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Abstract—The most common method of assessing the Quality
of Musician’s Experience (QoME) in Network Music Perfor-
mance (NMP) is to perform a subjective study, where the partic-
ipants evaluate their experience via questionnaires. Translating
experiences into metrics is not an exact science, though: in our
recent study on the effects of audio delay and quality in the
QoME of NMP, the responses had a high variance and were
inconsistent. To strengthen our confidence in the results of the
subjective study, we analyzed video recordings of the participants
using machine learning. Specifically, we used Facial Expression
Recognition (FER) to detect the emotions felt by the participants
and then compare them with their questionnaire responses.
In addition to pointing out interesting phenomena that were
not apparent from the questionnaires, this multimodal analysis
showed analogies between the emotions felt (as captured by FER)
and the emotions expressed (as captured by the responses).

Index Terms—NMP, QoME, Facial Expression Recognition,
Emotion Detection.

I. INTRODUCTION

During the recent pandemic, methods of real-time remote
collaboration have come to the forefront of computing re-
search. Network Music Performance (NMP), that is, the perfor-
mance of music when musicians are connected over a network,
is a classic case of such an application, which is however
hampered by its need for ultra low delay communication. Even
though all human-to-human communications have strict delay
requirements, NMP is an outlier: while regular video confer-
encing can tolerate up to 100 ms of one way delay, in NMP
delays of more than 25-30 ms are considered problematic [1].
These delay limits were derived either from artificial scenarios,
such as participants trying to synchronize hand claps, or from
small studies with real musicians. Interestingly, some studies
have reported that actual musicians managed to cope with
higher delays during real performances [2], indicating that the
aesthetic experience of a music performance is a more complex
phenomenon.

Although delay is the most crucial factor in NMP, when
bandwidth is limited quality and delay can be traded off
against each other. Single channel uncompressed CD quality
audio (sampling at 44.1 KHz with 16 bits per channel) requires
around 700 Kbps, which is close to the uplink capacity
of ADSL connections (768 kbps – 1 Mbps), without even
considering video. Since audio compression/decompression
introduces delays, in bandwidth-limited network scenarios we
either need to reduce the audio quality to allow for uncom-
pressed audio to be sent with minimal delay, or compress the
audio at the cost of increasing delay.

In order to evaluate more accurately the effects of both
audio delay and audio quality on the Quality of Musicians’
Experience (QoME) of NMP, we performed a large number of
controlled experiments (22 subjects in total, the largest study
we are aware of), where pairs of musicians played a musical
piece of their choice under different delay and quality settings,
completing a questionnaire at the end of each performance [3].
As in many other subjective studies, the questionnaire results
exhibit a high degree of variance. In addition, even individual
musicians did not provide consistent responses. For example,
as the underlying delay grew, musicians did not consistently
grade their perception of delay as being worse.

For this reason, we considered alternative methods of eval-
uating the QoME. Specifically, having recorded videos of our
NMP sessions, we used machine learning techniques to extract
the facial characteristics of the performers in order to deter-
mine their emotional state. Our goal was to assess whether
the emotion analysis agreed with the subjective evaluation
and whether it would uncover any interesting phenomena;
essentially, this made the assessment multimodal. A longer
term goal was to assess whether emotion analysis could be
used in the future for QoME assessment, providing a more
complete picture than what is possible by relying solely on
questionnaires. To the best of our knowledge, this is the first
study to apply emotion recognition and multimodal assessment
to NMP experiments.

The outline of the rest of the paper is as follows. In
Section II, we briefly present related work on assessing the
effects of delay and quality on QoME. Section III describes the
setup of our experimental scenarios. In Section IV we explain
the method used to detect the musicians’ emotions during the
sessions as delay and quality are varied, while in Section V
we present the results from this analysis and correlate them
with the subjective evaluation. We summarize our findings and
discuss future work in Section VI.

II. RELATED WORK

Most studies of the QoME of NMP are subjective, that
is, musicians respond to surveys evaluating their experience,
while a parameter, such as audio delay or quality, is ma-
nipulated. For example, rhythmic hand clapping was used to
investigate the effects of delay in the tempo in [4], [1], while
musical instruments were used in [5], [6]. Some studies have
also analyzed audio recordings of the NMP sessions, looking
specifically at the variance of the performance tempo [6], [7].
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An extended review of the studies related to emotion
recognition through various sensors can be found in [8].
A person’s emotional state may change depending on their
subjective experience [9]. The emotional state of a person
can be evaluated by varying environmental conditions; this
evaluation can benefit from self reports, as well as from the
data collected by sensing devices [10], [11].

The effects of music in generating emotions to listeners have
been explored in multiple studies where listeners were asked
to listen to musical pieces and data were gathered through
electromyograms for zygomatics, skin conductance and heart
rate [12]. In one of the few studies of emotions specific to
NMP, the author asked six singers and a pianist to perform
remotely, following a conductor through TV monitors. In
parallel, data were gathered from wearable sensors measuring
the performers’ galvanic skin responses [13].

In [14] an extended review of previous works on emotion
recognition is presented where multiple physiological signals
are employed, such as EEG, electromyogram, electrocardio-
gram and skin conductance, to extract emotional information
using various stimuli such us music, movies, robot actions.
Gabrielsson and Juslin [15] employ Emotional Expression in
music performance as an instrument to communicate emotions
to listeners. In [16], the authors state that emotions are highly
subjective and emotional changes can be observed for a very
small time between 3 and 15 sec.

Ekman [17] states that facial and vocal expression, as well
as gestures and posture, during emotion episodes are generally
considered to be central motor components of emotion. On
the other hand, Scherer [18] argues that the issue of emo-
tions induced by music is a complex task and inappropriate
measurements can miss essential aspects of the phenomenon
or obtain biased data. Gabrielsson and Juslin [19] note that
subjective strategies like rating sheets measure the subjective
perception of expressed emotion rather than felt emotion.

Our work essentially focuses on correlating the felt emo-
tion, which we try to detect via Facial Expression Recogni-
tion (FER), and the expressed emotion, which was evaluated
via the questionnaires; it is a multimodal assesment, attempt-
ing to correlate the results from both methods. Although
emotion analysis via FER is not a highly accurate method, our
hope is that by considering both the qualitative results from
the questionnaires and the quantitative results from emotion
analysis we may derive a more accurate characterization of
the QoME of NMP and, eventually, complement the question-
naires with automated assessment methods.

III. EXPERIMENTAL SETUP

For our experiments, we used two visually and aurally
isolated rooms on the same floor of our building. Musicians
performed with their counterparts in separate rooms, while
listening to them through headphones and seeing them through
a 32” TV. We varied two underlying parameters: in Scenario
A, audio delay varied while audio quality was fixed, while in
Scenario B audio quality varied while audio delay was fixed.
To conduct our experiments, we used the same topology with
slightly different setups for each scenario.

Fig. 1. Experimental Setup for Scenario A (variable delay).

Fig. 2. Experimental Setup for Scenario B (variable quality).

In Scenario A, shown in Figure 1, an eight channel mixing
console was used in each room for the necessary audio
routing, monitoring and recording. Audio was captured by
condenser microphones and closed type headphones were used
by the musicians to listen to each other. A video camera
was capturing and sending a composite (analog) video signal
through the existing network cabling to the 32” TV of the other
room (red lines in the figure); the camera was set up to provide
a wide shot of the musician and his/her instrument, to help
musical interaction. The network cables were patched directly
to each other, without passing through any network equipment,
providing us a direct analog connection between the camera
and monitor. Our goal was to achieve the lowest possible visual
delay between musicians, which was experimentally measured
to be about 15 ms from the HD camera to the TV. The two
mixing consoles were also connected through the existing
network cabling, using direct cable patching, hence the audio
signal was also transmitted in analog form from one room to
the other. The reason for connecting them directly was to be
able to achieve perfectly fixed audio delays even below 10 ms,
which is impossible when computers and network devices
intervene in the signal path. We used two AD-340 audio delay
boxes by Audio Research between the two mixing consoles,
via which we were able to set the audio delay in each direction
to the desired value.

In Scenario B, the setup was modified to the one shown in
Figure 2. The audio signals from the mixing consoles were
fed to PCs running Linux, where our own NMP software [20]
digitized and sent the audio streams. We used our software to
manipulate the audio sampling rate, hence altering the audio
quality; we did not compress the audio signal. The video setup
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Repetition 1 2 3 4 5 6 7 8 9 10
MM2ME delay (ms) 10 25 35 30 20 0 40 60 80 120

TABLE I
SCENARIO A: MM2ME DELAYS.

Repetition 1 2 3 4 5 6 7 8 9 10
Sampling rate (kHz) 44.1 36 28 22 16 12 8 18 48 88.2

TABLE II
SCENARIO B: SAMPLING RATES.

Fig. 3. My Mouth to My Ear delay.

was the same as in Scenario A, hence the delay was again
15 ms. The PCs were connected via the Fast Ethernet LAN of
the building, with three Ethernet switches in the path; audio
delay was experimentally measured to be about 10 ms in each
direction.

Unlike most NMP studies which use Mouth to Ear (M2E)
delay, which is the end-to-end delay between the microphone
at one end and the speaker at the other end, in our work we
use the My Mouth to My Ear (MM2ME) delay. As shown
in Figure 3, MM2ME is the two-way counterpart to M2E,
over which it has three advantages. First, when musicians
play together, each musician plays one note and unconsciously
expects to listen to the other musicians’ note to play his next
one, and so on. Second, measuring MM2ME delay accurately
is much easier than measuring the M2E delay, as it can be done
at one of the endpoints, by simply reflecting the transmitted
sound at the other endpoint and comparing the input and
output sound; in contrast, M2E needs to be measured at both
endpoints, thus requiring perfectly synchronized clocks [21].
Third, MM2ME takes into account the possible asymmetry
between the two directions of a connection.

The 22 musicians participating in the study performed in
pairs (11 pairs in total), with each pair playing different
musical instruments. Each pair of musicians played a one
minute musical part of their choice, following their own tempo
and repeating it ten (10) times, using a different MM2ME
delay setting for each repetition; Table I shows the delays used.
Then, the musicians performed the same musical piece ten
(10) more times using a different audio sampling rate; Table II
shows the rates used. No metronome or other synchronization
aids were used.

After the end of each repetition, each musician was asked
to answer an electronic questionnaire on a tablet. In this paper,
we only consider the answers to three questions: Perception
of Satisfaction (PoSat), which was graded on a 5 point
Likert scale (from 1, not satisfied at all, to 5, very satisfied),
Perception of Audio Quality (PoAQ), also graded on a 5 point
Likert scale (from 1, very low quality, to 5, very high quality)
and Perception of Audio Delay (PoAD), again graded on a
5 point Likert scale (from 1, very low delay, to 5, very high
delay); results from the entire questionnaire are reported in [3].

Musicians were not informed about which variable was
manipulated each time, or about the purpose of the experiment,
and we randomly set the order in which the audio delay values
and sampling rates were set for each repetition, as shown in
Tables I and II. The main goal was to conduct an experiment
that would allow us to evaluate multiple variables without bias
or noise in the answers.

IV. EMOTION DETECTION WITH MACHINE LEARNING

To process the videos recorded during our NMP experi-
ments, we turned to machine learning techniques which ana-
lyze the facial expressions of the participants in order to derive
their emotions. Deep Neural Networks (DNNs) have become
the standard in modern emotion detection, which is based
on Facial Expression Recognition (FER) [22]. This process
consists of three main stages: pre-processing, feature learning
and feature classification. We will briefly present these stages
and how they are implemented in the DeepFace system that
we employed.

Since our videos were not recorded with the intention of
performing FER as explained above, they exhibit considerable
variations on background, illumination and head poses. In such
unconstrained scenarios, pre-processing is required to align
and normalize the visual semantic information conveyed by
the face. The first step is to detect the face and then remove
the background and non-face areas (face alignment phase).
To avoid overfitting and ensure generality, DNNs require
sufficient training data, which the publicly available datasets
often fail to provide. Therefore, input samples are randomly
cropped from the four corners and center of the image and
then flipped horizontally, which can result in a dataset that is
many times larger than the original training data. The final
pre-processing step, face normalization, ameliorates variations
in illumination and head poses that are likely to impair FER
performance.

After pre-processing is completed, the feature learning stage
is performed. Some of the most common DNNs that have been
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Fig. 4. Musician A’s emotions vs. Sampling Rate (each point depicts averages
from a single performance).

Fig. 5. Musician B’s emotions vs. Sampling Rate (each point depicts averages
from a single performance).

used for FER are Convolutional Neural Networks (CNNs),
Deep Belief Networks, Deep Autoencoders, Recurrent Neural
Networks and Generative Adversarial Networks. Finally, after
the features have been extracted, the model has to classify a
given face into one of the basic emotion categories. DNNs
can perform this action in an end-to-end way, by adding a
loss layer at the end of the network to regulate the back-
propagation error, or alternatively employ a CNN as a feature
extraction tool and then apply additional independent classi-
fiers, such as Support Vector Machines or Random Forests, to
the extracted features.

For this work, we used the DeepFace system to analyze the
videos of the musicians1. DeepFace is an open-source face
recognition and facial attribute analysis framework for python,
mainly based on Keras and TensorFlow. According to [23]
DeepFace can achieve more than 92% accuracy. To perform
face detection, the Multi-Task cascaded Convolutional Neural
Network (MTCNN) detector was utilized, since it seemed to
outperform the other detectors supported by Deepface in this
use case [24]. The output of the face recognition stage is a
bounding box for the face (a 4 element vector), a 10 element
vector for facial landmark localization and the positions of five
facial landmarks, two for the eyes, two for the mouth and one
for the nose [25]. The final step is to classify the given face
into one of the basic emotion categories (anger, disgust, fear,
happiness, sadness, surprise, and neutral). A fully connected
CNN model, with three convolution layers is employed as a
feature extraction tool.

1https://pypi.org/project/deepface/

Fig. 6. Musician C’s emotions vs. Sampling Rate (each point depicts averages
from a single performance).

Fig. 7. Musician D’s emotions vs. Sampling Rate (each point depicts averages
from a single performance).

The DeepFace system essentially examines each frame of
a recorded video, detects a human face and decides which
emotions are present, using a large set of images as a training
model. Thus, for a 30 second video shot at 30 frames per
second, 900 frames must be examined for emotion detec-
tion. For each frame the algorithm produces (estimates) a
percentage value for each emotion. As an example, for a
random frame a musician was found to be a/100 angry, d/100
disgusted, f/100 frightened, h/100 happy, sa/100 sad, su/100
surprised and n/100 neutral with SUM(a,d,f,h,sa,su,n)=100.
When we report results for an entire session, we simply find
the average fraction of each emotion across all video frames
of the performance.

There are two issues with using DeepFace for the analysis of
our video recordings. First, the videos were captured directly
by the cameras used in the experiment, which were set up
to support musical interaction, thus offering a wide shot of
the musicians and their instruments. As a result, the videos
are not ideal for facial recognition, as faces are a small part
of the frame, they are usually shown in profile and they
can be partially obscured by headphones, microphones, cables
and musical instruments. Ideally, a separate pair of cameras
would have focused on the performer’s faces, to help with
the analysis. Second, the emotions detected by the DeepFace
system are generic, rather than those expected in an NMP
scenario; for example, in NMP it is unlikely to experience
disgust, but it is likely to experience frustration.
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Fig. 8. Musician E’s Emotions (left y axis, solid lines) and PoSat/PoAQ (right
y axis, dashed lines) vs. Sampling Rate: PoSat follows neutrality.

Fig. 9. Musician F’s Emotions (left y axis, solid lines) and PoSat/PoAQ (right
y axis, dashed lines) vs. Sampling Rate: PoSat follows sadness.

V. ANALYSIS RESULTS

We analyzed the results of both Scenario A (variable delay)
and Scenario B (variable sampling rate) with DeepFace. A
first observation is that each video analyzed by the algorithm
revealed a different dominant emotion, depending on the
musician. For example one musician was found to be mostly
sad during all the sessions that he participated in, no matter
the audio conditions he was exposed to. Similarly, another
one was found to be mostly neutral and so on. This indicates
that emotion detection through face analysis produces results
that mix the general emotional state of a participant and the
specific emotions induced by the NMP experiment; it would be
unrealistic to expect participants to shut off all other emotions
during their performance.

A second observation was that the emotional reactions when
audio conditions changed were different for each musician.
However, interesting points come up by looking at the results.
For example, Figures 4, 5, 6 and 7 show the average per-
centages of each emotion for an entire performance for four
random participants as the sampling rate is modified; note that
we do not show disgust and surprise, as they were negligible. A
sharp change in the emotions, either increasing or decreasing,
occurs when the sampling rate changes from 44.1 to 48 kHz.
Even though the change was different for each musician,
it was common for most of the participants, indicating that
this specific sampling rate change was noticeable to the
participants.

Figures 8, 9, 10 and 11 show the average percentage of each
emotion for an entire performance (left y axis, solid lines)

Fig. 10. Musician’s G’s Emotions (left y axi, solid lines) and PoSat/PoAQ
(right y axis, dashed lines) vs. Sampling Rate: PoSat follows fear.

Fig. 11. Musician’s H’s Emotions (left y axis, solid lines) and PoSat/PoAQ
(right y axis, dashed lines) vs. Sampling Rate: PoSat follows anger.

and the scores of the PoSat and PoAQ subjective variables
(right y axis, dotted lines) against the sampling rate, for four
selected musicians. It is interesting to note that while the
PoAQ line depicting the Perception of Audio Quality does not
look like any of the emotion curves, the PoSat lines depicting
the Perception of Satisfaction do: in Figure 8 PoSat follows
neutrality, in Figure 9 PoSat follows sadness, in Figure 10
PoSat follows fear and in Figure 11 PoSat follows anger; note
that since the two y axes have different scales, it is the trends
(up/down) that matter rather than the absolute values. The
matching is not perfect, it relates to a different emotion for
different musicians and it is not so clear in every case, but it
is intriguing that such a match does exist in many cases, as
it indicates that the PoSat answers (the expressed emotion)
do have a correlation with the emotions detected (the felt
emotion), even though the relationship is not clear enough to
allow us to make conclusions without the subjective analysis.

Figures 12 and 13 show the average values of emotions
across all 22 participants, for each sampling rate and delay
value, respectively, as well as the appropriate subjective vari-
ables, that is, PoAQ and PoSat when audio quality (i.e., the
sampling rate) is modified and PoAD and PoSat when audio
delay is modified. Neutrality and sadness are the dominant
emotions in both scenarios. When the audio quality is modi-
fied, we can see in Figure 12 a clear disruption between 44.1
and 48 kHz, as mentioned above. Furthermore, we see an
increase in happiness and anger and a decrease in sadness
and fear as the sampling rate, and hence the audio quality, is
increased. Looking at the subjective variables, both PoSat and
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Fig. 12. Average values of emotions (left y axis, solid lines) and PoSat/PoAQ
(right y axis, dashed lines) across all musicians vs. Sampling Rate.

Fig. 13. Average values of emotions (left y axis, solid lines) and PoSat/PoAQ
(right y axis, dashed lines) across all musicians vs. Audio Delay.

PoAQ only improve slightly with higher sampling rates, and
they do not seem similar to any of the emotion curves.

On the other hand, in Figure 13 we can see a disruption
as delay grows from 20 to 40 ms, where it starts becoming
noticeable. Interestingly, at this point happiness starts to grow
and sadness starts to drop; the reason is that as the musi-
cians became unable to synchronize, they would often burst
into laughter, which made the system detect hapiness! The
implication here is that additional information is needed to
interpret such results, beyond the curves. Looking again at the
subjective variables, PoSat drops with increasing delay, while
PoAD, the perception of Audio Delay, grows, which are both
as expected. We also note that PoSat has a similar shape to
the fear curve.

Looking at both Figure 12 and Figure 13, we can see that
the audio quality has a much smaller effect on satisfaction
(PoSat) than the audio delay: it seems that musicians detect
delay changes (PoAD) easier than quality changes (PoAQ),
with a corresponding effect on satisfaction. Their emotional
responses are also stronger with delay changes, since after
the discontinuity evident in both figures, the emotions change
more abruptly with increasing delay than with increasing
quality.

At the same time, while emotion analysis via FER, at least in
our setup where the video was not captured with this intention,
does show clear emotional responses for individual musicians
and when averaging results across musicians, indicating that
the subjective analysis does capture the felt emotions, it
cannot by itself provide concrete results for the QoME of
NMP: in addition to being rather inexact and not showing

statistically significant correlation with the subjective results,
it also suffers from unexpected responses (e.g., musicians
laughing when losing sync). For this reason, this additional
mode of assessment can be used to support, but not to replace
the results of the subjective analysis.

VI. SUMMARY

We conducted a set of NMP experiments, where the audio
delay and audio quality between a pair of musicians was varied
in a controlled manner for each session, with video from the
sessions being recorded for later analysis. In our experiments,
22 musicians participated as pairs, playing a diverse set of
musical instruments and performing in a variety of musical
styles.

The analysis performed on the recorded video revealed that
emotion detection via facial emotion recognition is not as
conclusive as we would like, since each musician’s emotional
state cannot realistically be affected only by the NMP session
and, sometimes, additional information is needed to interpret
the trends exhibited in the results. However, this additional
mode of assessing the experience of the musicians can be used
to strengthen the conclusions drawn from subjective studies.
It would be worthwhile in future experiments to use dedicated
cameras for emotion analysis, focused on the faces of the
performers, so as to facilitate emotion detection.

As future work, in addition to looking at alternative video
analysis tools, we are planning to analyze the video data by
grouping the experiments by instrument, style and tempo, to
determine whether the emotional responses have a correla-
tion with these factors. We are also looking for methods to
normalize the emotion analysis results via the “subtraction”
of the baseline emotional state of each musician, which is
independent of the NMP session, so as to look only at the
changes to the emotional state that can be attributed to the
participation to the NMP experiment.
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