PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

Named Data Networking for Data Spaces

Y. Thomas, N. Fotiou, I. Pittaras and G. Xylomenos
Mobile Multimedia Laboratory, Department of Informatics,
Athens University of Economics and Business (AUEB), Greece
E-mail: {thomasi, fotiou, pittaras, xgeorge } @aueb.gr

Abstract—The Secure Named Data Sharing (SNDS) architec-
ture is a content brokering service built on top of Named-Data
Networking (NDN), leveraging its native support for multicast,
multisource and caching. SNDS transparently supports IP-based
content providers and consumers via a gateway that implements
ETSI’s NGSI-LD data spaces API, translating HTTP requests
to and from the appropriate NDN messages. To fully support
the query-based NGSI-LD API, we build appropriate protocols
over NDN. We present a prototype implementation of the SNDS
architecture and a preliminary evaluation of its features.

Index Terms—NDN, NGSI-LD, Data Spaces.

I. INTRODUCTION

Data spaces are an emerging concept that enables semantic
interoperability of data, uniform data access methods and
enhanced data sovereignty and trust. An integral part of a
data space is the data broker, which facilitates data transfer
from providers to consumers. We explore the performance
benefits of implementing such a data broker over Named Data
Networking (NDN), an information-centric architecture [1].
NDN supports ubiquitous caching, native multicast transport
and multisource content provision, making it a good Content
Distribution Network (CDN) underlay (e.g., [2]). Nevertheless,
its Interest/Data API can only support individual data trans-
fers. Our Secure Named Data Sharing (SNDS) architecture
implements the Next Generation Service Interfaces for Linked
Data (NGSI-LD) data spaces API [3] over an NDN-based data
brokering service. This HTTP-based API allows end-users to
make sophisticated queries, without needing another layer of
processing on top.

To ease the transition to SNDS, the NDN-enabled core net-
work providing the data brokering service, is combined with
IP-enabled endpoints. The interfacing of the two architectures
takes place at edge NDN nodes that receive and translate
NGSI-LD API requests, encapsulated in HTTP messages, to
NDN operations, and vice versa. This paper describes the
SNDS architecture and explains how the NGSI-LD API is im-
plemented over NDN, allowing IP-enabled content providers
and consumers to interoperate with SNDS. We also present
our prototype implementation and initial performance results.

II. SNDS DESIGN

An overview of SNDS is presented in Fig. 1, showing a
simple topology with two IP-based end-users, a content con-
sumer and a content provider, exchanging content via an NDN-
based network. The two networks are bridged at the NDN edge
routers, which host the SNDS service. This service receives,

SNDS service

Content
provider

=) - Consumer
00 i

axm NDN
== router

D Content
item

The SNDS Architecture.

NDN
network

Fig. 1.

translates, and forwards NGSI-LD API requests encapsulated
in HTTP messages to the NDN network.

In NDN, everything revolves around content. Content con-
sumers issue INTEREST messages to request content items by
name, which content producers return using DATA messages.
Content availability is advertised via ANNOUNCEMENT mes-
sages, which contain the prefixes of the names that a content
provider serves. All NDN nodes maintain three data structures.
The Forwarding Information Base (FIB) maps name prefixes
to the face(s) (NICs or local ports) that should be used to
forward INTEREST messages towards content sources. The
FIB is populated by the ANNOUNCEMENT messages. The
Pending Interest Table (PIT) records the face(s) from which
non-satisfied INTEREST messages have arrived. Finally, the
Content Store (CS) is a local cache for content items.

When an INTEREST message is received, the NDN node
returns the content item in a DATA message if it available
locally or in its CS. Otherwise, the PIT is checked to see if
an entry for that name exists; if so, the PIT entry is updated
with the new Interest, thus creating a multicast tree. If this
also fails, the FIB is checked to see how the INTEREST must
be forwarded, and a new PIT entry is created. DATA messages
are routed back to the consumers hop-by-hop, consuming the
pointers stored by the INTERESTS in the PITs.

The NGSI-LD API, proposed by the European Telecom-
munications Standardization Institute (ETSI), defines a query-
based content resolution mechanism, offering a standardized
way to build complex queries that work across cloud providers.
In the NGSI-LD API, each content item is encoded in a
structured file format, typically JSON, which consists of a
unique ID field, a TYPE field and multiple (optional) AT-
TRIBUTE fields. The API offers two main lookup options:
in ID matching, the lookup request explicitly specifies the

ID of a unique content item; in TYPE matching, the lookup
request indicates the TYPE of a set of content items. These two
lookup options can be augmented with two types of filters: the
selective filter indicates which attributes of the content items
should be returned, while the conditional filter indicates a set
of conditions over the attributes that should be met by the
returned content items; both types can be combined in a single
query. For example, a TYPE matching query for content items
representing vehicles passing through a traffic control point
could ask for the SPEED (selective filter) of cars whose TYPE
is ford and whose COLOR is red (conditional filter).

III. MAPPING THE NGSI-LD API To NDN

The NDN architecture can trivially support ID matching
NGSI-LD API requests, as the (unique) ID of the content item
can be used as an NDN name. On the other hand, it does
not directly support TYPE matching NGSI-LD API requests
which may return a set of items. Even though NDN offers
multisource, that is, getting one content item from multiple
sources, it does not support the gathering of multiple content
items from various sources. Two types of approaches have
been proposed for this problem, a passive and an active one.

The passive approach relies on sniffer applications that
monitor ANNOUNCEMENT messages, creating a list of the
available providers per content name. This approach requires
modifications to the NDN core functions, as it needs access
to low-level messages, and it requires tracking the physical
nodes that provide the content. The active approach relies
on catalog applications, which maintain the available sources
per content type. In this approach, a content provider sends
two ANNOUNCEMENT messages: the first uses the unique
item’s ID and the second the TYPE of the content item. The
catalogs periodically emit INTEREST messages using the TYPE
of the content as the name. NDN forwards them to the new
provider, thus creating an end-to-end communication path.
Then, the provider retracts its ANNOUNCEMENT, to allow
more providers to be found. This periodic probing, however,
adds computational and communication overheads.

Content provider SNDS service

(G =

0) Announce Announcem
“{/CAR _registry) ents
1) A CAR
e (nnounce (/CAR) | CAR

[Provider Bootstrap CAR_registry

CAR_registry
{rRID}

NDN network SNDS R service

(2) Announce(/car1)
(3) Interest

t:
sl | /CAR/nonce) (/CAR/nonce)

Carl (4)Data .
RID_|"(/cAR/nonce, RID)

(4) Data
(/CAR/nonce, RID)

(5) Announce(rID)
Fig. 2. Announcing content: a provider serves ID = CAR1 and TYPE = CAR.

For TYPE matching requests, SNDS introduces a novel
approach that requires neither changes to NDN nor periodic
overhead. Each SNDS node runs an R_SERVICE which is
responsible for registrations of different TYPE values; this
avoids the need to synchronize registries and helps load
balancing. The R_SERVICE relies on two special content items:

PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

/TYPE_REGISTRY and /TYPE. The /TYPE_REGISTRY name
represents a content item that lists all known content providers
for a given TYPE. Following NDN principles, it contains names
that can be used to request content items of that TYPE. The
/TYPE name is used to discover new providers of a given TYPE
by the corresponding R_SERVICE, so as to populate its registry.

In Fig. 2 we show how the availability of an item with
TYPE=CAR and ID=CARI is announced. Initially, when the
R_SERVICE at the NDN node responsible for the CAR type
starts operation, it announces the names /CAR_REGISTRY
(msg. 0) and /CAR (msg. 1). When a new content provider
makes a content item of that type available, the SNDS service
at the closest NDN node first announces the content’s ID,
e.g., /CAR1 (msg. 2), and then sends an INTEREST for the
provider’s TYPE, e.g., /CAR/NONCE (msg. 3); the nonce
disambiguates INTEREST messages from different providers
of the same type.

When the INTEREST message of the provider is delivered to
the appropriate R_SERVICE, the R_SERVICE creates a random
name for that provider, in our example /RID, adds it to the
CAR_REGISTRY file, and responds with a DATA message
containing that name to the provider (msg. 4). Finally, the
provider announces the /RID name (msg. 5), which serves as
an alias for /CARI1 that handles TYPE matching requests.

Content
SNDS service NDN network SNDS service Consumer
- -
]]
o

TN

[‘ 1

2 Interest (1) Interest (0) HTTP request
) Interest |«

Announce |
ments cari/{filters)) (NGSl(id=car1?..))
(/car1/{filters})

Carl 'ProcessFllters(Json) ‘ ‘

(2)Data (2) Data

F/carl/[ﬁlters}, Json) (/car1/{filters}, Json

I ProcessFilters(Json)
‘) HTTP response ‘

(NGSI-LD(/car1/
{filters}, Json))

Fig. 3. Requesting content by ID: a consumer requests ID = CARI.

Fig. 3 shows how ID matching requests are resolved. An IP-
based content consumer sends an NGSI-LD API request for
ID=CAR1 over HTTP to its closest NDN edge router (msg. 0).
The SNDS service translates it to an INTEREST message that
concatenates the ID and the specified filters (if any); in our
example, /CAR1/FILTERS (msg. 1). The INTEREST message is
delivered to the SNDS service at the content provider’s end,
which returns the structured file in a DATA message (msg. 2).
The SNDS service at the content consumer’s end translates
the response to an NGSI-LD message, encapsulates it into an
HTTP response, and returns it to the consumer (msg. 3).

Fig. 4 shows the corresponding solution for TYPE matching
requests. We start again with an NGSI-LD API request for
TYPE=CAR over HTTP to the closest NDN edge router (msg.
0). If that node is not running the R_SERVICE for this type, an
INTEREST message is sent for the corresponding registry, in
our example, /CAR_REGISTRY (msg. 1). The node holding
the registry responds with a DATA message containing the
RIDs for all publishers of content with this type (msg. 2). The
SNDS service parses this file, sends an INTEREST message

PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

SNDS service NDN network SNDS service Content Consumer SNDS R_service
- o= @)]
== o M 1=

() HITP requet
. (NGSI(type=/CAR?..)) CAR
slasl (1) Interest(/CAR_registry) CAR _registry
(1) Interest(/CAR_registry)
(2) Data(/CAR_registry, {RID})
(2) Data(/CAR_registry, {RID})
Fi h RID - CAR_registry {RID
oreacht (3) Interest (/rID/{filters}) registry {RID}
(3) Interest (riD/{filters})
ProcessFilters(Json)
(4) Data(/rID/{filters}, Json)
(4) Data(/rID/{filters}, Json)
ProcessFilters(Json)
(5) HTTP response (NGSI-LD(/CAR/filters}, Json))

Fig. 4. Requesting content by TYPE: a consumer requests TYPE = CAR.

TABLE I
RESPONSE LATENCY OF CORE SNDS OPERATIONS (MS).

Operation Collocated Separated
Announce 452 1122
Request by ID 548 585
Request by TYPE 860 1297

(msg. 3) and receives a DATA message (msg. 4) for each
such RID. After receiving all the DATA messages, the SNDS
service translates the results into an NGSI-LD response, which
is returned encapsulated in an HTTP message (msg. 5).

IV. IMPLEMENTATION AND EVALUATION

Our prototype implementation of the SNDS service is built
on top of the open-source NDN implementation [4]. We
have implemented the NGSI-LD service, which advertises and
fetches content, the proxies which handle NGSI-LD requests
encapsulated in HTTP messages, and simple applications for
the content consumer and provider. Our implementation is
currently running on Mini-NDN, an NDN implementation for
the Mininet emulation platform.

Using our prototype implementation and Mini-NDN, we
preliminary assessed the latency of the SNDS service. The
test NDN topology follows a star pattern, where four NDN
nodes running the SNDS service are connected via a single
NDN node (the hub), using links with a 100 ms propagation
delay. The IP-based consumers and providers are connected
to the edge NDN nodes, which are dual-homed.

We measured the response latency of three basic operations:
announce content, request by ID and request by TYPE. For
each operation, we considered two scenarios: in the collocated
scenario, the content provider or consumer is attached to the
SNDS node whose R_SERVICE handles the corresponding
content type; in the separated scenario, they are attached
to another node. The response latency is the time between
messages 2-5 of Fig. 2 for content announcement, and all the
messages of Fig. 3 and Fig. 4 for content requests. The results
are presented in Table I, showing a small performance penalty
in the separated case, since the closest SNDS node must talk
to another node handling the appropriate R_SERVICE.

V. CONCLUSIONS AND FUTURE WORK

We presented the SNDS architecture, which provides an
efficient content brokering service over an NDN underlay,
using NGSI-LD API queries over HTTP for content retrieval.
We outlined the components of the architecture, and explained
how we translate between the NGSI-LD API queries and
NDN operations. We also described our prototype SNDS
implementation and provided some initial performance results.

Future work involves deploying our scheme over the global
NDN testbed. We plan to assess more extensively the perfor-
mance advantages of SNDS due to NDN’s support for multi-
cast, multisource content provision and ubiquitous caching.

ACKNOWLEDGEMENT

The work reported in this paper has been partly funded
by the EU’s Horizon 2020 Programme through the subgrant
Secure Named Data Sharing (SNDS) (NGISARGASSO-2023-
CALL1-9-SNDS) of project NGI SARGASSO (grant agree-
ment No 101092887).

REFERENCES

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
ACM CoNEXT, 2009.

C. Ghasemi, H. Yousefi, and B. Zhang, “ICDN: An NDN-based CDN,” in
Proceedings of the ACM Conference on Information-Centric Networking,
2020, pp. 99-105.

“Context information management (CIM); NGSI-LD API,” ETSI Draft.
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.07.01_60/
gs_CIMO009v010701p.pdf, 2023.

A. Afanasyev, J. Shi, B. Zhang, L. Zhang, 1. Moiseenko, Y. Yu, W. Shang,
Y. Huang, J. P. Abraham, S. DiBenedetto et al., “NFD developer’s guide,”
Dept. Comput. Sci., UCLA, Tech. Rep. NDN-0021, 2014.

(1]

[2

—

3

—_

[4]

