PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

Enhancing IPFS privacy through triple hashing

Thomas Katsantas, Yannis Thomas, Christos Karapapas and George Xylomenos
Mobile Multimedia Laboratory, Department of Informatics
Athens University of Economics and Business, Greece
e-mail: tomkatsantas@gmail.com, {thomasi, karapapas, xgeorge} @aueb.gr

Abstract—The InterPlanetary File System (IPFS) is a popular
distributed storage system, with worldwide presence. Due to the
open nature and distributed routing of IPFS, malicious users can
monitor the content other users are retrieving, violating their
privacy. Unlike previous privacy enhancement schemes that rely
on user anonymity, hiding the identity of the requesting user
behind a proxy, we hide instead the identity of the content,
using only hash functions. This prevents intermediaries from
detecting what users are retrieving, without relying on any
trusted third parties. Our solution also supports optional content
encryption, which is especially useful for caching. We present the
design and implementation of our solution for IPFS and evaluate
its privacy and security properties, showing that our scheme
enhances privacy and prevents a range of DDoS attacks.

I. INTRODUCTION

The evolution of Web 3.0 has renewed interest on distributed
file systems, such as the InterPlanetary File System (IPFS) [1],
a fully decentralized Peer to Peer (P2P) system. In P2P
systems like IPFS, many peers need to collaborate to locate a
piece of content, creating an obvious privacy issue: a malicious
peer in the lookup path can monitor the content that other peers
are looking up. The malicious peer can even create multiple
virtual nodes to amplify its ability to peek into lookup requests.
So far, IPFS has no defenses against such privacy attacks.

Most current P2P systems address the need for privacy via
user anonymity: they hide the identity of the peer asking
for content by inserting a trusted proxy in front of it. This
technique relies on a trusted third party, which is a single
point of failure, and it increases lookup latency, as lookups
need to take a detour through the proxy.

We present a simpler solution: instead of hiding the user’s
identity, we hide the content’s identity by using triple hashing
when storing and looking up content, switching to single and
double hashing for the actual content exchange. As a result,
intermediate peers cannot detect what a peer is looking for.
Our solution also supports optional content encryption, which
is useful for caching. Our privacy and security analysis shows
that, in addition to enhancing privacy, our scheme deals with
a range of DDoS attacks against IPFS. Furthermore, it does
not add routing delays, it does not rely on trusted third parties
and it has a negligible processing overhead.

The remainder of this paper is structured as follows. In
Section II we outline IPFS operations and explain the mo-
tivation for our work. We describe our triple hashing solution
in Section III. We discuss its implementation and evaluate its
privacy and security properties in Section IV. In Section V we
review related work and we conclude in Section VI.

II. BACKGROUND AND MOTIVATION
A. The InterPlanetary File System

The IPFS is a modular suite of protocols, designed from
the ground up for content addressing and peer-to-peer net-
working [1]. Each stored object in IPFS has a unique Content
Identifier (CID). CIDs support different encodings and hash
functions by indicating (a) the base-encoding for the CID (“b”
for base32), (b) the CID version (v0 or v1), (c) the multicodec,
showing how the addressed data are encoded (protobuf, json,
cbor, etc.) and (d) the multihash, showing the hash function
used, the hash length and the hash value of the content.

Each peer in IPFS has a unique Peer Identifier (peerlD),
in the same space as the CID; it is produced by hashing a
public key of the peer (not its IP address). IPFS organizes the
peers into a Distributed Hash Table (DHT), using a customized
version of the Kademlia DHT [2]. The basic function provided
by Kademlia is locating the k£ nodes whose peerIDs are the
closest to a given CID or PeerID based on the XOR metric.

When an object is made available in IPFS, the peer storing
it creates its CID and then looks up via Kademlia the k closest
peers (by default, k = 20) to that CID. These peers are then
asked to store a (CID, peerID) pair, called the Provider Record;
the peerID indicates the provider of the CID, that is, the node
that stores the corresponding object. To contact actual nodes,
each peer also maintains a number of Peer Records, which are
triplets of the form (peerID, IP address, UDP port). Based on
these records, an IPFS peer can store and retrieve content.

Lookup in IPFS proceeds iteratively, that is, the requesting
peer asks its neighbors who are closest to a CID to return
either the Provider Record (if they have it), or their own closest
neighbors to the CID (if any). The process is repeated, until no
peers closer to the CID can be found. Kademlia ensures that
this process takes O(log V) steps for a network of N peers.

B. The Bitswap protocol

Bitswap is a protocol used to find, search and exchange
content blocks between IPFS peers [3]. Bitswap uses three
types of request messages (WANT_HAVE, WANT_BLOCK
and CANCEL) and three types of response messages (HAVE,
BLOCK, and DONT_HAVE). When a user wants to retrieve
one or more content blocks, it sends a WANT_HAVE message
with a WANTLIST to one or more peers. The WANTLIST con-
tains the CID(s) of the content block(s) being requested. Each
peer who receives the WANT_HAVE, adds the WANTLIST to
a ledger of pending requests. If the peer has the block, it
responds with a HAVE message. When the requesting client

2
i SHA,56(0BJ) R i
A B
Provider record: <nodelD, CID>
Peer record: <IPa, ports, nodelD>
Fig. 1. Plain IPFS store: A chooses B based on the CID of OBJ.

i SHAg56(SHA56(SHA256(0BJ))) - i
A B
Provider record: <nodelD, CID%>
Peer record: <IPa, porta, nodelD>

Fig. 2. Triple Hash store: A chooses B based on the CID® of OB.J.

receives a HAVE message, it responds with a WANT_BLOCK
request to retrieve the block. The block is returned in a
BLOCK response, and its CID is removed from the ledger.
If a root CID, which is a block pointing at a set of second
level CIDs, is used instead of a single CID, the procedure
of WANT_HAVE requests, and transfer of blocks using
WANT_BLOCK is repeated, until all blocks are retrieved.
In IPFS, a peer first tries to retrieve an object by using
Bitswap to broadcast WANT_HAVE messages to all it neigh-
bors. If there are no responses, after 1 sec the peer looks up
the CID using Kademlia to retrieve the Provider Record for
the CID and the Peer Record for its provider. Then, the peer
uses Bitswap with the provider of the object to retrieve it.

C. Threat Model

Since in IPFS a peer always starts by broadcasting its
requests via Bitswap, all its neighbors can monitor which CIDs
it is requesting. If the peer resorts to a DHT lookup, all peers
on the path of the request also learn the CID of the requested
object. To amplify this, a malicious node can create a large
number of nodes who behave lawfully, but also spy on their
peers. A recent study shows that an alarming number of IPs
that have been reported to be malicious, is using IPFS [4].

If a specific peer is targeted, the malicious node just needs to
become its neighbor, to monitor all its requests via Bitswap.
The knowledge of the CID allows malicious nodes to also
retrieve the actual content of the object. Balduf et al. [5]
performed this attack and observed the requested CIDs, the
client and the request time, and even retrieved the objects
corresponding to the CIDs. If the object was unencrypted, the
attacker could create a full profile of the victim [6].

In this paper, our goal is to mitigate such problems, by
not revealing which CIDs a peer is looking up, both to its
neighbors and to peers found through the DHT. The only peer
that can learn what the requesting peer is asking for, is the
peer that actually stores the corresponding content, that is, the
actual CID is only revealed to the peer storing that content.

PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

d

WANT_HAVE (CID3)

b
B 0 ~ VALUE (©y,
Qde c 03)
P HAVE [CID?]
1
o i WANT BLOCK[CID] i
NS BLOCK [OBJ] D

ND, A
i e AL
c ¥
VAL "

Y

i WANT_BLOCK [?22] __,.

Key:
CID" = SHA,56(0BJ)

CID? = SHA256(SHA256(0BJ))
CID® =SHA,56(SHA56(SHA256(0BJ)))
?? = Ignorant of cin’

Fig. 3. Triple Hash lookup.

III. THE TRIPLE HASH SOLUTION
A. Ensuring Privacy

To make an object OBJ available in IPFS, a server A first
creates the object’s CID by hashing its content and adding
some metadata. Then, it adds Provider Records and Peer
Records pointing at itself in the & nodes whose PeerIDs are
the closest to that CID, using the Kademlia DHT; Fig. 1 shows
the information inserted in a chosen node B. In our solution,
in addition to CID, server A also creates CID? by performing
a triple hash of the object’s content. Then, it inserts a Provider
Record for CID? and a Peer Record for itself at the k closest
nodes to CID3, as shown in Fig. 2. The only change then,
is that we use CID? instead of CID for the insertion. In the
following, we will use CID' as a synonym for CID, and CID?
for the double hash of the object.

To retrieve an object from IPFS, a client A starts with the
CID of the object; the CID may have come from a search
engine, a web site, or a previously retrieved object. As shown
in Fig. 3, in our solution A calculates CID® and sends a
FINDVALUE RPC to the a = 3 closest nodes to CID? in its
routing table. When node B receives the RPC (Step 1), it first
checks to see if it already has the object locally stored; if
it does, it will be marked with both CID! and CID?. In our
example it does not, so it returns the details of node C' who
is closer to CID3. Then, node A sends the same RPC to node
C (Step 2). Node C' happens to be one of the k closest nodes
to CID?, so it can respond to A with a Provider Record for
it, which shows that node D has the desired object.

Node A, knowing that node D has the object corresponding
to CID?, switches to Bitswap for the actual retrieval, sending
to D a WANT_HAVE message with CID? (Step 3). Node D,
responds with HAVE, but using CID? rather than CID!. When
node A receives CID? from D, it verifies that D knows the
requested object, as CID? can be easily calculated from CID?,
but not from CID?. A finally sends a WANT_BLOCK with
the true hash, CID'. Node D thus verifies that A already knew
CID!, so it returns the object with a BLOCK message.

Consider now what would happen if node C', who found
out that node A was looking for CID?® during routing, was
malicious. C' cannot calculate CID! from CID?, but it could

PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

Bitswap / DHT

CID = { cid-version_3 || Multicodec || HashID || Length || ‘

SHAZ56(0b)) }

VanillalPFS

) WANT _HAVE [CID] .
< HAVE [CID]
WANT_BLOCK [CID] N
LA < BLOCK [OBJ] 5
‘| cib = { cid-version_3 || Multicodec || HashiD || Length ||
' SHA256(SHA256(SHA256(0b)))) }
=
8
5 @ WANT HAVE [CID%] N
3 P HAVE [CID?] NONCE
g % WANT BLOCK [H(CID'|| NONCE)], NONCE %

A

BLOCK [0BJ] B
®
WANT_BLOCK [CID?], H(CID"||PKg)

i BLOCK [0BJ], CID? i

A B

~

<
€
€

Key:

CID! = SHA56(0B)

CID? = SHA»55(SHA56(0BJ))

CID? =SHA55(SHAg6(SHA256(0BJ))

NONCE: unuque and random number.
OB.J : return the requested object.

Fig. 4. Retrieval with plain IPFS (top) and with triple hash (bottom).

try to ask node D for the object (Step 4). However, D replies
with CIDZ2, from which C still cannot calculate CID!, so node
C cannot find either the true hash or the content of the object.

To allow our solution to co-exist with plain IPFS, we use a
new version number for the CID, to indicate that the requesting
node wants to use the triple hash method (see Section IV).
Therefore, the main differences of our solution with plain IPFS
are: (a) the version and object hash fields of the multihash
are modified to indicate and include the triple hash, (b) the
store and retrieve processes use the triple hash and, (c) in the
Bitswap stage, both the client and the server confirm that the
other end knows the true, single hash, before the exchange.

Fig. 4 shows the details of the Bitswap exchange with plain
IPES and triple hash. Case 1 shows plain IPFS, assuming that
the requesting peer A either has found through the DHT that
peer B holds the desired object, or just happens to have B
in its neighbor list to begin with. The process relies on four
messages using the CID (or CID!) of the object [1].

Case 2 show Bitswap with triple hash. We observe that
the number of exchanged messages remains the same, but the
content of the messages is differentiated. Specifically, in the
first message the client requests CI.D3, in the second message
the server responds with C I D?, in the third step we request the
block with C'I D' and in the final step the object is returned. To
prevent eavesdropping and replay attacks, we also add in the
HAVE message a nonce value, which is randomly generated by
node B and associated with the IP address of node A. When
node A sends the WANT_BLOCK message, it includes the
nonce and uses as the content identifier the hash of CID' and
the nonce. Node B, by verifying the hash, confirms that node

A knows CID!, even though CID! is never sent unprotected,
and that the message is fresh, due to the nonce.

Case 3 shows an alternative two message scheme, which
is applicable when A already knows that B has the desired
object; this is the case when B if found by a DHT lookup,
but not when Bitswap brodacasts the request to all neighbors.
In this case, A does not have a nonce to hide CID?, but still
needs to prove to B that it knows it, so the WANT_BLOCK
message includes CID3, to indicate the desired content, and
a hash of CID! and PK g, the public key of B. Node B, by
verifying the hash, confirms that node A knows CID!. The
object is returned with CID?, which allows A to recognize it
and confirm that B knows CID!, without revealing CID!.

As we discuss in Section 1V, this two message triple hash
solution cannot prevent some of the DDoS attacks prevented
by the four message triple hash solution. A simple heuristic
would be to normally use the two message solution, but if a
node receives more messages from the same IP address than
a threshold, switch to the four message solution.

B. Encrypted Caching

Since looking up content via the DHT is a multistep process,
IPES tries to locate as much content as possible via Bitswap.
Recall that when a peer sends its WANTLIST to its neighbors,
the neighbors that do not have the corresponding objects,
add their CIDs to a ledger, along with the requesting peer.
Each time a peer receives a new object, it checks if any of
its peers have asked for it, and sends it to them if they do.
This improves the chances of finding content via Bitswap. [3].
To further speed up content retrieval, more powerful nodes
can proactively cache popular content. For instance, if a
node receives many requests for a CID, it can request the
corresponding object and cache it. Similarly, if it receives a
STORE RPC for the Provider Record of a CID, it can request
the corresponding object and cache it.

Our triple hash solution, though, prevents this, since a node
needs to know CID! to retrieve an object, which we have
hidden behind CID3. To allow caching without compromising
privacy, we can allow caches to receive an encrypted version
of the object matching CID?, without revealing its CID!, while
still allowing the nodes who know CID! to decrypt the content.
In Fig. 5 we show how our schemes can be adapted to allow
caching encrypted objects; on the left we show cases where a
node B holds the unencrypted object, while on the right we
show cases where a node C' holds the encrypted object.

Case | shows a normal retrieval procedure, where serverB
has the unencrypted object and CID?!, and the requesting client
A knows CID! and wants the corresponding object. Server B
verifies that node A knows CID' from the WANT _BLOCK
message, so it returns the unencrypted object in the BLOCK
message. In case 2, the difference is that node C' only knows
CID3. After learning CID? and the nonce value from node
B, it can only request the encrypted version of the object, by
including CID? hashed with the nonce in the WANT_BLOCK
message. Node B notices that CID? was used, so it returns in
the BLOCK message the object encrypted with CID' as the
key. Node C' cannot decrypt the object, as it does not know
CID!, but it can cache it for other nodes.

PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

Object without Encryption

WANT_HAVE [¢ID3]
HAVE [CID2], NONCE

<
WANT _BLOCK [H(CID'|| NONCE)], NONCE _
BLOCK [0BJ] i

WANT_HAVE [CID3]
HAVE [CID2], NONCE
WANT_BLOCK [H(CID?| NONCE)], NONCE

BLOCK [Egjps(OBJ)] i’

>o

WANT_BLOCK [CID?], H(CID3||PKg)

>
P BLOCK [Ecyp4(OBY)], CID? i
<

Object with Encryption

WANT_HAVE [cID3]
HAVE [CID?], NONCE

~
WANT_BLOCK [H(CID"|| NONCE)], NONCE _
BLOCK [E¢;p1(0BJ)] ”

> €om)

A

WANT_HAVE [CID?]

S
HAVE [CID?], NONCE

WANT_BLOCK [H(CID?|| NONCE)], NONCE %
BLOCK [E¢ip1(OBJ)] c

Key for values in the clouds:

i |OBJ : Has the object not encrypted and knows the CID'23.
i |E(OBJ) : Has the object encrypted and knows the CID%3.
CID? : Found the object from an original page.

CID3 : Receive many requests from other nodes for cID?.

Fig. 5. Combining triple hash with encrypted objects for caching purposes.

In case 3 we have the same setup, but node C uses the
two message triple hash solution. In this case, node C' hashes
CID? with the public key of node B, rather than CID'. Node
B again notices this, and responds with the object encrypted
with CID! as the key, plus CID?. CID? proves that B has the
original object (the hash of CID? should produce CID?). In
both case 2 and case 3, client C learns CID? and retrieves the
encrypted object, but does not learn CID'. CID? is needed to
return the encrypted object to other nodes.

Now we can see what happens when node C has cached
the encrypted object, as a result of case 2 or 3. In case 4,
node A knows CID!, so the only difference from case 1, is
that node C' only has the encrypted content and does not know
CID!. As a result, it cannot verify whether node A actually
knows CID! from the WANT_BLOCK message, but this is
unimportant: if node A does not know CID!, it cannot decrypt
the object anyway. So, node C' returns the encrypted object in
the BLOCK message, which node A can decrypt with CID*.
In case 5, node A does not know CID!, so it can only cache
the encrypted object. In its WANT_BLOCK it uses CID? and
the nonce for the hash; again, C' returns the encrypted object,
which A can now cache. This is the same as case 2, the only
difference is that the server only had the encrypted object.

IV. IMPLEMENTATION AND EVALUATION
A. Implementation

To store an object in plain IPFS, we need to create a CID,
whose last field is the hash of the object’s content:
CID : {cid — version||Multicodec||HashID|| n
Length||SHA256(obj)}

To maintain compatibility with plain IPFS, when using the
triple hash method a new version number is used for the CID:
CID? : {cid — version_3||Multicodec||HashID||

. 2
Length\ |SHA256 (SHA256 (SHA256 (Ob_])))}

By looking at the version number, a node can determine
how to interpret the CID during Bitswap; the DHT does not
differentiate them. However, a client who has found a CID
from a web site, a search engine or via another file, cannot
know whether the storing node used plain or triple hash IPFS.
For this reason, when an object is stored using triple hash, its
CID should also be advertised using the new version:

CID' : {cid — version_3||Multicodec||HashID||
Length||SHA256(0bj)}

All these procedures only require calculating hashes of other
hashes, so their computational overheads are negligible.

3)

B. Privacy evaluation

In our triple hash solution, storing and looking up Provider
Records, as well as requesting the corresponding objects,
always relies on the triple hash of a CID, the CID3. Assuming
a cryptographic hashing function, like SHA-256, it is compu-
tationally infeasible for a malicious node to determine the CID
from CID3. Therefore, a malicious node that learns a requested
CID? via Bitswap or the DHT, cannot find the real CID or
retrieve the corresponding object. The only node that learns
the CID that a requesting client has asked for, is the server
storing the requested object, as it must eventually return the
object to that client via Bitswap.

Our triple hash solution offers partial protection against
eavesdroppers and replay attacks on Bitswap. In the four
message solution, the server first proves to the client that it
knows the true CID by sending CID?, and prevents replay
attacks by also sending a nonce. The client then proves to
the server that it knows the true CID, without revealing it, by
hashing it with the nonce. It is impossible by looking at these
messages to determine the true CID, and it is impossible to
replay the WANT_BLOCK message due to the nonce.

In the two message solution, the CID is again never re-
vealed, as it is hashed with the public key of the server, the

PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

i WANT_HAVE [CID?] -~
Wan i
T_Have '

ATTACKER unsuspected
user

A

unsuspected
user

A

unsuspected
user

i “HAVE [CID?] || NONCE

VICTIM

Fig. 6. Preventing DoS attacks with four message triple hash.

server verifies that the client knows the true CID from that
hash, and the client verifies that the server knows the true
CID, as the last message also contains CID2. However, since
there is no nonce, this solution is vulnerable to replay attacks.

To prevent an eavesdropper on Bitswap from learning the
contents of an object, we can encrypt it, if desired, using the
CID as a key, as described in the solution used for caching. The
encrypted solution has the same properties as the unencrypted
one, whether the four message or the two message solution
is used: the true CID is never sent in the clear, and a client
that cannot prove knowledge of the true CID never gets the
unencrypted content or the true CID.

C. Protection against DDoS attacks

Due to the open nature of IPFS, many DDoS attackers can
be mounted against it; our triple hash solution can prevent
some of them. A simple DDoS attack is for a malicious node
to locate copies of a large object in legitimate servers, as part
of its normal Bitswap and DHT operation, and then send a
large number of WANT_BLOCK requests for that object by
spoofing the IP address of a victim. The result is an avalanche
of large BLOCK messages to the victim, from legitimate
servers. This attack is easy to set up, since IPFS relies on
UDP, so no connection needs to be setup; the responses can
even be directed to a non-IPFS node. Furthermore, as peerIDs
are derived from public keys and not IP addresses, a malicious
node can more easily spoof IP addresses.

In our triple hash solution, it is much harder to launch
such an attack. First, it is hard to determine the size of an
object requested via CID?, as without the true CID a malicious
node cannot retrieve the object. Also, as shown in Fig. 6,
even if the attacker spoofs a large number of WANT_HAVE
messages to unsuspecting servers in the four message solution,
they will respond only with a HAVE message with CID?.
Without proving knowledge of CID', the server will not return
the actual block, so the messages returned are comparable
to the size of the requests; there is no amplification. If the
two message solution is used, the attacker will not be able to
construct the right WANT_BLOCK message, as it does not
known CID', therefore the server will not return a response.
However, if an attacker captures a legitimate WANT_BLOCK
message, since the two message variant does not have a nonce

WANT HAVE [CID3]

WANT BLOCK [CID] || 22

unsuspected
user

i _HAVE [CID?] || NONCE i

VICTIM unsuspected
Ke”: user
?? = Ignorant of NONCE value

Fig. 7. Preventing SR_DRDoS attacks with four message triple hash.

to guard against replay attacks, the attacker can mount a DDoS
attack by spoofing the IP address of the captured message.

A more complex attack is the SR_DRDoS attack, which
leverages the services of third-party servers to amplify and
reflect attacks towards a target, overwhelming it with a massive
amount of traffic. In this scenario, the attacker first plants
is own object, for which it knows both CID' and CID?,
in unsuspecting servers [7]. In plain IPFS, the attacker can
again spoof the WANT_BLOCK messages using the victim’s
IP address, to direct a large amount of traffic to the victim.
When triple hash is used, this attack can be slightly modified,
since now the attacker knows the true CID of the large object.
First, the malicious node spoofs the victim’s IP address and
sends a WANT_HAVE with the CID? of its own object.
The servers will respond with a HAVE with CID? to the
victim. The attacker waits for some time, and then sends
a WANT_BLOCK message with CID!, spoofing again the
victim’s IP address to direct the BLOCK message to it.

Our four message solution is resistant to this attack, as
shown in Fig. 7, since for every WANT_HAVE request, the
server issues a nonce and ties it with the (spoofed) IP address
of the victim. Since the attacker does not know the nonce, it
cannot create a correct WANT_BLOCK message, which also
requires the nonce, so it cannot make the servers send the large
object to the victim. On the other hand, if the attacker does
not spoof the IP addresses of the WANT_HAVE messages to
get the nonces itself, the WANT_BLOCK messages will not
match the IP address tied to these nonces, preventing again the
servers from responding. Finally, if a replay attack is mounted
with a captured WANT_BLOCK message, it will fail, as the
nonce will not be current. Unfortunately, the two message
solution is susceptible to this attack, due to the lack of the
nonce. Since the attacker knows the true CID, it can trick the
servers in returning the large object to the victim.

V. RELATED WORK

Many privacy enhancing schemes have been proposed for
P2P systems. In [8], the authors add delay to messages in
order to confuse attackers, at the cost of also increasing
communication latency. In [9], the authors introduce dummy
messages along with the legal messages, which introduces traf-
fic overhead. In [10], the authors use multiple paths to prevent
eavesdropping, which complicates deployment. Finally, a very

popular tool in this context is the Tor Browser, which uses an
onion routing technique to conceal the IP address IP of the
requester, at the cost of significant latency [11]. Some privacy
enhancing schemes rely on a Public Key Infrastructure (PKI)
to establish trust [12]. While the exploitation of a PKI, or
trusted third parties in general, can address several privacy
attacks on P2P networks, it makes a distributed system rely
on centralized elements.

A privacy enhancing solution customized to IPFES is to use
Bloom filters rather than the CIDs themselves to obfuscate
the request and response messages in Bitswap [13]. Unlike
our triple hash solution, this solution requires many changes
to Bitswap, it has considerable computational and storage
overhead, since each node must maintain Bloom filters of all
its content, and it does not ensure privacy during DHT lookups.

The use of hashing for enhancing privacy is also met in
the GNUnet P2P network [14]. GNUnet uses a triple hashing
technique to encrypt the name of the content item and to
verify that the serving node has indeed the requested item.
However, it only works with encrypted data, which is not
always necessary. Our triple hash solution can work with
encrypted or unencrypted data, and it also provides resistance
to DDoS attacks. While our solution does not offer full privacy,
as the server knows the client, it allows the client to verify that
the server has the desired object.

A new privacy approach to IPFS is the InterPlanetary
Network Indexer (IPNI), which is a separate network with
its own protocols. Every provider can store its content to
IPES and IPNI at the same time; IPNI nodes do not hold
content, just pointers to IPFS nodes. The IPNI uses a two
hash technique: a provider does not store an object’s CID, but
a hash of the CID; all data stored in IPNI are also encrypted
with the CID. Furthermore, the messages exchanged are all
encrypted, while in our solution the protocol can work with
and without encryption. The way that messages are encrypted
in IPNI, prevents the use of two hash privacy in IPFS; as a
result, if a CID is not found in IPNI, the request falls back
to plain IPFS with no privacy. Our three hash solution can be
used directly with IPFS, without requiring a separate network
and different protocols.

VI. CONCLUSION

In IPFS malicious nodes can easily monitor the requests
that other nodes make, learn the CIDs of the objects requested
and even retrieve the corresponding content. To counter these
privacy attacks, we presented a triple hash solution which hides
the CIDs requested from nodes who do not store the actual
object. Our solution also allows encrypting objects, to allow
caching them at any node. Our solution does not hide the node
requesting an object via proxies, to avoid introducing delays
and trusted third parties. Instead, it hides the identity of the
object that is being searched. It can be added to IPFS without
affecting its current functionality, and it can be combined
with node anonymization mechanisms. Our four message triple
hash solution is resistant to many common DDoS attacks,
eavesdropping and message replaying, without adding any
latency. Our two message triple hash solution is not as resistant
to attacks, but it reduces Bitswap latency by half.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

PUBLISHED IN: PROCEEDINGS OF THE IEEE ISCC 2024

REFERENCES

D. Trautwein, A. Raman, G. Tyson, I. Castro, W. Scott, M. Schubotz,
B. Gipp, and Y. Psaras, “Design and evaluation of IPFS: a storage
layer for the decentralized web,” in Proceedings of the ACM SIGCOMM
Conference, 2022, pp. 739-752.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” in Proceedings of the
International Workshop on Peer-to-Peer Systems, 2002, pp. 53-65.

A. De la Rocha, D. Dias, and Y. Psaras, “Accelerating content routing
with bitswap: A multi-path file transfer protocol in IPFS and filecoin,”
Protocol Labs, Tech. Rep., 2021.

C. Karapapas, G. C. Polyzos, and C. Patsakis, “What’s inside a node?
malicious IPFS nodes under the magnifying glass,” arXiv preprint:
2307.12212, 2023.

L. Balduf, S. Henningsen, M. Florian, S. Rust, and B. Scheuermann,
“Monitoring data requests in decentralized data storage systems: A
case study of IPFS,” in Proceedings of the International Conference
on Distributed Computing Systems (ICDCS), 2022, pp. 658—668.

S. Sridhar, O. Ascigil, N. Keizer, F. Genon, S. Pierre, Y. Psaras,
E. Riviere, and M. Krdl, “Content censorship in the interplanetary file
system,” arXiv preprint: 2307.12212, 2023.

B. Liu, S. Berg, J. Li, T. Wei, C. Zhang, and X. Han, “The store-and-
flood distributed reflective denial of service attack,” in Proceedings of the
International Conference on Computer Communication and Networks
(ICCCN), 2014, pp. 1-8.

K. Bauer, D. McCoy, D. Grunwald, and D. Sicker, “Bitblender: Light-
weight anonymity for bittorrent,” in Proceedings of the workshop on
Applications of private and anonymous communications, 2008, pp. 1-8.
J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues, and
open problems,” in Proceedings of the International Workshop on Design
Issues in Anonymity and Unobservability, 2001, pp. 10-29.

D. Mhapasekar, “Accomplishing anonymity in peer to peer network,”
in Proceedings of the International Conference on Communication,
Computing & Security, 2011, pp. 555-558.

R. Dingledine, N. Mathewson, P. F. Syverson et al., “Tor: The second-
generation onion router.” in Proceedings of the USENIX Security Sym-
posium, vol. 4, 2004, pp. 303-320.

G. Gheorghe, R. Lo Cigno, and A. Montresor, “Security and privacy
issues in p2p streaming systems: A survey,” Peer-to-Peer Networking
and Applications, vol. 4, pp. 75-91, 2011.

E. Daniel and F. Tschorsch, “Privacy-enhanced content discovery for
bitswap,” in Proceedings of the IFIP Networking Conference, 2023, pp.
1-9.

D. Kiigler, “An analysis of gnunet and the implications for anonymous,
censorship-resistant networks,” in Proceedings of the International
Workshop on Privacy Enhancing Technologies, 2003, pp. 161-176.

