
PUBLISHED IN: PROCEEDINGS OF THE ICTIS 2024 1

Enhancing IPFS Bitswap
Christos Karapapas∗, George Xylomenos∗, George C. Polyzos∗†

∗Mobile Multimedia Laboratory, Athens University of Economics and Business, Greece.
Email: {karapapas,xgeorge,polyzos}@aueb.gr

†School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), China.

Abstract—The InterPlanetary File System (IPFS) holds a
pivotal role in the storage layer of the decentralized Web,
commonly known as Web3. Its efficient functioning is crucial
for a plethora of applications linked to blockchains, NFTs, and
similar technologies. A key component, Bitswap, plays a central
role in locating and exchanging files within the IPFS network. In
this paper, we measure the latency of IPFS in fulfilling download
requests and introduce an enhanced version of Bitswap designed
to optimize its performance. We take into consideration the
popularity of files and perform a series of experiments comparing
the baseline version with our proposed method. Our findings
indicate that, with the proposed improvements, the latency of
download requests is significantly reduced, especially for content
with low popularity. We also compare the two versions as network
size grows, and demonstrate that our proposed method enhances
the scalability of IPFS, as it keeps latency low without requiring
node state to grow in proportion to the network size.

Index Terms—IPFS, Bitswap, KAD-DHT

I. INTRODUCTION

The Web3 concept has gained significant attention recently.
One of the main attractions of Web3 is an emphasis on return-
ing control of data to their owners, allowing them to determine
who can access their data and enabling monetization of the in-
formation they generate. Central to achieving these objectives
are distributed ledger and blockchain technologies, along with
token-based economics. Web3 also envisions decentralized
services that cater to the Internet of Things (IoT) era, intro-
ducing financial elements to the user-Web relationship through
cryptocurrencies. Web3 is often conceptualized as comprising
different stacks, each consisting of various protocols that
collaborate to deliver services to users. These protocols cover
areas such as data storage, name resolution, decentralized
identities, and, at a higher level, services like social media,
gaming, and marketplaces. However, these protocols, along
with the bridges connecting them, are still evolving, and their
efficiency is not yet as fine-tuned as that of traditional Web
protocols. This can lead to poor user experience in various
applications, from a game with collectible NFTs to a cross-
chain transaction.

The InterPlanetary File System (IPFS) is considered to be
a cornerstone of the Web3 storage layer, with over 3 million
weekly users, 300,000 of which are unique nodes [1], and
more than 10,000 sites built on top of it.1 The fact that
companies embracing Web3, such as Pinata and Cloudflare,
offer public gateways for users to access IPFS via HTTPs is
not a coincidence. IPFS’ core component is a Kademlia-based

1https://trends.builtwith.com/framework/IPFS

Distributed Hash Table (DHT). Trautwein et al. [1], illustrate
that IPFS faces considerable user churn during its operation,
negatively impacting the efficacy of its DHT and, especially,
its latency.

To limit the DHT’s impact on IPFS, a different mechanism
called Bitswap is utilized before resorting to the DHT. Bitswap
announces to all connected nodes that the initiating node is
searching for specific content. If a 1 sec deadline elapses
without success, the search request is then redirected to the
DHT. In a recent study2 focusing on popular content, i.e.
content that has previously been requested, with more than 800
nodes connected to the requester, Bitswap managed to fulfill
80% of retrieval requests within the specified time frame.
Therefore, it is clear that Bitswap has a crucial role in the
functioning of IPFS.

Despite its advantages, Bitswap has its issues. For instance,
multiple studies [2], [3], [4] have identified shortcomings in
Bitswap, especially concerning the leakage of information.
Furthermore, there are concerns about Bitswap’s operation
under suboptimal conditions, such as when a node has a low
number of connections or the content being sought is not
widely popular. Confais et al. in [5] discovered that 30% of
files in IPFS have fewer than 3 replicas, with the average
file having 4.6 replicas. Overall, their research revealed that
file popularity on IPFS follows a Zipf distribution, where a
tiny fraction of files are very popular and have many replicas,
contrasted with the vast majority of files that are less popular
and have a few replicas. However, their findings indicate that
the majority of queries on IPFS are for files that are not
popular.

Swift service provision is imperative for IPFS-dependent
applications to meet their demands. To enhance IPFS effi-
ciency, in this work, we propose a method to improve the
effectiveness of Bitswap, thus reducing dependence on the,
slower, DHT. To this end, we initially conducted a sequence
of experiments to assess the DHT’s response time to a query
aiming to locate providers for content that we had previously
added to the network, thus making it unique. Our findings
from 1800 experiments reveal that the median response time
is 8 seconds, which is non-negligible. We then introduced our
enhancements to boost the chances that a content search will
only use Bitswap. This strategy aims to decrease the total
response time to ≤ 1 second. Our findings demonstrate that
our method significantly increases the likelihood of finding

2https://www.youtube.com/watch?v=zppddk2O9UQ



2 PUBLISHED IN: PROCEEDINGS OF THE ICTIS 2024

content via Bitswap, especially for content that is not widely
popular.

The remainder of this paper is structured as follows: In Sec-
tion II, we present background information and an overview of
IPFS technologies. In Section III, we present related research
regarding Bitswap and IPFS efficiency. In Section IV we
measure response times through the DHT. Then, in Section V,
we present the proposed method and in Section VI evaluate
it. Finally, in Section VII, we summarize our findings and
contributions, and explore future research directions.

II. BACKGROUND ON IPFS

The InterPlanetary File System (IPFS) [6] is a decentralized
file-sharing system with a focus on distributed data storage and
quick file distribution. Unlike traditional file systems, IPFS
uniquely identifies files based on their content, assigning each
file a distinct Content Identifier (CID). A key IPFS compo-
nent is libp2p, an open-source library of network protocols,
which include KAD-DHT, a scalable variant of the Kademlia
DHT. KAD-DHT manages mappings such as Provider Records
(indicating which peer has a piece of content), Peer Records
(identifying the network address of a peer), and IPNS records
(mapping static to dynamic data). Bitswap operates as the data-
exchange protocol, relying on “want-have” content and “have”
content messages to facilitate efficient data exchange.

IPFS employs Merkle DAGs, a combination of Merkle Tree
and Directed Acyclic Graph (DAG), to certify the uniqueness
of exchanged data, ensuring no duplicates are stored. When
a user intends to upload a file to IPFS, the process involves
breaking the original file into smaller chunks, typically 256 KB
each. Each chunk is then assigned a unique CID, these chunks
are organized into a Merkle DAG, and a Provider Record is
generated, containing the root CID of the file. Subsequently,
a query is sent to the DHT. The DHT is utilized to find
the k = 20 closest peers to the CID in the network. The
Provider Record (which peer has the file) is stored in these
peers. Independently, 20 more peers are found to store the
Peer Record (what is the address of that peer) [1].

In IPFS, each peer manages a network of active connections
known as the swarm, with a default size ranging from 600,
referred to as low water mark to 900, referred to as high
water mark. When a user wishes to retrieve a file from the
IPFS network, the Bitswap protocol is activated. It sends a
message to the user’s swarm peers in the format want-have
<root CID> [7]. Peers in the swarm individually check if
they have the specified CID locally. If a peer possesses the
requested content, it responds with a have message. Upon
receiving a have response, a dedicated session is initiated for
the specific CID. All peers responding with have messages
are also included in this session. Subsequent communication
within the session only involves these peers.

If no response is received within 1 second, the process
is handed over to the DHT, which operates in two stages.
Initially, the process searches for the Provider Record which
contains the Peer ID storing the content for the requested CID.
Subsequently, it looks for the Peer Record which shows how
the Peer ID is linked to a network address. Once this process is

finalized, Bitswap is reactivated to facilitate the data exchange
with the peer hosting the content [1].

III. RELATED WORK

In [7] de la Rocha et al., initially, explain in detail the
steps taken by Bitswap from requesting a file until acquiring
it. Moreover, they propose a number of modifications to
Bitswap, aiming to improve its efficiency and efficacy. Their
first proposal makes each node inspect want-have messages,
and rather than discarding messages for CIDs that it does not
have, maintaining a record for the CID, indicating the peers
that have requested it. The rationale behind this approach is
that if peers have requested a CID previously, they are likely
to have it later on. Consequently, when a user seeks a CID,
it begins by requesting it from these identified peers. This
method aims to reduce the RTT by one cycle and minimize the
overall volume of messages exchanged through Bitswap. Their
second proposal adds a Time-to-Live (TTL) parameter into
Bitswap messages. When a node receives a Bitswap message
with TTL greater than zero, it functions as a relay, forwarding
the message to connected nodes that have not yet received it.
The objective is to diminish the likelihood of Bitswap timing
out.

The want-have inspection technique shares the same
objective as our proposed method. The idea is that a node will
issue a want-block message to nodes it knows have also
made a similar request. Ideally, these nodes would respond
with the block, bypassing the want-have step. However,
due to the frequent changes within the IPFS network, there is
a likelihood that they might not respond, leading to a fallback
on Bitswap’s standard operation and incurring an additional
RTT. Moreover, their method maintains a local data structure,
using computing and storage resources, which escalate as the
network expands. Our approach does not need a special data
structure; it merely involves a read operation in the node’s
routing table, which we consider to be of negligible impact.

In [1] Trautwein et al., provide a comprehensive overview
of IPFS’s functionality, offering a broad perspective on its
mechanics. Moreover, they assess IPFS using data gathered
from three distinct sources. The first dataset was obtained
by systematically crawling the IPFS network at 30-minute
intervals over a span of 10 weeks. The second dataset pertains
to the traffic monitored through one of IPFS’s public gateways
(ipfs.io). Finally, the third dataset is derived from active
measurements conducted by the authors, who deployed six
virtual machines, each one on a different region on AWS.
The study highlights several key findings, including the ge-
ographical distribution of nodes, which indicates that IPFS
is significantly decentralized. It also examines the network’s
dynamics, which contributes to high churn rates. In their
analysis, the authors found that across the six AWS regions,
the delay for publishing 50% of the sample is 33.8 seconds,
whereas the delay for retrieving content is 2.9 seconds. Our
measurements in Section IV present a sharp contrast, revealing
a median time of 8.4 seconds, which significantly deviates
from their findings. This divergence likely stems from the
different conditions under which the data was requested. The



PUBLISHED IN: PROCEEDINGS OF THE ICTIS 2024 3

Fig. 1. Cumulative Distribution Function of response times (in seconds).

authors’ nodes were acting as DHT server nodes, while our
client node was situated behind a NAT and firewall, operating
with limited network resources. Despite this, we contend that
the conditions of our experiment more accurately mirror the
typical user experience on IPFS.

IV. LOOKUP LATENCY MEASUREMENTS

In our experimental setup, we employed two distinct nodes:
a client and a server. The server was situated on a work-
station with a public IP address and not confined behind a
firewall. This server was responsible for generating random
files, adding them to the IPFS network, and then adding the
respective root CID on a database (to avoid direct communica-
tion between the nodes). The client was set up on a computer
situated behind a NAT, using the operating system’s default
firewall. This setup was chosen to more accurately reflect
the typical user experience when interacting with IPFS. The
client node was utilized to retrieve each CID from the database
and subsequently ask the IPFS network for the corresponding
content through the DHT.

We measured the time it took for the DHT to respond to
each inquiry. Specifically, the client, after the server added
the file to the network, executed the command ipfs dht
findprovs <hash> which returns up to 20 Peer IDs cor-
responding to providers of the requested file. This experiment
was systematically repeated over 24 hours, with a total of
approximately 1800 randomly generated files. By executing
this series of experiments, we aimed to evaluate the efficiency
and responsiveness of the IPFS network in handling requests
for randomly generated files. The measured response times
from the DHT provide insights into the performance of IPFS
in the context of file retrieval for a substantial dataset.

To enhance the objectivity of our results, we excluded 105
experiments out of the initial 1800 that experienced timeouts,
i.e., more than 2 minutes. By excluding timed-out experiments,
we ensure that the analysis is based on a subset of data
where interactions with the IPFS network were successfully

completed. Among the experiments that were successfully
served, the average response time was 12 seconds, with a
median of 8.4 seconds. These values, regardless of the specific
metric used, are non-negligible. The average and median
response times provide insights into the typical performance
observed during the retrieval of files from the IPFS network in
our experimental setup. The Cumulative Distribution Function
of the response times in this experiment is shown in Figure 1.

V. THE KNOW MESSAGE

In Section IV, we observed that DHT response times in IPFS
are not negligible and can potentially impact the functionality
of an IPFS-based service. To address this issue, we propose an
enhancement to Bitswap aimed at reducing the likelihood of a
query going unanswered by Bitswap, which would cause the
requester to resort to the, much slower, DHT. The proposed
enhancement involves introducing a new message type called
know to the list of Bitswap messages.

The process unfolds as follows: when a client broadcasts a
request for a root CID, the nodes within the swarm individually
check if they locally store the file. If so, they respond with
a have message, as usual. In addition, though, they check if
they store a Provider Record for this CID, that is, if they know
someone else that stores the content. If a Provider Record is
found, the node responds with a message of the form know
PeerID, where PeerID is the identifier of the node that, at
some point, advertised that it provides the file. Subsequently,
the client incorporates that Peer ID into the ongoing session.

A provider’s PeerID is insufficient for establishing contact
with it; a node also needs the network address of the peer,
that is, its Peer Record. To avoid immediately resorting to
a DHT walk to locate it, the client that has the Provider
Record, also consults its address book to see if it stores a
Peer Record, which, if found, is sent along with the know
message. Consequently, when the requester receives the
know message, they will be informed of the Peer ID and,
ideally, also obtain the Peer Record, enabling them to link



4 PUBLISHED IN: PROCEEDINGS OF THE ICTIS 2024

Fig. 2. The operation flow of the proposed Bitswap enhancement.

Fig. 3. The probability of finding content via Bitswap, against file popularity.

the Peer ID to a physical address. If this information is not
available, the process transitions to the peer discovery stage,
where the requester first checks its address book for a stored
Peer Record for the specific Peer ID, before turning to the
DHT for more information. The flow of the aforementioned
procedure is depicted in Figure 2.

VI. EVALUATION

To estimate the impact of our proposal scheme, we first need
an estimate of the size of the IPFS network. For this reason
we used the Nebula DHT Crawler [8]. These measurements
show that during the measurement period the network size
was about ν = 15, 300 nodes. Let p be the probability that
a node storing the Provider Record of the original uploader,
is also part of the client’s swarm. We approach the problem
as follows. We consider each of the broadcasted messages as
an attempt to select at least one of the 20 peers that have
the Provider Record. The probability of finding no one on the
first try is 15280

15300 , the second is 15279
15299 etc. So in general the

probability of not selecting even one is q =

νs∏
i=1

15280− i

15300− i
,

where νs is the swarm size. The probability we are looking
for is p = 1− q, which is the probability to find at least one.

We conducted a series of Monte Carlo experiments to
compare our improved Bitswap version against plain Bitswap.
The primary objective was to ascertain the probability of a
query receiving a response from Bitswap in each version.
We employed Python’s random module, particularly the
random.sample()3 function, to generate random sets of
nodes, thereby simulating the sets of swarm nodes and the set
of 20 nodes that store the uploader’s Provider Record. Our
goal was to determine if there were common elements within
these sets, indicating that a swarm node could respond with a

3https://docs.python.org/3/library/random.html



PUBLISHED IN: PROCEEDINGS OF THE ICTIS 2024 5

Fig. 4. The probability of finding content via Bitswap, against network size.

know message. To ensure statistical robustness, we repeated
this process 100,000 times for each distinct scenario, varying
network size, swarm size, and file popularity.

Recognizing the multifaceted nature of network dynamics,
particularly in relation to file availability and peer participa-
tion, we meticulously designed our experiments to incorporate
diverse levels of file popularity. Additionally, we explored the
impact of swarm size, which as we mentioned before, ranges
from 600 to 900 participants. We categorized swarm sizes into
three distinct scenarios: a conservative scenario with νs = 600
peers, an intermediate scenario with νs = 750 peers, and
an optimistic scenario with νs = 900 peers. Each scenario,
as mentioned before, underwent rigorous evaluation through
100,000 iterations. The results are illustrated in Figure 3 for
files of different popularities.

Our analysis reveals a marked improvement in the likelihood
of query responses with the introduction of the proposed
solution, particularly evident in scenarios featuring files with
low popularity levels. To illustrate, when examining files with
a popularity rating of 1, i.e., one replica of the file in the
IPFS network, and a swarm size of 600, the probability of
receiving a response under the current system stands at a
mere 4%. However, with the implementation of the proposed
solution, this probability surges to a notable 55%. Similarly,
for files boasting a popularity rating of 10 under the same
swarm size conditions, the probability escalates from 32% with
the existing system to an impressive 99.2% with the proposed
upgrade.

It is worth noting that as file popularity increases, the gap
in probability between the current and proposed solutions
gradually narrows. Nevertheless, the substantial improvement
afforded by the proposed version remains evident across the
entire spectrum of file demand, indicating significant gains for
IPFS, especially in scenarios characterized by low file traffic.

Another significant issue with plain Bitswap is scalability. In
order to maintain its present level of effectiveness, the swarm’s
size must be proportional to the network’s size. For instance,
if we imagine a scenario where the network comprises 15,000

nodes and each node’s swarm has 600 active connections, then
if the network expands to 60,000 nodes, each node’s active
connections should increase to 2400 in order to sustain the
same success rate.

We conducted a series of experiments to assess whether
the know message can maintain Bitswap’s efficiency, with-
out expanding swarm size. In our experiments, we kept
file popularity at an average level [5], with 5 replicas, and
examined how response probabilities changed with larger
network sizes. These tests were carried out for three different
swarm sizes, comparing plain Bitswap against our solution,
each over 100, 000 iterations. The experiments assumed that
the replicas are uniformly distributed across the network.
As shown in Figure 4, even when the network size reaches
65,000 nodes—roughly four times larger than our initial
measurements—plain Bitswap with νs = 600 only achieves a
success rate below 10%, whereas our solution achieves a 60%
success probability. In the extreme scenario where the network
expands to 100,000 nodes, our approach maintains a 45%
success rate, significantly outperforming the baseline’s modest
3% probability, making Bitswap futureproof. The findings of
these experiments are presented in Figure 4.

VII. CONCLUSIONS AND FUTURE WORK

Given the importance of IPFS in the Web3 ecosystem,
we contend that operational efficiency is paramount. Despite
ongoing upgrades, there is room for improvement, especially
in retrieval latency. In this paper, we introduced a method
for enhancing the performance of Bitswap. Our goal is to
ensure that queries are resolved by Bitswap itself, reducing
the need to rely on the DHT. Our experiments demonstrated
that our solution can significantly improve Bitswap’s success
rates, particularly for files with low popularity, a scenario that
existing research confirms is common. We also investigated
how our method would perform as the IPFS network expands.
The results reveal that our solution maintains a high success
rate without inflating the number of active connections, which
would exhaust the node’s network resources. Therefore, our



6 PUBLISHED IN: PROCEEDINGS OF THE ICTIS 2024

solution could be beneficial in enhancing the scalability of
IPFS. In the near future, we plain to conduct measurements
using Testground4, a simulation tool tailored for the IPFS
network. Through this initiative, we aim to validate the efficacy
of the proposed method and assess the benefits that stem from
its use.

REFERENCES

[1] D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of IPFS: a storage layer
for the decentralized web,” in ACM SIGCOMM Conference, 2022, pp.
739–752.

[2] L. Balduf, S. Henningsen, M. Florian, S. Rust, and B. Scheuermann,
“Monitoring data requests in decentralized data storage systems: A
case study of IPFS,” in IEEE International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2022, pp. 658–668.

[3] E. Daniel and F. Tschorsch, “Privacy-enhanced content discovery for
bitswap,” in 2023 IFIP Networking Conference (IFIP Networking), 2023,
pp. 1–9.

[4] C. Karapapas, G. C. Polyzos, and C. Patsakis, “What’s inside a node?
Malicious IPFS nodes under the magnifying glass,” arXiv preprint
arXiv:2306.05541, 2023.

[5] B. Confais, B. Parrein, J. Lacan, and F. Marques, “Characterization
of the IPFS Public Network from DHT Requests,” in Transactions on
Large-Scale Data-and Knowledge-Centered Systems, ser. Lecture Notes
in Computer Science. Springer, 2023, vol. 14280, pp. 87–108.

[6] J. Benet, “IPFS – content addressed, versioned, P2P file system,” arXiv
preprint arXiv:1407.3561, 2014.

[7] A. De la Rocha, D. Dias, and Y. Psaras, “Accelerating content routing
with bitswap: A multi-path file transfer protocol in IPFS and filecoin,”
ProbeLab, Tech. Rep., 2021.

[8] D. Trautwein, “Nebula – A crawler for networks based on the libp2p
DHT implementation,” 2021. [Online]. Available: https://github.com/
dennis-tra/nebula-crawler

4https://docs.testground.ai/master/


