
Learning the Optimal Controller Placement
in Mobile Software-Defined Networks

Iordanis Koutsopoulos
Department of Informatics

Athens University of Economics and Business
Athens, Greece

Abstract—We formulate and study the problem of online learn-
ing of the optimal controller selection policy in mobile Software-
Defined Networks, where the controller-switch round-trip-time
(RTT) delays are unknown and time-varying. Static optimization
approaches are not helpful, since delays vary significantly (and
sometimes, arbitrarily) from one slot to another, and only RTT
delays from the current active controller can be easily measured.
First, we model the sequence of RTT delays across time as a
stationary random process so that the value at each time slot is a
sample from an unknown probability distribution with unknown
mean. This approach is applicable in relatively static network
settings, where stationarity can be assumed. We cast the problem
as a stochastic multiarmed bandit, where the arms are the
different controller choices, and we fit different bandit algorithms
to that setting, such as: the Lowest Confidence Bound (LCB)
algorithm by modifying the known Upper Confidence Bound
(UCB) one, the LCB-tuned one, and the Boltzmann exploration
one. The first two are known to achieve sublinear regret, while
the last one turns out to be very efficient. In a second approach,
the random process of RTTs is non-stationary and thus cannot
be characterized statistically. This scenario is applicable in cases
of arbitrary mobility and other dynamics that affect RTT delays
in an unpredictable, adversarial manner. We pose the problem as
an adversarial bandit that can be solved with the EXP3 algorithm
which achieves sublinear regret. We argue that all approaches
can be implemented in an SDN environment with lightweight
messaging. We also compare the performance of these algorithms
for different problem settings and hyper-parameters that reflect
the efficiency of the learning process. Numerical evaluation shows
that Boltzmann exploration achieves the best performance.

I. INTRODUCTION

Software Defined Networking (SDN) has become a game-
changer in network traffic engineering and management in
the last decade. SDN separates the control and data plane
functionalities so that the former are placed in dedicated nodes,
the controllers, while data-plane forwarding is executed by
SDN-enabled switch nodes according to their flow tables.

SDN has seen many success stories in wire-line core
networks, and later it expanded to the wireless last mile
of infrastructure-based networks, e.g. Long Term Evolution
(LTE) cellular and WiFi [1]. The work [2] suggested the de-
ployment of software-defined Radio Access Networks (RANs)
through a global controller that centrally manages many base
stations (BSs). This work suggested the separation of control
decisions into those that require full state information and need
to be taken at the controller, and those that need fast response
and are assigned to BSs. However, steps towards applying
SDN in mobile ad hoc networks (MANETs) have been at

a much slower pace, mainly because of the high variability,
mobility and link volatility in MANETs, and the decentralized
nature of their basic algorithms which come in stark opposition
with the centralized fashion of decisions in SDN.

Nevertheless, a number of proposals and research efforts
in the last few years argue in favor of feasibility of SDN in
MANET environments [3]-[5]. MANET traditional application
scenarios such as tactical networks, disaster rescue, and sensor
networks are still growing. MANETs are also at the core
of modern settings such as device-to-device, unmanned air
(or sea) vehicle (UAV, USV), and vehicular ad hoc networks
(VANETs). Through its centralized nature and separation of
control and data planes, SDN can offer its centralized point
of view to network control. There are two main directions to-
wards integrating SDN to MANETs. First, MANET distributed
routing protocols can complement SDN-based control and may
substitute it when conditions dictate it, e.g. when connection
to a controller is lost. Second, the strict separation of control
and data planes can be relaxed, and a portion of the centralized
control exercised by a controller can be delegated to switches.

The basic functionality of an SDN controller is to configure
the flow forwarding rules for SDN switches. An SDN switch
queries the SDN controller using PACKET-IN messages for
required forwarding actions to follow for new flows it encoun-
ters, for which the rules are not already included in its table.
The controller responds back through the control channel,
and a rule is installed in the switch table that provides a
mapping between packet header fields and actions to execute
upon packet match. Essentially, the controller runs centralized
optimization algorithms whose output determines the flow
(forwarding) tables of SDN switches or other rules about
forwarding, blocking, modifying, and processing incoming
packets. The SDN controller is also responsible for discovering
and maintaining network topology information by sending
PACKET-OUT messages. Further, the controller continuously
gathers network state information and other statistics.

For these controller functionalities, the controller-to-switch
round-trip time (C-S RTT) delay is crucial. RTT affects
delays for flow setup, route updates and fault management,
as well as the system abilities for fast topology discovery
and for ensuring given quality-of-service (QoS) by adapting
to different network variations. RTT in turn depends on con-
troller selection or placement. The SDN controller placement
problem has received a lot of attention in the last decade [6],

[7]. Different objectives have been studied, and control-plane
latency (delay) is one of the most prominent ones.

In this work, we study the problem of selecting a single
node as controller in a MANET environment. We are in-
terested in finding the controller placement that minimizes
the average RTT delay for generated requests. In MANETs,
the controller selection problem becomes more crucial since
nodes are highly volatile and oftentimes mobile, while wireless
links have time-varying quality and lower transmission rates
compared to wire-line ones. In addition, the controller-to-
switch path via the control channel can be multi-hop, and this
increases RTT [8].

Almost all approaches e.g. [8] tackle the static version of the
problem. They assume that the delays between a controller and
a switch are known, and they solve an integer programming
optimization problem. If one controller is to be selected, this
is the node with the smallest average delay to other nodes. If
more than one controllers need to be selected, then, besides
the controllers, the algorithm needs to find the set of switches
associated with each controller.

However, in MANET settings, static optimization does not
seem to be applicable or offer useful insights. First and
foremost, it is not easy at any given time to measure the RTT
delay between any pair of nodes in the network so as to take
decisions. This is because, through the SDN protocol, it is
possible to measure only the RTT delays between the switches
and the active controller since only the active controller can
send PACKET-OUT messages to other nodes, on which RTT
can be measured. Second, even if such measurements were
feasible through protocol modification so that all nodes could
send PACKET-OUT messages, the information about RTT
delays at a time slot t would not be useful in the controller
selection decision at time slot t+ 1, since delays are likely to
vary significantly (and sometimes, arbitrarily) from one slot
to another in wireless settings.

Furthermore, RTT is hard to model, as it is the cumu-
lative result of several factors such as the shared medium,
interference, wireless channel propagation, mobility, and time-
varying connectivity and path lengths, and it becomes hard to
model each of each factors. Data-driven supervised learning
approaches are also hard to realize, since they rely on avail-
ability of massive datasets to train Machine Learning models,
which is hard to assume, especially in a tactical scenario.

In this work, we take a different approach to the controller
selection problem by departing from the setting where delays
are known at decision time at each time slot. We address the
problem of online learning of the optimal controller selection
policy in a network where RTT delays are unknown and
varying with time. According to a first approach, we model the
sequence of RTT delays across time as a stationary random
process so that its value at each time slot is a sample from
an unknown probability distribution with unknown mean. This
approach is applicable in settings that are relatively static or
have canonical mobility, in which stationarity can be assumed.
Tactical networks are a primary example where such settings
arise. At each time slot, only the RTT delays between the

current active controller and the switches can be measured. We
are interested in learning which node, if selected as controller,
leads to an RTT probability distribution with the smallest
mean. In a second approach, the random process of RTT delays
is non-stationary and thus cannot be characterized statistically.
This scenario is applicable in cases of arbitrary mobility and
other dynamics that affect RTT delays in an unpredictable,
adversarial manner. For both cases, we focus on minimizing
regret, i.e. the difference between the average RTT delay
achieved by our selection policy and the delay of the optimal
fixed selection we would have made if we knew a priori the
random process evolution.

This work contributes to the literature as follows:
• When RTT delays can be statistically characterized but

have unknown means, we cast the problem of optimal
controller selection as a stochastic multiarmed bandit,
where arms are the different node choices as controller.
We fit different bandit algorithms to the problem setting,
such as the Lowest Confidence Bound (LCB) algorithm,
the LCB-tuned one and the Boltzmann exploration one.
The first two are known to achieve sublinear regret, while
the last one turns out to be the most efficient.

• When RTT delays are arbitrary and cannot be character-
ized statistically, we pose the problem as an adversarial
bandit that can be solved with the EXP3 algorithm that
achieves sublinear regret.

• We argue that these approaches can be implemented in
an SDN environment with lightweight messaging.

• We compare the performance of these algorithms for
different settings in terms of learning fast the optimal
controller selection. Boltzmann exploration is shown to
achieve the best performance.

The rest of the paper is organized as follows. In section II we
present an overview of relevant state of the art. In section III,
we present the model, and in sections IV and V we present the
formulations of the online learning problem as stochastic and
adversarial bandit respectively. Section VI presents numerical
results, and section VII concludes the paper.

II. RELATED WORK

Controller placement has attracted a lot of attention in
the last decade due to the growing importance of SDN for
wireline networks. A comprehensive survey is [6], where
the works are categorized according to the sought objective
of controller placement, such as control latency, reliability,
network resilience against switch, link or controller failures,
load balancing across controllers, and cost efficiency. We will
discuss RTT delay, as this is the focus of our work.

Static controller placement. A vast body of literature
is focused on static controller placement approaches, where
the decision is taken either by taking a snapshot of the
system or by studying the objective in an average sense. The
seminal work under a latency objective is [9], which asks how
many controllers to deploy in a network, and where to place
them. It defines different objectives related to latency, such
as: (i) minimizing the average C-S latency over all switches

(assuming that each switch will connect to its associated
controller through a shortest path), which is the k-median
problem; (ii) minimizing the maximum C-S latency over all
switches, which is the k-center problem; (iii) minimizing the
number of switches with delays to the controller that are
bigger than a value. The paper concludes that for medium-
sized networks, a single controller is enough to achieve latency
values that are useful to certain application scenarios. In
[10], processing capacity constraints at the controllers are
considered, and switch association to a controller is performed
so as to balance processing load across controllers. The paper
formulates the problem of finding the controller placement and
switch association so as to minimize the maximum delay to
the associated controller, subject to a maximum total load for
each controller.

The work [11] studies the placement of the minimum
number of controllers and switch assignment to controllers
so as to achieve certain delay bounds in controller response
time. The latter involves service time at controllers, which
in turn depends on the workload assigned to a controller,
assuming a First-Come-First-Serve packet service policy. The
work [12] studies the controller placement and workload
distribution problem to optimize a metric that is a tradeoff
between controller response time and utilization. A heuristic
methodology based on simulated annealing is proposed in
[13] to achieve controller placements that are Pareto optimal
with respect to different performance metrics, together with a
practical user interface.

Clustering approaches. Another thread involves clustering
techniques [14]-[16], where a cluster is a subset of switches
assigned to the same controller. Different similarity metrics
among nodes are used, such as the negative Euclidean distance
and the shortest-path distance between node pairs. The work
[16] proposes a network partition policy into sub-networks
and controller placement in each subnetwork, with the aim to
reduce the maximum end-to-end latency between controllers
and their associated switches. Besides the clustering approach,
the authors explicitly model the queuing latency of requests
at the controllers through an M/M/m queue, where m is the
number of controllers that collaborate to serve switch requests.

Message overhead cost. Another line of works model the
controller-to-controller (C-C) message overhead. The work
[17] considers the problem of minimizing the C-C and C-S
delay costs through a facility-location-based heuristic and a
bargaining game-based approach. The work [18] formulates
the problem of controller placement so as to minimize a
weighted sum of delay and message overhead cost for C-C
and C-S communication, where the overhead is the rate of
exchange of control messages. An important contribution of
this paper is that its models are inspired by real measurements
of overhead costs on the OpenDaylight and ONOS SDN plat-
forms. In ONOS, a leaderless approach is followed, whereby
controllers exchange overhead messages among themselves,
and the rate of such messages is linear with controller load.
On the other hand, OpenDaylight uses a leader-based approach
whereby controllers synchronize only with the master (leader)

controller. These differences result in different type of objec-
tives that are addressed respectively through a heuristic using
the theory of submodular function optimization, and through
a facility-location inspired algorithm.

Adaptive methods. A line of works pertains to adaptive
methods that adjust the number of controllers, their place-
ment, and the switches assigned to controllers in an adaptive
fashion. These works are mostly focused on solving the
switch migration problem from one controller to another.
The work [19] formulates this problem as a Network Utility
Maximization problem, where the objective is to maximize
total utility of controllers, which is a concave function of their
assigned load. The work [20] formulates the problem as a
stable matching one, where the preference of a switch for a
controller depends on response time, while the preference of
a controller for a switch depends on message overhead among
them. Since frequent reassignment of switches to controllers
may be cumbersome to implement, some works propose “soft”
association, whereby a switch can be associated with more
than one controllers.

While almost all adaptive methods focus on the solution of
an optimization problem periodically and in a myopic manner,
the work [21] takes a different approach. It formulates the
problem of controller placement and switch association as an
online optimization problem, based on instantaneous informa-
tion about request arrivals at each time slot. The paper uses as
additional controls the adjustment of controller computational
speed and the routing of some requests to other controllers.
The objective is to minimize the time-average energy cost due
to processing and due to request routing to other controllers,
subject to maintaining a stable queue of backlogged requests
at each controller. The authors use Lyapunov optimization
methods to solve this problem. A Lyapunov optimization
method is also used in [22] for a similar cost minimization
problem, where the idea is to allow control devolution, i.e.
the selective transfer of a portion of the request load from
controllers to switches.

Machine Learning approaches. Although a number of
Machine Learning (ML) approaches have been applied in
the data-plane of SDN [23]-[25], ML-based approaches for
controller placement are scarce. An approach based on deep
reinforcement learning is proposed in [26] for placement of
a given number of controllers. The state of each switch
is modeled as the set of flows that are addressed to each
controller, the action is the tentative assignment of each switch
to a controller, and the reward is a weighted sum of average
latency and load variance at each controller. The work [27]
addresses the joint control and learning problem for control
devolution and switch-controller association for a given set of
controllers, subject to maintaining request queue stability. For
the control problem, Lyapunov optimization is used, while the
learning problem is modeled as a combinatorial multi-armed
bandit, where an arm corresponds to a switch-controller pair.

To the best of our knowledge, our work is the first one
to apply the multi-armed bandit online learning approach to
controller placement.

III. MODEL

We consider a wireless network with N nodes. We assume
that the topology size is such that a single controller suffices
to coordinate the network. Time is slotted, and at each time t,
a single node needs to be selected as controller, and the rest
of the nodes act as switches.

At each time slot t, let the decision variable xi(t) = 1 if
node i is selected as the controller, and xi(t) = 0, if it is not.
The sequence of events is as follows. At the beginning of each
time slot t, a node i is selected as the controller, and all other
nodes are associated with it. Next, requests from the controller
and from the switches arise at the beginning of the time slot.
Requests from the controller to switches may be for topology
discovery, switch monitoring, or network state and statistics
collection. Requests from the switches to the controller may
be about flow forwarding rule setup. Without loss of generality,
we assume that at each slot, one request is generated from the
controller to each switch, and one request is generated from
each switch to the controller. Requests are satisfied and the
RTT delay is measured within time slot t.

Let Wi,j(t) denote the round-trip-time (RTT) delay between
nodes i and j at time t, when i is the request initiator and
j is the recipient. Delay is the superposition of factors such
as C-S propagation delay which depends on the number of
hops between them, intermediate link transmission delays that
depend on wireless transmission rates, and queuing delay at
the node that serves the request. We do not isolate these factors
but consider their cumulative effect as a single number. For
requests initiated by the controller, RTT delay is measured at
the controller upon reception of request response. For requests
initiated by the switch, RTT is measured at the switch, and
its value is passed to the controller at the end of the time
slot. The slot duration is assumed to be long enough, e.g. one
order of magnitude larger that typical RTT values. The total
measured RTT delay at controller node i for controller- and
switch-initiated requests is:

Wi(t) =
∑
j 6=i

Wi,j(t) +
∑
j 6=i

Wj,i(t) , (1)

At the next slot, the controller selection decision is triggered
again, and the procedure above repeats itself.

If each RTT delay process Wi,j(t) is stationary with un-
known distribution and unknown mean E[Wi,j(t)] = W i,j ,
then process Wi(t), i = 1, . . . , N is stationary with unknown
mean E[Wi(t)] = W i =

∑
j 6=iW i,j +

∑
j 6=iW j,i.

Consider a time horizon T . A controller placement policy
is x = (x(1), . . . ,x(T)), where x(t) = (x1(t), . . . , xN (t))
is a binary vector whose i-th component xi(t) = 1 if node
i is selected as controller at time t, and 0 otherwise. It is∑N
i=1 xi(t) = 1 for each t, since one node is the controller.
We are interested in finding the controller selection policy

that minimizes the total average delay across all requests
arising in the time horizon, i.e we would like to solve:

min
x

1

T

T∑
t=1

N∑
i=1

E[Wi(t)]xi(t) (2)

subject to
∑N
i=1 xi(t) = 1, for all t, where the expectation in

E[Wi(t)] is with respect to RTT randomness.
Remark: If we relax the assumption of one request from

the controller and each switch at each slot, we need to account
for the different number of requests. In this case, there will
exist two sources of randomness, i.e. the number of requests
and the RTT delays. Let λi(t), λ′j(t) be the number of requests
initiated by the controller (say, node i) and by switch node j
at slot t. We assume that all requests arise at the beginning of
the slot. Let W s

i,j(t) be the measured RTT delay for request
s = 1, . . . , λi(t) initiated by the controller. Let W s

j,i(t) be the
RTT delay for request s = 1, . . . , λ′j(t) initiated by switch j.
The total measured RTT delay is:

Wi(t) =
∑
j 6=i

λi(t)∑
s=1

W s
i,j(t) +

λ′j(t)∑
s=1

W s
j,i(t)

 . (3)

If processes λi(t) and λ′i(t) for each i are stationary with
mean λi and λ

′
i, and if the random processes of the number

of requests and RTT delays are independent, then

E[Wi(t)] = λi
∑
j 6=i

W i,j +
∑
j 6=i

λ
′
jW j,i . (4)

In the sequel, we stick to the RTT delay expressions as in (1).

IV. CONTROLLER PLACEMENT AS A STOCHASTIC
MULTI-ARMED BANDIT PROBLEM

We now study the online learning version of the problem.
For the RTT delay processes {Wi,j(t)}, we consider two
alternatives. In this section, we assume that the processes are
stationary with unknown means, and we model the problem
as a stochastic multi-armed bandit (MAB). Next, in section
V, the RTT delay processes are assumed to be non-stationary,
and the problem is modeled as an adversarial MAB.

First, we assume that the RTT delay processes Wi,j(t)
are stationary, each with unknown mean. This assumption
is suitable for scenarios with static or low-mobility nodes.
In this case, the processes Wi(t) of RTT delays when node
i = 1, . . . , N is selected as controller are also stationary, but
with unknown mean, W i. If we knew W i, we would always
select as controller the node i∗ = arg mini=1,...,N W i.

We are interested in learning the unknown means over
time with an appropriate controller selection strategy x =
(x(1), . . . ,x(T)). The goal is that in the long run, the average
RTT delay incurred by our strategy asymptotically approaches
the RTT delay achieved by the optimal static policy in which
the best controller i∗ is selected for the entire horizon. This
goal is captured by minimizing the time-average expected
regret associated with policy x over horizon T ,

Rx(T) =
1

T
Rx(T) =

1

T

[
E
T−1∑
t=0

N∑
i=1

xi(t)Wi(t)− T W i∗

]
,

(5)
where Rx(T) is the total expected regret, and the expecta-
tion is taken with respect to the randomness of RTT delay

processes. Our policy x should be such that Rx(T) → 0 as
T →∞, or equivalently Rx(T) is a sub-linear function of T .

A. Stochastic multi-armed bandit formulation

The stochastic multi-armed bandit (MAB) is a way to model
sequential decision-making problems under uncertainty [28]-
[30]. At each time over a finite time horizon, a player selects an
arm (choice) out of a number of alternatives. Each arm is as-
sociated with a reward with unknown probability distribution,
with unknown mean and variance. After the choice, the player
receives a reward that is a sample from the corresponding
probability distribution. The goal of the player is to to find
out through an online learning policy which distribution (arm)
has the highest mean reward, and at the same time maximize
its total reward while playing over the time horizon. A bandit
algorithm specifies a way for selecting an arm at each time.
The idea of bandit algorithms is to balance exploitation with
exploration so as to exploit the arm that currently appears to
offer the best reward, while exploring other arms that have not
been played much up to that time.

In the controller placement problem, the player is the
decision maker that picks a node as a controller at each time
slot. An arm corresponds to one of the N possible choices
for a node to become controller, while the random reward
obtained after making a choice corresponds to the negative
RTT delay, −Wi(t) that is measured when i is selected as
controller. Each choice of node i as controller is characterized
by an unknown probability distribution of RTT delay, which
is in general different for different choices but invariant with
time. This makes sense because of the assumed static network
setting that allows statistical characterization of randomness.

B. Stochastic bandit algorithms for controller placement

The stochastic MAB problem has been studied in the
seminal paper [31] where the Upper Confidence Bound (UCB)
algorithm and some variants of it were proposed, together
with results on regret upper bounds. The work [32] performed
experimental comparison of various bandit algorithms with
respect to the following performance indicators: total regret
accumulated over a certain horizon, regret as a function of
time, and percentage of time when the optimal arm is selected.
The paper argues that the only parameters that affect the
performance of bandit algorithms are the number of arms and
the variance of arm rewards. In the sequel, we present three
bandit algorithms that stand out, based on empirical evidence
from the experiments in [31], [32]. For each algorithm, we
discuss results on regret guarantees (if any), and we propose
guidelines for its practical implementation.

1) UCB algorithm: In the Upper Confidence Bound (UCB)
algorithm, the idea is to maintain at each time t a reward
estimate for each arm i, which consists of the empirical
average reward µ̂i(t) up to time t, plus a term that accounts for
the additional potential reward that might be achievable by the
arm due to the fact that it has not been selected many times.

The sum of these terms forms an upper confidence bound for
achievable reward. The reward estimate for arm i at time t is

UCBi(t) = µ̂i(t) +

√
2 ln t

ni(t)
, (6)

where ni(t) is the number of times that arm i is played
up to time t. The algorithm starts by first picking each
arm once. Then, at each time t, it chooses arm i∗(t) =
arg maxi UCBi(t). The UCB algorithm achieves a bounded
total regret RT ,

RT ≤ 8 log T
∑

i:µi<µ∗

1

∆i
+

(
1 +

π2

3

) N∑
i=1

∆i , (7)

where ∆i = µ∗ − µi, where µi is the real average reward of
arm i, and µ∗ = maxi µi. This bound depends on factors ∆i

which depend on the arm reward distributions. A distribution-
independent bound for the regret is [33],

RT ≤ 5
√
NT log T + 8N . (8)

In the controller placement problem, the UCB algorithm
needs to be modified as follows: instead of the upper confi-
dence bound, at each time t and for each arm i, the Lower
Confidence Bound is computed,

LCBi(t) = max{ŵi(t)−

√
2 ln t

ni(t)
, 0} , (9)

where the empirical mean RTT delay is

ŵi(t) =

∑t
τ=1Wi(τ)xi(τ)

ni(t)
, (10)

and the operator max{·, 0} ensures non-negativity. Factor
LCBi(t) thus presents an optimistic estimate for the RTT delay
of arm i at time t. The algorithm starts with first selecting each
node as a controller once. Then, at each time t, it chooses as
controller the node i∗(t) = arg mini LCBi(t).

2) UCB-tuned algorithm: UCB-tuned is a variant of UCB
that was proposed in [31]. The idea is to include in the UCB
factor the empirical variance of the reward of each arm so
as to favor selection of arms with high variance of rewards
and therefore spot suboptimal arms faster. In the controller
placement problem, the algorithm becomes LCB-tuned. At
each time t, it computes for each arm i the factor

LCB-tunedi(t) = max{0, ŵi(t)−

√
2 ln t

ni(t)
·min{1/4, V̂i(t)}}

(11)
where

V̂i(t) = σ̂2
i (t) +

√
2 ln t

ni(t)
(12)

is an optimistic estimate of the variance of RTT delays of node
i as controller at time t, σ̂i is the empirical variance of RTT
delay of node i whenever it is selected as controller, and 1/4 is
the maximum value of variance of a Bernoulli random variable
over different success probabilities, which is inserted to reg-

ulate the impact of arm variance. LCB-tuned chooses at each
time t as controller the node i∗(t) = arg mini LCB-tunedi(t)

The algorithm starts by selecting each node as controller
once. Then, at each time t, it chooses as controller the node
with the lowest value LCB-tuned(t). There does not exist
a regret performance guarantee for UCB-tuned (and thus
for LCB-tuned). However, the work [34] proves logarithmic
regret bounds for a family of algorithms that use functions of
empirical variance in the UCB factors.

3) Boltzmann exploration: Boltzmann exploration belongs
to the class of methods in which, at each time an arm is chosen
with probability that is proportional to its empirical mean
reward up to that time so that arms with higher empirical mean
rewards are selected with higher probability. The exponential
weighting of rewards applied by the softmax function has
proved to be effective in weighting the relative importance
of arms and their selection probabilities [35]. At each time t,
arm i is chosen with probability

pi(t) =
exp (ηµ̂i(t))∑N
j=1 exp (ηµ̂j(t))

, (13)

where µ̂i(t) is the empirical mean reward of arm i up to time
t, and η is a learning rate that calibrates the randomness of
choice. Smaller values of η cause actions to be selected with
almost equal probability, while as η increases, there are larger
differences in selection probability for actions that differ in
their empirical rewards. For η →∞, the arm with the highest
empirical average reward is selected with probability one. For
t = 0, pi(0) = 1/N for all i.

In the controller placement problem, for each node i se-
lected as controller, let ŵi(t) be the empirical mean RTT delay
up to time t in (10). Boltzmann exploration intuitively chooses
a node as controller with higher probability if its empirical
mean RTT delay is smaller. Thus, at each time t, a node i is
selected to be the next controller with probability

pi(t) =
exp (−ηŵi(t))∑N
j=1 exp (−ηŵj(t))

. (14)

Although Boltzmann exploration is shown in practice to
be very effective in exploration, it comes with no regret
performance guarantees. In [36], the authors propose a way
to vary the learning rate so as to achieve logarithmic re-
gret, albeit under the unrealistic assumption of knowing the
suboptimality gap, i.e. the smallest difference between the
mean reward of the optimal arm and the mean reward of any
other arm. The paper proposes a way to modify Boltzmann
exploration to achieve logarithmic regret through the Gumbel
distribution. The idea is to view the probabilistic selection
rule pi(t) ∝ exp (ηµ̂i(t)) equivalently as the deterministic
rule, It = arg maxi{µ̂i(t) + θi(t)Zi(t)}, where θi(t) =√
C2/ni(t), C is a constant, and Zi(t) is a random sample

from the Gumbel probability distribution, drawn independently
for each arm i. This method involves several parameters
that require tuning, hence in the sequel we adopt the simple
Boltzmann exploration rule (14).

C. Implementation in an SDN environment

1) LCB algorithm: The LCB algorithm can be implemented
in an SDN environment as follows. At the beginning of time
slot t, assume node i(t) ∈ {1, . . . , N} is selected as controller.
This node has just received from the previously selected
controller i(t− 1) the vector of current empirical mean RTTs
up to time t−1, ŵ(t−1) = (ŵ1(t−1), . . . , ŵN (t−1)) and the
vector of number of times that each node has been selected as
controller, n(t − 1) = (n1(t), . . . , nN (t − 1)). At time t, the
current controller i(t) (say i) performs the following steps:
• STEP 1: It measures total incurred RTT delay Wi(t).
• STEP 2: It updates its own empirical mean RTT delay,
ŵi(t). The vector of RTT empirical estimates up to time
t, ŵ(t) is then formed, whose i-th component is the
computed ŵi(t), while all other components remain the
same, i.e. ŵj(t) = ŵj(t− 1) for j 6= i.

• STEP 3: Vector n(t) is formed, where ni(t) = ni(t −
1) + 1, and nj(t) = nj(t− 1) for j 6= i.

• STEP 4: LCB indices LCB1(t), . . . ,LCBN (t) of all
nodes are updated.

• STEP 5: The current controller i(t) finds the node
i∗(t) = arg min LCBi(t) with smallest LCB index. If
i∗(t) 6= i(t), then i(t) sends a notification to i∗(t) so
that it becomes the controller at the next time slot, i.e.
i(t+ 1) = i∗(t). It also passes vectors ŵ(t) and n(t) to
the next controller, i(t+ 1) to take over.

2) LCB-tuned algorithm: A similar process as the one
above is followed for the LCB-tuned algorithm. The difference
is that in Step 2, the empirical variance of RTT delays
needs to be updated, and this empirical variance needs to be
communicated to the next controller in Step 5.

3) Boltzmann exploration: At the beginning of time slot t,
the current controller i(t) has just received from the previous
controller the vector ŵ(t−1) and has become active controller.
The steps are as follows.
• STEP 1 Node i measures total RTT delay Wi(t) and

updates its own empirical RTT delay ŵi(t).
• STEP 2: The vector of RTT empirical means up to time t,

ŵ(t) is formed, where only the i-th component changes.
• STEP 3 Probabilities {pi(t)}i=1,...,N are found by (14).
• STEP 4: Node i(t) generates a random sample from

an N -dimensional categorical distribution that takes as
input these probabilities. The sample takes values in
{1, . . . , N} and specifies the next node i(t+1) to become
controller at time t + 1. If i(t + 1) 6= i(t), i(t) sends to
i(t+ 1) vector ŵ(t), and the process continues.

V. CONTROLLER PLACEMENT AS AN ADVERSARIAL
MULTI-ARMED BANDIT PROBLEM

In section IV, we assumed that the incurred RTT delay if
a node is selected as controller can be characterized through
a probability distribution, and the random processes of RTT
delays for each controller selection are stationary. Here, we
relax the assumption of existence of stationary distributions
of RTT delays. We assume that for each node selected as

Algorithm 1 EXP3 Algorithm for controller selection among
N nodes.

1: input: Parameter β > 0, the learning rate.
2: output: A sequence of vectors x(1), . . . ,x(T).
3: Initialization: y(1) = 1, x(1) = y(1)

‖y(1)‖1
= 1

N 1.
4: for t = 1, . . . , T
5: Variant (i): Choose node a(t) = i as the controller with

prob. xi(t+ 1).
6: Variant (ii): Choose node a(t) = i as the controller with

prob. x′i(t+ 1) = (1− γ)xi(t+ 1) + γ 1
N (0 < γ < 1).

7: Observe RTT delay Wa(t)(t), and estimate the gradient
of the cost function with (16).

8: if a(t) = i then yi(t+ 1) = yi(t) exp
(
−βWi(t)

xi(t)

)
.

9: else if a(t) 6= i, then yi(t+ 1) = yi(t).
10: Project x(t+ 1) = y(t+1)

||y(t+1)|| .
11: end for

controller, the RTT delay is a non-stationary process that
cannot be characterized statistically through a probability
distribution. This scenario captures the worst-case scenario
that RTT delays are shaped in an arbitrary manner through
a malicious entity that seeks to disrupt learning. The scenario
models network settings with arbitrary node mobility, topology
changes or traffic dynamics that change RTT delay in an
unpredictable manner from one slot to the other. We assume
RTT delays take values in a bounded interval.

A. Adversarial multi-armed bandit formulation

In the presence of arbitrarily varying RTT delays, the
controller placement problem can be modeled as an adversarial
MAB [37]. While in stationary stochastic settings deterministic
online policies suffice to achieve sublinear regret, this is not the
case in adversarial settings, where only randomized algorithms
are effective for combating the hypothetical adversary that may
cause arbitrary changes in RTT delays.

The setting remains the same. Each of the N arms stands
for a node selection as a controller. At each time t, the learner
needs to select a controller a(t). Let Pr[a(t) = i] = xi(t) be
the probability of choosing node i as controller at time t. We
define a linear cost function f(t) =

∑N
i=1Wi(t)xi(t), where

Wi(t) is the RTT delay if node i is selected as the controller at
time t. Once the learner picks a controller a(t) at time t, it gets
to see only the cost Wa(t)(t) associated with that node, and it
cannot observe the entire vector W(t) = (W1(t), . . . ,WN (t)),
as only the RTT delay for the selected controller is measured.

Given a time horizon T , the goal of the learner is to
find a controller selection policy x = (x(1), . . . ,x(T)) that
minimizes time-average total regret,

Rx(T)=
1

T
Rx(T)=

1

T

[
E[

T∑
t=1

WT (t)x(t)]−min
i

T∑
t=1

Wi(t)

]
,

(15)
where expectation is with respect to the randomness of the
distribution of selecting a controller at time t.

B. The EXP3 algorithm for controller placement

First, note that ∇x(t)f(t) = W(t). If the learner had access
to the entire gradient vector (thus, vector W(t)) after deci-
sion, an efficient learning algorithm would be Exponentiated
Gradient (EG) [38, p.80]. At each time t, EG would choose
node i as controller with probability xi(t) = zi(t)∑N

j=1 zj(t)
where

zi(t) = exp (−β
∑t
τ=1Wi(τ)) i.e. the probability of each

choice would depend on its accumulated RTT delay up to time
t. However, the learner receives limited feedback, namely it
measures only cost Wa(t)(t) for the selected controller a(t)
at time t, i.e. only the a(t)-th component of ∇x(t)f(t). Thus,
the whole gradient vector is not available, and an estimate is
needed. We define the random vector Ŵ(t), with

Ŵj(t) =

{
Wj(t)/xj(t), if j = a(t),

0, else ,
(16)

which is an unbiased estimate of the gradient (and the RTT
delay) at each time t, since E[Ŵi(t) |x(t)] = xi(t) · Wi(t)

xi(t)
+

(1 − xi(t)) · 0 = Wi(t). In the presence of limited feedback,
an algorithm that solves the adversarial bandit problem is
the Exponential-weight algorithm for Exploitation and Ex-
ploration (EXP3) [39], which is based on EG, but with the
gradient estimate plugged into the vector update of EG.

At each slot t, the EXP3 algorithm outputs a probability
vector x(t) that specifies the probabilities with which each
node will be selected as controller at the next time slot. At
initialization, these probabilities are all set to 1/N . At each
slot, EXP3 constructs the unbiased estimate of the gradient
of the cost function based on the observed RTT delay, and
it uses this to update the probabilities of selecting a node as
controller in the next slot. Intuitively, a node for which large
RTT delay is observed up to slot t has fewer chances of being
selected as controller in the next slot t+ 1.

The EXP3 algorithm steps are shown under Algorithm 1.
There are two variants: (i) a node is selected as controller
based on distribution x(t); (ii) controller selection occurs
through a mix of distribution x(t) and the uniform distribution
over all nodes, with a mixing factor γ. With mixing, we aim
to increase the randomness of the selection by doing more
exploration than exploitation, and thus we try all N choices
and estimate RTT delays for them. Otherwise, we might miss
a good node because of initially large RTT delays for this
node, which would lead us to not select that node, while the
possibly smaller RTT delays that could occur later would not
be observed. For β =

√
logN/TN , EXP3 achieves a regret

upper bound of O(
√

2TN logN) [38, p.104].

C. Implementation

EXP3 runs at each slot t at node a(t) that is selected as
the controller at t. Node a(t) receives from the previously
selected controller a(t − 1) the vector of weights y(t − 1).
Then, node a(t) observes RTT delay Wa(t)(t) and updates
the weight vector y(t) based on Steps 7,8 of Algorithm 1. It
then computes the probability vector x(t) or x′(t), depending
on the variant, and it chooses the next controller according to

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0

5

10

15

20

25

30

35

40

45

C
um

ul
at

iv
e

re
gr

et
 (

se
c)

Cumulative regret vs. Learning horizon

UCB
UCB-tuned
Boltzmann

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0

0.05

0.1

0.15

0.2

0.25

R
eg

re
t p

er
 s

lo
t (

se
c)

Regret per slot vs. Learning horizon

UCB
UCB-tuned
Boltzmann

Figure 1. Regret comparison for the UCB, UCB-tuned and Boltzmann
exploration algorithms, for N = 5 arms and σ = 0.1. Left: Cumulative
regret; right: Regret per slot.

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning horizon

UCB
UCB-tuned
Boltzmann

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning horizon
UCB
UCB-tuned
Boltzmann

Figure 2. Percentage of times of best arm selection for the UCB, UCB-tuned
and Boltzmann exploration algorithms for N = 5 arms and for different
values of σ of the RTT normal distribution. Left: σ = 0.1; right: σ = 0.01.

the output of a random sample from a categorical distribution,
If a(t+ 1) 6= a(t), node a(t) sends a message to a(t+ 1) and
notifies it to take over. It will also pass to a(t+ 1) the current
weight vector y(t), and the process continues at a(t+ 1).

VI. NUMERICAL RESULTS

We simulate different bandit algorithms and compare their
performance. We consider a network of N nodes, each of
which may become a controller and is an arm in the bandit.
We compare bandit algorithms with respect to the following
performance metrics to capture different angles of learning:
• Regret per time slot (or time-average regret) over time

horizon T , R(T). This is given by (5) and (15) respec-
tively for the stochastic and the adversarial bandit.

• Cumulative regret over horizon T , R(T), given by (5)
and (15) for the stochastic and adversarial bandit.

• Percentage of slots in which the best arm is selected
over time horizon T , PT . If KT is the number of slots
over horizon T in which the best arm is selected, then
PT = KT /T . The best arm for the stochastic bandit
is i∗ = arg mini µi, and for the adversarial bandit it is
i∗ = arg mini

∑T
t=1Wi(t).

• Time when the percentage of best arm selection reaches
a certain value q%, denoted as tq = min{t : Pt = q}.

Results are averaged over 100 experiments. Algorithms LCB
and LCB-tuned are referred to as UCB and UCB-tuned.

A. Stochastic bandit numerical experiments

For each experiment in the stochastic bandit case, we
assume that for arm j = 1, . . . , N , the expected delay is

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning horizon

UCB
UCB-tuned
Boltzmann

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning horizon

UCB
UCB-tuned
Boltzmann

Figure 3. Percentage of times of best arm selection for the UCB, UCB-tuned
and Boltzmann exploration algorithms for N = 10 arms and for different
values of σ of the RTT normal distribution. Left: σ = 0.1; right: σ = 0.01.

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning horizon

UCB
UCB-tuned
Boltzmann

0 100 200 300 400 500 600 700 800 900 1000

Learning horizon, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning horizon

UCB
UCB-tuned
Boltzmann

Figure 4. Percentage of times of best arm selection for the UCB, UCB-tuned
and Boltzmann exploration algorithms for N = 20 arms and for different
values of σ of the RTT normal distribution. Left: σ = 0.1; right: σ = 0.01.

µj = 0.3 + 0.7dj where dj is uniformly distributed in
[0, 1]. The delays of different arms at different slots are
generated through a normal distribution N(µj , σ

2), where σ
takes different values. The learning parameter in Boltzmann
exploration is η = 100.

In Figure 1, we depict the performance of UCB, UCB-tuned
and Boltzmann exploration algorithms for N = 5 arms and
σ = 0.1. We show the cumulative regret and the regret per
slot. Boltzmann and UCB-tuned achieve the best performance,
and their superiority over UCB is clear. In Figure 2, we
depict the performance of the three algorithms in terms of
percentage of times when the best arm is chosen, for the
cases of high and low RTT delay variability (σ = 0.1 and
σ = 0.01, respectively). For σ = 0.1, Boltzmann and UCB-
tuned select the best arm at 91% and 90% of times, while
UCB’s corresponding percentage is around 60%. An even
better performance is observed for Boltzmann and UCB-tuned
for σ = 0.01, where these two methods select the best arm
at 93% and 95% of times in the long run, while UCB’s
percentage is below 60%.

In Figures 3 and 4, the percentages of best arm selection
for the three methods are shown for N = 10 and N = 20
nodes (arms). For N = 10 arms and σ = 0.1, UCB-tuned
outperforms Boltzmann, with 88% over 84%, while UCB
achieves only 32%. For σ = 0.01, RTT delays are more
distinguishable and thus Boltzmann goes up to 85% and UCB-
tuned goes to 71%, while UCB reaches 60%. Similar trends are
observed for N = 20 arms, but with lower percentages for all
algorithms. For σ = 0.01, UCB outperforms UCB-tuned with

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Learning horizon, T

-100

0

100

200

300

400

500

600

C
um

ul
at

iv
e

re
gr

et
 (

se
c)

Cumulative regret vs. Learning Horizon

EXP3, =0.05
EXP3, =0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Learning horizon, T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning Horizon

EXP3, =0.05
EXP3, =0

Figure 5. Performance of the EXP3 algorithm with mixing parameter γ = 0
and γ = 0.05, for N = 5 arms and for the delay process of Case A. Left:
Cumulative regret; right: Percentage of times of best arm selection.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Learning horizon, T

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning Horizon

EXP3, =0.05
EXP3, =0

0 5000 10000 15000

Learning horizon, T

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
er

ce
nt

ag
e

of
 b

es
t a

rm
 s

el
ec

tio
ns

Percentage of times of Best Arm Selection vs. Learning Horizon

EXP3, =0.05
EXP3, =0

Figure 6. Performance of the EXP3 algorithm with mixing parameter γ = 0
and γ = 0.05, for the delay process of Case B. Left: N = 5 arms; right:
N = 10 arms.

55% vs. 30% percentage of times of best arm selection. Note
that in all experiments with stochastic bandits, performance
reaches a steady state at about 500 slots for N = 5 arms,
and at around 1, 000 slots or later, for N = 10 and N = 20
arms. Finally, in Table I, we show results on the times tq when
the percentage of best arm selection reaches value q%. Results
verify the superiority of Boltzmann in terms of faster learning.

B. Adversarial bandit numerical experiments

For the adversarial bandit, we consider two alternatives for
the nonstationary delay process:
(i) Case A: A process where delays at time t and arm j are
given by

Wj(t) = rj · | cos t|+ 3j · r′j · r′′j , (17)

(ii) Case B: A delay process in which it is more difficult to
distinguish between different arms, with

Wj(t) = ρj · | cos t|+ t

1000
· j

10
· ρ′j · | cos t| , (18)

where rj , r′j , r
′′
j , ρj , ρ

′
j are uniformly distributed in (0, 1). The

learning parameter of EXP3 is β =
√

logN/TN .
In Figure 5, we show the performance of EXP3 for N = 5

arms, in terms of cumulative regret and percentage of best
arm selections for the process of Case A. We consider mixing
parameter γ = 0 and γ = 0.05. The former choice achieves
a little better performance in terms of percentage of best arm
selections (95% vs. 92%). We observe that the learning horizon
is at least an order of magnitude larger than that in stochastic
bandits, and steady-state is reached at about 2, 500 slots. In

Table I
TIMES tq (IN NUMBER OF SLOTS) WHEN THE PERCENTAGE OF BEST ARM

SELECTION REACHES VALUE q%.

Experiment Boltzmann UCB-tuned UCB

N = 5, σ = 0.1
t70 = 50 t70 = 110 -
t80 = 180 t80 = 210 -
t90 = 600 t90 = 680 -

N = 5, σ = 0.01
t70 = 50 t70 = 30 -
t80 = 100 t80 = 80 -
t90 = 420 t90 = 250 -

N = 10, σ = 0.1
t70 = 170 t70 = 200 -
t80 = 380 t80 = 420 -

N = 10, σ = 0.01
t60 = 80 t60 = 400 t60 = 1, 000
t70 = 140 t70 = 950 -
t80 = 380 - -

N = 20, σ = 0.1
t50 = 160 t50 = 360 -
t60 = 270 t50 = 670 -
t70 = 560 - -

N = 20, σ = 0.01
t50 = 140 - t50 = 770
t60 = 260 - -
t70 = 550 - -

Figure 6, we provide results for the more difficult process of
Case B, for N = 5 and N = 10 arms, where learning is
still ongoing after 10, 000 and 15, 000 slots respectively. For
example, after 10, 000 slots, EXP3 with γ = 0 achieves a
percentage of 41% and 32% respectively.

VII. CONCLUSION

We viewed the SDN controller placement problem through
the lens of online learning. We fit the stochastic and adver-
sarial MAB models in the problem. Numerical experiments
showed that algorithm performance depends strongly on cer-
tain parameters that characterize the problem instance, such
as the number of arms and the variance of RTT delays.
Further, Boltzmann exploration achieves the best performance
in terms of different performance metrics. Our work is the
first step towards understanding and optimizing online learning
algorithms for controller placement. We have just scratched
the surface, and there exist several open questions in the
directions of model enhancement and of practical performance
evaluation.

In this work, we left the request arrival process out of the
formulation. However, this process is another source of un-
certainty which may or may not be characterized statistically.
Second, we assumed that RTT feedback is received within
the time slot where the decision is made. We can enhance
our model with delayed feedback, whereby the RTT value
observation is available after some time slots. There exists
evidence that an O(

√
T) regret is achievable, and the work

[40] is a good starting point. Third, if we need to select
more than one controllers, the problem becomes challenging
due to the arising switch-controller association problem. The
work [27] considered a MAB model when the controllers are
fixed and the possible choices are the switch-controller pairs.
When controllers need to be selected as well, the bandit model
becomes nontrivial.

Finally, in the practical evaluation front, the selection of
the appropriate algorithm and hyper-parameters can be made

empirically only, since the associated theory does not exist.
An interesting idea is to use emulators or SDN testbeds to
obtain RTT delay measurements, and then choose the proper
algorithm and configure its hyper-parameters based on such
data.

ACKNOWLEDGMENT

This work has been carried out in the context of the project
entitled Software defined MObile Tactical Ad hoc NETwork
(SMOTANET), which has received funding from the Euro-
pean Defence Industrial Development Programme (EDIDP)
under grant agreement No EDIDP-CSAMN-SDN-2019-038-
SMOTANET. This paper reflects only the authors’ views and
the European Commission is not responsible for any use that
may be made of the information contained herein.

REFERENCES

[1] I. F. Akyildiz, S.-C. Lin, and P. Wang, “Wireless software-defined
networks (W-SDNs) and network function virtualization (NFV) for 5G
cellular systems: An overview and qualitative evaluation, Comput. Netw.,
93(12):66–79, 2015.

[2] A. Gudipati, D. Perry, L. Erran Li, and S. Katti, “SoftRAN: software
defined radio access network”, Proc. of the second ACM SIGCOMM
workshop on Hot topics in software defined networking (HotSDN), 2013.

[3] ARL project. Dais ITA: The distributed analytics and information
science international technology alliance, 2016–2021.

[4] K. Poularakis, Q. Qin, E. Nahum, M. Rio and L. Tassiulas, “Bringing
SDN to the mobile edge,” Workshop on Distributed Analytics InfraS-
tructure and Algorithms for Multi-Organization Federations, (in proc.
of IEEE Smart World Congress), 2017.

[5] K. Poularakis, G. Iosifidis and L. Tassiulas, “SDN-Enabled Tactical Ad
Hoc Networks: Extending Programmable Control to the Edge,” IEEE
Commun. Mag., vol. 56, no. 7, pp. 132-138, July 2018.

[6] T. Das, V. Sridharan and M. Gurusamy, “A Survey on Controller
Placement in SDN,” IEEE Communications Surveys & Tutorials, vol.
22, no. 1, pp. 472-503, First quarter 2020.

[7] A. Kumari and A.S. Sairam, “Controller placement problem in software-
defined networking: A survey”, Networks journal Wiley, vol.78, no.2, pp.
195– 223, Sept. 2021.

[8] Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella and L. Tassiulas, “SDN
Controller Placement With Delay-Overhead Balancing in Wireless Edge
Networks,” IEEE Trans. on Network and Service Management, vol. 15,
no. 4, pp. 1446-1459, Dec. 2018.

[9] B. Heller, R. Sherwood, and Nick McKeown, “The controller placement
problem”, Proc. 1st ACM workshop on Hot topics in software defined
networks (HotSDN) 2012.

[10] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller
placement prob- lem in software defined networks”, IEEE Commun.
Lett., 18(8):1339–1342, 2014.

[11] T. Y. Cheng, M. Wang and X. Jia, “QoS-Guaranteed Controller Place-
ment in SDN,” Proc. IEEE GLOBECOM, 2015.

[12] V. Huang, G. Chen, Q. Fu and E. Wen, “Optimizing Controller Place-
ment for Software-Defined Networks,” Proc. IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), 2019.

[13] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic Approaches to the Controller Placement
Problem in Large Scale SDN Networks”, IEEE Trans. on Netw. and
Serv. Management, vol.12, no.1 March 2015.

[14] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, “A k-means based
network partition algorithm for controller placement in software defined
network”, Proc. IEEE ICC, 2016.

[15] J. Zhao, H. Qu, J. Zhao, Z. Luan, and Y. Guo, “Towards controller place-
ment problem for software-defined network using affinity propagation”,
Electron. Lett., 2017.

[16] G. Wang, Y. Zhao, J. Huang, and Y. Wu, “An effective approach to
controller placement in software defined wide area networks”, IEEE
Trans. Netw. Serv. Manage., vol15, no.1, pp. 344–355, 2018.

[17] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using
bargaining game for optimal placement of SDN controllers”, Proc. IEEE
ICC, 2016.

[18] Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella and L. Tassiulas, “SDN
Controller Placement With Delay-Overhead Balancing in Wireless Edge
Networks”, IEEE Trans. on Network and Service Management, vol. 15,
no. 4, pp. 1446-1459, Dec. 2018.

[19] H. C. Cheng, Z. Wang and S. Chen, “DHA: Distributed decisions on
the switch migration toward a scalable SDN control plane” Proc. IFIP
Networking Conference, 2015.

[20] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers”,
Proc. IEEE INFOCOM, 2016.

[21] X. Lyu, C. Ren, W. Ni, H. Tian, R. P. Liu, and Y. J. Guo, “Multi-
timescale decentralized online orchestration of software-defined net-
works”, IEEE J. Sel. Areas Commun., vol.36, no.12, pp.2716–2730,
December 2018.

[22] X. Huang, S. Bian, Z. Shao, and Y. Yang, “Predictive switch-controller
association and control devolution for SDN systems” Proc. IEEE/ACM
IWQoS, 2019.

[23] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “QoS-aware adap-
tive routing in multi-layer hierarchical software defined networks: A
reinforcement learning approach,” Proc. IEEE Int. Conf. Serv. Comput.
(SCC), 2016.

[24] P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, and H. S. Mamede,
“Machine learning in software defined networks: Data collection and
traffic classification”, Proc. IEEE Int. Conf. Netw. Prot. (ICNP), 2016.

[25] M.He, P.Kalmbach, A.Blenk, W.Kellerer, and S. Schmid, “Algorithm-
data driven optimization of adaptive communication networks,” Proc.
IEEE Int. Conf. Netw. Protocols (ICNP), 2017.

[26] Y. Wu, S. Zhou, Y. Wei and S. Leng, “Deep Reinforcement Learning
for Controller Placement in Software Defined Network,” Proc. IEEE
INFOCOM 2020 Workshops, 2020.

[27] X. Huang, Y. Tang, Z. Shao, Y. Yang and H. Xu, “Joint
Switch–Controller Association and Control Devolution for SDN Sys-
tems: An Integrated Online Perspective of Control and Learning,” IEEE
Trans. on Network and Service Management, vol. 18, no. 1, pp. 315-330,
March 2021.

[28] G. Burtini, J. Loeppky, and R. Lawrence, “A survey of online exper-
iment design with the stochastic multi-armed bandit,” 2015. [Online].
Available: arXiv: 1510.00757.

[29] D. Bouneffouf and I. Rish, “A survey on practical applications
of multi-armed and contextual bandits,” 2019. [Online]. Available:
arXiv:1904.10040.

[30] E. V. Belmega, P. Mertikopoulos, R. Negrel, L. Sanguinetti, “Online
convex optimization and no-regret learning: Algorithms, guarantees and
applications”, 2018. [Online]. Available: arXiV: 1804.04529.

[31] P.Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol.47, pp.235–256,
2002.

[32] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems”, 2014. [Online]. Available: arXiv: 1402.6028.

[33] S. Bubeck and N. Cesa-Bianchi, Regret analysis of stochastic and
nonstochastic multi-armed bandit problems, Foundations and Trends in
Machine Learning, 5(1):1–122, Now Publishers, Inc., 2012.

[34] J.-Y. Audibert, R. Munos, and C. Szepesvari, “Exploration-exploitation
trade-off using variance estimates in multi-armed bandits”, Theoretical
Computer Science, vol.410, no.19, pp.1876-1902, April 2009.

[35] R. S. Sutton and A. G. Barto. Reinfocement Learning: An Introduction.
MIT Press, 1998.

[36] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, “Boltzmann explo-
ration done right”, In Proceedings of the 31st International Conference
on Neural Information Processing Systems (NIPS), 2017.

[37] P. Auer, N. Cesa-Bianchi, Y. Freund and R. E. Schapire, “Gambling in
a rigged casino: The adversarial multi-armed bandit problem,” In Proc.
IEEE 36th Annual Foundations of Computer Science, 1995.

[38] E. Hazan, Introduction to online convex optimization. Found. Trends
Optim., 2(3-4):157–325, 2016.

[39] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The Non-
stochastic Multiarmed Bandit Problem”, SIAM J. Comput., vol.32, no.1,
pp.48-77, 2003.

[40] N. Cesa-Bianchi, C. Gentile, and Y. Mansour. “Delay and cooperation in
nonstochastic bandits” J. Mach. Learn. Res., 20(1):613– 650, Jan. 2019.

