, who aim to
maximize their profit. Also, we rely on the tamper resistant
property of the Merkle Trees. Now suppose that a miner
submits a false share. In this case, the provided list of
transactions will not yield a valid Merkle Tree root and
thus the verification process will not continue. Furthermore,
submitted shares are stored within the contract and therefore
a miner cannot submit double ones. In either case, the miner
falls into the second category, which means he will have zero
earnings. Besides, he also pays the gas fees for calling the
corresponding smart contract function, while not receiving
any reward.

7.4. Smart contract security

Unauthorized access. To prevent unauthorized access
to certain functions within the mining pool smart contract,
we employed the appropriate modifiers. These modifiers
ensure that only specific pool members, can access and
modify certain parameters. For instance, the pool manager is
responsible for defining the number of shares in the PPLNS
method. In this way, we assure that no member of the
pool can alter this value, but thanks to the smart contract’s
transparency, it is visible to all members.

Reward Distribution. A major objective of our scheme
is to fairly distribute revenues across pool members. For
this purpose, the miner, who successfully computed the next
block, receives half of the reward, while the N nearest valid
blocks are rewarded accordingly with the remaining half. In
the mining pool, the pool manager’s address is replaced with
the address of the smart contract, and as a result each time a
miner finds the next valid block, the revenues are stored in
the contract’s balance. Subsequently, the functions for block
and shares validation are being called from the correspond-
ing miner. After performing the necessary checks, rewards
are distributed accordingly, while the contract ensures that
each miner will not be paid for falsely or double shares.

Transactions Integrity. By associating each transac-
tion with a unique identifier, our contract offers miners
the opportunity to submit a single sequence of numbers,
rather than a list of transactions. In this way, we ensure
the integrity of transactions, as they are unique, while also
preventing manipulation or duplication of transaction data
during the verification process. Also, we assure that only the
appropriate sequence of numbers will yield a valid Merkle
Tree root, therefore avoiding transactions’ modifications by
malicious miners. Note that constructing a Merkle Tree
with duplicate transactions will not result in a valid root

as through their mapping with integers, transactions in our
protocol are unique.

Preventing Double Payment. Our smart contract in-
cludes checks to prevent double payment of miners by sub-
mitting the same shares multiple times. More specifically,
miners are required to be members of the mining pool and
must not have already been paid before receiving their share
of the mining reward. For this purpose, when miners join
the pool and call the corresponding smart contract function,
their address is stored in an array, which keeps track of the
pool members. Moreover, the N shares that are rewarded are
also stored in the smart contract. As a result, this prevents
miners from exploiting the system by claiming multiple
rewards for performing the same work.

8. Discussion

Efficiency and gas fees A major drawback that pre-
vious solutions introduced is the increased complexity that
occurred, when the number of miners and shares increases,
which has led to scalability issues and as a result, previous
solutions were abandoned. In particular, P2Pool relied on
a secondary blockchain for recording shares, while Smart-
Pool included computational and storage requirements for
maintaining the Augmented Merkle Trees, when the number
of shares and miners increased. Finally, the latest scheme
that was proposed, namely PoolParty, requires the target
blockchain to have a second layer payment protocol for
micro-payments, such as Bitcoin’s Lightning Network [21],
which may limit the compatibility with blockchains that lack
such protocols. Our solution aims to create a scheme that
will reduce computational and storage overhead by leaving
only the necessary information in the smart contract, by
leveraging IPFS, as storage for hashed transactions.

Some previous solutions lacked efficiency, as they re-
quired high share difficulty, in order to reduce the number
of transmitted messages, or they included penalty schemes to
punish miners’ misbehavior. In contrast, our protocol aims to
include a single smart contract to perform share validation,
without altering the share difficulty or incorporating game-
theoretic elements. Our penalty scheme is quite simple
and aims to incentivize miners to submit valid shares, as
otherwise, they will not receive any reward.

In our solution, we suggested storing the list of trans-
actions on IPFS and leave only the necessary content in
the smart contract, so as to minimize gas consumption.
Gas consumption is an important problem when referring to
smart contract optimization [22]. It is important not to affect
miners participation in the mining pool, so we ensured that
gas is minimized as possible, while keeping our solution
feasible and secure.

Sharding techniques. An extension of our solution
would be to incorporate sharding techniques, so as to im-
prove scalability [23], [24], [25]. In particular, sharding
refers to the partitioning of the UTxO into smaller subsets,
called shards. By splitting the UTxO set into shards, we
allow for parallel processing of transactions and thus reduce
the burden on individual nodes. In this way, we can enable

233

Authorized licensed use limited to: Athens University of Economics and Business. Downloaded on September 26,2024 at 15:56:43 UTC from IEEE Xplore.  Restrictions apply. 



faster transaction processing, while also maintaining the
decentralization principle of our solution.

9. Conclusions and Future Work

Mining pools encourage miners to participate in the
mining process, as they can combine their computational
resources in order to receive a portion of the block reward.
In this way, even miners with low mining power can increase
their revenues. Nevertheless, mining pools are controlled by
a pool manager, in the sense that the earnings collected
from calculating the next block are sent to his address. In
our solution, we solve the problems related to centralization
and trust in a mining pool by introducing smart contracts
to fairly distribute the revenues among the members of a
mining pool. We showed that our solution offers trans-
parency, automation, security, and trust, while exploiting
the IPFS in order to achieve gas (cost) minimization. By
addressing the aforementioned challenges, our solution pro-
vides a promising alternative for achieving decentralization
in mining pools and may lead to their wider adoption. The
proposed scheme could be further extended by introducing
a blockchain-agnostic solution, which will support different
mining pool methods and payment protocols. In addition, the
rationality assumption could also be relaxed by introducing a
threat model that assumes rational adversaries with harmful
behavior.
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