
Access control for interoperable energy
management systems using Verifiable Credentials

Nikos Fotiou, Spiros Chadoulos, Iordanis Koutsopoulos, Vasilios A. Siris, George C. Polyzos
Mobile Multimedia Laboratory

Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece

{fotiou,spiroscha,jordan,vsiris,polyzos}@aueb.gr

Abstract—Emerging energy management systems (EMS) in-
volve devices and services provided by multiple stakeholders. In
order to improve the interoperability of these systems, state of the
art efforts propose an interoperability middleware that mediates
the communication between end-user applications and EMS
components. The potential lack of trust between the different
stakeholders raises the need for fine-grained access control
mechanisms. However, extending the middleware to support
access control in a secure and usable way is a challenging
problem. In this paper, we present a solution that achieves
fine-grained authorization using Verifiable Credentials (VCs).
Our solution leverages VC properties to enable end-users to
combine authorizations issued by different entities. Additionally,
our solution integrates a cloud-based VC wallet that hides the
authorization process from end-user applications, thus facilitating
interoperability among EMSes and the development of new,
secure applications.

Index Terms—Authentication, Authorization, Wallet

I. INTRODUCTION

Energy Management Systems (EMS) incorporate multiple
devices and services, often provided by different providers.
All these components need to exchange data in a standardized
manner, while at the same time providing data protection.
Indeed, energy consumers may own IoT devices from different
vendors, while they are customers of different electricity
retailers. Interoperability needs to be achieved, both at the
data semantics level (e.g., by utilizing specific ontologies
and data models), as well as at the data security level, in
order to seamlessly facilitate data sharing and communication
regardless of the specific providers and hardware installed [1].

In some cases, an EMS should collect data from different
data providers in order to present meaningful insights to end-
users, while also being able to actuate devices from different
vendors which are connected to different back-ends. For
example, a residential user may have installed a set of smart
plugs from an IoT service provider, and an indoor climate
sensor from a different provider, while a household smart
energy meter is also installed by an energy retailer. In this
case, the data collected from the household are transmitted by
three different back-end systems, which should be semanti-
cally interoperable in order to facilitate a holistic smart home
infrastructure for the end-user, e.g. through a unified mobile
app interface. For that reason, many recent efforts propose

an interoperability middleware that acts as a semantic “glue”
between the different systems using standardized data models
and ontologies [2], [3]. This interoperability middleware is
responsible for facilitating data exchanges between end-user
client applications (e.g. a smart-home mobile app) and the
different data provider systems.

Hence, security and privacy, as well as access control
schemes, are necessary for such a system since multiple
providers are involved that might not fully trust each other.
Specifically, smart home data generated by IoT service
providers and retailers are very sensitive from a privacy
perspective, since they reveal the everyday habits of the
occupants, including their real-time presence.

However, adding support for access control in an inter-
operability middleware is a challenging problem. Such an
access control solution should not rely on the middleware
to store secret information; instead, it should facilitate the
introduction (or the removal) of providers, and it should not
hinder the development of new end-user client applications. In
this paper, we provide a fine-grained access control solution
by leveraging Verifiable Credentials [4], which is currently a
W3C Recommendation.

A Verifiable Credential (VC) provides a cryptographically
secure and machine-verifiable means for expressing claims
about a subject. VCs are stored in user-controlled wallets
and can be used (among other things) for proving possession
of certain claims to a web-based verifier. Additionally, many
VCs can be combined in a single presentation, satisfying in
this way advanced authorization requirements. By leveraging
these properties of VCs, in our paper, we are making the
following contributions: (i) we propose an access control
solution scheme that allows users to combine authorizations
from multiple providers, (ii) we make our access control
solution transparent both to the end-user client applications, as
well as to the protected endpoints, (iii) we leverage emerging
standards to manage the lifecycle of the generated authoriza-
tions, and (iv) implement and evaluate our solution.

The remainder of our paper is organized as follows. In
section 2 we introduce VCs, we outline VC management
protocols, currently under development by the OpenID founda-
tion, and we discuss related work in this area. In section 3, we
present the main entities considered by our solution and their
interactions. In section 4, we detail the design of our system.978-1-6654-4005-9/21/$31.00 ©2021 IEEE

We present our implementation and its properties in section 5.
Finally, we provide our conclusions and related discussion, as
well directions for future work in section 6.

II. BACKGROUND AND RELATED WORK

A. Verifiable Credentials

A Verifiable Credential (VC) is a W3C recommendation that
allows an issuer to assert some claims about an entity, referred
to as the VC subject. A VC includes information about the
issuer, the subject, the asserted claims, as well as possible
constraints (e.g., expiration date) [4]. This information is
encoded in a machine readable format (e.g., as a JSON object
in our system). A VC is usually stored in a secure enclave,
referred to as the wallet. Then, a VC holder (usually, the VC
subject itself) can prove to a verifier that it owns one or more
VCs with certain characteristics. This is achieved by binding
VCs to a holder controlled identifier (e.g., our system includes
in VCs a public key owned by the holder), which enables the
holder to generate a Verifiable Presentation (VP) of the VC(s),
i.e., an object that includes one or more VCs signed in a way
that can be verified using the bound identifier. VP verification
does not require communication with the issuer. The VC data
model allows different VC types, which define the attributes
a VC should include. This provides great flexibility, since VC
integrators can define their own types that fit the purposes of
their systems.

Once issued, a VC can be used multiple times with different
verifiers, and for a long period. For this reason it is important
for an issuer to be able to revoke a VC and similarly for a
verifier to be able to determine the revocation status of a VC.
Our system uses for this purpose the approach specified in a
recent W3C draft [5]. In particular, and in order to support
revocation, an issuer maintains a revocation list that covers
all not expired VCs it has issued. This list is a simple bit
string, and each credential is associated with a position in
the list. Additionally, each VC includes a property named
credentialStatus that specifies the position of that credential
in the revocation list, as well as a URL that can be used for
retrieving the revocation lists. A VC is simply revoked by
setting the corresponding bit in the revocation list to 1. Since
the list includes only non-expired VCs, its size is tolerable for
most use cases.

B. OpenID for Verifiable Credentials

The W3C recommendation specifies only the VC data
model, and it does not define protocols for managing VC
lifecycle. For this reason, other organizations are pursuing the
specification of related protocols. The most notable effort is
this of the OpenID foundation. In particular, the AB/Connect
working group, has drafted two specifications: OpenID for
Verifiable Credential Issuance [6], which proposes an API and
corresponding OAuth 2.0-based authorization mechanisms for
issuance of VCs, and OpenID for Verifiable Presentations [7],
which defines a mechanism on top of OAuth 2.0 to allow the
presentation of claims in the form of VPs. In the following

subsections, we detail these two protocols, presenting however
only the flows used by our solution.

1) OpenID for VC issuance (OID4VCI): OID4VCI enables
the issuance of a VC to a wallet. OID4VCI, as used in our
solution, involves the following steps :1

a) Issuer configuration: Initially, a user interacts with an
issuer and and makes all necessary preparations required for
issuing a VC (e.g., a user authenticates to a web interface of
the issuer and selects and option for generating a VC).

b) Credential offer: The issuer redirects the user to their
wallet by including in the redirection URL a credential offer
JSON object. In our system, this object includes the following
parameters:

• credential issuer: The URL of the issuer.
• credentials: A string indicating the type of the credential

this offer concerns,
• grants: A grant that the wallet should use in the

following step in order to request a token. In
our system this is a key-object pair: the value
of the key is “urn:ietf:params:oauth:grant-type:pre-
authorized code” and the object is a JSON object that
includes a pre-authorized code, i.e., a code that will be
used as the grant for requesting a token:
c) Token request: The wallet requests an access token

from the issuer that will be exchanged with a VC in the next
step. In its request, it includes the pre-authorized code received
with the previous step. The issuer responds with an access
token, as well as with a random number referred to as c nonce.

d) Credential request: As a final step, the wallet sends
a credential request to the issuer. The request includes the
HTTP Authorization header, whose value is set to Bearer
followed by the access token received in the previous step. A
credential requests includes a JSON object with the following
parameters:

• format: The encoding of the requested credential. In our
system the value of this paramter is set to “jwt vc json”

• proof: A JSON Web Signature [8] generated using a key
owned by the wallet. The provided JSON Web Signature
must include (among other parameters) the corresponding
public key, as well as the c nonce generated by the issuer
in the previous step.

The issuer verifies the signature of the proof and extracts the
provided pubic key. Then, it issues a VC bound to that key.

2) OpenID for VC presentation (OID4VP): OID4VP en-
ables a verifier to request and receive a verifiable presentation
(VP) form a wallet. OID4VP, as used in our solution, involves
the following steps:2

a) Authorization request: A verifier requests from a
wallet a VP. An authorization request includes the following
parameters:

1It is highlighted that this section presents only the OID4VCI parameters
used by our solution. For all available options of OID4VCI interested readers
are referred to [6].

2Similarly to OID4VCI, it is highlighted that this section presents only
the OID4VP parameters used by our solution. For all available options of
OID4VP interested readers are referred to [7].

• scope: A pre-configured string indicating the type of
credential(s) the VP must include.

• nonce: A random number that must be included in the
VP signature.

• response mode: Its value is direct post and it indicates
that the wallet must send the requested VP using HTTP
post.

• response uri: The (HTTPS) URI in which the wallet must
post the generated VP

• state: An opaque value used by the verifier to maintain
state between the authorization request the VP submis-
sion.
b) Response: A wallet’s response to an authorization

request is POSTed to the response uri and includes the
following parameters:

• vp token: The generated VP.
• state: The state parameter included in the authorization

request.

C. Related work

A growing number of related research efforts leverage
blockchain technology in order to achieve interoperability at
the security level (e.g., [9]–[11]). Nevertheless, the use of
this technology usually introduces communication overhead
and perhaps monetary costs. Furthermore, storing information
related to access control in a (public) blockchain system may
introduce security and privacy concerns. Our solution has
minimal communication overhead and it does not require the
storage of sensitive information by third parties.

Our system leverages VCs for expressing authorizations,
but alternative mechanisms can be considered. For example,
Macaroons [12], Authorization Capabilities for Linked Data
(ZCAP-LD) [13], or even capabilities as defined by the WAVE
framework [14] could be used instead. The advantages of VCs
compared to these solutions are that the VC data model is
a standardized W3C recommendation, hence it offers better
interoperability and it is supported by a wide range of im-
plementations, and VCs can be easily extended and adapted
to the requirements of specific use cases, e.g., by creating
a new VC type. Similarly, our solution uses OpenID for
VC for managing the lifecycle of VCs, but other protocols
can be considered, e.g., the Credential Handler API [15] or
DIDComm Messaging [16]. The main advantage of OpenID
for VCs is that it is based on the omnipresent OpenID Connect,
therefore existing user management systems can be easily
extended to integrate our solution.

Our system resembles a capabilities-based access control
(CapBAC) system (e.g., [17], [18]). The main differences of
our solution compared to these systems are: first, our solution
uses VCs to encode capabilities, as opposed to a custom
capability encoding format, second, it supports revocation, and
third, it allows users to “present” to a verifier capabilities
asserted by multiples issuers.

Our system encodes in a VC simple authorization decisions
(e.g., “a user X is allowed to access household D”), neverthe-
less our design does not prevent other types of VCs that could

enable more advanced access control decisions; for instance
we can envision “situational oracles” (as introduced by [19])
to provide users with short-lived VCs that “describe” user-
context, enabling this way context-aware access control.

The work presented in this paper, extends our previous
work published in [20], [21] in such a way in order to
make it applicable to the smart grid domain. In particular, the
solution presented in this paper considers multiple VC issuers,
performs access control by combining multiple VCs in a single
presentation, defines a new VC type, and it leverages OpenID
specifications to implement a cloud-based wallet that hides the
authorization process from the client application.

III. SOLUTION OVERVIEW

Our system assumes an interoperable EMS, similar to [22],
which is composed of the following entities.

a) End-user: this is the energy manager of the house-
hold, which wants to minimize energy costs and carbon
footprint while preserving occupant comfort. Any household
occupant can act as an end-user by interacting with the smart
home through a client application.

b) EMS component provider: this can be an energy util-
ity or an IoT service/device provider. An energy utility is the
entity responsible for providing energy to the household based
on a specific contract, with either static or dynamic energy
prices. The energy utility can also monitor the total energy
consumption of the household through a smart meter installed
by them or by the Distribution System Operator (DSO).
Most energy utilities also provide proprietary software to their
clients so as to monitor their consumption in real-time through
the smart meter, pay their electricity bills, engage consumers
in energy efficiency and Demand Response (DR) schemes,
etc. An IoT service/device provider is an entity that provides
IoT devices, such as smart plugs, climate sensors, and smart
devices, to the household, along with a proprietary platform to
monitor/control them. Most smart homes incorporate multiple
devices from different providers and vendors.

c) Interoperability middleware provider: it is a trusted
entity that develops, deploys, and manages the interoperability
middleware responsible for interoperable data exchanges and
ensuring that the involved stakeholders utilize standardized
data models and semantic ontologies.

Each household is identified by one or more EMS compo-
nent provider-specific identifiers. Moreover, each EMS com-
ponent is uniquely identified by an EMS-specific identifier.
The interoperability middleware may connect to multiple EMS
component providers. Figure 1 is an example of an instance of
the interoperable EMS considered by our solution. As it can be
seen, the interoperability middleware interacts with multiple
EMS component providers. Additionally, a household may
integrate components from multiple components providers.
Finally, component providers may use different identifiers to
refer to the same household.

The interoperability middleware exposes an API interface
that converts the original APIs of the EMS component to a
standardized format using specific ontologies and data models.

Interoperability middleware

EMS component
provider

EMS component
provider

EMS component
provider

EMS component
provider

Home #1 Home #B

Meter #1
Lamp #1

Plug #1

Client application

Fig. 1. The considered EMS architecture

Interoperability middleware

EMS component
provider

Client application

Cloud wallet
VC issuer

PEP

(0) Issue VC

(1) API Req.

(2) Auth Req.

(4) API Req.(4)

Fig. 2. The elements of our solution.

This API allows client applications to: (i) list all EMS com-
ponents installed in a household (e.g., all available devices)
and (ii) interact with a specific component (e.g., retrieve
measurement data for a specific component in a time series
form or actuate it).

Our solution endows the EMS with access control proper-
ties. In particular, we extend the EMS component provider
with VC issuing capabilities, which are used for authorizing
client applications to access the components installed in a spe-
cific household. Additionally, we provide a transparent proxy
that acts as a Policy Enforcement Point and intercepts API
request towards the interoperability middleware “blocking” the
unauthorized ones. Finally, we implement a cloud-based wallet
where issued VCs are stored. The additions of our solution
are illustrated in Fig. 2. From a high level perspective access
control is implemented in our solution as follows (see also
the numbered arrows in Fig. 2). Initially, EMS component
providers issue VCs to end-users that include the identifiers
of the households they are authorized to access. An end-
user performs an API request through a client application.
The request is intercepted by the PEP which responds with
an authorization request (as described in section II-B). The
client application invokes the end-user wallet, which sends
the appropriate VP to the PEP. From this point on, the client
application is considered to be authorized and its API requests
are forwarded to the interoperability middleware.

IV. SYSTEM DESIGN

Our system assumes that each VC issuer (implemented by
an EMS component provider) is uniquely identified by a URL

and owns a public-private key pair, which is used for signing
the issued VCs. Moreover, each end-user has established an
authentication method with one or more EMS component
providers. Accordingly, EMS component providers provide a
web interface to their VC issuer where end-users can login
and request a VC.

A PEP is configured with a data structure, referred to as
the Authorization Table where information related to the active
sessions is stored. In particular, an authorization table contains
tuples that map a session identifier to an authorization status,
as well as to a list of household identifiers that can be accessed
in the context of the corresponding session.

Our system introduces a cloud-based wallet where issued
VCs are stored. Such a wallet can be self-hosted or provided
as shared service by a corresponding wallet provider. In any
case, end-users are assumed to have established a secure
authentication method with their wallets. Similarly, wallets are
assumed to be secured, i.e., they do not share user VCs with-
out user consent and they have applied appropriate security
mechanisms for protecting the private keys generated during a
credential request. Finally, in the following when we say that
end-users interact with their wallets it is assumed that end-user
authentication has already taken place. Our solution includes
five phases: (1) Set up, (2) VC issuance, (3) Unauthorized API
request, (4) Authorization, and (5) Authorized API request.
These phases are described in the sequel.

A. Set up

During this phase the elements of our solution are config-
ured with the necessary information required for implementing
all operations securely. The VC issuer is configured with the
appropriate access control policies. Similarly, the PEP is con-
figured with a list of VC issuers URLs and their corresponding
public keys. As we discuss in the following section, our
system defines a new VC type named OwnershipCredential;
accordingly, the wallet is configured with a scope identifier
named Ownership: if a verifier uses this scope identifier in
an authorization request, the wallet “undestands” that the
verifies wishes to receive a VP that includes VCs of type
OwnershipCredential.

B. VC issuance

VC issuance in our solution is implemented using
OID4VCI, and the steps described in section II-B. For the VC
preparation, end-users authenticate to the web interface of the
VC issuer of the EMS component providers from which they
wish to receives a VC. The corresponding credential offers are
presented as links, which when clicked redirect end-users to
their wallets. The credentials parameter of the each credential
offer is agreed to have value “OwnershipCredential”.

The first time a wallet sends a credential request on behalf
of an end-user, the wallet creates a fresh public-private key
pair: the private key is then used for signing the corresponding
proof (included in the credential request). For all subsequent
requests for the same credential type (on behalf of the same
end-user), the wallet uses the same public-private key pair.

Therefore, all VCs issued in our system for the same user are
bound to the same public key.

Our solution defines a new type of VC named Ownership-
Credential that includes the household identifiers that the VC
subject can access. VCs in our solution are encoded as JSON
Web Tokens [23] protected using a JSON Web Signature [8]
generated by the issuer (following the procedure described in
section 6.3.1 of [4]). Furthermore, a VC includes information
that can be used for verifying its revocation status, as described
in section II-A.

C. Unauthorized API request

Initially, the client application sends an unauthorized
HTTPS request. The request is received by the PEP, which
acts as transparent proxy. The PEP generates a new session
identifier, it inserts it in the authorization table and sets
corresponding entry in the authorization table as Unauthorized.
Then it responds with an OID4VP authorization request (for
more details see section II-B). The authorization request
includes the state parameter, whose value equals to the session
identifier.

D. Authorization

Upon receiving the authorization request the client applica-
tion “invokes” the cloud wallet, providing as input the received
request.3 The wallet extracts from the authorization request the
scope parameter and checks if it equals to Ownership, then
it presents to the user all VCs of type OwnershipCredential
and asks from the end-user permission to generate a VP: if
the end-user consents the wallet POSTs the VP to the PEP
(acting as a VC verifier). A VP in our system is a JSON Web
Token signed by the wallet using the key to which the included
VCs are bound. Upon receiving a VP, the PEP executes the
following verifications:

1) It verifies that the VP has not expired and it is within
its validity period.

2) It verifies that the aud claim equals to the URL of the
PEP.

3) It extracts the included VCs. For each of them it verifies
that: (a)it has not expired and it is within its validity
period, (ii) it has not been revoked, (iii) its signature is
valid and it has been generated by a trusted issuer, and
(iv) it includes the same public key in the cnf claim.

4) Using the public key included in the cnf claim of the
VCs it verifies the signature of the VP.

If all verifications are successful, the PEP locates the session
identifier included in the state parameter of the posted response
and updates the corresponding entry of the authorization table
by setting status equal to Authorized and list of household
identifiers equal to the identifiers included in the households
claim of the POSTed VCs.

3Wallet invocation can be implemented using different mechanism, some
of which are discussed in [7]; the mechanism used in our system is described
in section V.

E. Authorized API request

As this point a client application can perform an authorized
request. This is simply done by including the received session
identifier in an HTTP Authorization header. Upon receiving
such a request, the PEP extracts the session identifier and
examines in its authorization table if its status is Authorized
and whether is can be used with the requested household
identifier. If all checks succeed, the PEP forwards the request
to the interoperability middleware.

V. IMPLEMENTATION AND EVALUATION

We have implemented the proposed cloud wallet and VC
issuer as .net 6.0 web applications. Additionally, we have im-
plemented a PEP as a Python 3 WSGI application.4 As a client
application we are using a mobile application implemented
using React Native.

An interesting parameter that affects the performance of our
system is the lifetime of session identifiers: short-lived session
identifiers would result in frequent interactions with the wallet,
which adds round-trip delays, on the other hand a long-lived
identifier (e.g., equal to the lifetime of a VC) will allow a
client application to make authorized API requests even if the
corresponding VCs have been revoked. In our implementation
we are using long-lived session identifiers, i.e., their lifetime
equals to the lifetime of the shortest-lived VC included in a
VP. In order to handle VC revocation, we have extended the
authorization table to include the credentialStatus properties of
the VCs that correspond to each session; then, a background
process periodically fetches the revocation lists and updates
the status of each identifier accordingly. It is reminded that
a revocation list includes the status of all non expired VCs,
therefore the background process has to perform as many
requests as the number of issuers. Furthermore, our system
achieves the following security properties:

a) Improved security management: User and access con-
trol policy management in our system is implemented inde-
pendently of the interoperability middleware, since, granting or
revoking an access right does not involve any communication
with the middleware (as opposed for example to a system
where Access Control Lists are stored in the middleware).
Also, each issuer is allowed to use its internal policy for
deciding who can access which household. Finally, from
our solution perspective, introducing a new EMS component
provider requires only updating the middleware with the new
issuer URL and public key.

b) Attack surface reduction: In our solution the amount
of verifications the PEP needs to perform is less compared
to a system that relies on Access Control Lists (ACLs).
Furthermore, the PEP is not required to store any additional
secret information, nor does it have to maintain user accounts.
Similarly, end-user client applications are not involved in
the authorization process, since this is handled by the cloud
wallet. Therefore, from a security perspective, creating a new

4URLs to the github repositories of the corresponding implementations will
be provided in the camera ready version of the paper.

application for our system is easier and less prone to errors,
compared to a solution where end-user client applications need
to manage secrets.

c) Resilience to attacks: Since VCs in our system are
bound to public key controller by the wallet, our system
is not affected by attackers-in-the-middle that intercept the
communication between a client application and the interop-
erability middleware. These attackers, can neither modify the
transmitted VP without being detected, nor re-use the captured
VP to their own purposes.

VI. CONCLUSIONS AND FUTURE WORK

In this work, an access control solution using Verifiable
Credentials (VCs) is introduced to facilitate trusted data access
in the context of smart energy grids. Our approach is applied
in systems that support multiple EMS component providers
and integrate an interoperability middleware to facilitate the
communication among them. Our access control mechanism
allows the simultaneous usage of multiple authorizations,
issued by different EMS component providers, hiding at the
same time the authorization process from the middleware, by
using a PEP acting as transparent proxy, as well as from end-
user client applications, by using a cloud wallet. Furthermore,
all process in our system leverage standards and ongoing
specifications based on OpenID connect, therefore existing
user management systems can be easily integrated.

Future work in this direction is focused on two areas.
Firstly, our system can be expanded to enable finer-grained
authorizations, e.g., to the device level. This feature could
be used for example for authorizing a guest to access a
portion of the devices included in a household. Secondly,
we investigate the integration of our system with ongoing
decentralized identification and authorization efforts which are
based on related technologies, e.g., the new European digital
identify architecture.5

ACKNOWLEDGEMENTS

This work was supported by project InterConnect (Inter-
operable Solutions Connecting Smart Homes, Buildings and
Grids), which has received funding from European Union’s
Horizon 2020 Research and Innovation Programme under
Grant 857237.

REFERENCES

[1] S. Chadoulos, I. Koutsopoulos, and G. C. Polyzos, “Mobile apps meet
the smart energy grid: A survey on consumer engagement and machine
learning applications,” IEEE Access, vol. 8, pp. 219 632–219 655, 2020.

[2] L. Daniele, F. den Hartog, and J. Roes, “Created in close interaction
with the industry: the smart appliances reference (saref) ontology,” in
Formal Ontologies Meet Industry: 7th International Workshop, FOMI
2015, Berlin, Germany, August 5, 2015, Proceedings 7. Springer, 2015,
pp. 100–112.

[3] J. M. Terras, T. Simão, D. Rua, F. Coelho, C. Gouveia, R. Bessa,
J. Baumeister, R.-I. Prümm, O. Genest, A. Siarheyeva et al., “Fostering
the relation and the connectivity between smart homes and grids–
InterConnect project,” in CIRED 2020 Berlin Workshop (CIRED 2020),
vol. 2020. IET, 2020, pp. 761–764.

5https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-
architecture-and-reference-framework-outline

[4] Sporny, M. et al., “Verifiable credentials data model 1.1,” W3C, W3C
Recommendation, 2022, https://www.w3.org/TR/verifiable-claims-data-
model/.

[5] ——, “Verifiable credentials status list v2021,” W3C, W3C Draft
Community Group Report, 2023, https://www.w3.org/TR/vc-status-list/.

[6] T. Lodderstedt, K. Yasuda, and T. Looker, “OpenID for Verifiable
Credential Issuance,” OpenID Connect WG, Internet draft, 2023,
https://openid.net/specs/openid-4-verifiable-credential-issuance-1 0.

[7] O. Terbu, T. Lodderstedt, K. Yasuda, and T. Looker, “OpenID for Verifi-
able Presentations - draft 18,” OpenID Connect WG, Internet draft, 2023,
https://openid.net/specs/openid-4-verifiable-presentations-1 0.html.

[8] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS),”
Internet Requests for Comments, IETF, RFC 7515, May 2015. [Online].
Available: https://tools.ietf.org/html/rfc7515

[9] L. Tan, N. Shi, C. Yang, and K. Yu, “A blockchain-based access control
framework for cyber-physical-social system big data,” IEEE Access,
vol. 8, pp. 77 215–77 226, 2020.

[10] F. Chen, J. Huang, C. Wang, Y. Tang, C. Huang, D. Xie, T. Wang, and
C. Zhao, “Data access control based on blockchain in medical cyber
physical systems,” Security and Communication Networks, vol. 2021,
pp. 1–14, 2021.

[11] J. Koo, G. Kang, and Y.-G. Kim, “Interoperable access control frame-
work for services demanding high level security among heterogeneous
iot platforms,” in Proceedings of the 38th ACM/SIGAPP Symposium on
Applied Computing, ser. SAC ’23. New York, NY, USA: Association
for Computing Machinery, p. 737–740.

[12] A. Birgisson, J. G. Politz, Úlfar Erlingsson, A. Taly, M. Vrable,
and M. Lentczner, “Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud,” in Network and Distributed
System Security Symposium, 2014.

[13] C. L. Webber, M. Sporny Eds, “Authorization capabilities for linked data
v0.3,” W3C, W3C Draft Community Group Report, 2023, https://w3c-
ccg.github.io/zcap-spec/.

[14] M. P. Andersen, S. Kumar, M. AbdelBaky, G. Fierro, J. Kolb, H.-S. Kim,
D. E. Culler, and R. A. Popa, “WAVE: A Decentralized Authorization
Framework with Transitive Delegation,” in Proceedings of the 28th
USENIX Conference on Security Symposium, ser. SEC’19. USA:
USENIX Association, 2019, p. 1375–1392.

[15] D. Longley and M. sporny, “Credential handler api 1.0,”
W3C, W3C Draft Community Group Report, 2021, https://w3c-
ccg.github.io/credential-handler-api/.

[16] Curren, S. et al., Identity Foundation, DIF Ratified Specification, 2023,
https://identity.foundation/didcomm-messaging/spec/.

[17] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Heracles: Scalable, fine-
grained access control for internet-of-things in enterprise environments,”
in IEEE INFOCOM 2018 - IEEE Conference on Computer Communi-
cations, 2018, pp. 1772–1780.

[18] A. S. Li, R. Safavi-Naini, and P. W. L. Fong, “A capability-based
distributed authorization system to enforce context-aware permission
sequences,” ser. SACMAT ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 195–206.

[19] R. Schuster, V. Shmatikov, and E. Tromer, “Situational access control
in the Internet of Things,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: ACM, 2018, pp. 1056–1073. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243817

[20] N. Fotiou, V. A. Siris, and G. C. Polyzos, “Capability-based access
control for multi-tenant systems using OAuth 2.0 and Verifiable Creden-
tials,” in 30th International Conference on Computer Communications
and Networks (ICCCN). IEEE, 2021.

[21] N. Fotiou, V. A. Siris, G. C. Polyzos, Y. Kortesniemi, and D. Lagutin,
“Capabilities-based access control for iot devices using verifiable cre-
dentials,” in 2022 IEEE Security and Privacy Workshops (SPW), 2022,
pp. 222–228.

[22] M. Tosic, F. A. Coelho, B. Nouwt, D. E. Rua, A. Tomcic, and S. Pesic,
“Towards a cross-domain semantically interoperable ecosystem,” in
Proceedings of the Fifteenth ACM International Conference on Web
Search and Data Mining, ser. WSDM ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1640–1641.

[23] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
IETF, RFC 7519, 2015.

