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Abstract—Despite its rapid growth, the Internet of Things
(IoT) still faces significant challenges related to interoperability,
transparency and security. To address these issues, we propose the
utilization of smart contract-based Digital Twins (DTs) “hosted”
in the Hyperledger Fabric blockchain network, while leveraging
the Web of Things paradigm for interoperability. Thus, our
solution includes several notable features, such as decentral-
ization, auditability and security. However, implementing DTs
using Distributed Ledger Technologies (DLTs) introduces certain
overheads. In this paper, we assess the feasibility and evaluate
the performance of smart contract-based DTs using a set of Key
Performance Indicators (KPIs). Our results demonstrate that,
although DLT-induced overheads, such as latency, are present,
they remain manageable for IoT use cases.

Index Terms—Hyperledger Fabric, Kubernetes, Internet of
Things, Digital Twins, Hyperledger Caliper

I. INTRODUCTION

The Internet of Things (IoT) is envisioned to be an ecosys-
tem of interconnected devices, merging the cyber with the
physical world to provide a multitude of services in a variety
of use cases, such as smart cities, healthcare, etc. However,
there are still many challenges that need to be addressed.
IoT systems remain fragmented, as IoT devices from dif-
ferent manufacturers use different protocols and standards.
Additionally, regarding security, the solutions proposed are
often incompatible with the resource-constrained nature of
IoT devices. We argue that Digital Twins (DTs), with the
right design, can address both these challenges, enhancing
the transparency, interoperability, availability, auditability, and
security of IoT systems.

DTs are typically deployed in secure, centralized envi-
ronments, such as fixed Web servers, but are often tied to
specific vendors, leading to issues of vendor lock-in and
limited transparency. Furthermore, these centralized systems
can be prone to occasional outages, affecting the reliability
of DT operations. To address these challenges, we leverage
Distributed Ledger Technologies (DLTs) and the emerging
paradigm of the Web of Things (WoT) [1] to create and “host”
secure DTs [2]. Initially, each IoT device exposes a Thing
Description (TD) [3], which is used by the WoT gateway

in order to create the DTs. Subsequently, the permissioned
blockchain Hyperledger Fabric [4] is utilized to instantiate the
DTs, which are deployed as smart contracts and “hosted” on
the blockchain network. Users in our system interact directly
with each DT rather than the actual device. Consequently, the
DT relays all valid state modifications to the physical device,
which carries out the required actions.

As shown in our previous work [2], this design has many
appealing (security) properties. However, the overhead added
by each DT, which acts as a proxy, should be acceptable
for real-world use-cases. Therefore, in this paper, we aim
to assess the feasibility and evaluate the performance of our
smart contract-based DTs. In particular, the contributions of
this paper are as follows:

• We utilize a number of high-level Key Performance
Indicators (KPIs) for the smart contract-based DTs.

• We design a variety of experiments using the blockchain
performance benchmarking tool, Hyperledger Caliper.1

• We evaluate the smart contract-based DTs based on the
defined experiments and established KPIs.

II. RELATED WORK

Several studies have explored the integration of blockchain
with DTs, focusing on enhancing data storage and sharing
capabilities. In particular, Yaqoob et al [5] and Khan et al [6]
proposed utilizing blockchain as a secure storage solution for
DT data, while Putz et al [7] and Dietz et al [8] introduced
Decentralized Applications (DApps) to enable secure data
sharing without trusted third-parties. These efforts emphasize
the benefits of combining DLTs with DTs, but they mainly
focus on data management.

Furthermore, there are several research efforts that eval-
uate the performance of Hyperledger Fabric. Specifically,
Nasir et al. [9] conducted a performance analysis on a single
Blockchain peer node by using a simple smart contract. Their
study utilized a modified version of Caliper in order to assess
KPIs such as execution time, latency, and throughput, focusing
on different versions of Fabric (v0.6 and v1.0). The results

1https://hyperledger.github.io/caliper/
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showed significant improvements in throughput and latency in
the latest version; however, as the transaction load increased,
performance deteriorated.

Another study by Baliga et al. [10] presented an exper-
imental analysis of Hyperledger Fabric v1.0, demonstrating
that throughput scales linearly for reads and almost linearly
for writes for a transaction rate below 1000 TPS, after which
performance degrades. The study highlights that tuning orderer
settings and reducing endorsement requirements can improve
throughput and latency, although this may raise security con-
cerns in certain high trust scenarios.

Thakkar et al. [11] identified performance bottlenecks in
Hyperledger Fabric v1.0 and proposed optimizations, such as
aggressive caching and parallelized endorsement verification,
which significantly improved performance. These optimiza-
tions were later incorporated into newer versions of Hyper-
ledger Fabric, enhancing scalability and performance.

Additionally, Dreyer et al. [12] compared Fabric versions
v0.6, v1.0, and v2.0 in terms of throughput, latency and error
rate, showing that v2.0 offered notable improvements, partic-
ularly with setups involving multiple peers and organizations.
Shalaby et al. [13] conducted experiments with HyperLedger
Fabric v1.4 and showed that increasing the batch timeout leads
to increased latency and decreased throughput, due to the
time each block needs to wait for the timeout value, even
in cases, where this block has already received all of the
transactions. Increasing the batch size results in lower latency
and higher throughput, which leads to better performance, as
each block contains a greater number of transactions and thus
more transactions will be simultaneously validated.

Our approach differentiates itself from existing solutions
by addressing general IoT and WoT use cases, such as smart
homes, cities and buildings, where interoperability, availability
and security are essential. Instead of solely focusing on secure
data storage and sharing for DTs, our design leverages WoT
and the latest version of Hyperledger Fabric, namely v2.5.9,
to create DTs that act as secure proxies, enabling transparent
and auditable interactions, ensuring only authorized users can
initiate state changes.

III. EVALUATION METHODOLOGY

We evaluate two different versions of Hyperledger Fabric
within the v2.x release series (v2.0.1 and v2.5.9). Notable
differences between these two versions include the deprecation
of gossip-based block dissemination and the Kafka consensus
algorithm, which has been replaced by the more efficient
Raft consensus mechanism. Additionally, v2.5.9 eliminates
the need for a system channel, introduces multi-architecture
binaries and docker images, and an improved smart contract
lifecycle governance model. These new features are expected
to improve the performance of Hyperledger Fabric.

The network topology, depicted in Fig. 1, consists of a
WoT gateway, the blockchain network, and a Node.js client
application. The Hyperledger Fabric blockchain network in-
cludes three organizations; one orderer organization with three
orderer nodes (org0) and two peer organizations with two peer
nodes each (org1 and org2). The whole blockchain network
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Fig. 1: Network Topology

is deployed in a Kubernetes cluster, which we chose due
to its efficient resource management, scalability, and security
properties, including resilience against DDoS attacks through
traffic distribution and workload isolation. Finally, the WoT
gateway runs in a Docker-compose setup, while the Node.js
client application is responsible for submitting transactions and
interacting with the network.

To evaluate the performance of our smart contract-based
DTs in an IoT system, we utilize the following KPIs:

• Throughput: This metric indicates how many transactions
(requests) the system can handle in a unit of time. We
measure throughput as:

Throughput = Nsucc

tlc-tfs
,

where Nsucc represents the number of successful trans-
actions, tlc is the time when the last transaction was
committed, and tfs is the time when the first transaction
was submitted.

• Latency: This metric measures the time it takes for an
issued transaction to be completed and for a response
to be made available to the application that initiated the
transaction. Note that this takes into account the time
required to communicate with and receive a response
from the WoT gateway.

• Scalability: This metric assesses how well the system re-
sponds to an increase in the number of organizations and
peers in the blockchain network, indicating the system’s
ability to maintain performance as the network grows.

The aforementioned KPIs are important for the evaluation of
our implementation in IoT environments, where users often
need to register dynamically, devices are constrained, and there
is often a high volume of requests. Throughput, latency, and
scalability allow us to understand how the system performs
under realistic conditions and reflect the user experience in
terms of responsiveness.

IV. EVALUATION RESULTS AND DISCUSSION

For the experiments, we deploy the network topology,
presented in Section III, in a single physical machine in
a local testbed. The machine is equipped with an Intel i7
processor, 8 CPUs, 16GB RAM, and runs Ubuntu 22.04. To
optimize performance, we modify a few key settings across
Hyperledger Fabric, Hyperledger Caliper, and Kubernetes. For
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Fig. 2: Invoke Average Throughput with varying time-based
test runs in Fabric v2.5.9 and Fabric v2.0.1
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Fig. 3: Invoke Average Latency with varying time-based test
runs in Fabric v2.5.9 and Fabric v2.0.1

instance, the cache size is increased from the default 64MB
to 128MB, and the endorsement timeout, which specifies
how long the gateway waits for a response from endorsing
peers, is extended from 30 to 120 seconds. Additionally, we
adjust the concurrency limit settings to increase the number
of concurrently running requests to a service on each peer.

A. Latency and Throughput

In the first two sets of experiments we focus on measuring
latency and throughput for both invoke (actuation) transactions
that modify the ledger, and query (sensing) transactions that
only read from the ledger, in Fabric v2.5.9 and v2.0.1. Each
set of experiments consists of 10 test cycles with varying
workloads. The workloads are defined by utilizing Caliper’s
txDuration parameter to perform time-based test runs. For each
test cycle, we use an increasing number of workers, starting
with 5, then progressing to 7, 9, 11, 13, 15, 17, 19, 21, and
finally 25 workers in the last test cycle. The duration in the
first test cycle is 50 seconds; it is increased by 50 seconds with
each subsequent cycle. Therefore, the final test cycle, which
uses 25 workers, lasts 500 seconds.

For invoke transactions, throughput and latency are depicted
in Fig. 2 and Fig. 3, while for query transactions, the same
metrics are depicted in Fig. 4 and Fig. 5. As expected, version
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Fig. 4: Query Average Throughput with varying time-based
test runs in Fabric v2.5.9 and Fabric v2.0.1
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Fig. 5: Query Average Latency with varying time-based test
runs in Fabric v2.5.9 and Fabric v2.0.1

2.5.9 outperforms version 2.0.1 in terms of latency, throughput,
and number of transactions processed, across all test cycles.
For each version, as the duration increases across the test
cycles, the number of transactions processed also increases,
leading to an improvement in throughput and latency val-
ues that do not exceed 2 seconds in v2.5.9. This suggests
that as the workload increases, the system maintains good
performance. Query transactions exhibit better performance
compared to invoke transactions, as they are read-only opera-
tions and involve less computational overhead. In both cases,
we interact with the WoT gateway, which contributes to the
higher-than-expected latency results.

B. Batch Configuration

In the next set of experiments, we evaluated the impact of
both the Batch Timeout (BT) and batch size to our system’s
performance in v2.5.9 of Hyperledger Fabric; we did not test
the older version, since the results above show that it clearly
performs worse. Notably, when only changing the values for
the BT, while the batch size remained at its default value, we
observed an increase in latency and a decrease in throughput
leading to an overall decline in the system’s performance.
In contrast, when only the batch size was changed, while
keeping the BT at its default value, we observed an increase
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in the number of transactions, as we increased the txDuration,
leading to lower latency and higher throughput. This means
that the system’s performance improved, as also observed in
the paper by Shalaby et al. [13].

Batch size in Hyperledger Fabric is configured using three
parameters:

• Max Message Count (MMC), which sets the maximum
number of messages (transactions) allowed in a batch,

• Absolute Max Bytes (AMB), which sets a hard limit on
the total size of serialized messages in a batch, and

• Preferred Max Bytes (PMB), which indicates the pre-
ferred maximum size of serialized messages, acting as
a guideline for the best effort batch size.

A batch will continue to fill with messages until it reaches one
of the following three conditions: the PMB limit is reached, the
MMC is met, or the BT is exceeded. If a new message exceeds
the PMB limit, the current batch is closed without including
the aforementioned message, it is written to a block, and a
new batch is started for the incoming message. Although it is
rarer, it is possible for messages to be larger than the PMB,
and thus exceed this limit. These batches include exactly one
transaction or message, which has to be up to the AMB limit.

TABLE I: Batch Configuration experiment results

BT, MMC, AMB, PMB Latency Throughput Tx Number
2s, 500, 10MB, 2MB 0.78 10.3 1045
5s, 600, 12MB, 4MB 1.53 4.5 464
8s, 700, 14MB, 6MB 1.07 7.1 721

10s, 800, 16MB, 8MB 0.98 7.9 806
12s, 900, 18MB, 10MB 0.87 9.0 915

For this set of experiments we set the duration to 100 sec-
onds and utilized 5 worker threads, which process transactions
in parallel but independently of each other; the results are
depicted in Tab. I. Row 1 shows the results of the first test-
cycle that used the default values for the batch configuration
parameters. From a high level perspective, as we progressively
increase the values of the batch configuration parameters we
can make the following observations:

• Latency increases until row 2, before decreasing,
• Throughput demonstrates a decline up to row 2, and after

row 3 we observe an incline, although the values remain
lower than the first test-cycle.

While the aforementioned observations appear to differ from
the results presented by Shalaby et al. [13], we believe the
differences can be explained by the number of transactions
being equal to the MMC in the rows where we observe an
incline in performance. Specifically, in row 2, we observe
that within the defined timeframe (txDuration) the number of
transactions was a lot less than the MMC, and thus we can
conclude that in this case the BT impacts performance more
than the batch size leading to an overall worse performance.
In rows 3,4 and 5, which is where we observe a pattern
of improvement in both throughput and latency, within the
specified timeframe the system manages to process a number
of transactions that is almost equal to the MMC. In this
case, we conclude that the improved performance can be
attributed to the batch size and not the values that we set

for the BT. This conclusion is supported by the fact that each
transaction is approximately 3-4 KB in size, considering that
one transaction requires 1-2 KB plus an additional 1 KB per
endorsement. Given that our endorsement policy requires an
endorsement from the majority of the organizations, so in
this case two endorsements (one per organization), this means
that each transaction reaches around 3-4 KB. Therefore, more
transactions are needed to reach the PMB or the AMB, making
the MMC the limiting factor. Notably, although both latency
and throughput are improved in the last three test cycles, the
results are still not better than in the first test cycle (row 1),
where the MMC is roughly half the number of transactions.
Thus, we can add to our conclusion that the system tends to
perform well when the number of transactions processed is
approximately a multiple of the MMC.

C. Scalability

To evaluate the scalability of our system, we conducted
experiments with a txDuration of 100 seconds and 5 workers
across three test cycles. The first cycle involved one orderer
organization having three orderers and one peer organization
comprising two peers. For the second cycle, we added a
second peer organization, also with two peers, while in the
third cycle, we included a third peer organization and one
additional orderer to the orderer organization. The results of
these experiments are depicted in Fig. 6 and Fig. 7.

Increasing the number of peers in each organization gen-
erally improves network performance. This is because trans-
action endorsement requests are distributed across the peers,
which means that with more peers, we expect more efficient
load balancing. Additionally, the number of ordering service
nodes directly impacts performance, as all orderers participate
in the consensus process. A minimum of three orderers is
required for network consensus. Adding a fourth orderer
provides crash fault tolerance for one orderer failure, while
five orderers protect against two failures. However, increasing
to six orderers may reduce overall network performance due
to added overhead.

The results of our experiments confirm these expectations.
Specifically, in the first test cycle, with a single peer organi-
zation, throughput was good and latency was acceptable. In
the second cycle, with two peer organizations, performance
improved slightly. Finally, in the third cycle, with three peer
organizations and an additional orderer, we observe a sig-
nificant improvement in performance, particularly in latency,
potentially nearing the system’s performance peak.

D. Transaction Delay

In our system design, communication with the WoT gateway
is essential for actuation because the device’s state must
change in the physical world. However, in the case of sensing,
we could avoid communicating with the WoT gateway and
simply query the blockchain for the most recent state of the
device, if it were to reduce latency and improve throughput. To
confirm our expectations, we conducted experiments to mea-
sure the difference in performance when communicating with



PUBLISHED IN: PROCEEDINGS OF THE ACM MIDD4DT 2024 5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

1-Org 2-Org 3-Org

Latency

L
at

en
cy

 (
s)

Number of Organizations

Fig. 6: Average Latency while increasing the number of
Organizations
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the gateway and when only interacting with the blockchain for
query transactions.

In a test cycle with 100 seconds duration and 7 worker
threads, we found that when interacting with the gateway,
the latency was 0.89 seconds, throughput was 9.6, and the
system processed 983 transactions. However, when we avoided
gateway communication during sensing, the latency dropped
to 0.01 seconds, throughput increased to 484.0, and the system
processed 47,729 transactions. In a second test cycle with
250 seconds duration and 13 worker threads, communication
with the gateway resulted in a latency of 1.16 seconds,
throughput of 14.8, and 4,183 transactions processed. Without
gateway communication, latency improved to 0.03 seconds,
throughput reached 509.7, and the system processed 126,112
transactions. Finally, in the last test cycle with a duration
of 500 seconds and 25 worker threads, querying with the
gateway led to a latency of 1.09 seconds, throughput was
19.0, and the system processed 9,955 transactions. In con-
trast, without gateway communication, the latency dropped to
0.06 seconds, throughput increased to 512.6, and the system
processed 253,797 transactions. These results indicate a signif-
icant overhead when communicating with the gateway during
sensing, with latency overhead ranging from 0.88 to 1.13
seconds, throughput overhead from 474.4 to 494.9 TPS, and

transactions processed overhead between 46,746 and 243,842
transactions.

To optimize our design, we could initialize each IoT de-
vice with its current state when it is first registered on the
blockchain. This way, the system would always have a state to
return when a sensing (query) operation is performed, without
needing to communicate with the gateway. When a device’s
state changes due to an actuation (invoke) operation, this
update will be reflected in the blockchain. Since a query only
reads the blockchain, it is not only unnecessary to contact the
gateway during sensing; the performance gains from avoiding
this communication are also substantial.

V. CONCLUSION AND FUTURE WORK

Our experiments demonstrated that the transition from
Hyperledger Fabric v2.0.1 to v2.5.9 introduces significant
enhancements in performance, scalability, and throughput. We
observed that increasing the transaction duration, which allows
the system to process more transactions, may occasionally
result in a slight increase in latency, but it leads to a notable
improvement in throughput, indicating the system’s ability to
maintain good performance under higher workloads. More-
over, when conducting experiments by changing the values
of the parameters related to the batch configuration, we found
that the max number of messages in a batch is correlated to the
number of transactions within a given timeframe. Additionally,
the results of our experiments demonstrate that expanding the
number of peers and orderers improves load balancing and
fault tolerance, respectively. These findings align with our
expectations.

We plan to leverage the Kubernetes cluster used in this paper
for a more complex deployment involving virtual machines in
a 6G environment, made available to us by the 6G-SANDBOX
project2, where we expect even better performance results.
This future work will provide valuable insights into the po-
tential of such infrastructures for supporting next-generation
blockchain applications under real-world conditions.
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